JP2010203958A - Apparatus for measuring voltage of two or more assembled batteries - Google Patents

Apparatus for measuring voltage of two or more assembled batteries Download PDF

Info

Publication number
JP2010203958A
JP2010203958A JP2009050799A JP2009050799A JP2010203958A JP 2010203958 A JP2010203958 A JP 2010203958A JP 2009050799 A JP2009050799 A JP 2009050799A JP 2009050799 A JP2009050799 A JP 2009050799A JP 2010203958 A JP2010203958 A JP 2010203958A
Authority
JP
Japan
Prior art keywords
voltage
sample
block
conversion
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009050799A
Other languages
Japanese (ja)
Other versions
JP5303316B2 (en
Inventor
Satoshi Ishikawa
聡 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2009050799A priority Critical patent/JP5303316B2/en
Priority to US12/714,725 priority patent/US8643376B2/en
Publication of JP2010203958A publication Critical patent/JP2010203958A/en
Application granted granted Critical
Publication of JP5303316B2 publication Critical patent/JP5303316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for measuring a voltage of two or more assembled batteries, which compensates a variation in a measured voltage caused by a variation in an A/D conversion-use voltage, and detects the voltage precisely. <P>SOLUTION: The apparatus includes: first to fifth voltage detecting ICs (21)-(25) for respectively detecting voltages of blocks 61-65 each containing two or more unit cells; an A/D converter which is disposed at each voltage detecting IC and digitizes an analog voltage signal detected by the voltage detecting IC, by using the A/D conversion-use voltage prescribed; and a sample voltage generating circuit which is disposed at each voltage detecting IC and generates a sample voltage such that generated sample voltages are identical to each other at respective voltage detecting ICs. An A/D conversion is applied to the sample voltage in each voltage detecting IC, and an error ratio caused by the variation in the A/D conversion-use voltage is detected on the basis of the digitized voltage signal. Then, a unit cell voltage is compensated on the basis of the error ratio. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の単位セルを直列接続して所望の電圧を出力する複数組電池の、出力電圧を検出する電圧測定装置に関する。   The present invention relates to a voltage measuring device for detecting an output voltage of a plurality of assembled batteries that output a desired voltage by connecting a plurality of unit cells in series.

例えば、ハイブリッド車両では、モータの駆動電源として、高電圧バッテリを備えている。高電圧バッテリは、例えば、ニッケル−水素電池やリチウム電池などの二次電池(蓄電式電池)の単位セルを複数個直列接続して高電圧を得ている。   For example, a hybrid vehicle includes a high voltage battery as a drive power source for a motor. A high voltage battery obtains a high voltage by connecting a plurality of unit cells of a secondary battery (storage battery) such as a nickel-hydrogen battery or a lithium battery in series.

また、二次電池が過放電状態、或いは過充電状態とならないように、各単位セル毎の充電状態を確認する必要があり、従来より、複数個(例えば、55個)の単位セルを例えば5個のブロックに分割し(即ち、11個の単位セルで1ブロック)、各ブロックの電圧を各ブロック毎に設けられた電圧検出用ICによりリアルタイムで電圧を測定している。   In addition, it is necessary to check the charge state of each unit cell so that the secondary battery is not overdischarged or overcharged. Conventionally, a plurality of (for example, 55) unit cells are, for example, 5 The block is divided into blocks (that is, one block of 11 unit cells), and the voltage of each block is measured in real time by a voltage detection IC provided for each block.

この際、電圧検出用ICでは、1ブロックの単位セル(例えば、11個)の電圧を測定し、更に、該電圧検出用ICが有するA/D変換器にて、検出したアナログの電圧信号をディジタル信号に変換し、メインマイコンに送信する。その後、メインマイコンにより、電圧の異常が発生しているブロックが存在する場合には、警報を発して電圧以上を車両の乗員に通知したり、或いは電圧の補正処理を行うようにしている(例えば、特許文献1参照)。   At this time, the voltage detection IC measures the voltage of a unit cell (for example, 11 cells) of one block, and further detects the analog voltage signal detected by the A / D converter of the voltage detection IC. Convert to digital signal and send to main microcomputer. After that, when there is a block in which a voltage abnormality has occurred by the main microcomputer, an alarm is issued to notify the vehicle occupant of the voltage or higher, or voltage correction processing is performed (for example, , See Patent Document 1).

特開2005−62028号公報JP 2005-62028 A

しかしながら、従来における電圧測定装置では、A/D変換器に用いるA/D変換用電圧を各単位セルより得られる電圧から生成するので、A/D変換用電圧が変動する場合があり、このような場合には各ブロックで検出された電圧をディジタル化する際に誤差が生じることがある。このため、高精度な電圧検出ができなくなるという問題が発生していた。   However, in the conventional voltage measuring apparatus, since the A / D conversion voltage used for the A / D converter is generated from the voltage obtained from each unit cell, the A / D conversion voltage may fluctuate. In this case, an error may occur when the voltage detected in each block is digitized. For this reason, there has been a problem that high-accuracy voltage detection cannot be performed.

本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、A/D変換用電圧に変動が発生してディジタル化した電圧信号に誤差が生じた場合に、これを検出することが可能な複数組電池の電圧測定装置を提供することにある。   The present invention has been made in order to solve such a conventional problem. The object of the present invention is to generate an error in a digitized voltage signal due to fluctuations in the A / D conversion voltage. In some cases, it is an object to provide a voltage measuring device for a plurality of assembled batteries capable of detecting this.

