JP2010208449A - Nuclear ship corresponding to fuel-filled jet plane crash - Google Patents

Nuclear ship corresponding to fuel-filled jet plane crash Download PDF

Info

Publication number
JP2010208449A
JP2010208449A JP2009055898A JP2009055898A JP2010208449A JP 2010208449 A JP2010208449 A JP 2010208449A JP 2009055898 A JP2009055898 A JP 2009055898A JP 2009055898 A JP2009055898 A JP 2009055898A JP 2010208449 A JP2010208449 A JP 2010208449A
Authority
JP
Japan
Prior art keywords
ship
steam
nuclear
reactor
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009055898A
Other languages
Japanese (ja)
Other versions
JP2010208449A5 (en
JP5394101B2 (en
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009055898A priority Critical patent/JP5394101B2/en
Publication of JP2010208449A publication Critical patent/JP2010208449A/en
Publication of JP2010208449A5 publication Critical patent/JP2010208449A5/ja
Application granted granted Critical
Publication of JP5394101B2 publication Critical patent/JP5394101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nuclear ship with a durability greater than the durabilities of nuclear aircraft carriers navigating in the world, enabling it to withstand a fuel-filled jet plane crash so as to be accepted by people in every country, because U.S. NRC is seeking for a nuclear power station withstanding the fuel-filled jet plane crash. <P>SOLUTION: The nuclear ship has a flat deck board 102 for loading and unloading of freight by airplane. This ship is provided with a floating body 105 in the space formed by a floating mantle 106 and the ship body covered with a ship wall 101 and the flat deck board 102. This ship shallowly submerges by adjusting the pressure of pressure adjustable compressed air in the space above, and by controlling the angle of the underwater cruise wing 103 equipped to the floating mantle 106. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原子力推進貨物船に関する。 The present invention relates to a nuclear propulsion cargo ship.

原子力推進貨物船「むつ」の放射線漏れを放射能漏れと誤報道されたために、原子力推進貨物船の継続的建造はその後行われていないが「むつ」の概要(非特許文献1、2)を以下に示す。
図1は原子力船の原理図である。原子炉に内蔵せる核燃料燃焼により発生した高温高圧水が熱交換器に導かれ高温高圧の蒸気を発生させる。高温高圧の蒸気は蒸気タービンに導かれ蒸気タービンを回転させ低温低圧の蒸気を復水器に排気し、復水器内で低温低圧の水に凝縮される。蒸気タービンの回転がスクリューを回転させ船を推進させる。復水器内で低温低圧で凝縮された水は、再び蒸気発生器に戻り原子炉からの高温高圧水で蒸気になる。
図2は「むつ」の原子炉として採用された加圧水型原子炉の概観図である。原子炉の出力は、中性子吸収材からなる制御棒を炉心に出し入れして調節する。原子炉容器で密封された原子炉の炉心に内蔵せる核燃料燃焼により発生した高温高圧水から蒸気が発生しないように加圧器で圧力を調節している。図1で示された熱交換器と蒸気発生器とは同じものである。復水器から蒸気発生器へポンプで昇圧して水を戻す。蒸気発生器から原子炉へ1次冷却水ポンプで昇圧して水を戻す。核燃料を内蔵せる原子炉容器、加圧器、蒸気発生器、1次冷却水ポンプは格納容器に収められている。
:コロナ社、1975年、都甲著「原子動力」 :ERC出版、1996年、安藤著「原子力船むつ」
The nuclear propulsion cargo ship “Mutsu” was misreported as having leaked radiation, so the nuclear propulsion cargo ship was not continuously constructed, but the outline of “Mutsu” (Non-Patent Documents 1 and 2) It is shown below.
FIG. 1 is a principle diagram of a nuclear ship. The high-temperature and high-pressure water generated by the nuclear fuel combustion built in the nuclear reactor is led to the heat exchanger to generate high-temperature and high-pressure steam. The high-temperature and high-pressure steam is guided to the steam turbine, rotates the steam turbine, exhausts the low-temperature and low-pressure steam to the condenser, and is condensed into the low-temperature and low-pressure water in the condenser. The rotation of the steam turbine rotates the screw and propels the ship. The water condensed at low temperature and low pressure in the condenser returns to the steam generator again and becomes steam with the high temperature and high pressure water from the reactor.
FIG. 2 is a schematic view of a pressurized water reactor adopted as a nuclear reactor for “Mutsu”. The output of the nuclear reactor is adjusted by putting a control rod made of neutron absorber into and out of the core. The pressure is adjusted by a pressurizer so that steam is not generated from the high-temperature and high-pressure water generated by the nuclear fuel combustion built in the reactor core sealed in the reactor vessel. The heat exchanger and the steam generator shown in FIG. 1 are the same. Pump water from the condenser to the steam generator to return water. The water is returned from the steam generator to the reactor by increasing the pressure with the primary cooling water pump. A reactor vessel, a pressurizer, a steam generator, and a primary cooling water pump that contain nuclear fuel are contained in a containment vessel.
: Corona, 1975, “Atomic power” by Toko : ERC Publishing, 1996, Ando “Nuclear Ship Mutsu”

石油燃料不足による生活必需品の輸出入が滞り国民の安全、安心が脅かされたことがある。漁船用燃料高騰で漁業業者の不満も生じたことがある。いつ、再燃するか分からない。
地球温暖化抑止対応として、各方面で炭酸ガスの削減が注目されている。化石燃料の削減が重要になってきている。陸上輸送における化石燃料の削減が実施されつつあるが海上輸送における化石燃料の削減は注目されていない。原子力貨物船が再び検討されてしかるべきである。
なお、最近の自爆テロに関連して、燃料満載ジェット機激突に耐えられる商用炉が模索され出している。従来の原子力船では各国人々から受け入れられなくなる恐れがある。燃料満載ジェット機激突に耐えられるような原子力貨物船を必要とする。
「むつ」の原子炉として採用された加圧水型原子炉に代えて簡素な沸騰水型原子炉したい。できれば商用沸騰水型原子炉に使われている部品(例えば燃料集合体)に類似のものを使えば安くなろう。燃料満載ジェット機激突に耐えられるようにした費用と簡素な沸騰水型原子炉にしとこととで費用が相殺できると考えられる。
図3は、商用沸騰水型原子炉の概観図である(非特許文献3)。加圧器、蒸気発生器がなく簡素化できる可能性がある。制御棒駆動機構で上下される中性子吸収材からなる制御棒を炉心に出し入れして原子炉の出力を調節する。原子炉容器に装荷した燃料集合体に内蔵せる核燃料燃焼により高温高圧蒸気が発生する。高温高圧の蒸気は蒸気タービンに導かれ蒸気タービンを回転させ仕事を終えて低温低圧になった蒸気を復水器に排気し、復水器内で低温低圧の水に凝縮され、再び原子炉に戻り高温高圧蒸気になる。原子炉内の水の1部を原子炉容器の外に引き出し再循環ポンプで高速にして、ジェットポンプに放出して周囲の水を吸い込み、燃料集合体の底部から燃料集合体に冷却水を送り込み燃料集合体からの熱を蒸気として受熱する。核燃料を内蔵する原子炉容器、再循環ポンプは格納容器に収められている。なお、商用沸騰水型原子炉は液体の水と飽和蒸気が共存する二相流を発生させるため、液体の水と気体の飽和蒸気とを分離するための気水分離器と、飽和蒸気中の湿分を除去するための蒸気乾燥器とが必要である。
:大河出版、1980年、応用機械工学編集部「原子力と設計技術」。
Imports and exports of daily necessities due to a shortage of petroleum fuels have slowed people's safety and security. There has also been dissatisfaction with fishermen due to soaring fuel for fishing boats. I do not know when to relapse.
Reduction of carbon dioxide is attracting attention in various areas as a countermeasure against global warming. Reduction of fossil fuels is becoming important. The reduction of fossil fuels in land transport is being implemented, but the reduction of fossil fuels in sea transport has not attracted attention. Nuclear cargo ships should be considered again.
In connection with the recent suicide bombings, commercial reactors that can withstand the crash of fuel-filled jets have been sought. There is a risk that conventional nuclear ships will not be accepted by the people of each country. A nuclear cargo ship that can withstand a fuel-filled jet crash is needed.
I would like to use a simple boiling water reactor instead of the pressurized water reactor adopted as the Mutsu reactor. If possible, it would be cheaper to use parts similar to those used in commercial boiling water reactors (eg fuel assemblies). Costs can be offset by the cost of being able to withstand a fuel-filled jet crash and a simple boiling water reactor.
FIG. 3 is an overview of a commercial boiling water reactor (Non-patent Document 3). There is no possibility of simplification because there is no pressurizer and steam generator. A control rod made of a neutron absorber that is moved up and down by the control rod drive mechanism is put into and out of the core to adjust the output of the reactor. High-temperature and high-pressure steam is generated by nuclear fuel combustion built into the fuel assembly loaded in the reactor vessel. The high-temperature and high-pressure steam is guided to the steam turbine, the steam turbine is rotated to finish the work, and the low-temperature and low-pressure steam is exhausted to the condenser, where it is condensed into low-temperature and low-pressure water, and again into the reactor. Return to high temperature and high pressure steam. A part of the water in the reactor is pulled out of the reactor vessel and recirculated at a high speed, discharged to the jet pump to suck in the surrounding water, and the cooling water is sent from the bottom of the fuel assembly to the fuel assembly. The heat from the fuel assembly is received as steam. The nuclear reactor vessel containing nuclear fuel and the recirculation pump are contained in a containment vessel. Since a commercial boiling water reactor generates a two-phase flow in which liquid water and saturated steam coexist, a steam separator for separating liquid water and gaseous saturated steam, A steam dryer is required to remove moisture.
: Taiga Publishing Co., Ltd., 1980, Applied Mechanical Engineering Editorial Department, “Nuclear Power and Design Technology”.

