JP2010209172A - Metal oxide phosphor particulate - Google Patents

Metal oxide phosphor particulate Download PDF

Info

Publication number
JP2010209172A
JP2010209172A JP2009054980A JP2009054980A JP2010209172A JP 2010209172 A JP2010209172 A JP 2010209172A JP 2009054980 A JP2009054980 A JP 2009054980A JP 2009054980 A JP2009054980 A JP 2009054980A JP 2010209172 A JP2010209172 A JP 2010209172A
Authority
JP
Japan
Prior art keywords
metal oxide
boiling point
fine particles
oxide phosphor
phosphor fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009054980A
Other languages
Japanese (ja)
Inventor
Keisuke Hirano
敬祐 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2009054980A priority Critical patent/JP2010209172A/en
Publication of JP2010209172A publication Critical patent/JP2010209172A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal oxide phosphor particulate that can be dispersed in various resins and has high luminous intensity, a method for producing the same, and a resin composition comprising the phosphor. <P>SOLUTION: The metal oxide phosphor particulate is obtained by reacting a metal oxide precursor with a trifunctional alkoxysilane that is represented by formula (I) (wherein R<SP>1</SP>is a monovalent organic group; and R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>are each independently a 1C-4C linear or branched alkyl group) and has a molecular weight of &ge;190 and a boiling point of &ge;190&deg;C at 200-300&deg;C in a polyol solvent having a boiling point of &ge;250&deg;C. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、金属酸化物蛍光体微粒子に関する。さらに詳しくは、金属酸化物前駆体を焼成することにより得られる金属酸化物蛍光体微粒子、その製造方法及び該蛍光体微粒子を含有する樹脂組成物に関する。   The present invention relates to metal oxide phosphor fine particles. More specifically, the present invention relates to metal oxide phosphor fine particles obtained by firing a metal oxide precursor, a method for producing the same, and a resin composition containing the phosphor fine particles.

金属酸化物蛍光体は、一般的には金属酸化物前駆体、例えば金属酢酸塩、金属硝酸塩、金属塩化物等を数百度以上の高温で焼成することにより得られる。このようにして得られた蛍光体は発光量子収率は高いが、一般的に粒子の成長が起きて粒子サイズが大きくなり、透明な蛍光体を得ることは難しい。   The metal oxide phosphor is generally obtained by firing a metal oxide precursor such as metal acetate, metal nitrate, metal chloride, etc. at a high temperature of several hundred degrees or more. Although the phosphor thus obtained has a high emission quantum yield, it is generally difficult to obtain a transparent phosphor because particle growth occurs and the particle size increases.

これに対して、特許文献1では、母核となる化合物を含む溶液と、焼成することにより母核と反応して蛍光体を構成しうる金属元素を含む溶液とを混合して前駆体を形成し、焼成することにより、微粒子で単分散化された蛍光体が得られることが報告されている。   On the other hand, in Patent Document 1, a precursor is formed by mixing a solution containing a compound serving as a mother nucleus and a solution containing a metal element that can react with the mother nucleus by firing to form a phosphor. It has been reported that phosphors monodispersed with fine particles can be obtained by firing.

特許文献2では、ゾル−ゲル法を用いて溶液中で粒子を調製する方法として、酢酸亜鉛、又は硝酸亜鉛等の酸化亜鉛の前駆体とアンモニア水溶液等の塩基を混合して水酸化亜鉛ゲルを得る工程と、該水酸化亜鉛ゲルをグリコール中に分散及び加熱処理して、酸化亜鉛ナノ粒子を分散したゾルを得る方法が報告されている。   In Patent Document 2, as a method for preparing particles in a solution using a sol-gel method, a zinc hydroxide gel is prepared by mixing a zinc oxide precursor such as zinc acetate or zinc nitrate and a base such as an aqueous ammonia solution. There have been reported a method of obtaining a sol in which zinc oxide nanoparticles are dispersed by dispersing and heat-treating the zinc hydroxide gel in glycol.

また、特許文献3では、表面処理剤として長鎖脂肪族カルボン酸を共存させて、高温、高圧の超臨界条件下で、金属酸化物微粒子前駆体水溶液を反応させると、粒子の核が生成した段階で表面処理剤が結合することにより粒成長を抑制し、さらに表面処理剤の立体反発効果により粒子の凝集を抑えて、微粒子を作製する方法が報告されている。   Moreover, in patent document 3, when the long chain aliphatic carboxylic acid was coexisted as a surface treating agent and the metal oxide fine particle precursor aqueous solution was reacted under supercritical conditions of high temperature and high pressure, particle nuclei were generated. There has been reported a method for producing fine particles by suppressing the grain growth by binding the surface treatment agent at the stage and further suppressing the aggregation of the particles by the steric repulsion effect of the surface treatment agent.

特開2007−119618号公報JP 2007-119618 A 特開2007−070188号公報JP 2007-070188 A 特開2006−282503号公報JP 2006-282503 A

しかしながら、特許文献1の方法では、無機蛍光体の前駆体分散液を噴霧焼成することが必須であり、特別な装置を要する。特許文献2の方法では、得られる蛍光体の結晶性が低く、発光量子収率がそれほど高くはないという問題点がある。また、特許文献3の方法では、超臨界条件で利用できる表面処理剤の種類が限られているため、得られる蛍光体の樹脂への分散性が低く、透明な発光体樹脂組成物を得ることが困難である。   However, in the method of Patent Document 1, it is essential to spray-fire the inorganic phosphor precursor dispersion, and a special apparatus is required. In the method of Patent Document 2, there is a problem that the phosphor obtained has low crystallinity and the emission quantum yield is not so high. In addition, in the method of Patent Document 3, since the types of surface treatment agents that can be used under supercritical conditions are limited, it is possible to obtain a transparent phosphor resin composition with low dispersibility of the obtained phosphor in a resin. Is difficult.

また、界面活性剤等を用いて粒子表面を保護する方法や、ミセル法、逆ミセル法等も知られているが、いずれも界面活性剤の除去が難しく、得られる蛍光体微粒子の樹脂への分散が難しく、また、耐熱性が悪い等の問題点がある。   In addition, a method for protecting the particle surface using a surfactant or the like, a micelle method, a reverse micelle method, etc. are also known, but in any case, it is difficult to remove the surfactant, and the obtained phosphor fine particles are applied to the resin. Dispersion is difficult and there are problems such as poor heat resistance.

本発明の課題は、種々の樹脂に分散可能な、発光強度が強い金属酸化物蛍光体微粒子、その製造方法及び該蛍光体を含有する樹脂組成物を提供することにある。   An object of the present invention is to provide metal oxide phosphor fine particles having high emission intensity that can be dispersed in various resins, a method for producing the same, and a resin composition containing the phosphor.

本発明は、
〔1〕 沸点が250℃以上であるポリオール系溶媒中、金属酸化物前駆体と式(I):
The present invention
[1] In a polyol solvent having a boiling point of 250 ° C. or higher, a metal oxide precursor and formula (I):

Figure 2010209172
Figure 2010209172

(式中、Rは1価の有機基、R、R及びRは、それぞれ独立して、炭素数1〜4の、直鎖又は分枝鎖のアルキル基を示す)
で表され、かつ、分子量が190以上又は沸点が190℃以上である3官能性アルコキシシランとを200〜300℃で反応させることにより得られる金属酸化物蛍光体微粒子、
〔2〕 沸点が250℃以上であるポリオール系溶媒中、金属酸化物前駆体と式(I):
(In the formula, R 1 is a monovalent organic group, R 2 , R 3 and R 4 each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms)
And a metal oxide phosphor fine particle obtained by reacting a trifunctional alkoxysilane having a molecular weight of 190 or higher or a boiling point of 190 ° C or higher at 200 to 300 ° C,
[2] In a polyol solvent having a boiling point of 250 ° C. or higher, the metal oxide precursor and formula (I):

Figure 2010209172
Figure 2010209172

(式中、Rは1価の有機基、R、R及びRは、それぞれ独立して、炭素数1〜4の、直鎖又は分枝鎖のアルキル基を示す)
で表され、かつ、分子量が190以上又は沸点が190℃以上である3官能性アルコキシシランとを200〜300℃で反応させる工程を含む、金属酸化物蛍光体微粒子の製造方法、ならびに
〔3〕 樹脂と前記〔1〕記載の金属酸化物蛍光体微粒子とを含有してなる、樹脂組成物
に関する。
(In the formula, R 1 is a monovalent organic group, R 2 , R 3 and R 4 each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms)
And a method for producing metal oxide phosphor fine particles, comprising a step of reacting a trifunctional alkoxysilane having a molecular weight of 190 or more or a boiling point of 190 ° C or more at 200 to 300 ° C, and [3] The present invention relates to a resin composition comprising a resin and the metal oxide phosphor fine particles according to [1].

本発明の金属酸化物蛍光体微粒子は、発光強度が強く、かつ、種々の樹脂に分散可能であるという優れた効果を奏する。   The metal oxide phosphor fine particles of the present invention have excellent light emission intensity and can be dispersed in various resins.