上記目的を達成するため、本願請求項1に記載の発明は、複数の単位セルを直列に接続して所望の電圧を出力する複数組電池の、出力電圧を測定する電圧測定装置において、前記複数のセルを複数のブロックに分割し、各ブロック毎の電圧を検出するブロック電圧検出手段と、前記各ブロック電圧検出手段に設けられ、所定のA/D変換用電圧を用いてこのブロック電圧検出手段で検出されるアナログ電圧信号をディジタル化するA/D変換手段と、前記各ブロック電圧検出手段に設けられ、各ブロックで同一となるサンプル電圧を生成するサンプル電圧生成手段と、前記各ブロック電圧検出手段のA/D変換手段により前記サンプル電圧をデジタル化して得られたディジタルサンプル電圧に基づいて、前記各ブロック電圧検出手段で検出される電圧の誤差比率を求める電圧変動検出手段と、を有することを特徴とする。   In order to achieve the above object, the invention described in claim 1 of the present application is the voltage measuring apparatus for measuring an output voltage of a plurality of assembled batteries that output a desired voltage by connecting a plurality of unit cells in series. The cell voltage is divided into a plurality of blocks, and a block voltage detecting means for detecting a voltage for each block, and the block voltage detecting means provided in each block voltage detecting means and using a predetermined A / D conversion voltage A / D conversion means for digitizing the analog voltage signal detected in step 1, sample voltage generation means for generating the same sample voltage in each block provided in each block voltage detection means, and each block voltage detection Based on the digital sample voltage obtained by digitizing the sample voltage by the A / D conversion means, the block voltage detection means detects the block voltage. Voltage fluctuation detecting means for obtaining an error ratio of the voltage that is characterized by having a.

請求項2に記載の発明は、前記電圧変動検出手段は、前記各ブロック電圧検出手段で得られた前記ディジタルサンプル電圧の平均値を演算し、この平均値を基準値として、前記誤差比率を検出することを特徴とする。   According to a second aspect of the present invention, the voltage fluctuation detecting means calculates an average value of the digital sample voltages obtained by the block voltage detecting means, and detects the error ratio using the average value as a reference value. It is characterized by doing.

請求項3に記載の発明は、前記サンプル電圧生成手段は、シリコン半導体のPN接合部に生じる電圧を用いて前記サンプル電圧を生成することを特徴とする。   The invention according to claim 3 is characterized in that the sample voltage generating means generates the sample voltage using a voltage generated at a PN junction of a silicon semiconductor.

請求項4に記載の発明は、前記サンプル電圧生成手段は、ダイオードと抵抗の直列接続回路を備え、この直列接続回路に電流を流したときに、前記ダイオードの両端に生じる電圧を前記サンプル電圧とすることを特徴とする。   According to a fourth aspect of the present invention, the sample voltage generating means includes a series connection circuit of a diode and a resistor, and when a current is passed through the series connection circuit, a voltage generated at both ends of the diode is set as the sample voltage. It is characterized by doing.

請求項5に記載の発明は、前記直列接続回路は、直列接続された複数のダイオードと抵抗を備え、前記直列接続された複数のダイオードの両端に生じる電圧を前記サンプル電圧とすることを特徴とする。   The invention according to claim 5 is characterized in that the series connection circuit includes a plurality of diodes and resistors connected in series, and a voltage generated at both ends of the plurality of diodes connected in series is used as the sample voltage. To do.

請求項1の発明では、各ブロック電圧検出手段に設けられたサンプル電圧生成手段にてサンプル電圧を生成し、このサンプル電圧をA/D変換してディジタルサンプル電圧を生成し、このデジタルサンプル電圧に基づいて、各ブロック電圧検出手段で検出される電圧の誤差比率を求める。従って、各ブロック電圧検出手段で検出される電圧に含まれる誤差を認識することができ、ひいては、各ブロックの単位セル電圧を高精度に測定することができる。   In the first aspect of the present invention, the sample voltage is generated by the sample voltage generation means provided in each block voltage detection means, and the sample voltage is A / D converted to generate a digital sample voltage. Based on this, the error ratio of the voltage detected by each block voltage detecting means is obtained. Therefore, it is possible to recognize an error included in the voltage detected by each block voltage detecting means, and to measure the unit cell voltage of each block with high accuracy.

請求項2の発明では、各ブロック電圧検出手段で生成されたディジタルサンプル電圧の平均値を基準値とし、この基準値に基づいて誤差比率を求めるので、誤差比率を高精度に求めることができ、各ブロックの単位セル電圧を高精度に測定することができる。   In the invention of claim 2, since the average value of the digital sample voltages generated by each block voltage detecting means is used as a reference value, and the error ratio is obtained based on this reference value, the error ratio can be obtained with high accuracy, The unit cell voltage of each block can be measured with high accuracy.

請求項3の発明では、シリコン半導体のPN接合部に生じる電圧をサンプル電圧として用いており、PN接合部は周囲温度が同一であれば、ほぼ同一の電圧が発生するので、各ブロック電圧検出手段で用いるサンプル電圧をほぼ同一にすることができ、誤差比率をより高精度に求めることができる。その結果、各ブロックの単位セル電圧を高精度に測定することができる。   According to the third aspect of the present invention, the voltage generated at the PN junction of the silicon semiconductor is used as the sample voltage. Since the PN junction generates almost the same voltage if the ambient temperature is the same, each block voltage detection means Can be made substantially the same, and the error ratio can be obtained with higher accuracy. As a result, the unit cell voltage of each block can be measured with high accuracy.