燃料満載ジェット機激突に対応した原子力船として、以下に記す燃料満載ジェット機激突対応プロペラ推進原子力船にする。
高温高圧の蒸気発生には、原子炉(501)から直接であれば沸騰水型原子炉であり、原子炉(501)から蒸気発生器を介してなら加圧水型原子炉である。
燃料満載ジェット機激突に耐えられるように、船を浅く水没させる。浅い水没は高度の水密性を必要としないから安価である。激突の機会を減らすために、飛行機で貨物の積み下ろしが迅速にできるように平坦甲板(102)とする。長期間水没航行が可能なように原子力船でなければならない。
船の浮力確保は、船壁(101)と平坦甲板(102)とで覆われた船の躯体と浮力外套(106)とで形成される空間に海水より密度の小さい多孔質物質や発泡スチロール製の浮体(105)と圧搾空気(107)とを装荷する。圧搾空気(107)の圧力調節及び浮力外套(106)に敷設した潜行翼(103)の角度調節とで当該原子力船の浅水没を調節する。半水没船から飛行艇を離発着させて貨物を積み上げ下ろしすれば効率が上がる。
原子炉(501)または加圧水型原子炉の蒸気発生器を介して発生した高温高圧の蒸気を復水器(503)に排気することにより蒸気タービン(502)を回転させ仕事を終えた排気を復水器(503)で水に凝縮して電動の給水ポンプ(505)で昇圧して原子炉(501)または加圧水型原子炉の蒸気発生器に戻し、船外または船体内壁内側に固着せし冷却器(511)で冷却した真水(512)を復水器内管(5031)に電動の真水ポンプ(520)で循環させる。
当該蒸気タービン(502)に接続した発電機(521)による電力で電動推進モータ(513)を回転させプロペラ(108)を回転させることにより船を推進する。
燃料満載ジェット機激突に対応した原子力船として、以下に記す燃料満載ジェット機激突対応ジェット噴射原子力船にする。
燃料満載ジェット機激突に耐えられるように、船を浅く水没させる。激突の機会を減らすために、飛行機による貨物積み下ろしが可能なように平坦甲板(102)とする。船の浮力確保は、船壁(101)と平坦甲板(102)とで覆われた船の躯体と浮力外套(106)とで形成される空間に海水より密度の小さい多孔質物質や発泡スチロール製の浮体(105)と圧搾空気(107)とを装荷する。圧搾空気(107)の圧力調節及び浮力外套(106)に敷設した潜行翼(103)の角度調節とで当該原子力船の浅水没調節をする。
原子炉(501)または加圧水型原子炉の蒸気発生器を介して発生した高温高圧の蒸気を復水器(503)に排気することにより蒸気タービン(502)を回転させ仕事を終えた排気を復水器(503)で水に凝縮して電動の給水ポンプ(505)で昇圧して原子炉(501)または加圧水型原子炉の蒸気発生器に戻す。
当該蒸気タービン(502)に接続した海水高速ポンプ(5201)が浮力外套(106)内に設けた外套内海水吸引口(611)から海水を復水内管(5031)に吸引すると共に吸引海水を高速にし、当該高速海水を複数のノズル(616)からデフューザ付ジェットポンプ(615)入口に噴射し周囲の海水をも巻き込んでデフューザ付ジェットポンプ(615)出口から高圧大量の海水を噴出することにより船を推進する。
原子力船の原子炉(501)は、過熱蒸気沸騰水型原子炉(901)にすると簡素化できる。
酸化カドミウム(中性子吸収による化学変化無し。安い。)または酸化ガドリニウムからなる固体可燃性毒物酸化物と固体減速材酸化物(酸化ベリリウム)との固体混合酸化物からなる内側調節ペレット(1)を内側に配置し外周を軽水炉使用済み核燃料から抽出したプルトニム組成のプルトニムとウランとの混合酸化物核燃料(軽水炉使用済み燃料抽出プルトニウム組成で富化度20wt%〜45wt%のプルトニムとウランの混合酸化物核燃料であるMOX)または濃縮度が10wt%〜20wt%の二酸化濃縮ウラン(核兵器にし難く研究炉用に許容される濃縮度は20wt%以下)なる外側核燃料ペレット(2)とした低反応度係数のペレットをジルコニウム合金製の被覆管(3)に多数個充填して低反応度係数核燃料棒(11)とする。当該低反応度係数核燃料棒(11)を被覆管(3)間隙が1mm〜1.3mm(除熱可能範囲で液体から蒸気への変化量小さくする)の範囲で多数本正方格子状に配列しジルコニウム合金製のチャンネルボックス(12)内に束ねて低反応度係数の燃料集合体(915)とする。上部正方格子板(917)の格子毎の空間に当該低反応度係数の燃料集合体(915)4体を正方格子状に整列させる。上部正方格子板(917)の交点の周りの4体の低反応度係数の燃料集合体(915)を束ね爪(918)で固定する。制御翼駆動システムで出力制御することにより圧力65気圧以下で287℃の過熱蒸気を発生させることを特徴とする過熱蒸気沸騰水型原子炉(901)。
簡素化の観点から気水分離器とドライヤーを削除するために炉心冷却材出口は過熱蒸気(現行沸騰水型原子炉の出口蒸気は、蒸気温度287℃の70気圧飽和蒸気である。本発明の過熱蒸気沸騰水型原子炉(901) の出口蒸気は、蒸気温度287℃の65気圧過熱蒸気である(むつの蒸気発生器出口蒸気は40気圧飽和蒸気である)。
As a nuclear ship corresponding to a fuel-filled jet crash, a propeller propulsion nuclear ship corresponding to a fuel-filled jet crash described below will be used.
For the generation of high-temperature and high-pressure steam, a boiling water reactor is provided directly from the reactor (501), and a pressurized water reactor is provided from the reactor (501) via a steam generator.
Submerge the ship shallowly to withstand a fuel-filled jet crash. Shallow submersion is inexpensive because it does not require a high degree of watertightness. In order to reduce the chance of a collision, the flat deck (102) is used so that cargo can be loaded and unloaded quickly. It must be a nuclear ship so that it can be submerged for a long time.
The ship's buoyancy can be ensured by a porous material made of a porous material having a lower density than seawater or made of Styrofoam in the space formed by the ship's chassis and buoyancy mantle (106) covered with the ship wall (101) and flat deck (102). A floating body (105) and compressed air (107) are loaded. The submersion of the nuclear ship is adjusted by adjusting the pressure of the compressed air (107) and adjusting the angle of the submerged wing (103) laid on the buoyancy mantle (106). Efficiency can be improved by loading and unloading a flying boat from a semi-submerged ship.
The high-temperature and high-pressure steam generated through the steam generator of the reactor (501) or pressurized water reactor is exhausted to the condenser (503), so that the steam turbine (502) is rotated to recover the exhausted work. Water is condensed in water (503), the pressure is increased by an electric water supply pump (505), the steam is returned to the reactor (501) or the pressurized water reactor, and is fixed to the outside of the ship or inside the ship's inner wall and cooled. Fresh water (512) cooled by the vessel (511) is circulated through the condenser inner pipe (5031) by an electric fresh water pump (520).
The ship is propelled by rotating the electric propulsion motor (513) and rotating the propeller (108) with electric power from the generator (521) connected to the steam turbine (502).
As a nuclear ship corresponding to a fuel-filled jet crash, a jet-jet nuclear ship corresponding to a fuel-filled jet crash described below will be used.
Submerge the ship shallowly to withstand a fuel-filled jet crash. In order to reduce the chance of a crash, a flat deck (102) is provided so that cargo can be loaded and unloaded by airplane. The ship's buoyancy can be ensured by a porous material made of a porous material having a lower density than seawater or made of Styrofoam in the space formed by the ship's chassis and buoyancy mantle (106) covered with the ship wall (101) and flat deck (102). A floating body (105) and compressed air (107) are loaded. Shallow submersion of the nuclear ship is adjusted by adjusting the pressure of the compressed air (107) and adjusting the angle of the submerged wing (103) laid on the buoyancy mantle (106).
The high-temperature and high-pressure steam generated through the steam generator of the reactor (501) or pressurized water reactor is exhausted to the condenser (503), so that the steam turbine (502) is rotated to recover the exhausted work. The water is condensed into water by the water vessel (503), and the pressure is increased by the electric water supply pump (505), and the water is returned to the steam generator of the nuclear reactor (501) or the pressurized water reactor.
The seawater high-speed pump (5201) connected to the steam turbine (502) sucks seawater into the condensate inner pipe (5031) from the seawater suction port (611) provided in the buoyancy mantle (106) and sucks seawater. By making the high-speed seawater into high-speed seawater from a plurality of nozzles (616) to the inlet of the jet pump (615) with a diffuser, entraining the surrounding seawater, and ejecting a large amount of high-pressure seawater from the outlet of the jet pump (615) with a diffuser Promote the ship.
The nuclear reactor nuclear reactor (501) can be simplified if it is a superheated steam boiling water reactor (901).
Inside cadmium oxide (no chemical change due to neutron absorption, cheap) or inside conditioning pellet (1) consisting of solid mixed oxide of solid flammable poison oxide consisting of gadolinium oxide and solid moderator oxide (beryllium oxide) Plutonium and uranium mixed oxide nuclear fuel with a plutonium composition extracted from light water reactor spent nuclear fuel and the outer circumference of the mixed oxide nuclear fuel of plutonium and uranium enriched with a plutonium composition extracted from a light water reactor MOX) or enriched uranium dioxide with enrichment of 10wt% ~ 20wt% (concentration not more than 20wt% which is difficult for nuclear weapons and acceptable for research reactor) (2) pellets with low reactivity coefficient Are filled into a zirconium alloy cladding tube (3) to form a low reactivity coefficient nuclear fuel rod (11). A number of such low-reactivity coefficient nuclear fuel rods (11) are arranged in a square lattice pattern with a cladding tube (3) gap in the range of 1mm to 1.3mm (change from liquid to vapor is reduced within the heat removal range). A fuel assembly (915) having a low reactivity coefficient is bundled in an alloy channel box (12). The fuel assemblies (915) 4 having the low reactivity coefficient are aligned in a square lattice pattern in the space of each lattice of the upper square lattice plate (917). Four fuel assemblies (915) having a low reactivity coefficient around the intersection of the upper square lattice plate (917) are fixed with bundle claws (918). A superheated steam boiling water reactor (901) that generates superheated steam at 287 ° C under a pressure of 65 atm or less by controlling the output with a control blade drive system.
In order to eliminate the steam separator and dryer from the viewpoint of simplification, the core coolant outlet is superheated steam (the outlet steam of the current boiling water reactor is 70 atm saturated steam with a steam temperature of 287 ° C. The outlet steam of the superheated steam boiling water reactor (901) is 65 atm superheated steam with a steam temperature of 287 ° C. (the mud steam generator outlet steam is 40 atm saturated steam).