本発明の金属酸化物蛍光体微粒子は、シランカップリング剤で金属酸化物微粒子を表面処理したものであって、金属酸化物微粒子前駆体と式(I):   The metal oxide phosphor fine particles of the present invention are obtained by surface-treating metal oxide fine particles with a silane coupling agent, and are represented by the formula (I):

Figure 2010209172
Figure 2010209172

(式中、Rは1価の有機基、R、R及びRは、それぞれ独立して、炭素数1〜4の、直鎖又は分枝鎖のアルキル基を示す)
で表され、かつ、分子量が190以上又は沸点が190℃以上である3官能性アルコキシシランとを特定の条件下で反応させることに特徴を有する。
(In the formula, R 1 is a monovalent organic group, R 2 , R 3 and R 4 each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms)
And a trifunctional alkoxysilane having a molecular weight of 190 or higher or a boiling point of 190 ° C. or higher is reacted under specific conditions.

通常、シランカップリング剤による粒子の表面処理は、水を含む溶媒中、例えばアルコール溶剤やケトン系の溶剤中で、酸性又はアルカリ性条件下、100℃以下の温度(例えば、室温)で行われて、シランカップリング剤のアルコキシシリル基が加水分解して粒子表面と反応する。即ち、水を必須とする条件下で粒子の表面処理が行われる。しかしながら、水が多いと粒子が成長しやすいため表面処理剤で処理する間に粒子が成長して粗大化したり、表面処理条件が合わない場合には生成した粒子が凝集したりする等の問題を引き起こすことがある。また、反応温度が高くないため粒子の結晶性が不十分となり、蛍光強度が弱くなる。そこで、本発明では、沸点が300℃前後の高沸点溶剤、即ち、沸点が250℃以上であるポリオール系溶媒中にて、金属酸化物前駆体と、特定の分子量又は沸点を有するシランカップリング剤とを200〜300℃の高温で反応させることにより、アルコキシシリル基の熱分解物を金属酸化物の粒子表面に結合させて表面処理を行う。アルコキシシリル基の熱分解反応は水を要しないため、粒子の成長を抑制し、かつ、粒子の生成と表面処理を逐次に行うことができるため、得られる粒子のサイズを制御することが可能となる。また、反応温度も高温であり、粒子の結晶性を高めて蛍光強度を強くすることができる。   Usually, the surface treatment of particles with a silane coupling agent is performed in a solvent containing water, for example, in an alcohol solvent or a ketone solvent, at a temperature of 100 ° C. or lower (for example, room temperature) under acidic or alkaline conditions. The alkoxysilyl group of the silane coupling agent is hydrolyzed and reacts with the particle surface. That is, the surface treatment of the particles is performed under conditions that require water. However, if the amount of water is large, the particles tend to grow, so that the particles grow and coarsen during the treatment with the surface treatment agent, or the generated particles aggregate when the surface treatment conditions are not met. May cause. Further, since the reaction temperature is not high, the crystallinity of the particles becomes insufficient and the fluorescence intensity becomes weak. Therefore, in the present invention, a metal oxide precursor and a silane coupling agent having a specific molecular weight or boiling point in a high-boiling solvent having a boiling point of around 300 ° C., that is, a polyol solvent having a boiling point of 250 ° C. or more. Is reacted at a high temperature of 200 to 300 ° C. to bond the thermal decomposition product of the alkoxysilyl group to the particle surface of the metal oxide to perform surface treatment. Since the thermal decomposition reaction of the alkoxysilyl group does not require water, particle growth can be suppressed and particle generation and surface treatment can be performed sequentially, so that the size of the resulting particles can be controlled. Become. Moreover, the reaction temperature is also high, and the fluorescence intensity can be increased by increasing the crystallinity of the particles.

また、特許文献3では、耐熱性に優れた表面処理剤として長鎖脂肪族カルボン酸を用いて粒子の大きさを制御しているが、長鎖脂肪族カルボン酸は疎水性が高いために、得られた蛍光体粒子を分散できる樹脂が限定され、実用的ではないという問題がある。しかし、本発明では、式(I)におけるRを選択することにより、得られる蛍光体は種々の樹脂に分散することができる。 Moreover, in patent document 3, although the size of a particle is controlled using a long-chain aliphatic carboxylic acid as a surface treatment agent excellent in heat resistance, the long-chain aliphatic carboxylic acid is highly hydrophobic. There is a problem that the resin capable of dispersing the obtained phosphor particles is limited and is not practical. However, in the present invention, the phosphor obtained can be dispersed in various resins by selecting R 1 in the formula (I).

本発明の金属酸化物蛍光体微粒子は、沸点が250℃以上であるポリオール系溶媒中、金属酸化物前駆体と式(I):   The metal oxide phosphor fine particles of the present invention comprise a metal oxide precursor and a formula (I) in a polyol solvent having a boiling point of 250 ° C. or higher:

Figure 2010209172
Figure 2010209172

(式中、Rは1価の有機基、R、R及びRは、それぞれ独立して、炭素数1〜4の、直鎖又は分枝鎖のアルキル基を示す)
で表され、かつ、分子量が190以上又は沸点が190℃以上である3官能性アルコキシシランと(以降、単に式(I)の3官能性アルコキシシランと記載することもある)を200〜300℃で反応させることにより得られる。
(In the formula, R 1 is a monovalent organic group, R 2 , R 3 and R 4 each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms)
And a trifunctional alkoxysilane having a molecular weight of 190 or higher or a boiling point of 190 ° C or higher (hereinafter sometimes referred to simply as a trifunctional alkoxysilane of the formula (I)) is 200 to 300 ° C. It is obtained by reacting with

金属酸化物前駆体における金属としては、金属酸化物が蛍光体になるのであれば特に限定されず、公知のものを使用することができる。具体的には、Fe、Co、Ni、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Ti、Zr、Mn、Eu、Y、Nb、Ce、Ba等が挙げられ、かかる金属の酸化物としては、SiO2、TiO2、ZnO2、SnO2、Al2O3、MnO2、NiO、Eu2O3、Y2O3、Nb2O3、InO、ZnO、Fe2O3、Fe3O4、Co3O4、ZrO2、CeO2、BaO・6Fe2O3、Al5(Y+Tb)3O12、BaTiO3、LiCoO2、LiMn2O4、K2O・6TiO2、AlOOH、ZnEu2O5等が例示される。 The metal in the metal oxide precursor is not particularly limited as long as the metal oxide becomes a phosphor, and known metals can be used. Specifically, Fe, Co, Ni, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Ti, Zr, Mn, Eu, Y, Nb , Ce, Ba, etc., and oxides of such metals include SiO 2 , TiO 2 , ZnO 2 , SnO 2 , Al 2 O 3 , MnO 2 , NiO, Eu 2 O 3 , Y 2 O 3 , Nb 2 O 3 , InO, ZnO, Fe 2 O 3 , Fe 3 O 4 , Co 3 O 4 , ZrO 2 , CeO 2 , BaO · 6Fe 2 O 3 , Al 5 (Y + Tb) 3 O 12 , BaTiO 3 , Examples include LiCoO 2 , LiMn 2 O 4 , K 2 O · 6TiO 2 , AlOOH, ZnEu 2 O 5 and the like.

このような金属酸化物の前駆体としては、上記金属の金属塩が挙げられる。具体的には、例えば、生成される金属酸化物が酸化亜鉛(ZnO)である場合には、酢酸亜鉛、硝酸亜鉛、塩化亜鉛等が例示され、塩の種類としては特に限定はなく、酢酸、硝酸、塩素、臭素、フッ素、シアン、ジエチルカルバメート、オキサレート、パークロレート、トリフルオロ酢酸等が挙げられる。なかでも、熱分解温度が比較的低いことから、酢酸、硝酸が好ましい。なお、かかる前駆体は、無水物であっても、水和物であってもよい。   Examples of such a metal oxide precursor include metal salts of the above metals. Specifically, for example, when the generated metal oxide is zinc oxide (ZnO), zinc acetate, zinc nitrate, zinc chloride and the like are exemplified, and the type of salt is not particularly limited, and acetic acid, Nitric acid, chlorine, bromine, fluorine, cyanide, diethyl carbamate, oxalate, perchlorate, trifluoroacetic acid and the like. Of these, acetic acid and nitric acid are preferred because the thermal decomposition temperature is relatively low. Such a precursor may be an anhydride or a hydrate.

本発明におけるシランカップリング剤は、式(I)で表わされ、分子量が190以上又は沸点が190℃以上である3官能性アルコキシシランを含有する。   The silane coupling agent in the present invention contains a trifunctional alkoxysilane represented by the formula (I) and having a molecular weight of 190 or higher or a boiling point of 190 ° C. or higher.

式(I)中のRは1価の有機基を示すが、金属酸化物前駆体との反応後には、得られる微粒子の表面に結合して残存することから、蛍光体の樹脂への分散性に影響を及ぼすものである。また、本発明における表面処理反応は、200〜300℃という高温下で行われることから、該条件下でも分解せずに微粒子表面に結合し得るものである。このような観点から、Rの好適例としては、具体的には、R全体の炭素数が6〜12となる、直鎖又は分枝鎖のアルキル基、アリール基が挙げられ、該アルキル基及びアリール基は、R全体の炭素数が前記範囲内となるのであれば、エポキシ基、1級、2級もしくは3級のアミノ基、(メタ)アクリロイル基等のビニル基、シクロヘキシルエポキシ基、グリシジル基又は芳香族基等の置換基を有していてもよい。これらのなかでも、耐熱性が高いエポキシ基、シクロヘキシルエポキシ基、グリシジル基が好ましい。なお、本明細書において、「(メタ)アクリロイル」とは、メタクリロイルとアクリロイルとの総称である。 R 1 in the formula (I) represents a monovalent organic group, but after reaction with the metal oxide precursor, it remains bonded to the surface of the resulting fine particles, so that the phosphor is dispersed in the resin. It affects sex. In addition, since the surface treatment reaction in the present invention is performed at a high temperature of 200 to 300 ° C., it can be bonded to the surface of the fine particles without being decomposed even under such conditions. From this point of view, preferred examples of R 1 include a linear or branched alkyl group or aryl group in which the total number of carbon atoms of R 1 is 6 to 12, and the alkyl Group and aryl group, as long as the carbon number of R 1 is within the above range, vinyl group such as epoxy group, primary, secondary or tertiary amino group, (meth) acryloyl group, cyclohexyl epoxy group And may have a substituent such as a glycidyl group or an aromatic group. Among these, an epoxy group, a cyclohexyl epoxy group, and a glycidyl group having high heat resistance are preferable. In the present specification, “(meth) acryloyl” is a general term for methacryloyl and acryloyl.

式(I)中のR、R及びRは、それぞれ独立して、炭素数1〜4の、直鎖又は分枝鎖のアルキル基を示す。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等が挙げられる。これらのなかでも、メチル基、エチル基、プロピル基が好ましく、R、R及びRがいずれも、メチル基、エチル基、又はプロピル基であることがより好ましい。 R 2 , R 3 and R 4 in the formula (I) each independently represent a linear or branched alkyl group having 1 to 4 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. Among these, a methyl group, an ethyl group, and a propyl group are preferable, and R 2 , R 3, and R 4 are all preferably a methyl group, an ethyl group, or a propyl group.

また、式(I)で表わされる3官能性アルコキシシランは、分子量が190以上、好ましくは190〜3000である。沸点は190℃以上であれば特に限定はない。本発明においては、式(I)で表わされる3官能性アルコキシシランは、分子量又は沸点が前記条件を満たすものであればよく、好ましくは、分子量及び沸点のいずれもが前記条件を満たすものであればよい。なお、本明細書において、3官能性アルコキシシランの分子量とは相対分子質量のことを意味し、分子式と構成原子の原子量とから算出される。また、沸点は、常圧(101.3kPa)下での沸点を意味し、後述の実施例に記載の方法に従って測定される。   The trifunctional alkoxysilane represented by the formula (I) has a molecular weight of 190 or more, preferably 190 to 3000. The boiling point is not particularly limited as long as it is 190 ° C or higher. In the present invention, the trifunctional alkoxysilane represented by the formula (I) may have any molecular weight or boiling point satisfying the above conditions, and preferably both molecular weight and boiling point satisfy the above conditions. That's fine. In the present specification, the molecular weight of the trifunctional alkoxysilane means a relative molecular mass, and is calculated from the molecular formula and the atomic weight of the constituent atoms. The boiling point means a boiling point under normal pressure (101.3 kPa), and is measured according to the method described in Examples described later.

かかる条件を満たす式(I)で表される3官能性アルコキシシランとしては、2-〔(3,4)-エポキシシクロヘキシル〕エチルトリメトキシシラン(分子量246.4、沸点310℃)、3-メタクリロキシプロピルトリメトキシシラン(分子量248.4、沸点255℃)、3-グリシジドキシプロピルトリメトキシシラン(分子量236.3、沸点290℃)、フェニルトリメトキシシラン(分子量198.3、沸点218℃)、ヘキシルトリメトキシシラン(分子量206.4、沸点202℃)、デシルトリメトキシシラン(分子量262.5、沸点132℃/10mmHg)、3-アクリロキシプロピルトリメトキシシラン(分子量234.4、沸点100℃/4mmHg)、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(分子量222.4、沸点259℃)、(N-フェニル)-3-アミノプロピルトリメトキシシラン(分子量255.4、沸点312℃)、3-メルカプトプロピルトリメトキシシラン(分子量196.4、沸点219℃)、3-クロロプロピルトリメトキシシラン(分子量198.7、沸点196℃)、3-ウレイドプロピルトリメトキシシラン(分子量264.4、沸点190℃以上)、ヘキシルトリエトキシシラン(分子量248.4、沸点120.6℃/21mmHg)等が挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。   Examples of the trifunctional alkoxysilane represented by the formula (I) satisfying such conditions include 2-[(3,4) -epoxycyclohexyl] ethyltrimethoxysilane (molecular weight 246.4, boiling point 310 ° C.), 3-methacryloxypropyl Trimethoxysilane (molecular weight 248.4, boiling point 255 ° C), 3-glycididoxypropyltrimethoxysilane (molecular weight 236.3, boiling point 290 ° C), phenyltrimethoxysilane (molecular weight 198.3, boiling point 218 ° C), hexyltrimethoxysilane (molecular weight 206.4) , Boiling point 202 ° C.), decyltrimethoxysilane (molecular weight 262.5, boiling point 132 ° C./10 mmHg), 3-acryloxypropyltrimethoxysilane (molecular weight 234.4, boiling point 100 ° C./4 mmHg), N- (2-aminoethyl) -3 -Aminopropyltrimethoxysilane (molecular weight 222.4, boiling point 259 ° C), (N-phenyl) -3-aminopropyltrimethoxysilane (molecular weight 255.4, boiling point 312 ° C), 3-mercaptopropyltrimethoxysilane (min 196.4, boiling point 219 ° C), 3-chloropropyltrimethoxysilane (molecular weight 198.7, boiling point 196 ° C), 3-ureidopropyltrimethoxysilane (molecular weight 264.4, boiling point 190 ° C or higher), hexyltriethoxysilane (molecular weight 248.4, Boiling point 120.6 ° C./21 mmHg) and the like, and these can be used alone or in combination of two or more.

3官能性アルコキシシランの反応量は、金属酸化物前駆体100重量部に対して、300〜1800重量部が好ましく、300〜1700重量部がより好ましく、350〜1650重量部がさらに好ましい。300重量部以上であると、金属酸化物微粒子の成長が抑制されて微細な粒子が得られ、蛍光体を発光させることができ、1800重量部以下であると、樹脂組成物への分散性が良好であり添加できる蛍光体量を増加することができる。   The reaction amount of the trifunctional alkoxysilane is preferably 300 to 1800 parts by weight, more preferably 300 to 1700 parts by weight, and further preferably 350 to 1650 parts by weight with respect to 100 parts by weight of the metal oxide precursor. When the amount is 300 parts by weight or more, the growth of metal oxide fine particles is suppressed to obtain fine particles, and the phosphor can emit light. When the amount is 1800 parts by weight or less, dispersibility in the resin composition is improved. The amount of phosphor that is good and can be added can be increased.

なお、本発明では、本発明の効果を損なわない範囲で、式(I)の3官能性アルコキシシラン以外の他のシランカップリング剤を使用してもよい。シランカップリング剤の総量における式(I)の3官能性アルコキシシランの含有量は、70重量%以上が好ましく、80重量%以上がより好ましく、実質的に100重量%がさらに好ましい   In the present invention, a silane coupling agent other than the trifunctional alkoxysilane of the formula (I) may be used as long as the effects of the present invention are not impaired. The content of the trifunctional alkoxysilane of the formula (I) in the total amount of the silane coupling agent is preferably 70% by weight or more, more preferably 80% by weight or more, and substantially more preferably 100% by weight.

上記金属酸化物前駆体と3官能性アルコキシシランの反応を行う媒体(反応溶媒)として、本発明では、ポリオール系溶媒を用いる。   In the present invention, a polyol solvent is used as a medium (reaction solvent) for reacting the metal oxide precursor with the trifunctional alkoxysilane.

ポリオール系溶媒としては、シランカップリング剤の熱分解反応と粒子の表面処理反応を考慮すると、極性溶媒が望ましく、また300℃程度の高温条件下でも気化や分解しにくい高沸点溶媒、即ち沸点が250℃以上である溶媒を用いる必要がある。本発明では、沸点が250℃以上となるのであれば、ポリオール系溶媒は1成分のみで構成されても、2成分以上で構成されてもよい。2成分以上で構成される場合には、溶媒混合物の沸点が250℃以上となるのであれば、沸点が250℃未満の溶媒が含まれていてもよい。沸点が250℃以上である溶媒としては、ポリエチレングリコール(沸点300℃以上)が好ましい。なお、本明細書において、ポリオール系溶媒の沸点とは常圧(101.3kPa)下での沸点を意味し、後述の実施例に記載の方法に従って測定される。   The polyol solvent is preferably a polar solvent in consideration of the thermal decomposition reaction of the silane coupling agent and the surface treatment reaction of the particles, and also has a high boiling point solvent that does not easily vaporize or decompose even under high temperature conditions of about 300 ° C. It is necessary to use a solvent that is 250 ° C. or higher. In the present invention, as long as the boiling point is 250 ° C. or higher, the polyol solvent may be composed of only one component or may be composed of two or more components. In the case of being composed of two or more components, a solvent having a boiling point of less than 250 ° C. may be included as long as the boiling point of the solvent mixture is 250 ° C. or more. As the solvent having a boiling point of 250 ° C. or higher, polyethylene glycol (boiling point of 300 ° C. or higher) is preferable. In the present specification, the boiling point of the polyol solvent means the boiling point under normal pressure (101.3 kPa), and is measured according to the method described in Examples below.

ポリエチレングリコールとしては、分子量が大きく室温で固体であるものは、反応操作が複雑になるので好ましくない。また、分子量が小さすぎると、反応中に気化して反応系の濃度が変動したり、高温で熱分解して着色の原因となったりするので好ましくない。従って、ポリエチレングリコールの分子量としては、150〜500が好ましく、150〜400がより好ましい。その中でも沸点や粘性から考慮すると、テトラエチレングリコール(沸点314℃以上)やトリエチレングリコール(沸点125〜127℃/0.1mmHg)が好ましい。   Polyethylene glycol having a large molecular weight and solid at room temperature is not preferable because the reaction operation becomes complicated. On the other hand, if the molecular weight is too small, it is not preferable because it is vaporized during the reaction and the concentration of the reaction system fluctuates or is thermally decomposed at a high temperature to cause coloring. Therefore, the molecular weight of polyethylene glycol is preferably 150 to 500, and more preferably 150 to 400. Of these, considering the boiling point and viscosity, tetraethylene glycol (boiling point 314 ° C. or higher) and triethylene glycol (boiling point 125 to 127 ° C./0.1 mmHg) are preferable.

本発明では、シランカップリング剤の熱分解反応に影響を与えないのであれば、前記ポリオール系溶媒以外の他の溶媒を使用してもよい。他の溶媒としては、ラウリルアルコールやオレイルアルコール等の長鎖脂肪族アルコール等の非水系溶媒が挙げられる。溶媒総量におけるポリオール系溶媒の総含有量は、50重量%以上が好ましく、80重量%以上がより好ましく、90重量%以上がさらに好ましく、実質的に100重量%がさらに好ましい   In the present invention, a solvent other than the polyol solvent may be used as long as it does not affect the thermal decomposition reaction of the silane coupling agent. Examples of other solvents include non-aqueous solvents such as long-chain aliphatic alcohols such as lauryl alcohol and oleyl alcohol. The total content of the polyol solvent in the total amount of the solvent is preferably 50% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight or more, and substantially more preferably 100% by weight.

ポリオール系溶媒の総存在量は、金属酸化物前駆体と3官能性アルコキシシランの総量100重量部に対して、500〜1200重量部が好ましく、600〜1000重量部がより好ましい。500重量部以上であると蛍光体微粒子の粒子成長を抑制することができ、1200重量部以下であると生産性が良好である。   The total amount of the polyol-based solvent is preferably 500 to 1200 parts by weight, and more preferably 600 to 1000 parts by weight with respect to 100 parts by weight of the total amount of the metal oxide precursor and the trifunctional alkoxysilane. If it is 500 parts by weight or more, the particle growth of the phosphor fine particles can be suppressed, and if it is 1200 parts by weight or less, the productivity is good.

反応温度は200〜300℃であるが、蛍光体微粒子の結晶性を向上する観点から、250〜300℃が好ましい。反応時間は、0.1〜1時間が好ましい。   Although reaction temperature is 200-300 degreeC, from a viewpoint of improving the crystallinity of fluorescent substance fine particles, 250-300 degreeC is preferable. The reaction time is preferably 0.1 to 1 hour.

かくして、本発明の金属酸化物蛍光体微粒子が得られる。金属酸化物蛍光体微粒子の平均粒子径は、1〜100nmが好ましく、1〜50nmがより好ましい。なお、本明細書において、金属酸化物蛍光体微粒子の平均粒子径は、後述の実施例に記載の方法に従って、測定することができる。   Thus, the metal oxide phosphor fine particles of the present invention are obtained. The average particle diameter of the metal oxide phosphor fine particles is preferably 1 to 100 nm, and more preferably 1 to 50 nm. In the present specification, the average particle diameter of the metal oxide phosphor fine particles can be measured according to the method described in Examples described later.

本発明の金属酸化物蛍光体微粒子の好ましい製造方法は、沸点が250℃以上であるポリオール系溶媒中、金属酸化物前駆体と、式(I)で表され、分子量が190以上又は沸点が190℃以上である3官能性アルコキシシランとを200〜300℃で反応させる工程を含む方法である。   A preferable method for producing the metal oxide phosphor fine particles of the present invention is represented by the formula (I) in a polyol solvent having a boiling point of 250 ° C. or higher and a molecular weight of 190 or higher or a boiling point of 190 It is a method including a step of reacting at 300 to 300 ° C with a trifunctional alkoxysilane having a temperature of at least ° C.

具体的には、例えば、金属酸化物前駆体、式(I)で表される3官能性アルコキシシラン、沸点が250℃以上であるポリオール系溶媒をそれぞれオートクレーブ用ガラス容器に入れ、該ガラス容器をオートクレーブ内に設置後、ガラス容器とオートクレーブの空隙にポリオール系溶媒等を充填して密封し、攪拌下で、200〜300℃の温度条件下で10分間保持する。その後、室温まで冷却してから、得られた溶液を酢酸エチル等の有機溶媒中に混合して遠心分離により、金属酸化物蛍光体微粒子を回収する工程等が挙げられる。   Specifically, for example, a metal oxide precursor, a trifunctional alkoxysilane represented by the formula (I), and a polyol solvent having a boiling point of 250 ° C. or higher are respectively placed in an autoclave glass container, and the glass container is After installation in the autoclave, the space between the glass container and the autoclave is filled with a polyol solvent and sealed, and the mixture is kept under stirring at a temperature of 200 to 300 ° C. for 10 minutes. Then, after cooling to room temperature, the process etc. which collect | recover the metal oxide fluorescent substance microparticles | fine-particles by mixing the obtained solution in organic solvents, such as ethyl acetate, and centrifugation are mentioned.

本発明はまた、上記金属酸化物蛍光体微粒子を含有する樹脂組成物を提供する。   The present invention also provides a resin composition containing the metal oxide phosphor fine particles.

本発明の金属酸化物蛍光体微粒子は、分散性が良好であり、かつ、式(I)で表される3官能性アルコキシシランの置換基の種類によって分散性を調節することが可能であることから、本発明の樹脂組成物は構成樹脂の種類に関係なく、金属酸化物蛍光体微粒子が良好に分散しており、かつ、該微粒子がナノオーダーサイズであることから、透明性に優れる発光体となる。   The metal oxide phosphor fine particles of the present invention have good dispersibility, and the dispersibility can be adjusted by the type of substituent of the trifunctional alkoxysilane represented by the formula (I). Therefore, the resin composition of the present invention has excellent transparency because the metal oxide phosphor fine particles are well dispersed and the fine particles are nano-order size regardless of the type of constituent resin. It becomes.

構成樹脂としては、特に限定はなく、例えば、光半導体素子封止材として使用できる公知の樹脂が挙げられる。   The constituent resin is not particularly limited, and examples thereof include known resins that can be used as an optical semiconductor element sealing material.

樹脂組成物における金属酸化物蛍光体微粒子の含有量は、樹脂の種類や樹脂組成物の用途によって、適宜、調節することができる。   The content of the metal oxide phosphor fine particles in the resin composition can be appropriately adjusted depending on the type of resin and the application of the resin composition.

また、本発明の樹脂組成物は、前記構成樹脂及び金属酸化物蛍光体微粒子に加えて、本発明の効果を損なわない範囲で、老化防止剤、変性剤、界面活性剤、染料、顔料、変色防止剤、紫外線吸収剤等の添加剤を含有してもよい。   Further, the resin composition of the present invention includes an anti-aging agent, a modifier, a surfactant, a dye, a pigment, a discoloration within the range not impairing the effects of the present invention, in addition to the constituent resin and the metal oxide phosphor fine particles. You may contain additives, such as an inhibitor and a ultraviolet absorber.

本発明の樹脂組成物は、本発明の金属酸化物蛍光体微粒子を含有するものであれば、特に限定なく調製することができる。なお、得られた樹脂組成物は、例えば、表面を剥離処理した離型シートの上に適当な厚さに塗工して、加熱乾燥することによりシート状に成形してもよい。   The resin composition of the present invention can be prepared without particular limitation as long as it contains the metal oxide phosphor fine particles of the present invention. In addition, the obtained resin composition may be formed into a sheet shape by, for example, applying a suitable thickness on a release sheet whose surface has been subjected to a release treatment, and drying by heating.

かくして得られる樹脂組成物は、青色又は白色LED素子を搭載した光半導体装置(液晶画面のバックライト、信号機、屋外の大型ディスプレイ、広告看板等)に用いられる光半導体素子封止材として好適に使用し得るものである。   The resin composition thus obtained is suitably used as an optical semiconductor element sealing material used in an optical semiconductor device (a liquid crystal screen backlight, a traffic light, an outdoor large display, an advertising billboard, etc.) mounted with a blue or white LED element. It is possible.

以下、本発明を実施例及び比較例に基づいて説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example and a comparative example, this invention is not limited at all by these Examples.

〔金属酸化物蛍光体微粒子の平均粒子径〕
金属酸化物蛍光体微粒子の平均粒子径とは、金属酸化物蛍光体微粒子の一次粒子の平均粒子径のことであり、透過型電子顕微鏡TEMにて、画像に映った粒子100個の直径を測定し、それらの平均値を平均粒子径とする。
[Average particle diameter of metal oxide phosphor fine particles]
The average particle size of the metal oxide phosphor fine particles is the average particle size of the primary particles of the metal oxide phosphor fine particles. The diameter of 100 particles shown in the image is measured with a transmission electron microscope TEM. And let those average values be an average particle diameter.

〔3官能性アルコキシシラン及びポリオール系溶媒の沸点〕
蒸留法によって測定する。なお、常圧下での測定が困難な場合は、測定可能な蒸気圧下での沸点を測定する。
[Boiling point of trifunctional alkoxysilane and polyol solvent]
Measure by distillation. When measurement under normal pressure is difficult, the boiling point under measurable vapor pressure is measured.

実施例1
オートクレーブ用ガラス容器に、無水酢酸亜鉛1.54g(8mmol)、2-〔(3,4)-エポキシシクロヘキシル〕エチルトリメトキシシラン(商品名:KBM303、信越化学社製、分子量246.4、沸点310℃)8.97g(36mmol)(金属酸化物前駆体100重量部に対して582重量部)、テトラエチレングリコール80mL(沸点314℃、金属酸化物前駆体と3官能性アルコキシシランの総量100重量部に対して856重量部)を加えた。オートクレーブ(耐圧ガラス社製)内にガラス容器を入れて、ガラス容器とオートクレーブの反応容器のギャップ間にテトラエチレングリコール30gを加えてから密封した。攪拌しながら20℃/分の速度で300℃まで昇温し、300℃で10分間保持した後、室温までゆっくり冷却した。その後、得られた溶液を酢酸エチルにより析出させ、遠心分離機にて黄白色の固体(酸化亜鉛蛍光体微粒子)を回収した。
Example 1
In an autoclave glass container, 1.54 g (8 mmol) of anhydrous zinc acetate, 2-[(3,4) -epoxycyclohexyl] ethyltrimethoxysilane (trade name: KBM303, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 246.4, boiling point 310 ° C.) 8.97 g (36 mmol) (582 parts by weight based on 100 parts by weight of the metal oxide precursor), 80 mL of tetraethylene glycol (boiling point 314 ° C., 856 parts per 100 parts by weight of the total amount of the metal oxide precursor and trifunctional alkoxysilane) Parts by weight) was added. A glass container was placed in an autoclave (manufactured by Pressure Glass Co., Ltd.), and 30 g of tetraethylene glycol was added between the gap between the glass container and the autoclave reaction container, followed by sealing. While stirring, the temperature was raised to 300 ° C. at a rate of 20 ° C./min, held at 300 ° C. for 10 minutes, and then slowly cooled to room temperature. Thereafter, the obtained solution was precipitated with ethyl acetate, and a yellowish white solid (zinc oxide phosphor fine particles) was collected with a centrifuge.

実施例2
実施例1において、反応に用いるテトラエチレングリコールの量を80mLから100mLに変更した以外は、実施例1と同様にして酸化亜鉛蛍光体微粒子を得た。なお、テトラエチレングリコールの使用量は、金属酸化物前駆体と3官能性アルコキシシランの総量100重量部に対して1070重量部であった。
Example 2
In Example 1, zinc oxide phosphor fine particles were obtained in the same manner as in Example 1 except that the amount of tetraethylene glycol used in the reaction was changed from 80 mL to 100 mL. The amount of tetraethylene glycol used was 1070 parts by weight based on 100 parts by weight of the total amount of the metal oxide precursor and the trifunctional alkoxysilane.

実施例3
実施例1において、加熱前のオートクレーブ用ガラス容器に、酢酸ユウロピウムを0.05g(0.1mmol)をさらに加えた以外は、実施例1と同様にして酸化亜鉛・ユウロピウム蛍光体微粒子を得た。なお、KBM303の使用量は、金属酸化物前駆体100重量部に対して564重量部であった。
Example 3
In Example 1, zinc oxide / europium phosphor fine particles were obtained in the same manner as in Example 1 except that 0.05 g (0.1 mmol) of europium acetate was further added to the autoclave glass container before heating. The amount of KBM303 used was 564 parts by weight with respect to 100 parts by weight of the metal oxide precursor.

実施例4
実施例1において、KBM303を8.97g(36mmol)用いる代わりに、3-グリシジドキシプロピルトリメトキシシラン(商品名:KBM403、信越化学社製、分子量236.3、沸点290℃)8.51g(36mmol)(金属酸化物前駆体100重量部に対して553重量部)を用いた以外は、実施例1と同様にして酸化亜鉛蛍光体微粒子を得た。
Example 4
In Example 1, instead of using 8.97 g (36 mmol) of KBM303, 3-glycididoxypropyltrimethoxysilane (trade name: KBM403, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 236.3, boiling point 290 ° C.) 8.51 g (36 mmol) (metal) Zinc oxide phosphor fine particles were obtained in the same manner as in Example 1 except that 553 parts by weight with respect to 100 parts by weight of the oxide precursor was used.

実施例5
実施例1において、無水酢酸亜鉛1.54g(8mmol)の代わりに酢酸イットリウム四水和物1.36g(4mmol)を用い、KBM303の量を8.97g(36mmol)から4.92g(20mmol)(金属酸化物前駆体100重量部に対して362重量部)に変更し、テトラエチレングリコールの量を80mLから40mL(金属酸化物前駆体と3官能性アルコキシシランの総量100重量部に対して716重量部)に変更した以外は、実施例1と同様にして酸化イットリウム蛍光体微粒子を得た。
Example 5
In Example 1, 1.36 g (4 mmol) of yttrium acetate tetrahydrate was used in place of 1.54 g (8 mmol) of anhydrous zinc acetate, and the amount of KBM303 was changed from 8.97 g (36 mmol) to 4.92 g (20 mmol) (metal oxide precursor). The amount of tetraethylene glycol was changed from 80 mL to 40 mL (716 parts by weight with respect to 100 parts by weight of the total amount of the metal oxide precursor and trifunctional alkoxysilane). Except that, yttrium oxide phosphor fine particles were obtained in the same manner as in Example 1.

実施例6
実施例1において、KBM303を8.97g(36mmol)用いる代わりに、ヘキシルトリエトキシシラン(商品名:KBE3063、信越化学社製、分子量248.4、沸点120.6℃/21mmHg)を8.94g(36mmol)(金属酸化物前駆体100重量部に対して581重量部)加えた以外は、実施例1と同様にして、酸化亜鉛蛍光体微粒子を得た。
Example 6
In Example 1, instead of using 8.97 g (36 mmol) of KBM303, 8.94 g (36 mmol) of hexyltriethoxysilane (trade name: KBE3063, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 248.4, boiling point 120.6 ° C./21 mmHg) (metal oxide) Zinc oxide phosphor fine particles were obtained in the same manner as in Example 1 except that 581 parts by weight was added to 100 parts by weight of the precursor.

実施例7
実施例1において、KBM303を8.97g(36mmol)用いる代わりに、フェニルトリメトキシシラン(商品名:KBM103、信越化学社製、分子量198.3、沸点218℃)を7.14g(36mmol)(金属酸化物前駆体100重量部に対して464重量部)加えた以外は、実施例1と同様にして、酸化亜鉛蛍光体微粒子を得た。
Example 7
In Example 1, instead of using 8.97 g (36 mmol) of KBM303, 7.14 g (36 mmol) of phenyltrimethoxysilane (trade name: KBM103, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 198.3, boiling point 218 ° C.) (metal oxide precursor) Except for the addition of 464 parts by weight with respect to 100 parts by weight, zinc oxide phosphor fine particles were obtained in the same manner as in Example 1.

実施例8
実施例1において、KBM303を8.97g(36mmol)用いる代わりに、(N-フェニル)-3-アミノプロピルトリメトキシシラン(商品名:KBM573、信越化学社製、分子量255.4、沸点312℃)を9.19g(36mmol)(金属酸化物前駆体100重量部に対して597重量部)加えた以外は、実施例1と同様にして、酸化亜鉛蛍光体微粒子を得た。
Example 8
In Example 1, instead of using 8.97 g (36 mmol) of KBM303, 9.19 g of (N-phenyl) -3-aminopropyltrimethoxysilane (trade name: KBM573, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 255.4, boiling point 312 ° C.) was used. Zinc oxide phosphor fine particles were obtained in the same manner as in Example 1 except that (36 mmol) (597 parts by weight with respect to 100 parts by weight of the metal oxide precursor) was added.

実施例9
実施例1において、テトラエチレングリコール80mLをオートクレーブ用ガラス容器に入れる代わりに、ポリエチレングリコール(分子量200〜300、沸点300℃以上)80mLを加えた以外は、実施例1と同様にして、酸化亜鉛蛍光体微粒子を得た。
Example 9
In Example 1, instead of putting 80 mL of tetraethylene glycol into a glass container for autoclave, zinc oxide fluorescence was obtained in the same manner as in Example 1 except that 80 mL of polyethylene glycol (molecular weight 200 to 300, boiling point 300 ° C. or higher) was added. Body fine particles were obtained.