請求項4の発明では、ダイオードのアノード、カソード間に生じる電圧をサンプル電圧として用いており、ダイオードは周囲温度が同一であれば、アノード、カソード間にほぼ同一の電圧が発生するので、各ブロック電圧検出手段で用いるサンプル電圧をほぼ同一にすることができ、誤差比率をより高精度に求めることができる。その結果、各ブロックの単位セル電圧を高精度に測定することができる。   In the invention of claim 4, the voltage generated between the anode and the cathode of the diode is used as the sample voltage. If the ambient temperature is the same for the diode, almost the same voltage is generated between the anode and the cathode. The sample voltages used in the voltage detection means can be made substantially the same, and the error ratio can be obtained with higher accuracy. As a result, the unit cell voltage of each block can be measured with high accuracy.

請求項5の発明では、複数のダイオードを直列に接続し、この直列接続の両端に生じる電圧をサンプル電圧とするので、より高い電圧をサンプル電圧とすることができ、A/D変換して得られるディジタルサンプル信号をより高い値にすることができるので、誤差比率をより高精度に求めることができる。   In the invention of claim 5, since a plurality of diodes are connected in series and the voltage generated at both ends of the series connection is used as the sample voltage, a higher voltage can be used as the sample voltage and obtained by A / D conversion. Since the obtained digital sample signal can be set to a higher value, the error ratio can be obtained with higher accuracy.

本発明の一実施形態に係る複数組電池の電圧測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the voltage measuring apparatus of the multiple assembled battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る複数組電池の電圧測定装置の、各電圧検出用ICに設けられるサンプル電圧生成回路を示す回路図である。It is a circuit diagram which shows the sample voltage generation circuit provided in each IC for voltage detection of the voltage measuring apparatus of the multiple assembled battery which concerns on one Embodiment of this invention. 本発明の変形例に係る複数組電池の電圧測定装置の、各電圧検出用ICに設けられるサンプル電圧生成回路を示す回路図である。It is a circuit diagram which shows the sample voltage generation circuit provided in each IC for voltage detection of the voltage measuring apparatus of the multiple assembled battery which concerns on the modification of this invention. 本発明の一実施形態に係る複数組電池の電圧測定装置の、誤差比率の算出処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the calculation process of an error ratio of the voltage measurement apparatus of the multiple assembled battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る複数組電池の電圧測定装置の、電圧補正制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the voltage correction control of the voltage measurement apparatus of the multiple assembled battery which concerns on one Embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る電圧測定装置10、及び複数の単位セルBT1〜BT55からなる二次電池13(複数組電池)を示すブロック図である。図1に示すように、本実施形態に係る電圧測定装置10は、絶縁インターフェース32を介して、高電圧側装置11と低電圧側装置12に分離されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a voltage measuring apparatus 10 according to an embodiment of the present invention and a secondary battery 13 (a plurality of assembled batteries) including a plurality of unit cells BT1 to BT55. As shown in FIG. 1, the voltage measurement device 10 according to the present embodiment is separated into a high voltage side device 11 and a low voltage side device 12 via an insulation interface 32.

高電圧側装置11は、5個の電圧検出用IC、即ち、第1電圧検出用IC(21)〜第5電圧検出用IC(25)を備えている。そして、第1電圧検出用IC(21)は、第1ブロック61として区切られた11個の単位セルBT1〜BT11の電圧を測定する。また、第2電圧検出用IC(22)は、第2ブロック62として区切られた11個の単位セルBT12〜BT22の電圧を測定し、同様に、第3電圧検出用IC(23)は、第3ブロック63として区切られた11個の単位セルBT23〜BT33の電圧を測定し、第4電圧検出用IC(24)は、第4ブロック64として区切られた11個の単位セルBT34〜BT44の電圧を測定し、第5電圧検出用IC(25)は、第5ブロック65として区切られた11個の単位セルBT45〜BT55の電圧を測定する。   The high voltage side device 11 includes five voltage detection ICs, that is, a first voltage detection IC (21) to a fifth voltage detection IC (25). Then, the first voltage detection IC (21) measures the voltages of the 11 unit cells BT1 to BT11 partitioned as the first block 61. The second voltage detection IC (22) measures the voltages of the eleven unit cells BT12 to BT22 divided as the second block 62. Similarly, the third voltage detection IC (23) The voltage of the 11 unit cells BT23 to BT33 divided as the three blocks 63 is measured, and the fourth voltage detection IC (24) measures the voltage of the 11 unit cells BT34 to BT44 divided as the fourth block 64. The fifth voltage detection IC (25) measures the voltages of the 11 unit cells BT45 to BT55 partitioned as the fifth block 65.

また、各電圧検出用IC(21)〜(25)はそれぞれ、A/D変換器(A/D変換手段)を備えており、A/D変換用電源71〜75より出力されるA/D変換用電圧を用いて、各ブロック(第1ブロック〜第5ブロック)毎に測定された電圧信号(11個の単位セルを直列接続した電圧信号)をディジタルの電圧信号に変換する。   Each of the voltage detection ICs (21) to (25) includes an A / D converter (A / D conversion means), and the A / D output from the A / D conversion power supplies 71 to 75 is provided. Using the conversion voltage, a voltage signal (a voltage signal in which 11 unit cells are connected in series) measured for each block (first block to fifth block) is converted into a digital voltage signal.