高度の水密性を施すことなく原子力船を浅く水没させたため、燃料満載ジェット機が激突してきても、周囲の海水により衝撃力が和らげられる。
石油高騰による自衛隊の訓練不足の時を狙って海上封鎖された場合でも水没型原子力船であれば封鎖を突破して老人婦女子の生活必需品を輸入することができる。
浅く水没させたため海洋の気象変動による影響が受け難くなり、大きな船体強度を必要としなくなり、気象に関係なく航海計画を立てられることとあいまってコスト低減ができた。
蒸気タービン(502)の排気を真水(512)で冷却できたことは、船内に海水を引き入れなくて済むから海水腐食問題が軽減されることと、船の躯体からの穴はプロペラ(108)に通じる部分だけとなり高い水密性を確保できた。
ジェット噴射原子力船では、浮力外套(106)内に設けし外套内海水吸引口(611)から海水を吸引するため燃料満載ジェット機から漏出した灯油の影響が少ないし、沸騰水型原子炉で実績のあるデフューザ付ジェットポンプ(615)は吐出する水量に比べて吸引する水量が少ないため、海水に適用した場合海水高速ポンプ(5201)周りの海水腐食問題が軽減される。
沸騰水型原子炉を採用すれば、加圧器無し、蒸気発生器なしに簡素化できる。過熱蒸気を発生させる沸騰水型原子炉を採用すれば、気水分離器無し、ドライヤー無しにできる。
太平洋ハイウエイ航路、環太平洋航路、インド洋ハイウエイ航路を設定すれば原子力高速船の効率が上がる。殆ど手付かずの太洋の真ん中が大いに利用できる。
海賊や狭い海峡事故を防ぐためのインフラ費用が少なくてすむ。
原子力高速船による搬送は、貨物の在庫期間を短縮させ無駄な在庫費用を減らせるし、新鮮な物資の供給が可能になる。
Because the nuclear ship was submerged shallowly without applying high watertightness, even if a jet full of fuel hits, the impact force is reduced by the surrounding seawater.
Even if the ship is blocked at sea due to a lack of training by the Self-Defense Forces due to oil soaring, a submerged nuclear ship can break through the blockade and import the necessities of elderly women and women.
Because it was submerged shallowly, it was not easily affected by weather changes in the ocean, so it did not require a large hull strength, and it was possible to reduce the cost combined with the ability to plan a voyage regardless of the weather.
The fact that the exhaust of the steam turbine (502) could be cooled with fresh water (512) reduced the seawater corrosion problem because it was not necessary to draw seawater into the ship, and the hole from the ship's skeleton was placed in the propeller (108). High water tightness was ensured because it was only the part that communicated.
The jet-injected nuclear ship is installed in the buoyancy mantle (106) and sucks seawater from the seawater suction port (611) in the mantle. Since a certain jet pump with a diffuser (615) sucks less water than the amount of water discharged, the seawater corrosion problem around the seawater high-speed pump (5201) is reduced when applied to seawater.
If a boiling water reactor is adopted, it can be simplified without a pressurizer and a steam generator. If a boiling water reactor that generates superheated steam is used, it is possible to eliminate a steam separator and a dryer.
The efficiency of nuclear high-speed vessels will increase if the Pacific Highway, Pacific Rim, and Indian Ocean Highway routes are established. The middle of the untouched Taiyo can be used greatly.
Less infrastructure costs to prevent pirates and narrow straits.
Transportation by nuclear high-speed ship shortens the inventory period of cargo, reduces unnecessary inventory costs, and enables supply of fresh goods.

燃料満載ジェット機激突に対して原子力船を防護することができた。   We were able to protect nuclear ships against fuel-laden jet crashes.