実施例10
実施例1において、テトラエチレングリコール80mLをオートクレーブ用ガラス容器に入れる代わりに、テトラエチレングリコール40mLと1,4-ブタンジオール(沸点230℃)40mLを加えた以外は、実施例1と同様にして、酸化亜鉛蛍光体微粒子を得た。なお、テトラエチレングリコール40mLと1,4-ブタンジオール40mLの溶媒混合物の沸点は、250℃以上であった。
Example 10
In Example 1, instead of putting 80 mL of tetraethylene glycol into an autoclave glass container, 40 mL of tetraethylene glycol and 40 mL of 1,4-butanediol (boiling point 230 ° C.) were added in the same manner as in Example 1, Zinc oxide phosphor fine particles were obtained. The boiling point of the solvent mixture of 40 mL of tetraethylene glycol and 40 mL of 1,4-butanediol was 250 ° C. or higher.

比較例1
実施例1において、KBM303を8.97g(36mmol)用いる代わりに、ラウリン酸8.9g(金属酸化物前駆体100重量部に対して578重量部)を加えた以外は、実施例1と同様にして、酸化亜鉛蛍光体微粒子を得た。
Comparative Example 1
In Example 1, instead of using 8.97 g (36 mmol) of KBM303, 8.9 g of lauric acid (578 parts by weight with respect to 100 parts by weight of the metal oxide precursor) was added. Zinc oxide phosphor fine particles were obtained.

比較例2
実施例1において、KBM303を8.97g(36mmol)用いる代わりに、プロピルトリメトキシシラン(商品名:LS-1382、信越化学社製、分子量164.3、沸点142℃)を5.91g(36mmol)(金属酸化物前駆体100重量部に対して384重量部)加えた以外は、実施例1と同様にして、酸化亜鉛蛍光体微粒子を得た。
Comparative Example 2
In Example 1, instead of using 8.97 g (36 mmol) of KBM303, 5.91 g (36 mmol) of propyltrimethoxysilane (trade name: LS-1382, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 164.3, boiling point 142 ° C.) (metal oxide) Except for adding 384 parts by weight to 100 parts by weight of the precursor, zinc oxide phosphor fine particles were obtained in the same manner as in Example 1.

比較例3
実施例1において、テトラエチレングリコール80mLをオートクレーブ用ガラス容器に入れる代わりに、1,4-ブタンジオール80mLを加えた以外は、実施例1と同様にして、酸化亜鉛蛍光体微粒子を得た。
Comparative Example 3
In Example 1, zinc oxide phosphor fine particles were obtained in the same manner as in Example 1 except that 80 mL of 1,4-butanediol was added instead of 80 mL of tetraethylene glycol in an autoclave glass container.

比較例4
実施例1において、反応温度を300℃から180℃に変更する以外は、実施例1と同様にして、酸化亜鉛蛍光体微粒子を得た。
Comparative Example 4
In Example 1, zinc oxide phosphor fine particles were obtained in the same manner as in Example 1 except that the reaction temperature was changed from 300 ° C to 180 ° C.

比較例5
酢酸亜鉛二水和物1.09g(5mmol)を無水エタノール50mLに溶解し、0℃に冷却した。一方、水酸化リチウム一水和物0.76g(18mmol)を無水エタノール30mLに懸濁し、そこに、前記酢酸亜鉛溶液を滴下ロートを用いて10分間かけて滴下し、0℃で2時間反応させた。次に、3-アミノプロピルトリメトキシシラン(分子量179.3、沸点208℃)3.59g(20mmol)をメタノール(沸点64.7℃)10mLに溶解した液を滴下し、0℃で24時間反応させて、酸化亜鉛リチウム蛍光体微粒子を得た。
Comparative Example 5
1.09 g (5 mmol) of zinc acetate dihydrate was dissolved in 50 mL of absolute ethanol and cooled to 0 ° C. On the other hand, 0.76 g (18 mmol) of lithium hydroxide monohydrate was suspended in 30 mL of absolute ethanol, and the zinc acetate solution was added dropwise thereto using a dropping funnel over 10 minutes, and reacted at 0 ° C. for 2 hours. . Next, a solution prepared by dissolving 3.59 g (20 mmol) of 3-aminopropyltrimethoxysilane (molecular weight 179.3, boiling point 208 ° C.) in 10 mL of methanol (boiling point 64.7 ° C.) was dropped, and reacted at 0 ° C. for 24 hours to obtain zinc oxide. Lithium phosphor fine particles were obtained.

得られた微粒子について、以下の試験例1〜3の方法に従って評価を行った。結果を表1及び2に示す。   The obtained fine particles were evaluated according to the methods of Test Examples 1 to 3 below. The results are shown in Tables 1 and 2.

試験例1〔分散性〕
得られた微粒子が溶媒に分散するか否かを評価した。分散する場合を「○」、分散しない場合を「×」とし、分散する場合には分散媒も併せて示した。
Test Example 1 [Dispersibility]
It was evaluated whether or not the obtained fine particles were dispersed in a solvent. The case where the dispersion is performed is indicated by “◯”, and the case where the dispersion is not performed is indicated by “X”.

試験例2〔発光波長〕
得られた微粒子を、日立蛍光光度計F4500を用いて365nmの波長で励起させた際の蛍光スペクトルを取得し、その極大波長を測定した。なお、測定には、試験例1で分散させた微粒子の溶液をサンプルとして用いた。
Test Example 2 [Emission wavelength]
A fluorescence spectrum was obtained when the obtained fine particles were excited at a wavelength of 365 nm using Hitachi Fluorometer F4500, and the maximum wavelength was measured. For the measurement, the fine particle solution dispersed in Test Example 1 was used as a sample.

試験例3〔発光強度〕
得られた微粒子について、粒子濃度が1重量%のメタノール溶液を調製し、365nmの波長で励起させた際の発光強度を、以下の判断基準に従って評価した。
Test Example 3 [luminescence intensity]
For the obtained fine particles, a methanol solution having a particle concentration of 1% by weight was prepared, and the emission intensity when excited at a wavelength of 365 nm was evaluated according to the following criteria.

<発光強度の評価基準>
A:一般的な照明が点灯した部屋でも十分に発光が確認できる
B:一般的な照明が点灯した部屋で何とか発光が確認できる。
C:暗室のみで発光が確認できる
D:暗室でも発光が確認できない
<Evaluation criteria for emission intensity>
A: Light emission can be sufficiently confirmed even in a room where general lighting is turned on. B: Light emission can be confirmed somehow in a room where general lighting is turned on.
C: Light emission can be confirmed only in a dark room D: Light emission cannot be confirmed even in a dark room

Figure 2010209172
Figure 2010209172

Figure 2010209172
Figure 2010209172

結果、実施例の蛍光体微粒子は、いずれも粒子径が小さくて分散性が良好であり、かつ、発光強度が強いものであった。一方、比較例4は、反応温度が180℃であったため、シランカップリング剤の熱分解が起こらず、表面処理された金属酸化物微粒子が得られなかった。また、比較例5は、メタノール中で、反応温度が0℃の条件で、シランカップリング剤の加水分解による表面処理が行われたが、反応温度が低いため、金属酸化物微粒子の結晶性が低く、実施例品に比べて発光強度が低いものであった。   As a result, the phosphor fine particles of the examples all had small particle diameters, good dispersibility, and high emission intensity. On the other hand, in Comparative Example 4, since the reaction temperature was 180 ° C., thermal decomposition of the silane coupling agent did not occur, and surface-treated metal oxide fine particles could not be obtained. In Comparative Example 5, surface treatment was performed by hydrolysis of the silane coupling agent in methanol at a reaction temperature of 0 ° C. However, since the reaction temperature was low, the crystallinity of the metal oxide fine particles was low. The emission intensity was low compared to the product of the example.

次に、上記の金属酸化物蛍光体微粒子を樹脂に分散させた。   Next, the above metal oxide phosphor fine particles were dispersed in a resin.

分散例1(実施例1の分散例1)
攪拌機、還流冷却器及び窒素導入管を備えた容器に、エチルアクリレート6g、2-ヒドロキシエチルアクリレート3g、酢酸エチル6g、及び2−プロパノール6gを加えた。重合開始剤として、アゾイソブチロニトリル0.01gを加え、窒素置換後、70℃で5時間反応を行い、アクリル樹脂溶液を得た。次いで、実施例1の酸化亜鉛蛍光体微粒子分散液0.5gを加え、剥離処理を施したPET上に膜厚30μmになるようにキャストし、乾燥することにより透明蛍光シートを得た。日立蛍光光度計F4500にて365nmの波長で励起したところ、470nmに極大波長を有する蛍光を発した。
Dispersion Example 1 (Dispersion Example 1 of Example 1)
To a container equipped with a stirrer, a reflux condenser and a nitrogen introduction tube, 6 g of ethyl acrylate, 3 g of 2-hydroxyethyl acrylate, 6 g of ethyl acetate, and 6 g of 2-propanol were added. As a polymerization initiator, 0.01 g of azoisobutyronitrile was added, and after substitution with nitrogen, reaction was performed at 70 ° C. for 5 hours to obtain an acrylic resin solution. Next, 0.5 g of the zinc oxide phosphor fine particle dispersion liquid of Example 1 was added, cast on PET having been subjected to a peeling treatment so as to have a film thickness of 30 μm, and dried to obtain a transparent phosphor sheet. When excited with a wavelength of 365 nm by Hitachi Fluorometer F4500, it emitted fluorescence having a maximum wavelength at 470 nm.