更に、第2〜第5電圧検出用IC(22)〜(25)は、通信線31を介して、第1電圧検出用IC(21)と接続され、該電圧検出用IC(21)は、絶縁インターフェース32を介して、低電圧側装置12側に設けられているメインマイコン(電圧変動検出手段)33に接続されている。   Furthermore, the second to fifth voltage detection ICs (22) to (25) are connected to the first voltage detection IC (21) via the communication line 31, and the voltage detection IC (21) It is connected to a main microcomputer (voltage fluctuation detecting means) 33 provided on the low voltage side device 12 side via an insulating interface 32.

そして、本実施形態に係る電圧測定装置10では、各電圧検出用IC(21)〜(25)にてサンプル電圧を生成し、このサンプル電圧をA/D変換によりディジタル化し、各電圧検出用IC(21)〜(25)でディジタル化されたサンプル信号を比較することにより、各電圧検出用IC(21)〜(25)で検出される電圧の誤差比率を求める。更に、この誤差比率に基づいて、各電圧検出用IC(21)〜(25)より送信されたディジタルの電圧信号を補正する。詳細については、後述する。   In the voltage measuring apparatus 10 according to the present embodiment, each voltage detection IC (21) to (25) generates a sample voltage, digitizes the sample voltage by A / D conversion, and each voltage detection IC. By comparing the sample signals digitized in (21) to (25), the error ratio of the voltage detected by each of the voltage detection ICs (21) to (25) is obtained. Further, based on this error ratio, the digital voltage signal transmitted from each of the voltage detection ICs (21) to (25) is corrected. Details will be described later.

図2は、各電圧検出用IC(21)〜(25)の内部に設けられるサンプル電圧生成回路41を示す説明図である。図2に示すように、サンプル電圧生成回路41は、抵抗Rref1とダイオードD1の直列接続回路を備え、抵抗Rref1の一端は電圧Vccの供給点に接続され、ダイオードD1の一端はグランドに接地されている。また、抵抗Rref1とダイオードD1の接続点は、バッファアンプ42に接続されている。従って、バッファアンプ42の出力端子に発生する電圧は、ダイオードD1の両端に生じる電圧を安定化した電圧となり、この電圧をサンプル電圧Vf1とする。   FIG. 2 is an explanatory diagram showing a sample voltage generation circuit 41 provided in each of the voltage detection ICs (21) to (25). As shown in FIG. 2, the sample voltage generation circuit 41 includes a series connection circuit of a resistor Rref1 and a diode D1, one end of the resistor Rref1 is connected to a supply point of the voltage Vcc, and one end of the diode D1 is grounded. Yes. The connection point between the resistor Rref1 and the diode D1 is connected to the buffer amplifier 42. Accordingly, the voltage generated at the output terminal of the buffer amplifier 42 is a voltage obtained by stabilizing the voltage generated at both ends of the diode D1, and this voltage is set as the sample voltage Vf1.

いま、ダイオードD1がシリコン半導体で構成され、抵抗Rref1に一定値以上の電流が流れた場合を想定すると、周囲温度が20℃のときサンプル電圧Vf1は約650mVとなる。また、シリコン半導体は、−2mV/℃の温度特性を有するので、周囲温度が1℃上昇すると、サンプル電圧Vf1は2mV減少する。   Assuming that the diode D1 is made of a silicon semiconductor and a current of a certain value or more flows through the resistor Rref1, the sample voltage Vf1 is about 650 mV when the ambient temperature is 20 ° C. Further, since the silicon semiconductor has a temperature characteristic of −2 mV / ° C., when the ambient temperature rises by 1 ° C., the sample voltage Vf1 decreases by 2 mV.

即ち、電圧測定装置10の周囲温度が一定であるとすれば、各電圧検出用IC(21)〜(25)に設けられるサンプル電圧生成回路41にて生成されるサンプル電圧Vf1はほぼ同一の電圧となる。   That is, if the ambient temperature of the voltage measuring device 10 is constant, the sample voltage Vf1 generated by the sample voltage generation circuit 41 provided in each of the voltage detection ICs (21) to (25) is almost the same voltage. It becomes.

次に、本実施形態に係る電圧測定装置10の動作を、図4に示すフローチャートを参照して説明する。   Next, the operation of the voltage measuring apparatus 10 according to the present embodiment will be described with reference to the flowchart shown in FIG.

まず、ステップS11において、メインマイコン33は、各電圧検出用IC(21)〜(25)にサンプル電圧Vf1の検出を指示する信号を送信する。ここで、各電圧検出用IC(21)〜(25)のサンプル電圧生成回路41で生成される温度補正用電圧Vf1を区別するために、サフィックス「-n」を付する。例えば、第1電圧検出用IC(21)のサンプル電圧生成回路41で生成されるサンプル電圧は「Vf1-1」と示し、第2電圧検出用IC(22)のサンプル電圧生成回路41で生成されるサンプル電圧は「Vf1-2」と示し、以下、同様に「Vf1-3」、「Vf1-4」、「Vf1-5」と示す。   First, in step S11, the main microcomputer 33 transmits a signal instructing detection of the sample voltage Vf1 to each of the voltage detection ICs (21) to (25). Here, in order to distinguish the temperature correction voltage Vf1 generated by the sample voltage generation circuit 41 of each of the voltage detection ICs (21) to (25), a suffix “-n” is added. For example, the sample voltage generated by the sample voltage generation circuit 41 of the first voltage detection IC (21) is indicated as “Vf1-1” and is generated by the sample voltage generation circuit 41 of the second voltage detection IC (22). The sample voltage is indicated as “Vf1-2”, and hereinafter also indicated as “Vf1-3”, “Vf1-4”, and “Vf1-5”.