図4は、本発明の燃料満載ジェット機激突対応プロペラ推進原子力船の概観図である。船壁(101)と平坦甲板(102)とで覆われた船の躯体の全長のほぼ中央部に原子炉(501)を設置する。平坦甲板(102)から下の船の躯体の外側を浮力外套(106)で覆う。浮力外套(106)と躯体とで形成される空間に発泡スチロールや中空球で作られた浮体(105)と圧搾空気(107)を充填し浮力を確保する。圧搾空気(107)の調節により浮上と水没を調節する。船の浮力は浮力外套(106)に敷設した潜行翼(103)の角度でも調節する。船の方向は方向舵(104)で調節する。プロペラ(108)の回転で船は推進する。
原子炉(501)または加圧水型原子炉の蒸気発生器で発生した高温高圧の蒸気は複数本の蒸気管(531)を通って蒸気タービン(502)に行き蒸気タービン(502)を回転させ、当該蒸気タービン(502)に接続している発電機(521)で発電する。仕事を終えて低温低圧になった蒸気は復水器(503)に排気され冷却されて液体になる。液体の水は複数本の給水管(532)を通って電動の給水ポンプ(505)で加圧され給水加熱器(506)で昇温されて原子炉(501)または加圧水型原子炉の蒸気発生器に戻る。原子炉(501)は頑丈で気密な格納容器(507)に内蔵される。格納容器(507)に原子炉(501)だけでなく蒸気タービン(502)や復水器(503)を配置する場合は広い余剰空間が得られるから、冷却材喪失事故等の際には漏洩した蒸気を格納容器(507)内に余裕を持って格納することができる。
船外または船体内壁の内側に固着せし冷却器(511)で冷やされた真水(512)は、低温配管(515)を通して復水器内管(5031)内に電動の真水ポンプ(520)で吸い込まれ、蒸気タービン(502)で仕事を終えた排気を凝縮させる。蒸気タービン(502)排気で昇温した真水(512)は復水器内管(5031)から高温配管(514)を通って冷却器(511)に吐き出される。
発電機(521)による電力で電動推進モータ(513)を回転させクラッチ2(554)を介してプロペラ(108)を回転させて船を前進させる。推進力の急激な変動はクラッチ2(554)の操作でも可能である。
電動バイパス弁(510)により復水器(503)へ漏洩させる蒸気流量により蒸気タービン(502)への蒸気流量を加減して発電機(521)の発電量を調節する。給水加熱器(506)は、電動バイパス弁(510)から復水器(503)へ漏洩させる蒸気流量により加熱される。
発電機(521)からの余剰電力は蓄電池(522)に蓄える。原子炉(501)が停止した場合は蓄電池(522)からの電力で電動推進モータ(513)を回転させプロペラ(108)を回転させて船を前進させる。
船の緊急停止時にはクラッチ2(554)の切り替えによりプロペラ(108)を逆回転させる。あるいは、原子炉(501)または加圧水型原子炉の蒸気発生器で発生した蒸気を復水器(503)にバイパスし蒸気を凝縮することができる。原子炉(501)は急激に停止する必要はないから原子炉への負担を軽減することができる。
格納容器(507)の上は開閉可能な蓋になっていて、原子炉(501)に近接する必要が生じた場合は、平坦甲板(102)に敷設せる格納容器接近蓋(508)を開く。
蒸気タービン(502)の軸と発電機(521)の軸とはクラッチ1(504)で接続され、必要に応じて切り離し可能となっている。原子炉(501)と蒸気タービン(502)を繋ぐ蒸気管(531)の途中及び、原子炉(501)と復水器(503)を繋ぐ給水管(532)の途中は配管接続器(509)で接続され、必要に応じて切り離し可能となっている。
原子炉(501)は、動揺の少ない船中央部に設置することが望ましい。一方、プロペラ(108)は船尾に設置することが効率上望ましい。蒸気タービン(502)の回転力を直接プロペラ(108)の軸に伝達するには長い直線軸を必要とするが精度が問題になり困難が伴う。本発明では船中央部に設置された発電機(521)からの電力をケーブルで船尾に配置せる電動推進モータ(513)によりプロペラ(108)を回転させればよい。強力な永久磁石の開発により近年のモータは小型で高性能になったから発電機(521)も電動推進モータ(513)も船に搭載可能となった。更に、近年のデジタル機器利用分野は広まり自動車同様船の操作にもデジタル機器は欠かせないから電力の必要性が高まり電力は補助的動力とは言えなくなっている。方向舵(104)や潜行翼(103)や圧搾空気(107)は元より、船員居住環境とか貨物の鮮度等状態管理や平坦甲板(102)から輸送機発進のリニアモータカタパルト動力源にもなる。経済性上船を長大にすれば蒸気タービン(502)軸からプロペラ(108)軸にいたるまでの距離が問題になる。軸の接続は困難となる。
本発明では原子炉(501)または加圧水型原子炉の蒸気発生器に通じる蒸気管(531)も給水管(532)も逆止弁付で複数本にして多重で余裕を十分取っているため、別途非常用冷却装置は設けない。1本が破断しても残りの管で定格流量を確保できるようにした。したがって、簡素化されているから、安価で安全性、信頼性が高い。原子炉停止時の崩壊熱除去は、蓄電池(522)で電動バイパス弁(510)を開き微少蒸気を復水器(503)に流し除去する。冷却器(511)は船外に敷設するほうが造船上簡略化され、船の直進性向上に寄与する。なお、船壁(101)の内側に隔壁を設けて真水(512)を充填して冷却器(511)とすれば船壁(101)に突起がなくなり抵抗が減るから船の速度を上げることができる。
給水加熱器(506)の加熱には、原子炉(501)または加圧水型原子炉の蒸気発生器から蒸気タービン(502)に行く高温蒸気を復水器(503)に吐き出す途中に設けた電動バイパス弁(510)の調節によりバイパス流量を調節することにより達成している。事故時には、電動バイパス弁(510)を全開にして余剰蒸気を復水器(503)に導けばよい。
船を水没させたことにより、天候、特に、波の影響を軽減することができる。波の瀬に船の1部が載って局所的に船の荷重がかかることが、抑制される。波の荒い外洋を一定高速で航行することに問題が少ないため、マラッカ海峡等の狭い海を低速で進む必要がないから、座礁等の事故が少なくなるし運行時間の短縮も有りうる。
船を水没させたことにより、海賊被害が軽減されるから海賊対策のインフラ(自衛艦による保護)が不要となりトータルコストが安くなる。
平坦甲板(102)は、飛行機による貨物の積み下ろしを可能にし、港不要で航行中でも随時迅速な貨物の積み下ろしができる。
図5は、原子炉(501)を本発明の過熱蒸気沸騰水型原子炉(901)にした場合の概観図である。従来の沸騰水型原子炉の原子炉容器と同じくステンレス内張りした鋼板からなる気密容器である圧力容器(911)内上部に 65気圧以下、287℃以下の過熱蒸気を内包する。ちなみに、従来の沸騰水型原子炉の原子炉容器はステンレス内張りした鋼板からなる原子炉容器内上部に70気圧、287℃の飽和蒸気を密封していたから、圧力を下げて287℃の蒸気にした過熱蒸気を内包することができる。なお、圧力容器(911)に流入する給水流量と圧力容器(911)から流出する過熱蒸気流量とを同じにする。
シュラウド(912)は上下開端の円筒形状をしていて圧力容器(911)に内蔵され、両者の隙間は給水管(532)からの冷水の通り道になる。圧力容器(911)に固着せるシュラウド支持(922)の上に、シュラウド(912)に固着せるシュラウド下枠(923)を載せることにより、シュラウド(912)は支持される。圧力容器(911)に固着されている下部炉心支持板(913)にシュラウド(912)の下部をネジ留めする。シュラウド(912)の上部はシュラウド上枠(925)とシュラウド押下棒(926)とにより圧力容器蓋(928)に拘束されている。
圧力容器蓋(928)は、圧力容器蓋結合ネジ(924)によって随時着脱可能となっている。圧力容器蓋(928)の移動は圧力容器蓋吊上具(927)によって吊上げて実施する。なお、給水管(532)と蒸気管(531)の途中にはそれぞれ配管接続器(509)が付いているから、原子炉(501)点検等のときに切り離すことが可能である。
復水器(503)からの冷たい給水は給水加熱器(506)で暖められてから給水管(532)を通って圧力容器(911)の中に入り、燃料集合体ノズル(916)から低反応度係数の燃料集合体(915)内に入り、核燃料から受熱して蒸気を形成し、更に受熱して65気圧で287℃の過熱蒸気になり蒸気管(531)を通って圧力容器(911)から蒸気タービン(502)に出て行く。
原子炉出力は制御翼駆動システムにより制御される。制御翼駆動システムは、中性子吸収材からなる制御翼(921)と、頂部に固着せる電磁石(9212)で制御翼(921)を支持している制御翼支持中空棒(9213)と、制御翼支持中空棒(9213)内面に刻まれた中空棒溝(9211)に咬み合う中空棒支持ネジ棒(9141)と、中空棒支持ネジ棒(9141)を回転させる制御翼駆動モータ(914)とからなる。制御翼駆動モータ(914)動力源は、外部から圧力容器(911)内に引き入れた防水電力ケーブルまたは圧力容器(911)内に装荷せる蓄電池からの電力とする。その他、制御翼駆動モータ(914)動力源は、外部から圧力容器(911)内に引き入れた高圧水で水車を回すことによりモータ回転の代替にできる。制御翼駆動システムへの制御信号は外部から圧力容器(911)内に引き入れた信号ケーブルまたは音波とする。
制御翼駆動モータ(914)は下部炉心支持板(913)に開けられた穴に吊り下げられる。制御翼駆動モータ(914)に接続された中空棒支持ネジ棒(9141)は制御翼(921)を支持する制御翼支持中空棒(9213)内面の中空棒溝(9211)に咬み合い、制御翼駆動モータ(914)の回転により中空棒支持ネジ棒(9141)を回転させることにより中空棒溝(9211)を施した制御翼支持中空棒(9213)を介して制御翼(921)が上下に動く。制御翼(921)が低反応度係数の燃料集合体(915)上端よりも上に有る部分は、制御翼導入箱(920)に内蔵されている。制御翼駆動モータ(914)の着脱は低反応度係数の燃料集合体(915)を圧力容器(911)の外に移動してから実施する。
低反応度係数の燃料集合体(915)は、低反応度係数の燃料集合体(915)下部に固着せる冷却材流入口である燃料集合体ノズル(916)を下部炉心支持板(913)に開けられた穴に差し込んで下部の横方向と落下に対して拘束されている。低反応度係数の燃料集合体(915)の上部横方向に対しては縦板と横板とで正方形格子を形成する上部正方格子板(917)で拘束する。低反応度係数の燃料集合体(915)の上部跳ね上がりに対しては、制御翼支持中空棒(9213)と反対側のチャンネルボックス(12)コーナー内側に挿入される束ね爪(918)を隣接する4体の低反応度係数の燃料集合体(915)に装着して低反応度係数の燃料集合体(915)の動きを拘束し、制御翼(921)が上下に動ける空間を確保している。束ね爪(918)が上方向に外れないようにすると共に、低反応度係数の燃料集合体(915)が上に動かないようにするために束ね爪(918)の上に束ね爪固定板(919)を装着する。
図6は、束ね爪固定板(919)高さの部分を詳細に示した図である。制御翼(921)を中心にして4体の低反応度係数の燃料集合体(915)は上部正方格子板(917)によって囲まれている。上部正方格子板(917)の縦板は図に見えるが横板は束ね爪固定板(919)の下にあるから図では見えない。上部正方格子板(917)の縦板と横板との交点の4体の低反応度係数の燃料集合体(915)は束ね爪(918)で固定されている。したがって、制御翼(921)が上下に動ける空間が確保されている。
図7は、核燃料が詰まっている高さの炉心構造部分を詳細に示した図である。上部正方格子板(917)の縦板と横板とは上部にあって見えないが位置関係を示すために点線で記載した。低反応度係数の燃料集合体(915)は、核燃料を内蔵する多数本の低反応度係数核燃料棒(11)が正方形状に配列されチャンネルボックス(12)で束ねられている。
制御翼支持中空棒(9213)上端には電磁石(9212)が固定されていて、制御翼(921)は上端で電磁石(9212)に固定されている。電気が切断されると制御翼(921)は炉心に落下する。制御翼支持中空棒(9213)の内面には中空棒溝(9211)が切ってあって、中空棒支持ネジ棒(9141)が回転すると上下に動く。
低反応度係数核燃料棒(11)は、上部端栓(4)と下部端栓(7)とで密封されたるジルコニウム合金製の円筒形の被覆管(3)の中に、酸化カドミウムまたは酸化ガドリニウムからなる固体可燃性毒物と酸化ベリリウムからなる固体減速材との固体混合酸化物からなる内側調節ペレット(1)を内側に配置し外周を現行軽水炉使用済み核燃料から抽出したプルトニム組成のプルトニムとウランとの混合酸化物核燃料または濃縮度が20wt%以下の二酸化濃縮ウランからなる外側核燃料ペレット(2)とした低反応度係数のペレットを多数個充填した。低反応度係数のペレットを固定させるために上部プレナム(5)にスプリング(6)が装荷されている。
核燃料物質を内包する本発明の低反応度係数の燃料集合体(915)は、多数本正方格子状に配列された低反応度係数核燃料棒(11)と、これ等を4面で覆うチャンネルボックス(12)とから構成される。低反応度係数核燃料棒(11)の直径を1cmから1.5cmとし、隣接せる低反応度係数核燃料棒(11)の間隙を1mmから1.3mmとする。
固体可燃性毒物の減少による無限増倍係数の増加と核燃料の燃焼による無限増倍係数の減少とが相殺されて、(無限増倍係数の変化分)/(核燃料の燃焼度変化分)である燃焼反応度係数が緩やかになる。したがって、燃焼を長期間続けても出力を一定に保つことが容易になる。原子炉出力により蒸気割合が変化した場合、(無限増倍係数の変化分)/(蒸気割合の変化分)であるボイド反応度係数は固体減速材の効果により緩やかになる。蒸気割合が変化しても中性子速度減少のかなりの部分は固体減速材によってなされるからである。
低反応度係数核燃料棒(11)の直径約1cmに比べて低反応度係数核燃料棒(11)の間隙は約1mmと狭いから、蒸気が占める割合が少なくなり、蒸気変動量が少なく限定される。また、船が揺れることにより蒸気分布が変化しても無限増倍係数の変化が小さいため出力変動は小さい。船を長期間運転させても、核燃料の減少による無限増倍係数の変化が小さいため出力変動は小さい。
かくて、本発明の過熱蒸気沸騰水型原子炉(901)は、船の動揺や長期運転に対処できる。
FIG. 4 is a schematic view of a propeller propulsion nuclear ship capable of crashing into a fuel-filled jet aircraft according to the present invention. A nuclear reactor (501) is installed at substantially the center of the full length of the ship's skeleton covered with the ship wall (101) and the flat deck (102). Cover the outside of the lower ship's chassis from the flat deck (102) with a buoyancy mantle (106). A space formed by the buoyancy mantle (106) and the housing is filled with a float (105) made of foamed polystyrene or hollow spheres and compressed air (107) to ensure buoyancy. Control of floating and submersion by adjusting the compressed air (107). The buoyancy of the ship is also adjusted by the angle of the submerged wing (103) laid on the buoyancy mantle (106). The direction of the ship is adjusted with the rudder (104). The ship is propelled by the rotation of the propeller (108).
The high-temperature and high-pressure steam generated in the steam generator of the reactor (501) or the pressurized water reactor passes through a plurality of steam pipes (531) to the steam turbine (502), rotates the steam turbine (502), and Electric power is generated by a generator (521) connected to the steam turbine (502). After the work, the steam that has become low-temperature and low-pressure is exhausted to the condenser (503) and cooled to become liquid. Liquid water passes through a plurality of water supply pipes (532), is pressurized by an electric water supply pump (505), is heated by a water heater (506), and steam is generated in the reactor (501) or pressurized water reactor Return to the vessel. The reactor (501) is housed in a sturdy and airtight containment vessel (507). When not only the reactor (501) but also the steam turbine (502) and the condenser (503) are arranged in the containment vessel (507), a large surplus space is obtained. Steam can be stored in the storage container (507) with a margin.
The fresh water (512) fixed to the outside of the ship or the inner wall of the hull and cooled by the cooler (511) passes through the low-temperature pipe (515) into the condenser inner pipe (5031) by an electric fresh water pump (520). The exhaust that has been sucked in and finished work in the steam turbine (502) is condensed. The fresh water (512) heated by the exhaust gas from the steam turbine (502) is discharged from the condenser inner pipe (5031) to the cooler (511) through the high temperature pipe (514).
The electric propulsion motor (513) is rotated by electric power generated by the generator (521), and the propeller (108) is rotated via the clutch 2 (554) to advance the ship. A sudden change in the propulsive force can be achieved by operating the clutch 2 (554).
The power generation amount of the generator (521) is adjusted by adjusting the steam flow rate to the steam turbine (502) by the steam flow rate leaked to the condenser (503) by the electric bypass valve (510). The feed water heater (506) is heated by the steam flow rate leaking from the electric bypass valve (510) to the condenser (503).
Surplus power from the generator (521) is stored in the storage battery (522). When the nuclear reactor (501) stops, the electric propulsion motor (513) is rotated by the electric power from the storage battery (522) and the propeller (108) is rotated to advance the ship.
At the time of emergency stop of the ship, the propeller (108) is reversely rotated by switching the clutch 2 (554). Alternatively, the steam generated in the steam generator of the reactor (501) or the pressurized water reactor can be bypassed to the condenser (503) to condense the steam. Since the reactor (501) does not need to be stopped suddenly, the burden on the reactor can be reduced.
The top of the containment vessel (507) is a lid that can be opened and closed. When it becomes necessary to approach the reactor (501), the containment vessel access lid (508) that can be laid on the flat deck (102) is opened.
The shaft of the steam turbine (502) and the shaft of the generator (521) are connected by a clutch 1 (504) and can be disconnected as necessary. In the middle of the steam pipe (531) connecting the reactor (501) and the steam turbine (502) and in the middle of the water supply pipe (532) connecting the reactor (501) and the condenser (503), a pipe connector (509). Connected and can be disconnected if necessary.
It is desirable to install the nuclear reactor (501) in the center of the ship with less fluctuation. On the other hand, the propeller (108) is desirably installed at the stern for efficiency. In order to transmit the rotational force of the steam turbine (502) directly to the shaft of the propeller (108), a long linear shaft is required, but accuracy becomes a problem and difficulty is involved. In the present invention, the propeller (108) may be rotated by the electric propulsion motor (513) that arranges the electric power from the generator (521) installed in the center of the ship at the stern with a cable. Due to the development of powerful permanent magnets, motors in recent years have become smaller and more powerful, and it has become possible to mount generators (521) and electric propulsion motors (513) on ships. Furthermore, in recent years, the field of use of digital devices has become widespread, and digital devices are indispensable for ship operations as well as automobiles. Therefore, the need for electric power has increased and electric power cannot be said to be auxiliary power. The rudder (104), the submerged wing (103), and the compressed air (107) are not only the original, but also serve as a linear motor catapult power source for transporting the aircraft from the flat deck (102) and the state management of the sailors' living environment and the freshness of the cargo. If the ship is lengthened economically, the distance from the steam turbine (502) shaft to the propeller (108) shaft becomes a problem. Connecting the shafts becomes difficult.
In the present invention, since the steam pipe (531) and the water supply pipe (532) leading to the steam generator of the nuclear reactor (501) or the pressurized water reactor have a check valve, a plurality of them are provided and sufficient margin is secured. There is no separate emergency cooling device. Even if one breaks, the remaining flow rate can be secured with the remaining flow rate. Therefore, since it is simplified, it is inexpensive, safe and reliable. When the reactor is shut down, decay heat is removed by opening the electric bypass valve (510) with the storage battery (522) and allowing the minute steam to flow through the condenser (503). Laying the cooler (511) outside the ship is simplified in terms of shipbuilding and contributes to improving the straightness of the ship. In addition, if a partition is provided inside the ship wall (101) and fresh water (512) is filled to form a cooler (511), the ship wall (101) has no protrusion and resistance is reduced, so that the speed of the ship can be increased. it can.
For the heating of the feed water heater (506), an electric bypass provided in the middle of discharging high-temperature steam from the steam generator of the nuclear reactor (501) or the pressurized water reactor to the steam turbine (502) to the condenser (503) This is achieved by adjusting the bypass flow rate by adjusting the valve (510). In the event of an accident, the electric bypass valve (510) may be fully opened and surplus steam may be led to the condenser (503).
By submerging the ship, the influence of weather, especially waves, can be reduced. It is restrained that a part of the ship is placed on the shore of the wave and the load of the ship is locally applied. Since there are few problems in navigating the rough ocean at a constant high speed, there is no need to travel in a narrow sea such as the Strait of Malacca at a low speed.
By submerging the ship, pirate damage is alleviated, so anti-piracy infrastructure (protection by self-defense ships) becomes unnecessary and the total cost is reduced.
The flat deck (102) enables loading and unloading of cargo by airplane, and does not require a port and can quickly load and unload cargo even during navigation.
FIG. 5 is a schematic view when the reactor (501) is the superheated steam boiling water reactor (901) of the present invention. Like the reactor vessel of the conventional boiling water reactor, superheated steam of 65 atm or less and 287 ° C. or less is contained in the upper part of the pressure vessel (911) which is an airtight vessel made of stainless steel-lined steel plate. By the way, the reactor vessel of the conventional boiling water reactor had 70 atmospheres and 287 ° C saturated steam sealed in the upper part of the reactor vessel made of stainless steel-lined steel plate. Steam can be included. The feed water flow rate flowing into the pressure vessel (911) and the superheated steam flow rate flowing out from the pressure vessel (911) are made the same.
The shroud (912) has a cylindrical shape with upper and lower open ends and is built in the pressure vessel (911), and the gap between the two becomes a passage for cold water from the water supply pipe (532). The shroud (912) is supported by placing a shroud lower frame (923) to be fixed to the shroud (912) on the shroud support (922) to be fixed to the pressure vessel (911). The lower part of the shroud (912) is screwed to the lower core support plate (913) fixed to the pressure vessel (911). The upper portion of the shroud (912) is constrained to the pressure vessel lid (928) by a shroud upper frame (925) and a shroud pressing rod (926).
The pressure vessel lid (928) can be attached and detached at any time by a pressure vessel lid coupling screw (924). The pressure vessel lid (928) is moved by being lifted by the pressure vessel lid lifting tool (927). In addition, since the pipe connector (509) is attached in the middle of the water supply pipe (532) and the steam pipe (531), it can be disconnected at the time of the nuclear reactor (501) inspection or the like.
Cold feed water from the condenser (503) is warmed by the feed water heater (506), then enters the pressure vessel (911) through the feed water pipe (532), and low reaction from the fuel assembly nozzle (916). Enters the fuel assembly (915) of the degree coefficient, receives heat from the nuclear fuel to form steam, further receives heat and becomes superheated steam at 287 ° C. at 65 atm, and passes through the steam pipe (531) to the pressure vessel (911). To the steam turbine (502).
Reactor power is controlled by a control blade drive system. The control blade drive system includes a control blade (921) made of a neutron absorber, a control blade support hollow rod (9213) that supports the control blade (921) with an electromagnet (9212) fixed to the top, and a control blade support. A hollow rod support screw rod (9141) meshing with a hollow rod groove (9211) carved on the inner surface of the hollow rod (9213), and a control blade drive motor (914) for rotating the hollow rod support screw rod (9141). . The power source of the control blade drive motor (914) is power from a waterproof power cable drawn into the pressure vessel (911) from the outside or a storage battery loaded in the pressure vessel (911). In addition, the power source of the control blade drive motor (914) can be substituted for the motor rotation by rotating the water wheel with high-pressure water drawn into the pressure vessel (911) from the outside. The control signal to the control blade driving system is a signal cable or a sound wave drawn from the outside into the pressure vessel (911).
The control blade drive motor (914) is suspended in a hole formed in the lower core support plate (913). The hollow rod support screw rod (9141) connected to the control blade drive motor (914) meshes with the hollow rod groove (9211) on the inner surface of the control blade support hollow rod (9213) that supports the control blade (921), and the control blade The control blade (921) moves up and down via the control blade support hollow rod (9213) provided with the hollow rod groove (9211) by rotating the hollow rod support screw rod (9141) by the rotation of the drive motor (914). . The portion where the control blade (921) is located above the upper end of the low-reactivity coefficient fuel assembly (915) is contained in the control blade introduction box (920). The control blade drive motor (914) is attached / detached after the fuel assembly (915) having a low reactivity coefficient is moved out of the pressure vessel (911).
The fuel assembly (915) with a low reactivity coefficient has a fuel assembly nozzle (916), which is a coolant inlet fixed to the lower part of the fuel assembly (915) with a low reactivity coefficient, on the lower core support plate (913). It is inserted into the drilled hole and restrained against the lateral direction of the lower part and dropping. The upper lateral direction of the fuel assembly (915) with a low reactivity coefficient is constrained by an upper square lattice plate (917) that forms a square lattice with the vertical plate and the lateral plate. The upper nail of the fuel assembly (915) with a low reactivity coefficient is adjacent to a bundle claw (918) inserted inside the corner of the channel box (12) opposite to the control blade support hollow rod (9213). The four low-reactivity-coefficient fuel assemblies (915) are attached to restrain the movement of the low-reactivity-coefficient fuel assembly (915) to secure a space in which the control blade (921) can move up and down. . In order to prevent the bundle claw (918) from coming off upward and to prevent the low-reactivity coefficient fuel assembly (915) from moving upward, the bundle claw fixing plate ( 919).
FIG. 6 is a diagram showing in detail the height of the bundle claw fixing plate (919). Four low-reactivity coefficient fuel assemblies (915) around the control blade (921) are surrounded by an upper square lattice plate (917). Although the vertical plate of the upper square lattice plate (917) can be seen in the figure, the horizontal plate is not visible in the figure because it is under the bundle claw fixing plate (919). The four low-reactivity coefficient fuel assemblies (915) at the intersections of the vertical and horizontal plates of the upper square lattice plate (917) are fixed by bundle claws (918). Therefore, a space in which the control blade (921) can move up and down is secured.
FIG. 7 is a view showing in detail a core structure portion at a height where nuclear fuel is packed. Although the vertical plate and the horizontal plate of the upper square lattice plate (917) are in the upper portion and cannot be seen, they are indicated by dotted lines to show the positional relationship. The low-reactivity coefficient fuel assembly (915) has a plurality of low-reactivity coefficient nuclear fuel rods (11) containing nuclear fuel arranged in a square shape and bundled in a channel box (12).
An electromagnet (9212) is fixed to the upper end of the control blade supporting hollow rod (9213), and the control blade (921) is fixed to the electromagnet (9212) at the upper end. When electricity is cut off, the control blade (921) falls into the core. A hollow rod groove (9211) is cut in the inner surface of the control blade supporting hollow rod (9213), and when the hollow rod supporting screw rod (9141) rotates, it moves up and down.
The low reactivity coefficient nuclear fuel rod (11) is made of cadmium oxide or gadolinium oxide in a cylindrical cladding tube (3) made of zirconium alloy sealed by an upper end plug (4) and a lower end plug (7). An inner control pellet (1) made of a solid mixed oxide of a solid flammable poison made of beryllium oxide and a solid moderator made of beryllium oxide is placed inside, and the outer periphery is extracted from the nuclear fuel used in the current light water reactor. A large number of low-reactivity coefficient pellets were prepared as outer nuclear fuel pellets (2) consisting of a mixed oxide nuclear fuel or an enriched uranium dioxide enrichment of 20 wt% or less. A spring (6) is loaded on the upper plenum (5) to fix the low reactivity coefficient pellets.
The low-reactivity coefficient fuel assembly (915) of the present invention containing nuclear fuel material includes a plurality of low-reactivity coefficient nuclear fuel rods (11) arranged in a square lattice pattern, and a channel box covering these on four sides. (12) The diameter of the low reactivity coefficient nuclear fuel rod (11) is 1 cm to 1.5 cm, and the gap between adjacent low reactivity coefficient nuclear fuel rods (11) is 1 mm to 1.3 mm.
The increase in the infinite multiplication factor due to the decrease in the solid flammable poison is offset by the decrease in the infinite multiplication factor due to the combustion of the nuclear fuel, which is (change in the infinite multiplication factor) / (change in the burnup of the nuclear fuel). Combustion reactivity coefficient becomes moderate. Therefore, it becomes easy to keep the output constant even if combustion is continued for a long time. When the steam ratio changes due to reactor power, the void reactivity coefficient (change in infinite multiplication factor) / (change in steam ratio) becomes gentle due to the effect of the solid moderator. This is because a considerable portion of the neutron velocity reduction is made by the solid moderator, even if the vapor rate changes.
Since the gap of the low reactivity coefficient nuclear fuel rod (11) is about 1mm compared to the diameter of the low reactivity coefficient nuclear fuel rod (11), the proportion of steam is small and the amount of steam fluctuation is limited. . Even if the steam distribution changes due to the ship's shaking, the output fluctuation is small because the change of the infinite multiplication factor is small. Even if the ship is operated for a long time, the output fluctuation is small because the change of the infinite multiplication factor due to the decrease in nuclear fuel is small.
Thus, the superheated steam boiling water reactor (901) of the present invention can cope with ship sway and long-term operation.