分散例2(実施例2の分散例1)
分散例1と同様の実験装置に、ジアミン誘導体としてm-BAPS(商品名:m-BAPS、和歌山精化社製)10.08gと無水ジメチルアセトアミド20gを加えて、ジアミンを溶解させた。次いで、実施例2の酸化亜鉛蛍光体微粒子分散液0.5gを添加後、あらかじめ150℃で3時間乾燥させたオキシジフタル酸無水物(商品名:ODPA、マナック社製)8.97gを攪拌しながら加え、さらに室温にて攪拌した。その後、粘度を調整するために、ジメチルアセトアミドを適宜加え、最終的に8gのジメチルアセトアミドを加え、3時間攪拌を行ない、ポリアミド酸溶液を得た。得られた溶液を膜厚50μmになるようにガラス板上に塗工し、100℃で1時間、150℃で1時間、さらに250℃で1時間加熱して透明蛍光シートを得た。分散例1と同様にして365nmの波長で励起したところ、470nmに極大波長を有する蛍光を発した。
Dispersion example 2 (dispersion example 1 of embodiment 2)
To the same experimental apparatus as in dispersion example 1, 10.08 g of m-BAPS (trade name: m-BAPS, manufactured by Wakayama Seika Co., Ltd.) and 20 g of anhydrous dimethylacetamide were added as diamine derivatives to dissolve the diamine. Next, after adding 0.5 g of the zinc oxide phosphor fine particle dispersion of Example 2, 8.97 g of oxydiphthalic anhydride (trade name: ODPA, manufactured by Manac) previously dried at 150 ° C. for 3 hours was added with stirring. The mixture was further stirred at room temperature. Thereafter, in order to adjust the viscosity, dimethylacetamide was appropriately added, and finally 8 g of dimethylacetamide was added, followed by stirring for 3 hours to obtain a polyamic acid solution. The obtained solution was coated on a glass plate so as to have a film thickness of 50 μm, and heated at 100 ° C. for 1 hour, 150 ° C. for 1 hour, and further at 250 ° C. for 1 hour to obtain a transparent fluorescent sheet. When excited at a wavelength of 365 nm as in Dispersion Example 1, fluorescence having a maximum wavelength at 470 nm was emitted.

分散例3(実施例3の分散例1)
分散例1と同様の実験装置に、平均粒子径15nmのコロイダルシリカ(スノーテックスO-40、日産化学社製、固形分濃度40%)5.0g、メタノール10.0g、及び2−メトキシエタノール5.0gを加えたところに、テトラエトキシシラン0.8gとジメチルジメトキシシラン(商品名:KBM22、信越化学社製)1.6gをメタノール3.0gに溶解した液を滴下ロートを用いて5分間かけて滴下した。60℃で15分間攪拌した後、室温に冷却し、溶媒を減圧下、重さ8g程度になるまで濃縮した後、2−プロパノール10.0gとテトラヒドロフラン10.0gを加えた。再び60℃に昇温し、シリコーン誘導体(商品名:X-40-9225、信越化学社製、分子量2000〜3000)6.0gを2−プロパノール6.0gに溶解した液を10分間かけて滴下した。さらに60℃で2時間反応後、室温に冷却し、シリコーン樹脂を得た。次いで、実施例3の酸化亜鉛・ユウロピウム蛍光体微粒子分散液を2.0g加え、暫く攪拌を行い、均一に混ざった段階で減圧下、溶媒を留去した。剥離処理を施したPET基材上に膜厚100μmになるように塗工した。100℃で1時間加熱乾燥を行い、透明蛍光シートを得た。分散例1と同様にして365nmの波長で励起したところ、490nmに極大波長を有する蛍光を発した。
Dispersion Example 3 (Dispersion Example 1 of Example 3)
In the same experimental apparatus as dispersion example 1, colloidal silica (Snowtex O-40, manufactured by Nissan Chemical Co., Ltd., solid content concentration 40%) 5.0 g, 10.0 g methanol, and 5.0 g 2-methoxyethanol are mixed. In addition, a solution obtained by dissolving 0.8 g of tetraethoxysilane and 1.6 g of dimethyldimethoxysilane (trade name: KBM22, manufactured by Shin-Etsu Chemical Co., Ltd.) in 3.0 g of methanol was dropped over 5 minutes using a dropping funnel. After stirring at 60 ° C. for 15 minutes, the mixture was cooled to room temperature, concentrated under reduced pressure to a weight of about 8 g, and then 10.0 g of 2-propanol and 10.0 g of tetrahydrofuran were added. The temperature was raised again to 60 ° C., and a solution obtained by dissolving 6.0 g of a silicone derivative (trade name: X-40-9225, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 2000 to 3000) in 6.0 g of 2-propanol was added dropwise over 10 minutes. Furthermore, after reacting at 60 ° C. for 2 hours, the mixture was cooled to room temperature to obtain a silicone resin. Next, 2.0 g of the zinc oxide / europium phosphor fine particle dispersion of Example 3 was added and stirred for a while, and the solvent was distilled off under reduced pressure when uniformly mixed. Coating was carried out on the PET substrate subjected to the peeling treatment so as to have a film thickness of 100 μm. Heat drying was performed at 100 ° C. for 1 hour to obtain a transparent fluorescent sheet. When excited at a wavelength of 365 nm as in Dispersion Example 1, fluorescence having a maximum wavelength at 490 nm was emitted.

分散例4(実施例4の分散例1)
分散例3において、実施例3の酸化亜鉛・ユウロピウム蛍光体微粒子分散液を用いる代わりに、実施例4の酸化亜鉛蛍光体微粒子分散液を2.0g加えた以外は、分散例3と同様にして、透明蛍光シートを得た。分散例1と同様にして365nmの波長で励起したところ、473nmに極大波長を有する蛍光を発した。
Dispersion Example 4 (Dispersion Example 1 of Example 4)
In Dispersion Example 3, instead of using the zinc oxide / europium phosphor fine particle dispersion liquid of Example 3, 2.0 g of the zinc oxide phosphor fine particle dispersion liquid of Example 4 was added. A transparent fluorescent sheet was obtained. When excited at a wavelength of 365 nm as in Dispersion Example 1, fluorescence having a maximum wavelength at 473 nm was emitted.

分散例5(実施例5の分散例1)
ヒドロキシプロピルセルロース(商品名:HPC-M、日本ソーダ社製)を固形分濃度10%になるようにメタノールに溶解した液5gに、実施例5の酸化イットリウム蛍光体微粒子分散液0.5gを加え、剥離処理を施したPET基材上に膜厚10μmになるように塗工した。100℃で1時間加熱乾燥を行い、透明蛍光シートを得た。分散例1と同様にして365nmの波長で励起したところ、455nmに極大波長を有する蛍光を発した。
Dispersion Example 5 (Dispersion Example 1 of Example 5)
To 5 g of a solution obtained by dissolving hydroxypropyl cellulose (trade name: HPC-M, manufactured by Nippon Soda Co., Ltd.) in methanol so that the solid content concentration is 10%, 0.5 g of the yttrium oxide phosphor fine particle dispersion of Example 5 is added, Coating was carried out on the PET substrate subjected to the peeling treatment so as to have a film thickness of 10 μm. Heat drying was performed at 100 ° C. for 1 hour to obtain a transparent fluorescent sheet. When excited at a wavelength of 365 nm as in Dispersion Example 1, fluorescence having a maximum wavelength at 455 nm was emitted.

分散例6(実施例1の分散例2)
実施例1の酸化亜鉛蛍光体微粒子をテトラエチレングリコールに分散した液(固形分濃度7.6重量%)1.0gに、多官能イソシアネート(商品名:タケネートD-120N、三井ポリウレタン社製)0.5gを加え、剥離処理を施したPET基材上に膜厚10μmになるように塗工した。100℃で3時間加熱乾燥を行い、透明蛍光シートを得た。分散例1と同様にして365nmの波長で励起したところ、454nmに極大波長を有する蛍光を発した。
Dispersion Example 6 (Dispersion Example 2 of Example 1)
0.5 g of polyfunctional isocyanate (trade name: Takenate D-120N, manufactured by Mitsui Polyurethane Co., Ltd.) is added to 1.0 g of a liquid (solid content concentration: 7.6 wt%) in which the zinc oxide phosphor fine particles of Example 1 are dispersed in tetraethylene glycol. Then, coating was performed on the PET substrate subjected to the peeling treatment so as to have a film thickness of 10 μm. Heat drying was performed at 100 ° C. for 3 hours to obtain a transparent fluorescent sheet. When excited at a wavelength of 365 nm as in Dispersion Example 1, fluorescence having a maximum wavelength at 454 nm was emitted.

分散例7(比較例1の分散例1)
分散例1において、実施例1の酸化亜鉛蛍光体微粒子分散液を用いる代わりに、比較例1の酸化亜鉛蛍光体微粒子分散液を用いて分散例1と同様にして透明蛍光シートを得ようとしたが、分散性が悪く、蛍光シートは得られなかった。
Dispersion Example 7 (Dispersion Example 1 of Comparative Example 1)
In Dispersion Example 1, instead of using the zinc oxide phosphor fine particle dispersion liquid of Example 1, an attempt was made to obtain a transparent phosphor sheet in the same manner as Dispersion Example 1 using the zinc oxide phosphor fine particle dispersion liquid of Comparative Example 1. However, the dispersibility was poor and a fluorescent sheet could not be obtained.

分散例8(比較例2の分散例1)
分散例1において、実施例1の酸化亜鉛蛍光体微粒子分散液を用いる代わりに、比較例2の酸化亜鉛蛍光体微粒子分散液を用いて分散例1と同様にして透明蛍光シートを得ようとしたが、分散性が悪く、蛍光シートは得られなかった。
Dispersion Example 8 (Dispersion Example 1 of Comparative Example 2)
In Dispersion Example 1, instead of using the zinc oxide phosphor fine particle dispersion liquid of Example 1, an attempt was made to obtain a transparent phosphor sheet in the same manner as Dispersion Example 1 using the zinc oxide phosphor fine particle dispersion liquid of Comparative Example 2. However, the dispersibility was poor and a fluorescent sheet could not be obtained.

分散例9(参考例1の分散例1)
分散例1において、実施例1の酸化亜鉛蛍光体微粒子分散液を用いる代わりに、参考例1として、市販の酸化亜鉛水分散液(商品名:ZW-143、住友大阪セメント社製、粒子サイズ:約40nm)を用いて分散例1と同様にして透明蛍光シートを得ようとしたが、分散性が悪く、蛍光シートは得られなかった。
Dispersion Example 9 (Dispersion Example 1 of Reference Example 1)
In Dispersion Example 1, instead of using the zinc oxide phosphor fine particle dispersion of Example 1, as Reference Example 1, a commercially available zinc oxide aqueous dispersion (trade name: ZW-143, manufactured by Sumitomo Osaka Cement Co., Ltd., particle size: About 40 nm) was used to obtain a transparent fluorescent sheet in the same manner as in Dispersion Example 1, but the dispersibility was poor and no fluorescent sheet was obtained.

これらより、実施例の金属酸化物蛍光体微粒子は、構成樹脂が異なっても、分散性よく透明な発光体樹脂組成物を提供することができる。なお、参考例1の金属酸化物蛍光体微粒子は、アクリル樹脂への分散性が低く、発光体樹脂組成物を得ることができなかった。   Accordingly, the metal oxide phosphor fine particles of the examples can provide a transparent phosphor resin composition with good dispersibility even if the constituent resins are different. In addition, the metal oxide phosphor fine particles of Reference Example 1 had low dispersibility in an acrylic resin, and a phosphor resin composition could not be obtained.

本発明の金属酸化物蛍光体微粒子は、例えば、液晶画面のバックライト、信号機、屋外の大型ディスプレイや広告看板等の半導体素子を製造する際に、封止樹脂組成物に含有させて好適に用いられる。   The metal oxide phosphor fine particles of the present invention are suitably used by being contained in a sealing resin composition, for example, when producing semiconductor elements such as backlights for liquid crystal screens, traffic lights, outdoor large displays and advertising billboards. It is done.

Claims (4)

沸点が250℃以上であるポリオール系溶媒中、金属酸化物前駆体と式(I):
Figure 2010209172
(式中、Rは1価の有機基、R、R及びRは、それぞれ独立して、炭素数1〜4の、直鎖又は分枝鎖のアルキル基を示す)
で表され、かつ、分子量が190以上又は沸点が190℃以上である3官能性アルコキシシランとを200〜300℃で反応させることにより得られる金属酸化物蛍光体微粒子。
In a polyol solvent having a boiling point of 250 ° C. or higher, the metal oxide precursor and formula (I):
Figure 2010209172
(In the formula, R 1 is a monovalent organic group, R 2 , R 3 and R 4 each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms)
And a metal oxide phosphor fine particle obtained by reacting a trifunctional alkoxysilane having a molecular weight of 190 or higher or a boiling point of 190 ° C or higher at 200 to 300 ° C.
金属酸化物蛍光体微粒子の平均粒子径が1〜100nmである、請求項1記載の金属酸化物蛍光体微粒子。   The metal oxide phosphor fine particles according to claim 1, wherein the metal oxide phosphor fine particles have an average particle diameter of 1 to 100 nm. 沸点が250℃以上であるポリオール系溶媒中、金属酸化物前駆体と式(I):
Figure 2010209172
(式中、Rは1価の有機基、R、R及びRは、それぞれ独立して、炭素数1〜4の、直鎖又は分枝鎖のアルキル基を示す)
で表され、かつ、分子量が190以上又は沸点が190℃以上である3官能性アルコキシシランとを200〜300℃で反応させる工程を含む、金属酸化物蛍光体微粒子の製造方法。
In a polyol solvent having a boiling point of 250 ° C. or higher, the metal oxide precursor and formula (I):
Figure 2010209172
(In the formula, R 1 is a monovalent organic group, R 2 , R 3 and R 4 each independently represents a linear or branched alkyl group having 1 to 4 carbon atoms)
And a process for reacting a trifunctional alkoxysilane having a molecular weight of 190 or higher or a boiling point of 190 ° C. or higher at 200 to 300 ° C.
樹脂と請求項1又は2記載の金属酸化物蛍光体微粒子とを含有してなる、樹脂組成物。   A resin composition comprising a resin and the metal oxide phosphor fine particles according to claim 1.
JP2009054980A 2009-03-09 2009-03-09 Metal oxide phosphor particulate Pending JP2010209172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054980A JP2010209172A (en) 2009-03-09 2009-03-09 Metal oxide phosphor particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054980A JP2010209172A (en) 2009-03-09 2009-03-09 Metal oxide phosphor particulate

Publications (1)

Publication Number Publication Date
JP2010209172A true JP2010209172A (en) 2010-09-24

Family

ID=42969689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054980A Pending JP2010209172A (en) 2009-03-09 2009-03-09 Metal oxide phosphor particulate

Country Status (1)

Country Link
JP (1) JP2010209172A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663487A (en) * 2014-07-07 2017-05-10 东丽株式会社 Scintillator panel, radiation detector, and manufacturing method therefor
WO2018150686A1 (en) * 2017-02-17 2018-08-23 日本特殊陶業株式会社 Wavelength conversion member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043285A (en) * 2002-05-20 2004-02-12 Nippon Shokubai Co Ltd Method for manufacturing organic group combined fine metal oxide particle
JP2005320468A (en) * 2004-05-11 2005-11-17 Fuji Photo Film Co Ltd Nano particle fluorophor and its dispersion
JP2008290914A (en) * 2007-05-24 2008-12-04 Kaneka Corp Method for producing surface-modified metal oxide fine particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043285A (en) * 2002-05-20 2004-02-12 Nippon Shokubai Co Ltd Method for manufacturing organic group combined fine metal oxide particle
JP2005320468A (en) * 2004-05-11 2005-11-17 Fuji Photo Film Co Ltd Nano particle fluorophor and its dispersion
JP2008290914A (en) * 2007-05-24 2008-12-04 Kaneka Corp Method for producing surface-modified metal oxide fine particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663487A (en) * 2014-07-07 2017-05-10 东丽株式会社 Scintillator panel, radiation detector, and manufacturing method therefor
EP3168842A4 (en) * 2014-07-07 2018-03-07 Toray Industries, Inc. Scintillator panel, radiation detector, and manufacturing method therefor
WO2018150686A1 (en) * 2017-02-17 2018-08-23 日本特殊陶業株式会社 Wavelength conversion member
JP2018131577A (en) * 2017-02-17 2018-08-23 日本特殊陶業株式会社 Wavelength conversion member

Similar Documents

Publication Publication Date Title
EP2209869B1 (en) Surface-modified phosphors
EP2229424B1 (en) Surface-modified conversion luminous substances
JP5443662B2 (en) Method for producing moisture-resistant phosphor particle powder and LED element or dispersion-type EL element using moisture-resistant phosphor particle powder obtained by the production method
EP2212401B1 (en) Method for the production of coated luminescent substances
US7394091B2 (en) Composite nano-particle and method for preparing the same
US9394478B2 (en) Phosphor, LED light-emission element, and light source device
US9093623B2 (en) Casting composition as diffusion barrier for water molecules
JP6790158B2 (en) Light conversion resin composition, light conversion laminated base material, and image display device using the same
US20070092758A1 (en) Dispersant having silane head and phosphor paste composition comprising the same
Wang et al. Near infrared-emitting Cr 3+/Eu 3+ co-doped zinc gallogermanate persistence luminescent nanoparticles for cell imaging
JPWO2004065296A1 (en) Semiconductor ultrafine particles, phosphors and light emitting devices
JP2007088299A (en) Light emitting device, lighting device using it, and picture display device
JP5388755B2 (en) Metal oxide phosphor fine particles
CN109311691A (en) Compound, dispersion composition and resin combination
JP2010209172A (en) Metal oxide phosphor particulate
JP5756523B2 (en) Red phosphor and light emitting device
JP4923771B2 (en) Display device
JP2007284528A (en) Silica-coated metal oxide-based phosphor fine particle and method for producing the same
JP6949806B2 (en) Green fluorescent material, fluorescent material sheet, and light emitting device
KR100716110B1 (en) Method of surface-treating phosphor
JP2009073699A (en) Method of producing surface modified metal oxide fine particles
KR102472457B1 (en) Light scattering resin composition, scattering layer and image display device using the same
TW201910490A (en) Fluorescent substance, production method thereof, fluorescent substance sheet, and lighting device
CN111406100A (en) Coated phosphor, method for producing same, phosphor sheet, and light-emitting device
Hong et al. Preparation and characterization of dual-mode luminescence NaYF4: Yb3+, Er3+@ CuInS2/ZnS hybrid nanostructures

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130529