ステップS12において、各電圧検出用IC(21)〜(25)は、サンプル電圧生成回路41で生成されたサンプル電圧Vf1-1〜Vf1-5をA/D変換し、ディジタル化したサンプル電圧Vf1-1〜Vf1-5(ディジタルサンプル電圧)を生成する。   In step S12, each of the voltage detection ICs (21) to (25) A / D converts the sample voltages Vf1-1 to Vf1-5 generated by the sample voltage generation circuit 41 and digitizes the sample voltage Vf1−. 1 to Vf1-5 (digital sample voltage) are generated.

ステップS13において、メインマイコン33は、各電圧検出用IC(21)〜(25)に、ディジタル化されたサンプル電圧Vf1-1〜Vf1-nの送信を要求する。   In step S13, the main microcomputer 33 requests the voltage detection ICs (21) to (25) to transmit the digitized sample voltages Vf1-1 to Vf1-n.

ステップS14において、各電圧検出用IC(21)〜(25)は、ディジタル化したサンプル電圧Vf1-1〜Vf1-nを、絶縁インターフェース32を介してメインマイコン33に送信する。   In step S14, each of the voltage detection ICs (21) to (25) transmits the digitized sample voltages Vf1-1 to Vf1-n to the main microcomputer 33 via the insulation interface 32.

ステップS15において、メインマイコン33は、各電圧検出用IC(21)〜(25)より送信されたサンプル電圧Vf1-1〜Vf1-nの平均値を算出し、この平均値を基準値Vftとして設定する。   In step S15, the main microcomputer 33 calculates an average value of the sample voltages Vf1-1 to Vf1-n transmitted from the voltage detection ICs (21) to (25), and sets the average value as the reference value Vft. To do.

ステップS16において、メインマイコン33は、各電圧検出用IC(21)〜(25)より送信されたサンプル電圧Vf1-1〜Vf1-5と、ステップS15の処理で求められた基準値Vftに基づき、下記(1)式により誤差比率Verrを求める。   In step S16, the main microcomputer 33, based on the sample voltages Vf1-1 to Vf1-5 transmitted from the voltage detection ICs (21) to (25) and the reference value Vft obtained in the process of step S15, The error ratio Verr is obtained by the following equation (1).

Verr=(Vf1-n−Vft)/Vft (n=1〜5) …(1)
こうして、各電圧検出用IC(21)〜(25)毎の誤差比率Verrが求められるのである。
Verr = (Vf1-n-Vft) / Vft (n = 1-5) (1)
In this way, the error ratio Verr for each of the voltage detection ICs (21) to (25) is obtained.

次に、図5に示すフローチャートを参照して、各電圧検出用IC(21)〜(25)で検出される各ブロック61〜65の電圧を補正する電圧補正処理の手順について説明する。   Next, a procedure of voltage correction processing for correcting the voltages of the blocks 61 to 65 detected by the voltage detection ICs (21) to (25) will be described with reference to the flowchart shown in FIG.

ステップS21において、メインマイコン33は、各電圧検出用IC(21)〜(25)に、電圧検出を指示する信号を送信する。この処理は、例えば、160msec毎に行われる。   In step S21, the main microcomputer 33 transmits a signal instructing voltage detection to each of the voltage detection ICs (21) to (25). This process is performed every 160 msec, for example.

ステップS22において、各電圧検出用IC(21)〜(25)は、各ブロック61〜65に設けられる単位セルの電圧を測定する。その結果、第1ブロック61の単位セルBT1〜BT11の直列接続電圧が求められ、同様に、第2ブロック62、第3ブロック63、第4ブロック64、第5ブロック65の11個の単位セルの直列接続の電圧が求められる。   In step S22, each of the voltage detection ICs (21) to (25) measures a voltage of a unit cell provided in each of the blocks 61 to 65. As a result, the series connection voltage of the unit cells BT1 to BT11 of the first block 61 is obtained. Similarly, the 11 unit cells of the second block 62, the third block 63, the fourth block 64, and the fifth block 65 are obtained. A voltage in series connection is required.

ステップS23において、各電圧検出用IC(21)〜(25)は、ステップS22の処理で測定された各ブロック61〜65の電圧をA/D変換処理して、ディジタル信号に変換する。   In step S23, the voltage detection ICs (21) to (25) perform A / D conversion processing on the voltages of the blocks 61 to 65 measured in the processing of step S22 to convert them into digital signals.

ステップS24において、各電圧検出用IC(21)〜(25)は、ディジタル化した電圧信号を通信線31、及び絶縁インターフェース32を介してメインマイコン33に送信する。   In step S24, each of the voltage detection ICs (21) to (25) transmits a digitized voltage signal to the main microcomputer 33 via the communication line 31 and the insulation interface 32.