図8は、本発明の燃料満載ジェット機激突対応ジェット噴射原子力船の概観図である。実施例1同様に、船壁(101)と平坦甲板(102)とで覆われた船の躯体の全長のほぼ中央部に原子炉(501)を設置する。平坦甲板(102)から下の船の躯体の外側を浮力外套(106)で覆う。浮力外套(106)と躯体とで形成される空間に発泡スチロールや中空球で作られた浮体(105)と圧搾空気(107)とを充填し浮力を確保する。圧搾空気(107)の調節により浮上と水没を調節する。船の浮力は浮力外套(106)に敷設した潜行翼(103)の角度でも調節する。船の方向は方向舵(104)で調節する。船は、デフューザ付ジェットポンプ(615)からの海水噴射により前進する。
原子炉(501)または加圧水型原子炉の蒸気発生器で発生した高温高圧の蒸気は複数本の蒸気管(531)を通って蒸気タービン(502)に行き蒸気タービン(502)を回転させると共に接続せる海水高速ポンプ(5201)を回転させる。仕事を終えて低温低圧になった蒸気は復水器(503)に排気され冷却されて液体になる。液体の水は複数本の給水管(532)を通って電動の給水ポンプ(505)で加圧され給水加熱器(506)で昇温されて原子炉(501)または加圧水型原子炉の蒸気発生器に戻る。
海水高速ポンプ(5201)は浮力外套(106)内に設けた外套内海水吸引口(611)から冷たい海水を復水器内管(5031)内に吸引して、蒸気タービン(502)の排気を水に凝縮させる。蒸気タービン(502)排気で昇温されて復水器内管(5031)を出た海水は、海水高速ポンプ(5201)で高速にされて高速海水吐出管(613)を伝い海水管(614)に固着する複数のノズル(616)から複数のデフューザ付ジェットポンプ(615)の入口に放出される。その際、デフューザ付ジェットポンプ(615) 入口周辺の海水を巻き込み、デフューザ付ジェットポンプ(615)出口から高圧大量の海水を放出する。船の推進はこのデフューザ付ジェットポンプ(615)からの海水噴射による。(非特許文献4での索引はジェットポンプ)。なお、デフューザ付ジェットポンプ(615)は留め具で船尾に固定させる。
復水器(503)への蒸気流量を電動バイパス弁(510)で配分することにより蒸気タービン(502)への蒸気流量を加減しつつクラッチ1(504)を調節して推進力の急激な変動を調節する。
海水高速ポンプ(5201)軸に補助発電機(5211)を連結し電力を蓄電池(522)に蓄え、原子炉(501)が停止した場合は蓄電池(522)からの電力で補助発電機(5211)を回転させ海水高速ポンプ(5201)を回転させてデフューザ付ジェットポンプ(615)からの海水噴射により船を前進させることができる。
船の緊急停止時には、原子炉(501)または加圧水型原子炉の蒸気発生器で発生した蒸気の100%を復水器(503)にバイパスし蒸気タービン(502)を停止させることにより海水高速ポンプ(5201)を停止させ、クラッチ1(504)の切り離しによりデフューザ付ジェットポンプ(615)からの海水噴射を中止する。
本発明では船中央部に設置された海水高速ポンプ(5201)を、蒸気タービン(502)排気を冷却するために冷たい海水を復水器内管(5031)内に循環させる海水ポンプの役目と同時に、海水噴射により船を前進させるためのデフューザ付ジェットポンプ(615)を駆動させるためとの二重に役立てている。
原子炉停止時の崩壊熱除去は、電動バイパス弁(510)を開き微少蒸気を復水器(503)に導き、クラッチ1(504)で切り離した海水高速ポンプ(5201)を蓄電池(522)で回転させ海水の循環により冷却する。
:日刊工業新聞社、1974年、原子力用語研究会「図解原子力用語辞典」。
FIG. 8 is a schematic view of a jet-injected nuclear ship corresponding to a fuel-filled jet aircraft collision according to the present invention. Similar to the first embodiment, a nuclear reactor (501) is installed at the substantially central portion of the full length of the ship's frame covered with the ship wall (101) and the flat deck (102). Cover the outside of the lower ship's chassis from the flat deck (102) with a buoyancy mantle (106). The space formed by the buoyancy mantle (106) and the housing is filled with the float (105) made of foamed polystyrene or hollow sphere and the compressed air (107) to ensure buoyancy. Control of floating and submersion by adjusting the compressed air (107). The buoyancy of the ship is also adjusted by the angle of the submerged wing (103) laid on the buoyancy mantle (106). The direction of the ship is adjusted with the rudder (104). The ship moves forward by seawater injection from a jet pump with a diffuser (615).
The high-temperature and high-pressure steam generated in the steam generator of the reactor (501) or the pressurized water reactor passes through a plurality of steam pipes (531) to the steam turbine (502) to rotate and connect the steam turbine (502). The seawater high speed pump (5201) to be rotated is rotated. After the work, the steam that has become low-temperature and low-pressure is exhausted to the condenser (503) and cooled to become liquid. Liquid water passes through a plurality of water supply pipes (532), is pressurized by an electric water supply pump (505), is heated by a water heater (506), and steam is generated in the reactor (501) or pressurized water reactor Return to the vessel.
The seawater high-speed pump (5201) sucks cold seawater into the condenser inner pipe (5031) from the seawater suction port (611) in the jacket provided in the buoyancy mantle (106), and exhausts the steam turbine (502). Allow to condense in water. Seawater heated by the steam turbine (502) exhaust and exiting the condenser inner pipe (5031) is increased in speed by a seawater high-speed pump (5201), and then conveyed through the high-speed seawater discharge pipe (613) to the seawater pipe (614). Are discharged from the plurality of nozzles (616) fixed to the inlets of the plurality of jet pumps (615) with a diffuser. At that time, seawater around the inlet of the jet pump with a diffuser (615) is entrained, and a large amount of high-pressure seawater is discharged from the outlet of the jet pump with a diffuser (615). The propulsion of the ship is by seawater injection from the jet pump with a diffuser (615). (The index in Non-Patent Document 4 is a jet pump). The jet pump with a diffuser (615) is fixed to the stern with a fastener.
By distributing the steam flow rate to the condenser (503) by the electric bypass valve (510), the clutch 1 (504) is adjusted while adjusting the steam flow rate to the steam turbine (502), and the propulsive force suddenly fluctuates. Adjust.
The auxiliary generator (5211) is connected to the shaft of the high-speed seawater pump (5201) to store electric power in the storage battery (522), and when the reactor (501) is stopped, the auxiliary generator (5211) is supplied with electric power from the storage battery (522). And the seawater high-speed pump (5201) is rotated to advance the ship by seawater injection from the jet pump with a diffuser (615).
At the time of emergency stop of a ship, seawater high speed pump is made by bypassing 100% of steam generated in the steam generator of the reactor (501) or pressurized water reactor to the condenser (503) and stopping the steam turbine (502) (5201) is stopped, and the seawater injection from the jet pump with a diffuser (615) is stopped by disconnecting the clutch 1 (504).
In the present invention, the seawater high-speed pump (5201) installed in the center of the ship is simultaneously used as a seawater pump for circulating cold seawater into the condenser inner pipe (5031) in order to cool the steam turbine (502) exhaust. This is also used for driving a jet pump (615) with a diffuser for advancing the ship by seawater injection.
When the reactor is shut down, decay heat is removed by opening the electric bypass valve (510), guiding the minute steam to the condenser (503), and separating the seawater high-speed pump (5201) separated by the clutch 1 (504) with the storage battery (522). Rotate and cool by circulating seawater.
: Nikkan Kogyo Shimbun, 1974, Nuclear Terminology Study Group “Diagram of Nuclear Terminology”.

石油利用関連設備の飽和と石油資源量限界とにより、好況になれば石油需要増加で石油価格が高騰し設備稼働率が下がり、不況になれば石油需要減少で石油価格が低下しても設備過剰となりどの道石油利用関連設備飽和を通してあらゆるものの需要増加は望めなくなっている。現状維持程度の持続的社会では元気がでない。鼠講にならない程度の緩やかなGDP増加と短期間の緩やかな減少がなければ社会に閉塞感をもたらす。一喜一憂したい。人口減社会ではスクラップアンドビルドが大切である。
需要増加不足の1打開策として、低炭素社会の構築を標榜した非石油利用設備による新規需要の創出のための一助に重油貨物船をスクラップして原子力利用貨物船の造船が考えられる。石油利用設備よりも効率がよかったり、新規メリットがあったりすれば社会に受け入れられやすくなる。
ガソリン自動車の代わりに電気自動車が売れそうな気配であるから、重油貨物船の代わりに原子力貨物船が売れるかもしれない。
殆ど起こらない原子炉事故のよる放射能の恐れよりも、今年の生活必需品を心配するお年寄りや子供の中から、原子力船による食料・医療原料・衣類原料・漁船用燃料・農業用燃料確保に同意する者分の原子力船隻数は建設できる。
原子力空母たりといえども燃料満載ジェット機激突に耐えられなければ、同盟国周辺への展開は住民感情からいって困難になる。当然世界の海に展開し破壊攻撃に曝されることを前提とした原子力空母も燃料満載ジェット機激突に耐えられるようになっている筈であろうから、原子力貨物船は原子力空母以上に燃料満載ジェット機激突に耐えられるようにする必要があろう。
Due to the saturation of oil-related equipment and the limit of the amount of oil resources, if the economy is booming, the oil price will rise due to an increase in oil demand and the capacity utilization will fall. In other roads, the demand for everything can no longer be expected through the saturation of oil-related facilities. I don't feel well in a sustainable society where the current level is maintained. Unless there is a gradual increase in GDP and a gradual decrease over a short period of time that will not result in a lecture, it will create a sense of blockage in society. I want to cry. Scrap and build is important in a depopulated society.
As a measure to overcome the shortage of demand increase, it is conceivable to scrap a heavy oil cargo ship and build a nuclear-powered cargo ship to help create new demand by using non-oil-use facilities that are designed to create a low-carbon society. If it is more efficient than oil-based facilities or has new merits, it will be easier for society to accept.
Because electric cars are likely to sell instead of gasoline cars, nuclear cargo ships may sell instead of heavy oil cargo ships.
Securing food, medical raw materials, clothing raw materials, fuel for fishing boats, and fuel for agriculture from nuclear power ships from elderly people and children who are worried about this year's daily necessities rather than fear of radioactivity due to rare nuclear reactor accidents The number of nuclear ships for those who agree can be constructed.
Even if a nuclear-powered aircraft carrier can't endure a fuel-laden jet, it will be difficult to expand to allied countries because of the feelings of the residents. Naturally, nuclear carriers that have been deployed in the world's oceans and are subject to destructive attacks should be able to withstand the crash of fuel-packed jets, so nuclear cargo ships are more fuel-filled jets than nuclear carriers. You will need to be able to withstand the crash.