ステップS25において、メインマイコン33は、図4に示した誤差比率の算出処理で取得した誤差比率Verrに基づき、各電圧検出用IC(21)〜(25)より送信された電圧信号を、次の(2)式を用いて補正する。   In step S25, the main microcomputer 33 outputs the voltage signal transmitted from each of the voltage detection ICs (21) to (25) based on the error ratio Verr acquired by the error ratio calculation process shown in FIG. (2) Correction is performed using equation (2).

Vn*=Vn+Vn×Verr …(2)
但し、Vnは、第n電圧検出用ICより出力された電圧信号、Vn*は第n電圧検出用ICより出力された電圧信号を補正した電圧である。
Vn * = Vn + Vn × Verr (2)
However, Vn is a voltage signal output from the nth voltage detection IC, and Vn * is a voltage obtained by correcting the voltage signal output from the nth voltage detection IC.

こうして、各電圧検出用IC(21)〜(25)で用いるA/D変換用電源71〜75の出力電圧にばらつきが発生する場合でも、各ブロック61〜65の電圧を高精度に求めることができるのである。   Thus, even when variations occur in the output voltages of the A / D conversion power supplies 71 to 75 used in the voltage detection ICs (21) to (25), the voltages of the blocks 61 to 65 can be obtained with high accuracy. It can be done.

このようにして、本実施形態に係る電圧測定装置10では、各電圧検出用IC(21)〜(25)に設けられたサンプル電圧生成回路41にてサンプル電圧Vf1(Vf1-1〜Vf1-n)を生成し、このサンプル電圧をA/D変換して得られるディジタルの電圧信号の平均を算出して基準値Vftを求める。更に、この基準値Vftと各サンプル電圧Vf1とに基づいて、誤差比率Verrを算出する。そして、この誤差比率Verrを用いて、実際に検出した各ブロック61〜65の電圧を補正している。   Thus, in the voltage measuring apparatus 10 according to the present embodiment, the sample voltage generation circuit 41 provided in each of the voltage detection ICs (21) to (25) uses the sample voltage Vf1 (Vf1-1 to Vf1-n). ) And an average of digital voltage signals obtained by A / D converting the sample voltage is calculated to obtain a reference value Vft. Further, an error ratio Verr is calculated based on the reference value Vft and each sample voltage Vf1. And the voltage of each block 61-65 actually detected is correct | amended using this error ratio Verr.

従って、A/D変換用電源71〜75より出力されるA/D変換用電圧にばらつきが存在し、A/D変換後の電圧信号に誤差が存在する場合でも、これを補正して高精度に各ブロック61〜65の電圧を測定することができる。   Therefore, even when there is a variation in the A / D conversion voltage output from the A / D conversion power supplies 71 to 75 and there is an error in the voltage signal after A / D conversion, this is corrected to achieve high accuracy. The voltage of each block 61 to 65 can be measured.

また、図2に示したように、シリコン半導体で構成されるダイオードD1に電流を流し、このダイオードD1の両端に生じる電圧をサンプル電圧Vf1としているので、各電圧検出用IC(21)〜(25)のサンプル電圧生成回路41で生成されるサンプル電圧Vf1はほぼ一定の電圧(例えば、20℃で650mV)となり、誤差比率を高精度に求めることができる。   Further, as shown in FIG. 2, since a current is passed through the diode D1 formed of a silicon semiconductor and the voltage generated at both ends of the diode D1 is set as the sample voltage Vf1, each voltage detection IC (21) to (25 The sample voltage Vf1 generated by the sample voltage generation circuit 41 is substantially constant voltage (for example, 650 mV at 20 ° C.), and the error ratio can be obtained with high accuracy.

更に、高電圧側装置11でディジタル化されたサンプル電圧Vf1、及び各ブロック61〜65の電圧は、絶縁インターフェース32を介して低電圧側装置12に設けられるメインマイコン33に送信されて、誤差比率が算出され、更に測定電圧が補正されるので、これらの演算処理を低電圧側装置12で実行することができ、演算処理を効率良く行うことができる。   Further, the sample voltage Vf1 digitized by the high-voltage side device 11 and the voltages of the blocks 61 to 65 are transmitted to the main microcomputer 33 provided in the low-voltage side device 12 via the insulation interface 32, and an error ratio is obtained. Is calculated and the measured voltage is further corrected. Therefore, these calculation processes can be executed by the low-voltage side device 12, and the calculation process can be performed efficiently.

次に、上記した実施形態の変形例について説明する。図3は、変形例に係るサンプル電圧生成回路41aの構成を示す回路図である。同図に示すように、このサンプル電圧生成回路41aは、前述した図2に示したサンプル電圧生成回路41と対比して、ダイオードが複数個直列接続されている点で相違する。即ち、抵抗Rref1とグランドとの間にn個のダイオードD1〜Dnが設けられ、ダイオードDnと抵抗Rref1との接続点がバッファアンプ42に接続され、ダイオードD1の一端がグランドに接地されている。   Next, a modification of the above embodiment will be described. FIG. 3 is a circuit diagram showing a configuration of the sample voltage generation circuit 41a according to the modification. As shown in the figure, the sample voltage generation circuit 41a is different from the sample voltage generation circuit 41 shown in FIG. 2 described above in that a plurality of diodes are connected in series. That is, n diodes D1 to Dn are provided between the resistor Rref1 and the ground, the connection point between the diode Dn and the resistor Rref1 is connected to the buffer amplifier 42, and one end of the diode D1 is grounded.

そして、このような構成によれば、サンプル電圧が前述した電圧Vfnのn倍(例えば、n=5の場合には、20℃で3.25V)となり、より大きい電圧値を用いて誤差比率Verrを求めることができるので、誤差比率Verrをより高精度に求めることができ、ひいては、各ブロック61〜65の電圧の測定精度を向上させることができる。   According to such a configuration, the sample voltage becomes n times the voltage Vfn described above (for example, 3.25 V at 20 ° C. when n = 5), and the error ratio Verr using a larger voltage value. Therefore, the error ratio Verr can be obtained with higher accuracy, and as a result, the voltage measurement accuracy of each of the blocks 61 to 65 can be improved.

以上、本発明の複数組電池の電圧測定装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。   As described above, the voltage measuring device for a plurality of assembled batteries according to the present invention has been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part is an arbitrary configuration having the same function. Can be replaced with something.

例えば、上述した実施形態では、サンプル電圧生成回路41、41aにシリコン半導体で構成されたダイオードを用いる例について説明したが、本発明は、両端に生じる電圧が安定化していれば、シリコン半導体以外のダイオードを用いることも可能である。   For example, in the above-described embodiment, the example in which the diode configured by the silicon semiconductor is used for the sample voltage generation circuits 41 and 41a has been described. However, the present invention is not limited to the silicon semiconductor as long as the voltage generated at both ends is stabilized. It is also possible to use a diode.

また、ダイオードの代わりに、バイポーラトランジスタのベース、エミッタ間を接続しても同様の効果を達成することができる。更に、ツェナーダイオードの逆方向特性を利用して定電圧を発生させ、これをサンプル電圧として使用することも可能である。   Further, the same effect can be achieved by connecting the base and emitter of the bipolar transistor instead of the diode. Furthermore, it is possible to generate a constant voltage using the reverse direction characteristic of the Zener diode and use it as a sample voltage.

更に、上述した実施形態では、求めた誤差比率Verrを用いて、各電圧検出用IC(21)〜(25)で検出された電圧を補正する例を説明したが、求めた誤差比率Verrを車両の運転者に通知したり、或いは、誤差比率Verrが予め設定した閾値よりも大きい場合に警報を出力する構成とすることも可能である。   Further, in the above-described embodiment, the example in which the voltage detected by each of the voltage detection ICs (21) to (25) is corrected using the obtained error ratio Verr has been described. The driver may be notified, or a warning may be output when the error ratio Verr is greater than a preset threshold value.

本発明は、ハイブリッド車両等に搭載される二次電池の電圧測定に利用することができる。   The present invention can be used for voltage measurement of a secondary battery mounted on a hybrid vehicle or the like.

10 電圧測定装置
11 高電圧側装置
12 低電圧側装置
13 二次電池
21〜25 電圧検出用IC(ブロック電圧検出手段)
31 通信線
32 絶縁インターフェース
33 メインマイコン(電圧変動検出手段)
41、41a サンプル電圧生成回路(サンプル電圧生成手段)
42 バッファアンプ
61〜65 第1ブロック〜第5ブロック
71〜75 A/D変換用電源
BT1〜BT55 単位セル
DESCRIPTION OF SYMBOLS 10 Voltage measuring apparatus 11 High voltage side apparatus 12 Low voltage side apparatus 13 Secondary battery 21-25 IC for voltage detection (block voltage detection means)
31 Communication line 32 Insulation interface 33 Main microcomputer (voltage fluctuation detection means)
41, 41a Sample voltage generation circuit (sample voltage generation means)
42 Buffer amplifier 61-65 1st block-5th block 71-75 A / D conversion power supply BT1-BT55 Unit cell

Claims (5)

複数の単位セルを直列に接続して所望の電圧を出力する複数組電池の、出力電圧を測定する電圧測定装置において、
前記複数のセルを複数のブロックに分割し、各ブロック毎の電圧を検出するブロック電圧検出手段と、
前記各ブロック電圧検出手段に設けられ、所定のA/D変換用電圧を用いてこのブロック電圧検出手段で検出されるアナログ電圧信号をディジタル化するA/D変換手段と、
前記各ブロック電圧検出手段に設けられ、各ブロックで同一となるサンプル電圧を生成するサンプル電圧生成手段と、
前記各ブロック電圧検出手段のA/D変換手段により前記サンプル電圧をデジタル化して得られたディジタルサンプル電圧に基づいて、前記各ブロック電圧検出手段で検出される電圧の誤差比率を求める電圧変動検出手段と、
を有することを特徴とする複数組電池の電圧測定装置。
In a voltage measuring device for measuring an output voltage of a plurality of assembled batteries that output a desired voltage by connecting a plurality of unit cells in series,
A block voltage detecting means for dividing the plurality of cells into a plurality of blocks and detecting a voltage for each block;
A / D conversion means provided in each block voltage detection means for digitizing an analog voltage signal detected by the block voltage detection means using a predetermined A / D conversion voltage;
Sample voltage generation means provided in each block voltage detection means for generating the same sample voltage in each block;
Voltage fluctuation detection means for obtaining an error ratio of the voltage detected by each block voltage detection means based on the digital sample voltage obtained by digitizing the sample voltage by the A / D conversion means of each block voltage detection means When,
A voltage measuring apparatus for a plurality of assembled batteries, comprising:
前記電圧変動検出手段は、前記各ブロック電圧検出手段で得られた前記ディジタルサンプル電圧の平均値を演算し、この平均値を基準値として、前記誤差比率を検出することを特徴とする請求項1に記載の複数組電池の電圧測定装置。   2. The voltage fluctuation detecting unit calculates an average value of the digital sample voltages obtained by the block voltage detecting units, and detects the error ratio using the average value as a reference value. A voltage measuring device for a plurality of battery packs according to 1. 前記サンプル電圧生成手段は、シリコン半導体のPN接合部に生じる電圧を用いて前記サンプル電圧を生成することを特徴とする請求項1または請求項2のいずれかに記載の複数組電池の電圧測定装置。   3. The voltage measuring device for a plurality of assembled batteries according to claim 1, wherein the sample voltage generating unit generates the sample voltage using a voltage generated at a PN junction of a silicon semiconductor. . 前記サンプル電圧生成手段は、ダイオードと抵抗の直列接続回路を備え、この直列接続回路に電流を流したときに、前記ダイオードの両端に生じる電圧を前記サンプル電圧とすることを特徴とする請求項1または請求項2のいずれかに記載の複数組電池の電圧測定装置。   2. The sample voltage generation means includes a series connection circuit of a diode and a resistor, and a voltage generated at both ends of the diode when a current is passed through the series connection circuit is used as the sample voltage. Or the voltage measuring apparatus of the multiple assembled battery in any one of Claim 2. 前記直列接続回路は、直列接続された複数のダイオードと抵抗を備え、前記直列接続された複数のダイオードの両端に生じる電圧を前記サンプル電圧とすることを特徴とする請求項4に記載の複数組電池の電圧測定装置。   5. The plurality of sets according to claim 4, wherein the series connection circuit includes a plurality of diodes and resistors connected in series, and a voltage generated at both ends of the plurality of diodes connected in series is used as the sample voltage. Battery voltage measuring device.
JP2009050799A 2009-03-04 2009-03-04 Voltage measurement device for multiple assembled batteries Active JP5303316B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009050799A JP5303316B2 (en) 2009-03-04 2009-03-04 Voltage measurement device for multiple assembled batteries
US12/714,725 US8643376B2 (en) 2009-03-04 2010-03-01 Voltage measuring apparatus of assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050799A JP5303316B2 (en) 2009-03-04 2009-03-04 Voltage measurement device for multiple assembled batteries

Publications (2)

Publication Number Publication Date
JP2010203958A true JP2010203958A (en) 2010-09-16
JP5303316B2 JP5303316B2 (en) 2013-10-02

Family

ID=42965581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050799A Active JP5303316B2 (en) 2009-03-04 2009-03-04 Voltage measurement device for multiple assembled batteries

Country Status (1)

Country Link
JP (1) JP5303316B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050100A1 (en) * 2010-10-14 2012-04-19 矢崎総業株式会社 Voltage measurement device for plurality of assembled batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290236A (en) * 2001-03-23 2002-10-04 Ricoh Co Ltd Analog/digital conversion circuit
JP2007192706A (en) * 2006-01-20 2007-08-02 Yazaki Corp Voltage detecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290236A (en) * 2001-03-23 2002-10-04 Ricoh Co Ltd Analog/digital conversion circuit
JP2007192706A (en) * 2006-01-20 2007-08-02 Yazaki Corp Voltage detecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050100A1 (en) * 2010-10-14 2012-04-19 矢崎総業株式会社 Voltage measurement device for plurality of assembled batteries
JP2012083283A (en) * 2010-10-14 2012-04-26 Yazaki Corp Voltage measuring device of multiple battery pack
US9128163B2 (en) 2010-10-14 2015-09-08 Yazaki Corporation Voltage measuring apparatus for plural battery

Also Published As

Publication number Publication date
JP5303316B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US9128163B2 (en) Voltage measuring apparatus for plural battery
JP4620571B2 (en) Battery voltage monitoring device
US20190018070A1 (en) Secondary battery degradation determination device
US11320481B2 (en) High voltage interlock circuit and detection method
US8283894B2 (en) Voltage measuring apparatus for assembled battery
US20120153961A1 (en) Apparatus for monitoring operation state of battery pack composed of plurality of cells mutually connected in series
KR101146404B1 (en) Battery management system and battery pack comprising the same
US8305084B2 (en) Voltage measuring apparatus for assembled battery
WO2012005186A1 (en) Voltage measuring circuit and method
JP2011069782A (en) Voltage monitoring circuit, and battery power supply device
WO2011135631A1 (en) Full-charge capacity correction circuit, charging system, battery pack, and full-charge capacity correction method
US8643376B2 (en) Voltage measuring apparatus of assembled battery
JP2009109271A (en) Method of detecting temperature in power supply device
US20130260198A1 (en) Battery System
JP2020122688A (en) Current detection system
JP2019071232A (en) Battery control device, abnormality detection method, and program
JP5190397B2 (en) Voltage measurement device for multiple assembled batteries
JP5303316B2 (en) Voltage measurement device for multiple assembled batteries
JP4340514B2 (en) Battery voltage measuring device and battery pack
US11835585B2 (en) Battery current measuring device and method
JP2012208055A (en) Battery temperature detecting device
US20130057289A1 (en) Voltage measuring apparatus for battery assembly
KR20080054901A (en) Battery voltage measuring circuit
US11002797B2 (en) Fault diagnosis circuit for battery management system
WO2023171420A1 (en) Battery monitoring device and battery monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5303316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250