従来の原子力船の原理図。The principle figure of the conventional nuclear ship. 「むつ」の原子炉として採用された加圧水型原子炉の概観図。An overview of a pressurized water reactor adopted as the Mutsu nuclear reactor. 商用沸騰水型原子炉の概観図。Overview of commercial boiling water reactor. 本発明の燃料満載ジェット機激突対応プロペラ推進原子力船の概観図。1 is a schematic view of a propeller propulsion nuclear ship corresponding to a fuel-filled jet aircraft crash according to the present invention. 本発明の過熱蒸気沸騰水型原子炉(901)にした場合の概観図。The general-view figure at the time of setting it as the superheated steam boiling water reactor (901) of this invention. 束ね爪固定板(919)高さの部分を詳細に示した図。The figure which showed the part of the bundle nail | claw fixing plate (919) height in detail. 核燃料が詰まっている高さの炉心構造部分を詳細に示した図。The figure which showed the core structure part of the height where the nuclear fuel is packed in detail. 本発明の燃料満載ジェット機激突対応ジェット噴射原子力船の概観図。BRIEF DESCRIPTION OF THE DRAWINGS FIG.

1は内側調節ペレット。
2は外側核燃料ペレット。
3は被覆管。
4は上部端栓。
5は上部プレナム。
6はスプリング。
7は下部端栓。
11は低反応度係数核燃料棒。
12はチャンネルボックス。
101は船壁。
102は平坦甲板。
103は潜行翼。
104は方向舵。
105は浮体。
106は浮力外套。
107は圧搾空気。
108はプロペラ。
501は原子炉。
502は蒸気タービン。
503は復水器。
504はクラッチ1。
505は給水ポンプ。
506は給水加熱器。
507は格納容器。
508は格納容器接近蓋。
509は配管接続器。
510は電動バイパス弁。
511は冷却器。
512は真水。
513は電動推進モータ。
514は高温配管。
515は低温配管。
520は真水ポンプ。
522は蓄電池。
521は発電機。
531は蒸気管。
532は給水管。
554はクラッチ2。
611は外套内海水吸込口。
612は逆止弁。
613は高速海水吐出管。
614は海水管。
615はデフューザ付ジェットポンプ。
616はノズル。
901は過熱蒸気沸騰水型原子炉。
911は圧力容器。
912はシュラウド。
913は下部炉心支持板。
914は制御翼駆動モータ。
915は低反応度係数の燃料集合体。
916は燃料集合体ノズル。
917は上部正方格子板(縦板)または(横板)。
918は束ね爪。
919は束ね爪固定板。
920は制御翼導入箱。
921は制御翼。
922はシュラウド支持。
923はシュラウド下枠。
924は圧力容器蓋結合ネジ。
925はシュラウド上枠。
926はシュラウド押下棒。
927は圧力容器蓋吊上具。
928は圧力容器蓋。
5031は復水器内管。
5201は海水高速ポンプ。
5211は補助発電機。
9141は中空棒支持ネジ棒。
9211は中空棒溝。
9212は電磁石。
9213は制御翼支持中空棒。
1 is an inner control pellet.
2 is an outer nuclear fuel pellet.
3 is a cladding tube.
4 is an upper end plug.
5 is the upper plenum.
6 is a spring.
7 is a lower end plug.
11 is a low reactivity coefficient nuclear fuel rod.
12 is a channel box.
101 is a ship wall.
102 is a flat deck.
103 is a submerged wing.
104 is a rudder.
105 is a floating body.
106 is a buoyancy mantle.
107 is compressed air.
108 is a propeller.
501 is a nuclear reactor.
502 is a steam turbine.
503 is a condenser.
Reference numeral 504 denotes the clutch 1.
505 is a water supply pump.
506 is a feed water heater.
Reference numeral 507 denotes a storage container.
Reference numeral 508 denotes a containment container access lid.
509 is a pipe connector.
510 is an electric bypass valve.
Reference numeral 511 denotes a cooler.
512 is fresh water.
Reference numeral 513 denotes an electric propulsion motor.
514 is a high-temperature pipe.
515 is a low-temperature pipe.
520 is a fresh water pump.
522 is a storage battery.
521 is a generator.
531 is a steam pipe.
532 is a water supply pipe.
554 is the clutch 2.
Reference numeral 611 denotes a seawater suction port in the mantle.
612 is a check valve.
613 is a high-speed seawater discharge pipe.
614 is a seawater pipe.
615 is a jet pump with a diffuser.
Reference numeral 616 denotes a nozzle.
901 is a superheated steam boiling water reactor.
911 is a pressure vessel.
912 is a shroud.
Reference numeral 913 denotes a lower core support plate.
914 is a control blade drive motor.
915 is a fuel assembly having a low reactivity coefficient.
Reference numeral 916 denotes a fuel assembly nozzle.
917 is an upper square lattice plate (vertical plate) or (horizontal plate).
918 is a bundled nail.
Reference numeral 919 denotes a bundle claw fixing plate.
920 is a control wing introduction box.
921 is a control wing.
922 is a shroud support.
923 is a shroud lower frame.
924 is a pressure vessel lid coupling screw.
925 is a shroud upper frame.
926 is a shroud pressing bar.
927 is a pressure vessel lid lifting tool.
928 is a pressure vessel lid.
5031 is a condenser inner pipe.
5201 is a seawater high-speed pump.
5211 is an auxiliary generator.
9141 is a hollow rod supporting screw rod.
9211 is a hollow rod groove.
9212 is an electromagnet.
9213 is a control wing support hollow rod.

Claims (3)

船壁(101)と平坦甲板(102)とで覆われた船の躯体と浮力外套(106)とで形成される空間に浮体(105)と圧搾空気(107)を装荷し圧搾空気(107)の圧力調節及び浮力外套(106)に敷設した潜行翼(103)の角度調節とにより浅水没させ、原子炉(501)または加圧水型原子炉の蒸気発生器を介して発生した高温高圧の蒸気を復水器(503)に排気することにより蒸気タービン(502)を回転させ仕事を終えた排気を復水器(503)で水に凝縮して電動の給水ポンプ(505)で昇圧して原子炉(501)または加圧水型原子炉の蒸気発生器に戻し、船外または船体内壁内側に固着せし冷却器(511)で冷却した真水(512)を復水器内管(5031)に電動の真水ポンプ(520)で循環させ、当該蒸気タービン(502)に接続した発電機(521)による電力で電動推進モータ(513)を回転させプロペラ(108)を回転させることにより船を推進することを特徴とせる燃料満載ジェット機激突対応プロペラ推進原子力船。 The floating body (105) and the compressed air (107) are loaded into the space formed by the ship's body and the buoyancy mantle (106) covered with the ship wall (101) and the flat deck (102), and the compressed air (107). The high-temperature and high-pressure steam generated through the steam generator of the reactor (501) or the pressurized water reactor is submerged in water by adjusting the pressure of the submerged wing and the angle of the submerged wing (103) laid on the buoyancy mantle (106). The exhaust gas exhausted to the condenser (503) is rotated to rotate the steam turbine (502), and the exhausted gas is condensed into water by the condenser (503) and boosted by the electric water supply pump (505). (501) or the fresh water (512) that is returned to the steam generator of the pressurized water reactor, fixed to the outside of the ship or inside the inner wall of the ship and cooled by the cooler (511), is supplied to the condenser inner pipe (5031) as electric fresh water. Circulate with pump (520), Propeller corresponding to a fuel-packed jet collision, characterized in that the electric propulsion motor (513) is rotated by electric power from a generator (521) connected to the steam turbine (502) to propel the ship by rotating the propeller (108). Propulsion nuclear ship. 船壁(101)と平坦甲板(102)とで覆われた船の躯体と浮力外套(106)とで形成される空間に浮体(105)と圧搾空気(107)を装荷し圧搾空気(107)の圧力調節及び浮力外套(106)に敷設した潜行翼(103)の角度調節とにより浅水没させ、原子炉(501)または加圧水型原子炉の蒸気発生器を介して発生した高温高圧の蒸気を復水器(503)に排気することにより蒸気タービン(502)を回転させ仕事を終えた排気を復水器(503)で水に凝縮して電動の給水ポンプ(505)で昇圧して原子炉(501)または加圧水型原子炉の蒸気発生器に戻し、当該蒸気タービン(502)に接続した海水高速ポンプ(5201)が浮力外套(106)内に設けた外套内海水吸引口(611)から海水を復水器内管(5031)に吸引すると共に吸引海水を高速にし、当該高速海水を複数のノズル(616)からデフューザ付ジェットポンプ(615)入口に噴射し周囲の海水をも巻き込んでデフューザ付ジェットポンプ(615)出口から高圧大量の海水を噴出することにより船を推進することを特徴とせる燃料満載ジェット機激突対応ジェット噴射原子力船。 The floating body (105) and the compressed air (107) are loaded into the space formed by the ship's body and the buoyancy mantle (106) covered with the ship wall (101) and the flat deck (102), and the compressed air (107). The high-temperature and high-pressure steam generated through the steam generator of the reactor (501) or the pressurized water reactor is submerged in water by adjusting the pressure of the submerged wing and the angle of the submerged wing (103) laid on the buoyancy mantle (106). The exhaust gas exhausted to the condenser (503) is rotated to rotate the steam turbine (502), and the exhausted gas is condensed into water by the condenser (503) and boosted by the electric water supply pump (505). (501) or return to the steam generator of the pressurized water reactor and the seawater high-speed pump (5201) connected to the steam turbine (502) from the seawater suction port (611) in the mantle provided in the buoyancy mantle (106) In the condenser (5031), the suction seawater is made high-speed, the high-speed seawater is sprayed from the plurality of nozzles (616) to the inlet of the jet pump with a diffuser (615), and the surrounding seawater is also entrained to exit the jet pump with the diffuser (615) A jet-injected nuclear ship capable of crashing into a fuel-filled jet, characterized by propelling the ship by ejecting a large amount of high-pressure seawater from the sea. 酸化カドミウムまたは酸化ガドリニウムからなる固体可燃性毒物酸化物と酸化ベリリウムからなる固体減速材酸化物との固体混合酸化物からなる内側調節ペレット(1)を内側に配置し外周を軽水炉使用済み核燃料から抽出したプルトニム組成のプルトニムとウランとの混合酸化物核燃料または濃縮度が20wt%以下の二酸化濃縮ウランからなる外側核燃料ペレット(2)とした低反応度係数のペレットをジルコニウム合金製の被覆管(3)に多数個充填した低反応度係数核燃料棒(11)を、被覆管(3)間隙が1mm〜1.3mmの範囲で多数本正方格子状に配列しジルコニウム合金製のチャンネルボックス(12)内に束ねた低反応度係数の燃料集合体(915)4体を上部正方格子板(917)の格子毎の空間に正方格子状に整列させ、上部正方格子板(917)の交点の周りの4体の低反応度係数の燃料集合体(915)を束ね爪(918)で固定し、制御翼駆動システムで出力制御することにより圧力65気圧以下で287℃の過熱蒸気を発生させることを特徴とする過熱蒸気沸騰水型原子炉(901)。 Inner control pellet (1) consisting of solid mixed oxide of solid flammable poison oxide consisting of cadmium oxide or gadolinium oxide and solid moderator oxide consisting of beryllium oxide is placed inside and the outer circumference is extracted from light water reactor spent nuclear fuel Zirconium alloy cladding tube made of low-reactivity coefficient pellets made of plutonium and uranium mixed oxide nuclear fuel or outer nuclear fuel pellets (2) consisting of enriched uranium dioxide with enrichment of 20 wt% or less (3) A large number of low-reactivity coefficient nuclear fuel rods (11) packed in a square lattice in a cladding tube (3) gap of 1 mm to 1.3 mm are bundled in a channel box (12) made of zirconium alloy. The four low-reactivity coefficient fuel assemblies (915) are aligned in a square lattice pattern in the space of each lattice of the upper square lattice plate (917), and the upper square lattice plate (9 7) Four low-reactivity coefficient fuel assemblies (915) around the intersection point are fixed with bundle claws (918), and output control is performed with a control blade drive system. A superheated steam boiling water reactor (901) characterized by generating steam.
JP2009055898A 2009-03-10 2009-03-10 Fuel-filled jet crash-capable nuclear ship Expired - Fee Related JP5394101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055898A JP5394101B2 (en) 2009-03-10 2009-03-10 Fuel-filled jet crash-capable nuclear ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055898A JP5394101B2 (en) 2009-03-10 2009-03-10 Fuel-filled jet crash-capable nuclear ship

Publications (3)

Publication Number Publication Date
JP2010208449A true JP2010208449A (en) 2010-09-24
JP2010208449A5 JP2010208449A5 (en) 2012-04-26
JP5394101B2 JP5394101B2 (en) 2014-01-22

Family

ID=42969123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055898A Expired - Fee Related JP5394101B2 (en) 2009-03-10 2009-03-10 Fuel-filled jet crash-capable nuclear ship

Country Status (1)

Country Link
JP (1) JP5394101B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299663A (en) * 2014-09-29 2015-01-21 中国核动力研究设计院 Submergible dynamic positioning marine nuclear power station
CN104332202A (en) * 2014-10-27 2015-02-04 中国核动力研究设计院 Wave penetrating hull type floating nuclear power plant
JP2015509192A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Submersible power generation module
CN105235825A (en) * 2015-10-09 2016-01-13 杜善骥 Ship with nuclear power station
EP2976231A2 (en) * 2013-03-22 2016-01-27 Lenr Cars S.A. Low energy nuclear thermoelectric system
CN105270595A (en) * 2015-10-10 2016-01-27 杜善骥 Nuclear transporting ship

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894814U (en) * 1981-12-22 1983-06-27 三菱重工業株式会社 Marine engine plant
JPS6457198A (en) * 1987-08-27 1989-03-03 Ishikawajima Harima Heavy Ind Nuclear power generator
JPH01127485A (en) * 1987-11-13 1989-05-19 Mitsui Eng & Shipbuild Co Ltd Submarine boat
JPH0558274A (en) * 1991-08-27 1993-03-09 Toshio Yoshida Hovercraft ship of non-swingable and uncapsizable riding wave type, and navigation method thereof
JPH07186936A (en) * 1993-12-27 1995-07-25 Yoshio Suetsugu Air pressure supported high speed vessel
JP2000211582A (en) * 1999-01-25 2000-08-02 Electric Boat Corp Propulsion device for axisymmetric vehicle traveling in fluid
JP2002522292A (en) * 1998-08-04 2002-07-23 ノース ウェスト ベイ シップス プロプリエタリー リミティッド Trimaran structure
JP2003002289A (en) * 2001-06-27 2003-01-08 Kawasaki Heavy Ind Ltd Jet propulsion type planning boat
JP2007284019A (en) * 2006-04-20 2007-11-01 Osaka Prefecture Univ Trimaran structure ship

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894814U (en) * 1981-12-22 1983-06-27 三菱重工業株式会社 Marine engine plant
JPS6457198A (en) * 1987-08-27 1989-03-03 Ishikawajima Harima Heavy Ind Nuclear power generator
JPH01127485A (en) * 1987-11-13 1989-05-19 Mitsui Eng & Shipbuild Co Ltd Submarine boat
JPH0558274A (en) * 1991-08-27 1993-03-09 Toshio Yoshida Hovercraft ship of non-swingable and uncapsizable riding wave type, and navigation method thereof
JPH07186936A (en) * 1993-12-27 1995-07-25 Yoshio Suetsugu Air pressure supported high speed vessel
JP2002522292A (en) * 1998-08-04 2002-07-23 ノース ウェスト ベイ シップス プロプリエタリー リミティッド Trimaran structure
JP2000211582A (en) * 1999-01-25 2000-08-02 Electric Boat Corp Propulsion device for axisymmetric vehicle traveling in fluid
JP2003002289A (en) * 2001-06-27 2003-01-08 Kawasaki Heavy Ind Ltd Jet propulsion type planning boat
JP2007284019A (en) * 2006-04-20 2007-11-01 Osaka Prefecture Univ Trimaran structure ship

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509192A (en) * 2012-01-18 2015-03-26 デ・セ・エヌ・エス Submersible power generation module
EP2976231A2 (en) * 2013-03-22 2016-01-27 Lenr Cars S.A. Low energy nuclear thermoelectric system
JP2016521534A (en) * 2013-03-22 2016-07-21 エルイーエヌアール カーズ ソシエテ アノニムLenr Cars Sa Low energy nuclear thermoelectric system
CN104299663A (en) * 2014-09-29 2015-01-21 中国核动力研究设计院 Submergible dynamic positioning marine nuclear power station
CN104332202A (en) * 2014-10-27 2015-02-04 中国核动力研究设计院 Wave penetrating hull type floating nuclear power plant
CN105235825A (en) * 2015-10-09 2016-01-13 杜善骥 Ship with nuclear power station
CN105270595A (en) * 2015-10-10 2016-01-27 杜善骥 Nuclear transporting ship

Also Published As

Publication number Publication date
JP5394101B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5394101B2 (en) Fuel-filled jet crash-capable nuclear ship
US20210098143A1 (en) Offshore and marine vessel-based nuclear reactor configuration, deployment and operation
Carlton et al. The nuclear propulsion of merchant ships: aspects of engineering, science and technology
WO2013025625A1 (en) Terrestrial power and propulsion from nuclear or renewable metal fuels with magnetohydrodynamics
US3837308A (en) Floating power plant
JP4370075B2 (en) Submerged power plant and method
US20230078347A1 (en) Inertial hydrodynamic pump and wave engine
Ma et al. Ending the production of highly enriched uranium for naval reactors
Ragheb Nuclear naval propulsion
CN113320654A (en) Deep sea self-navigation anti-platform type floating scientific research facility platform with self-sufficient energy
JP2010208449A5 (en)
CN207966496U (en) A kind of floating nuclear power plant
Ragheb Nuclear marine propulsion
Drosińska-Komor et al. On the use of selected 4th generation nuclear reactors in marine power plants
CN208931591U (en) A kind of nuclear power comprehensive coverage ship
Kramer Nuclear propulsion for merchant ships
Reistad et al. Russian nuclear power plants for marine applications
RU173011U1 (en) NUCLEAR POWER SUPPLY SHIP
Marguet History of the pressurized water reactor
Alexandrov et al. Atomic icebreaker" Lenin"
RU2188466C2 (en) Floating nuclear power plant
CN114212182A (en) High-speed supercavitation composite multi-hull boat and method for reducing friction resistance of high-speed boat
CN112356998A (en) Power generation platform suitable for long-term mooring at sea
WO2023037350A1 (en) Sea multicopter
Makarov et al. Experience in building and operating reactor systems for civilian ships

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Ref document number: 5394101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees