JP2010203781A - Quality measuring instrument - Google Patents

Quality measuring instrument Download PDF

Info

Publication number
JP2010203781A
JP2010203781A JP2009046415A JP2009046415A JP2010203781A JP 2010203781 A JP2010203781 A JP 2010203781A JP 2009046415 A JP2009046415 A JP 2009046415A JP 2009046415 A JP2009046415 A JP 2009046415A JP 2010203781 A JP2010203781 A JP 2010203781A
Authority
JP
Japan
Prior art keywords
light
optical fiber
quality
lens
fiber cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009046415A
Other languages
Japanese (ja)
Other versions
JP5391734B2 (en
Inventor
Masahiro Inoue
雅弘 井上
Kazuaki Shigefuji
和明 重藤
Takashi Otoi
崇史 乙井
Tatsuji Oteyama
達治 大手山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAIKA GIJUTSU KENKYUSHO
Original Assignee
SAIKA GIJUTSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAIKA GIJUTSU KENKYUSHO filed Critical SAIKA GIJUTSU KENKYUSHO
Priority to JP2009046415A priority Critical patent/JP5391734B2/en
Publication of JP2010203781A publication Critical patent/JP2010203781A/en
Application granted granted Critical
Publication of JP5391734B2 publication Critical patent/JP5391734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quality measuring instrument for reducing the overlook of local quality abnormality even when there is the local quality abnormality in a measuring object without stopping the continuously fed measuring object and for suppressing the lowering of reliability and an increase in cost. <P>SOLUTION: Fresnel lenses 12 and 12 are formed into a shape long in an up and down direction and short in a feed direction and two of them are held in individual substrates 11 and 11 to be provided in the up and down directions. Strands of two optical fiber cables 14 and 15 on a light receiving side individually connected to the substrates 11 and 11 to transmit the light condensed by the Fresnel lenses 12 and 12 are combined to form one optical fiber cable 16 on a spectral diffraction side and the light condensed by two upper and lower Fresnel lenses 12 and 12 is transmitted through the optical fiber cables 14 and 15 on the light receiving side and the optical fiber cable 16 on the spectral diffraction side to be spectrally diffracted by a single spectrophotometer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コンベアで搬送される測定対象物の品質をオンラインで測定して選別するための品質測定装置に関するものである。   The present invention relates to a quality measuring apparatus for measuring and sorting the quality of a measurement object conveyed on a conveyor online.

測定対象物の内部品質を測定して選別するための品質測定装置として、コンベアで搬送される測定対象物に対して、その搬送幅方向両側に対向するように単一の投光器(投光部)及び受光器(受光部)を配置し、投光器から照射した光の透過光を回折格子で分光し、必要とする波長の分光をラインセンサにより測定し、該測定値を信号処理及び制御装置により演算処理及び波形分析するとともに、内部品質を評価するための演算式を用いて演算処理することにより、前記測定対象物の内部品質をオンラインで測定するものがあり(例えば、特許文献1参照。)、複数の投光器(光源)を一定間隔離間させて縦方向に配置するものもある(例えば、特許文献2参照。)。
また、測定対象物の内部欠陥の検出装置として、光源から得た光を光分配器により分配することにより、測定対象物(検査試料)の少なくとも二以上の測定点に対して測定対象物が正常品のときに各測定点における検出光量が等しくなるだけの光を照射し、かつ、二以上の測定点における実際の光透過量を受光器により測定し、各測定点における光透過量と予め定めた判別閾値とを比較することによって、測定対象物の内部欠陥を検出するものがある(例えば、特許文献3参照。)。
As a quality measuring device for measuring and sorting the internal quality of a measurement object, a single projector (light projecting unit) faces the measurement object conveyed by a conveyor so as to face both sides in the conveyance width direction. And a light receiver (light receiving unit), the transmitted light of the light emitted from the projector is dispersed by a diffraction grating, the spectrum of the required wavelength is measured by a line sensor, and the measured value is calculated by a signal processing and control device There is one that measures the internal quality of the measuring object online by performing processing and waveform analysis and performing arithmetic processing using an arithmetic expression for evaluating the internal quality (see, for example, Patent Document 1). Some projectors (light sources) are arranged in the vertical direction with a predetermined interval therebetween (see, for example, Patent Document 2).
In addition, as a device for detecting internal defects in a measurement object, the measurement object is normal for at least two measurement points of the measurement object (inspection sample) by distributing light obtained from a light source with an optical distributor. Irradiate light with the same amount of light detected at each measurement point, and measure the actual light transmission amount at two or more measurement points with a light receiver to determine the light transmission amount at each measurement point in advance. In some cases, an internal defect of a measurement object is detected by comparing the determined threshold value (see, for example, Patent Document 3).

特許第3056037号公報Japanese Patent No. 3056037 特開2004−20493号公報JP 2004-20493 A 特許第3758250号公報Japanese Patent No. 3758250

特許文献1のような、搬送される測定対象物に対して、その搬送幅方向両側に対向するように単一の投光器及び受光器を配置する構成では、受光器の集光レンズとして円形レンズを使用していることから、前記集光レンズの外径を大きくすると測定対象物の前後での迷光が多くなって品質測定精度が低下し、前記集光レンズの外径を小さくすると、測定対象物を搬送しながら品質測定を行うことから搬送方向には測定対象物に対して広範囲の受光を行っているが、高さ方向には測定対象物に対して広範囲の受光を行っていないため、測定対象物の内部に局所的な品質異常がある場合に、この品質異常が存在する場所によっては該品質異常を検出することができない場合がある。
また、特許文献2のような複数の投光器(光源)を設ける構成では、光源自体が1個あたり直径30mm〜50mm程度の大きさがあることから、これを複数並設すると測定対象物の大きさに対して広過ぎる範囲からの投光となる場合が多く、よって、測定対象物表面及び筐体内面からの反射により迷光を多く受ける可能性が高くなるため品質測定精度が低下する場合がある。
In the configuration in which a single projector and a light receiver are arranged so as to face both sides in the transport width direction of a measurement object to be transported as in Patent Document 1, a circular lens is used as a condenser lens of the light receiver. If the outer diameter of the condensing lens is increased, stray light before and after the object to be measured is increased and quality measurement accuracy is lowered.If the outer diameter of the condensing lens is decreased, the object to be measured is reduced. Since the quality measurement is performed while transporting the sensor, a wide range of light is received with respect to the measurement target in the transport direction. However, the measurement is not performed with respect to the measurement target in the height direction. When there is a local quality abnormality inside the object, the quality abnormality may not be detected depending on the location where the quality abnormality exists.
Moreover, in the structure which provides several projectors (light source) like patent document 2, since the light source itself has a magnitude | size of about 30 mm-50 mm in diameter per one, when this is arranged in parallel, the magnitude | size of a measurement object In many cases, the light is projected from a range that is too wide, and therefore, there is a high possibility of receiving stray light due to reflection from the surface of the object to be measured and the inner surface of the housing.

さらに、特許文献3のような複数の投光及び受光を行う構成では、頭部から尾部に向かう中心線に沿って内部褐変が広がる大根のように、検出する測定対象物の内部欠陥が生じる位置が明確なものに対しては有効であるが、測定対象物の内部欠陥が局所的であり、かつ、その位置が変動する測定対象物に対しては、内部欠陥を検出できない場合がある。
その上、光透過量(光電流量)の測定を行う際には、測定対象物の外形に合わせて形成され、受光器の後方側から覆い被せるようにして取り付けられた遮光器を大根表面に突き当てる必要があることから、チェーンコンベア等による搬送機構を備えてはいるが、測定位置では搬送機構を停止させて測定対象物を位置決めする必要があるため、定速度でコンベア上を連続して搬送されてくる測定対象物の内部欠陥を検出することはできない。
その上さらに、受光のための光センサを複数個設けていること並びに経時変化等による性能劣化の監視及び保護機能を複数個の光センサにそれぞれ備える必要があることから、信頼性が低下しやすいとともにコストが増大する。
Furthermore, in the configuration that performs a plurality of light projections and light receptions as in Patent Document 3, a position where an internal defect of a measurement object to be detected occurs, such as a radish in which internal browning spreads along a center line from the head to the tail. However, the internal defect may not be detected for a measurement object in which the internal defect of the measurement object is local and its position varies.
In addition, when measuring the amount of light transmission (photoelectric flow rate), a light shield that is formed in accordance with the outer shape of the object to be measured and is attached so as to cover from the rear side of the light receiver is pushed onto the surface of the radish. Although it has a transport mechanism using a chain conveyor, etc., it is necessary to stop the transport mechanism at the measurement position and position the object to be measured, so it can be transported continuously on the conveyor at a constant speed. It is not possible to detect internal defects in the measurement object that is being received.
In addition, since it is necessary to provide a plurality of optical sensors for receiving light and to provide a plurality of optical sensors with monitoring and protection functions for performance deterioration due to changes over time, the reliability is likely to decrease. At the same time, the cost increases.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、連続して搬送されてくる測定対象物を停止させずに、該測定対象物の内部に局所的な品質異常がある場合においても該品質異常の見逃しを少なくすることができるとともに、信頼性の低下及びコストが増大を抑制することができる品質測定装置を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to solve the problem where there is a local quality abnormality inside the measurement object without stopping the measurement object continuously conveyed. The present invention also provides a quality measuring device that can reduce the oversight of the quality abnormality and can suppress a decrease in reliability and an increase in cost.

本発明に係る品質測定装置は、前記課題解決のために、測定対象物を搬送する搬送部と、該搬送部により搬送されてきた測定対象物に光を照射する投光器、前記測定対象物からの透過光又は反射光を集光する集光レンズ、該集光レンズにより集光された光を分光する分光光度計、並びに、前記分光光度計の検出値を演算処理及び波形分析するとともに、前記測定対象物の品質を評価するための演算式を用いて演算処理する信号処理及び制御装置からなる品質測定部とを備えた、前記測定対象物の内部品質をオンラインで測定して選別するための品質測定装置であって、前記集光レンズを、上下方向に長く搬送方向に短い形状としてなるものである。   In order to solve the above problems, a quality measuring device according to the present invention includes a transport unit that transports a measurement object, a projector that irradiates light to the measurement object transported by the transport unit, A condensing lens that condenses transmitted light or reflected light, a spectrophotometer that separates the light collected by the condensing lens, and an arithmetic process and waveform analysis of the detection value of the spectrophotometer, and the measurement A quality for measuring and selecting the internal quality of the measuring object online, comprising a signal processing unit that performs arithmetic processing using an arithmetic expression for evaluating the quality of the target object and a quality measuring unit comprising a control device In the measurement apparatus, the condensing lens has a shape that is long in the vertical direction and short in the transport direction.

ここで、前記上下方向に長く搬送方向に短い形状の集光レンズを基体内に保持して上下方向に複数設け、前記基体に接続された、前記集光レンズにより集光された光を伝送する複数の受光側光ファイバケーブルの素線を合わせて1本の分光側光ファイバケーブルとし、前記複数の集光レンズにより集光した光を前記受光側光ファイバケーブル及び分光側光ファイバケーブルを通して伝送することにより、単一の前記分光光度計により分光してなると好ましい。   Here, a plurality of condensing lenses having a shape that is long in the vertical direction and short in the conveyance direction are held in the base, and a plurality of light is collected in the vertical direction, and the light condensed by the condensing lens connected to the base is transmitted. The strands of a plurality of light receiving side optical fiber cables are combined to form a single spectral side optical fiber cable, and light collected by the plurality of condensing lenses is transmitted through the light receiving side optical fiber cable and the spectral side optical fiber cable. Therefore, it is preferable that the light is dispersed by a single spectrophotometer.

また、前記受光側光ファイバケーブルの前記集光レンズ側に平凹レンズを取り付け、該平凹レンズにより前記集光レンズにより集光した光を平行光に近づけた後に前記受光側光ファイバケーブルへ入射させてなると好ましい。   In addition, a plano-concave lens is attached to the light receiving side optical fiber cable on the condensing lens side, and the light collected by the condensing lens is made to approach parallel light by the plano-concave lens and then incident on the light receiving side optical fiber cable. This is preferable.

さらに、前記集光レンズがフレネルレンズであると好ましい。   Furthermore, it is preferable that the condensing lens is a Fresnel lens.

本発明に係る品質測定装置によれば、測定対象物を搬送する搬送部と、該搬送部により搬送されてきた測定対象物に光を照射する投光器、前記測定対象物からの透過光又は反射光を集光する集光レンズ、該集光レンズにより集光された光を分光する分光光度計、並びに、前記分光光度計の検出値を演算処理及び波形分析するとともに、前記測定対象物の品質を評価するための演算式を用いて演算処理する信号処理及び制御装置からなる品質測定部とを備えた、前記測定対象物の内部品質をオンラインで測定して選別するための品質測定装置であって、前記集光レンズを、上下方向に長く搬送方向に短い形状としてなるので、上下方向に長く搬送方向に短い集光レンズにより透過光又は反射光を集光することにより、搬送部により定速で連続して搬送されてくる測定対象物を停止させずに、搬送方向には狭く上下方向には広く集光することができる。
よって、連続して搬送されてくる測定対象物に対して広範囲の受光をすることができるため、測定対象物の内部に局所的な品質異常がある場合においても該品質異常の見逃しを少なくすることができるとともに、測定対象物の搬送方向前後部分での迷光が少なくなるため、品質測定精度が低下することがない。
その上、投光器(光源)並びに分光光度計を複数設けていないことから、信頼性の低下及びコストの増大を抑制することができる。
According to the quality measurement apparatus of the present invention, a transport unit that transports a measurement object, a projector that irradiates light to the measurement object transported by the transport unit, and transmitted light or reflected light from the measurement object. A condensing lens for condensing light, a spectrophotometer for spectroscopically analyzing the light collected by the condensing lens, and a calculation process and waveform analysis of the detection value of the spectrophotometer, and the quality of the measurement object A quality measuring device for measuring and selecting the internal quality of the measurement object online, comprising a signal processing unit that performs arithmetic processing using an arithmetic expression for evaluation and a quality measuring unit comprising a control device. Since the condensing lens has a shape that is long in the vertical direction and short in the conveyance direction, by condensing transmitted light or reflected light with a condensing lens that is long in the vertical direction and short in the conveyance direction, the conveyance unit is configured at a constant speed. Continuously Without stopping the measurement object being conveyed, it can be widely focused on narrow vertically in the conveying direction.
Therefore, since a wide range of light can be received with respect to the measurement object continuously conveyed, even if there is a local quality abnormality inside the measurement object, the oversight of the quality abnormality can be reduced. In addition, since stray light at the front and rear portions in the transport direction of the measurement object is reduced, the quality measurement accuracy is not lowered.
In addition, since a plurality of projectors (light sources) and spectrophotometers are not provided, it is possible to suppress a decrease in reliability and an increase in cost.

また、前記上下方向に長く搬送方向に短い形状の集光レンズを基体内に保持して上下方向に複数設け、前記基体に接続された、前記集光レンズにより集光された光を伝送する複数の受光側光ファイバケーブルの素線を合わせて1本の分光側光ファイバケーブルとし、前記複数の集光レンズにより集光した光を前記受光側光ファイバケーブル及び分光側光ファイバケーブルを通して伝送することにより、単一の前記分光光度計により分光してなると、前記効果に加え、上下複数の前記形状の集光レンズにより透過光又は反射光を集光することにより、さらに広範囲の受光をすることができるため、測定対象物の内部の局所的な品質異常の見逃しをさらに少なくすることができる。
その上、複数の受光側光ファイバケーブルの素線を合わせて1本の分光側光ファイバケーブルとして透過光又は反射光を伝送し、単一の分光光度計により分光する構成であるため、より広範囲の受光を可能としながら、分光光度計の個数増加による信頼性の低下及びコストの増大を抑制することができる。
A plurality of condensing lenses having a shape that is long in the vertical direction and short in the transport direction are provided in the base and provided in the vertical direction, and a plurality of light that is collected by the condensing lens connected to the base is transmitted. The light receiving side optical fiber cables are combined into one spectral side optical fiber cable, and the light condensed by the plurality of condenser lenses is transmitted through the light receiving side optical fiber cable and the spectral side optical fiber cable. Thus, when the light is dispersed by a single spectrophotometer, in addition to the above-described effect, it is possible to receive a wider range of light by condensing transmitted light or reflected light by a plurality of condensing lenses of the upper and lower shapes. Therefore, it is possible to further reduce oversight of local quality abnormality inside the measurement object.
In addition, since a plurality of light receiving side optical fiber cables are combined to transmit transmitted light or reflected light as a single spectroscopic side optical fiber cable and split by a single spectrophotometer, Can be suppressed, and a decrease in reliability and an increase in cost due to an increase in the number of spectrophotometers can be suppressed.

さらに、前記受光側光ファイバケーブルの前記集光レンズ側に平凹レンズを取り付け、該平凹レンズにより前記集光レンズにより集光した光を平行光に近づけた後に前記受光側光ファイバケーブルへ入射させてなると、前記効果に加え、受光側光ファイバケーブルへ平行光に近づけた光が入射することにより、分光側光ファイバケーブルから出射する光も平行光に近くなることから、受光器のスリットでのロスを少なくすることができるため、透過光又は反射光を効率的に回折格子へ当てることができる。   Further, a plano-concave lens is attached to the condensing lens side of the light-receiving side optical fiber cable, and the light collected by the condensing lens is made close to parallel light by the plano-concave lens and then incident on the light-receiving side optical fiber cable. Then, in addition to the above effect, when light close to parallel light enters the light receiving side optical fiber cable, the light emitted from the spectroscopic side optical fiber cable also becomes close to parallel light. Therefore, transmitted light or reflected light can be efficiently applied to the diffraction grating.

さらにまた、前記集光レンズがフレネルレンズであると、前記効果に加え、前記集光レンズを明るく効率の良い単焦点レンズにすることができるとともに、受光器の省スペース化及び軽量化を図ることができる。   Furthermore, when the condensing lens is a Fresnel lens, in addition to the above effects, the condensing lens can be made a bright and efficient single focus lens, and the space and weight of the light receiver can be reduced. Can do.

次に本発明の実施の形態を添付図面に基づき詳細に説明するが、本発明は、添付図面に示された形態に限定されず特許請求の範囲に記載の要件を満たす実施形態の全てを含むものである。なお、本明細書においては、本発明の品質測定装置によりオンラインで内部品質が測定される測定対象物の例として示す玉ねぎVの搬送方向(図中矢印A参照。)を前、その反対側を後とし、左右は前方に向かっていうものとし、左方から見た図を正面図とする。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments shown in the accompanying drawings, and includes all the embodiments that satisfy the requirements described in the claims. It is a waste. In addition, in this specification, the conveyance direction (refer arrow A in the figure) of the onion V shown as an example of the measuring object whose internal quality is measured online by the quality measuring apparatus of the present invention is shown in front and the opposite side. The left and right sides shall be directed forward, and the view from the left shall be the front view.

図1〜図9は、本発明の実施の形態に係る品質測定装置の構成説明図であり、図1は斜視図、図2は図1においてカバー7を取り外した状態を示す斜視図、図3は拡大正面図、図4は図3の矢視X−X断面図、図5は投光器21Eを右方から見た拡大図、図6は図5の矢視Y−Y断面図、図7はサイズ測定部2及び品質測定部3の構成を示す概略部分断面平面図、図8は品質測定部3の構成を示す後方から見た概略部分断面図、図9はフレネルレンズ12及び平凹レンズ13を保持するとともに受光側光ファイバケーブル14,15が接続された基体11を示す図であり、図9(a)は平面図、図9(b)は後方から見た図、図9(c)は後方から見た縦断面図である。   1 to 9 are configuration explanatory views of a quality measuring apparatus according to an embodiment of the present invention, FIG. 1 is a perspective view, FIG. 2 is a perspective view showing a state where a cover 7 is removed in FIG. 4 is an enlarged front view, FIG. 4 is a sectional view taken along the line XX in FIG. 3, FIG. 5 is an enlarged view of the projector 21E viewed from the right, FIG. 6 is a sectional view taken along the line YY in FIG. FIG. 8 is a schematic partial cross-sectional view showing the configuration of the size measuring unit 2 and the quality measuring unit 3, FIG. 8 is a schematic partial cross-sectional view showing the configuration of the quality measuring unit 3, and FIG. 9 shows the Fresnel lens 12 and the plano-concave lens 13. FIG. 9A is a plan view, FIG. 9B is a plan view, FIG. 9C is a view from the rear, and FIG. 9C is a diagram showing the base 11 to which the light receiving side optical fiber cables 14 and 15 are connected. It is the longitudinal cross-sectional view seen from back.

なお、図1及び図2において、搬送部1を構成する搬送ベルト6の前後を切断して示しているが、搬送ベルト6は無端状のものであり、基台5に対して、その前後に位置し、左右方向軸まわりに回転可能に支持された図示しない駆動プーリと従動プーリとに掛け渡されており、駆動プーリに連結されたモータを一定速度で回転することにより、駆動プーリ及び従動プーリが一定速度で回転することから、無端状の搬送ベルト6の上側部分が一定速度で搬送方向(図中矢印A参照。)へ移動するため、該搬送ベルト6上に載置された玉ねぎV,…が搬送方向へ一定速度で搬送される。
ここで、図2に示す詳細は後述するサイズ計測部2及び品質測定部3に対し、これらを被うように、基台5上に固定された支持枠20A,20Bにカバー7を取り付けた図1に示す状態では、カバー7の前後の開口8,8に短冊状の遮光カーテン9,9が取り付けられているため、カバー7の内部への外光の侵入が抑制される。
1 and FIG. 2, the front and rear of the conveyance belt 6 constituting the conveyance unit 1 are shown cut. However, the conveyance belt 6 is endless, and it is Drive pulley and driven pulley are rotated by a motor connected to the drive pulley and a driven pulley (not shown) that is positioned and supported rotatably around the left-right axis and rotates at a constant speed. Is rotated at a constant speed, and the upper part of the endless transport belt 6 moves in the transport direction (see arrow A in the figure) at a constant speed, so that the onions V, Are conveyed at a constant speed in the conveying direction.
Here, the detail shown in FIG. 2 is a view in which the cover 7 is attached to the support frames 20A and 20B fixed on the base 5 so as to cover the size measuring unit 2 and the quality measuring unit 3 described later. In the state shown in FIG. 1, the strip-shaped light-shielding curtains 9, 9 are attached to the front and rear openings 8, 8 of the cover 7, so that intrusion of external light into the cover 7 is suppressed.

図2に示すように、本発明の実施の形態に係る品質測定装置は、前記のとおりの玉ねぎV,…を搬送する搬送部1と、搬送部1により搬送されてきた玉ねぎVのサイズをオンラインで計測するサイズ計測部2と、サイズ計測部2の下流側に配置された、玉ねぎVに所定波長の光(例えば近赤外光)を照射する投光器21E、玉ねぎVからの透過光(反射光であってもよい。)を分光処理する受光器21R、並びに、後述する分光光量検出器であるラインセンサ32(図7参照。)の蓄積時間をサイズ計測部2による玉ねぎVのサイズ計測値に合わせて調節し、ラインセンサ32の測定値を演算処理及び波形分析し、玉ねぎVの内部品質を評価するための演算式(判別式)を用いて演算処理する、筐体10に内装された信号処理及び制御装置4からなる品質測定部3とを備えている。   As shown in FIG. 2, the quality measuring apparatus according to the embodiment of the present invention is configured to determine the size of the onion V transported by the transport unit 1 that transports the onions V,. Measured by the size measuring unit 2, the projector 21 E disposed on the downstream side of the size measuring unit 2 and irradiating the onion V with light of a predetermined wavelength (for example, near infrared light), transmitted light (reflected light) from the onion V The accumulation time of the light receiver 21R that performs spectral processing and the line sensor 32 (see FIG. 7) that is a spectral light amount detector described later is used as the size measurement value of the onion V by the size measurement unit 2. The signal contained in the housing 10 is adjusted and adjusted, the measured value of the line sensor 32 is subjected to arithmetic processing and waveform analysis, and arithmetic processing is performed using an arithmetic expression (discriminant expression) for evaluating the internal quality of the onion V. Processing and control device 4 Ranaru and a quality measuring unit 3.

次に、図3〜図9を参照して品質測定部3を構成する投光器21E及び受光器21R並びにサイズ計測部2について説明する。
投光器21Eは、玉ねぎV,…の搬送経路に沿って、搬送ベルト6の例えば左側に設置されており、図6及び図7に示す遮光性の光源ケース22、光源ケース22の側面に取り付けられた光源であるハロゲンランプ23、ハロゲンランプ23からの光を反射する、光源ケース22内に固定された反射鏡24、光源ケース22の右側(玉ねぎV側)に形成された投光口22Aの内側(左側)に設置された集光レンズ25、及び、図5に示すソレノイド26Bにより開閉操作されリミットスイッチ26Aにより開閉動作が確認される、測定休止時等に不必要な光が照射されるのを防止するための光源用シャッタ26等からなる。
ここで、図6に示すように、反射鏡24の背面(左面)には冷却用の放熱フィン24Aが取り付けられるとともに、集光レンズ25の右側には保護用のカバーガラス25Aが取り付けられる。
Next, the projector 21E, the light receiver 21R, and the size measuring unit 2 constituting the quality measuring unit 3 will be described with reference to FIGS.
The projector 21E is installed, for example, on the left side of the transport belt 6 along the transport path of the onions V,... And is attached to the light-shielding light source case 22 and the side surface of the light source case 22 shown in FIGS. A halogen lamp 23 that is a light source, a reflector 24 that reflects light from the halogen lamp 23, and an inner side of a light projection port 22 A formed on the right side (onion V side) of the light source case 22 (onion V side) Opening / closing operation is confirmed by the condensing lens 25 installed on the left side) and the solenoid 26B shown in FIG. 5 and the opening / closing operation is confirmed by the limit switch 26A. And a light source shutter 26 and the like.
Here, as shown in FIG. 6, a cooling heat radiation fin 24 </ b> A is attached to the back surface (left surface) of the reflecting mirror 24, and a protective cover glass 25 </ b> A is attached to the right side of the condenser lens 25.

また、受光器21Rは、図4及び図8に示すように、玉ねぎV,…の搬送経路に沿って、搬送ベルト6の例えば右側に、前記投光器21Eに略対向するように設置された上下の基体11,11の左側(玉ねぎV側)に取り付けられた集光レンズであるフレネルレンズ12,12、フレネルレンズ12,12により集光した光を平行光に近づける平凹レンズ13,13、平凹レンズ13,13を通った光をそれぞれ伝送する、例えば多数の光ファイバの素線を撚り合わせてなる受光側光ファイバケーブル14,15、受光側光ファイバケーブル14,15の素線を合流部17で合わせて1本のケーブルとしてなる分光側光ファイバケーブル16、図7に示すように、分光側光ファイバケーブル16から光が投射される、遮光ケース27の左側に形成された光通過口27Aの内側(右側)に設置された可視光カットフィルタ28、可視光カットフィルタ28から順次右側へ設置された、スリット29、並びに、測定光を受光する状態(図7に示す開状態)、オフセット取得用シャッタ(黒色シャッタ)30Aによりラインセンサ32の暗電流を測定する状態、及び、NDフィルタ(ニュートラルデンシティフィルタ)30Bによりリファレンス光を受光する状態を切り替えるシャッタ駆動用アクチュエータ30、分光器であるフラットフィールド凹面型の回折格子31、回折格子31により分光されライン上に焦点を結んだ各分光の光量を一括して読み取る、マルチチャンネル分光光量検出器である電荷蓄積方式のラインセンサ32等からなる。   Further, as shown in FIGS. 4 and 8, the light receiver 21 </ b> R is installed on the upper and lower sides of the conveyor belt 6, for example, on the right side of the conveyor belt 6 so as to be substantially opposed to the projector 21 </ b> E. Fresnel lenses 12, 12, which are condenser lenses attached to the left side (onion V side) of the base 11, 11, plano-concave lenses 13, 13 for bringing the light collected by the Fresnel lenses 12, 12 closer to parallel light, and the plano-concave lens 13. , 13 for transmitting light, respectively, for example, a light receiving side optical fiber cable 14, 15 formed by twisting a large number of optical fiber strands, and the light receiving side optical fiber cables 14, 15 are combined at a junction 17 As shown in FIG. 7, the light is projected from the spectral side optical fiber cable 16 on the left side of the light shielding case 27 as a single cable. The visible light cut filter 28 installed on the inner side (right side) of the formed light passage opening 27A, the slit 29 sequentially installed on the right side from the visible light cut filter 28, and the state of receiving measurement light (see FIG. 7) An open state shown), a state in which the dark current of the line sensor 32 is measured by the offset acquisition shutter (black shutter) 30A, and a state in which the reference light is received by the ND filter (neutral density filter) 30B. , A flat field concave diffraction grating 31 as a spectroscope, and a charge storage system line as a multi-channel spectral light quantity detector that collectively reads the light quantity of each spectrum split by the diffraction grating 31 and focused on the line. It consists of a sensor 32 or the like.

ここで、図8及び図9(c)に示すように、フレネルレンズ12の左側には保護用のカバーガラス12Aが取り付けられるとともに、平凹レンズ13はレンズホルダ13Aに保持された状態で受光側光ファイバケーブル14,15の端面に添うように取り付けられる。
そして、玉ねぎVの品質測定時において、光源用シャッタ26の開放時には、図7に示すように、投光器21Eの集光レンズ25により集光された光が、光源ケース22の投光口22Aから、搬送部1により搬送されてきた玉ねぎVへ照射され、玉ねぎVからの透過光が、図8に示す上下のフレネルレンズ12,12に入射して集光され、平凹レンズ13,13を通った後、受光側光ファイバケーブル14,15及び分光側光ファイバケーブル16を通って図7に示す遮光ケース27の光通過口27Aから内部へ達し、回折格子31により分光され、ラインセンサ32により必要とする波長の分光が測定される。
このように測定された測定値は、信号処理及び制御装置4(図1及び図2参照。)により演算処理及び波形分析され、玉ねぎVの内部品質を評価するための演算式を用いて演算処理され、玉ねぎVの内部品質が測定される。
Here, as shown in FIGS. 8 and 9 (c), a protective cover glass 12A is attached to the left side of the Fresnel lens 12, and the plano-concave lens 13 is held by the lens holder 13A while receiving light. It is attached so as to follow the end faces of the fiber cables 14 and 15.
When measuring the quality of the onion V, when the light source shutter 26 is opened, the light condensed by the condenser lens 25 of the projector 21E is emitted from the light projection port 22A of the light source case 22 as shown in FIG. After irradiating the onion V transported by the transport unit 1, the transmitted light from the onion V enters the upper and lower Fresnel lenses 12, 12 shown in FIG. 8 and is condensed and passes through the plano-concave lenses 13, 13. Then, the light passes through the light receiving side optical fiber cables 14 and 15 and the spectral side optical fiber cable 16 and reaches the inside from the light passing port 27A of the light shielding case 27 shown in FIG. Wavelength spectroscopy is measured.
The measured values measured in this way are subjected to arithmetic processing and waveform analysis by the signal processing and control device 4 (see FIGS. 1 and 2), and arithmetic processing is performed using an arithmetic expression for evaluating the internal quality of the onion V. And the internal quality of the onion V is measured.

ここで、図7に示す品質測定部3の投光器21E及び受光器21Rの上流側に設置されるサイズ計測部2に用いられるセンサは、例えば発光素子19A及び受光素子19Bからなる透過型フォトセンサであり、該センサが検出状態になった時から非検出状態になった時までの時間及び玉ねぎVの搬送速度から、信号処理及び制御装置4により玉ねぎVのサイズを演算により求め、この演算値に基づいて、受光器21R内のシャッタを開くタイミング(測定開始のタイミング)を搬送されてくる玉ねぎVの到着に合わせるように、信号処理及び制御装置4がシャッタ駆動用アクチュエータ30の動作を制御する。   Here, the sensor used in the size measuring unit 2 installed on the upstream side of the light projector 21E and the light receiver 21R of the quality measuring unit 3 shown in FIG. 7 is, for example, a transmission type photosensor including a light emitting element 19A and a light receiving element 19B. Yes, the signal processing and control device 4 calculates the size of the onion V from the time from when the sensor enters the detection state to the non-detection state and the conveying speed of the onion V. Based on this, the signal processing and control device 4 controls the operation of the shutter driving actuator 30 so that the timing of opening the shutter in the light receiver 21R (measurement start timing) matches the arrival of the onion V being conveyed.

図3に示すように、支持部材20Cにより支持された支持板33を長孔33A,…を利用して上下に移動させることにより、支持板33に取り付けられた投光器21Eの上下方向の位置調整を容易に行うことができ、図4に示すように、投光器21Eを前後方向軸まわりに揺動させて玉ねぎVに向かう角度調整を容易に行うことができる。
また、図4に示すように、支持部材20Cにより支持されたスライドレール36により支持アーム34,35を左右方向に移動させることにより、支持アーム34,35に取付片18,18(図9(b)も参照。)を利用して取り付けられた、集光レンズであるフレネルレンズ12,12を保持する基体11,11の左右方向の位置調整を容易に行うことができる。
さらに、長孔34A,…を利用して支持アーム34,35に対して基体11,11を上下方向に移動させることにより、フレネルレンズ12,12の上下方向の位置調整を容易に行うことができ、取付片18,18の円弧状長孔18A,18A(図9(b)参照。)を利用して基体11,11を前後方向軸まわりに揺動させることにより、フレネルレンズ12,12の玉ねぎVに向かう角度調整を容易に行うことができる。
よって、搬送部1により搬送される測定対象物の種類や大きさの範囲等に応じて、投光器21E及びフレネルレンズ12,12を、適切な位置及び角度とするように容易に調整した後、その状態を保持するように固定することができる。
As shown in FIG. 3, the vertical position adjustment of the projector 21E attached to the support plate 33 is performed by moving the support plate 33 supported by the support member 20C up and down using the long holes 33A,. As shown in FIG. 4, the angle adjustment toward the onion V can be easily performed by swinging the projector 21E around the front-rear direction axis.
Further, as shown in FIG. 4, the support arms 34, 35 are moved in the left-right direction by the slide rail 36 supported by the support member 20C, whereby the mounting pieces 18, 18 (see FIG. (See also).) The horizontal position adjustment of the bases 11, 11 holding the Fresnel lenses 12, 12, which are condensing lenses, can be easily performed.
Furthermore, the vertical positions of the Fresnel lenses 12 and 12 can be easily adjusted by moving the bases 11 and 11 in the vertical direction with respect to the support arms 34 and 35 using the long holes 34A. By turning the bases 11 and 11 around the longitudinal axis using the arc-shaped long holes 18A and 18A (see FIG. 9B) of the mounting pieces 18 and 18, onions of the Fresnel lenses 12 and 12 are obtained. The angle adjustment toward V can be easily performed.
Therefore, after easily adjusting the projector 21E and the Fresnel lenses 12 and 12 to have appropriate positions and angles according to the type and size range of the measurement object conveyed by the conveyance unit 1, It can be fixed to hold the state.

図7〜図9に示すように、上下の基体11,11内に保持されたフレネルレンズ12,12の形状を、上下方向に長く搬送方向に短い形状である、例えば上下方向へ延びる辺が長く左右方向へ延びる辺が短い矩形状としているため、該矩形状のフレネルレンズ12,12により測定対象物である玉ねぎVを透過した光を集光することにより、搬送部1により定速で連続して搬送されてくる玉ねぎVを停止させずに、搬送方向(前後方向)には狭く上下方向には広く集光することができる。
よって、連続して搬送されてくる測定対象物に対して広範囲の受光をすることができるため、測定対象物の内部に局所的な品質異常がある場合においても該品質異常の見逃しを少なくすることができるとともに、測定対象物の搬送方向前後部分での迷光が少なくなるため、品質測定精度が低下することがない。
その上、投光器21E(ハロゲンランプ23)並びに回折格子31及びラインセンサ32は1個のみであり、これらを複数設けていないことから、信頼性の低下及びコストの増大を抑制することができる。
As shown in FIGS. 7 to 9, the Fresnel lenses 12, 12 held in the upper and lower bases 11, 11 are long in the vertical direction and short in the transport direction, for example, have long sides extending in the vertical direction. Since the sides extending in the left-right direction are rectangular, the light transmitted through the onion V, which is the measurement object, is collected by the rectangular Fresnel lenses 12 and 12, and is continuously transmitted at a constant speed by the transport unit 1. Without stopping the onions V being conveyed, the light can be condensed narrowly in the conveying direction (front-rear direction) and widely in the vertical direction.
Therefore, since a wide range of light can be received with respect to the measurement object continuously conveyed, even if there is a local quality abnormality inside the measurement object, the oversight of the quality abnormality can be reduced. In addition, since stray light at the front and rear portions in the transport direction of the measurement object is reduced, the quality measurement accuracy is not lowered.
In addition, since there is only one projector 21E (halogen lamp 23), diffraction grating 31, and line sensor 32, and a plurality of these are not provided, it is possible to suppress a decrease in reliability and an increase in cost.

また、受光器21Rの集光レンズをフレネルレンズ12としているため、前記集光レンズを明るく効率の良い単焦点レンズにすることができるとともに、受光器21Rの省スペース化及び軽量化を図ることができる。
さらに、フレネルレンズ12,12を個別の基体内に保持して上下方向に2個設け、基体11,11に個別に接続された、フレネルレンズ12,12により集光された光を伝送する受光側光ファイバケーブル14,15の素線を合わせて1本の分光側光ファイバケーブル16とし、上下2個のフレネルレンズ12,12により集光した光を受光側光ファイバケーブル14,15及び分光側光ファイバケーブル16を通して伝送することにより、単一の回折格子31により分光していることから、上下2個のフレネルレンズ12,12により、さらに広範囲の受光をすることができるため、測定対象物の内部の局所的な品質異常の見逃しをさらに少なくすることができる。
なお、フレネルレンズ12,12は、個別の基体内ではなく、単一の基体内に保持するようにしてもよい。
その上、2個の受光側光ファイバケーブル14,15の素線を合わせて1本の分光側光ファイバケーブル16として透過光を伝送し、単一の回折格子31により分光する構成であるため、より広範囲の受光を可能としながら、回折格子31及びラインセンサ32の個数増加による信頼性の低下及びコストの増大を抑制することができる。
Further, since the condenser lens of the light receiver 21R is the Fresnel lens 12, the condenser lens can be a bright and efficient single focus lens, and the light receiver 21R can be reduced in space and weight. it can.
In addition, the Fresnel lenses 12 and 12 are held in separate bases and provided in the vertical direction. The light receiving side that transmits light collected by the Fresnel lenses 12 and 12 connected to the bases 11 and 11 individually. The strands of the optical fiber cables 14 and 15 are combined into one spectral side optical fiber cable 16, and the light collected by the two upper and lower Fresnel lenses 12 and 12 is received by the receiving side optical fiber cables 14 and 15 and the spectral side light. Since the light is transmitted through the fiber cable 16 and dispersed by the single diffraction grating 31, it is possible to receive a wider range of light by the two upper and lower Fresnel lenses 12 and 12. It is possible to further reduce oversight of local quality abnormalities.
The Fresnel lenses 12 and 12 may be held in a single base instead of in separate bases.
In addition, because the transmission light is transmitted as one spectral side optical fiber cable 16 by combining the strands of the two light receiving side optical fiber cables 14 and 15, and is split by the single diffraction grating 31, While enabling a wider range of light reception, it is possible to suppress a decrease in reliability and an increase in cost due to an increase in the number of diffraction gratings 31 and line sensors 32.

さらに、受光側光ファイバケーブル14,15のフレネルレンズ12,12側に平凹レンズ13,13を取り付け、平凹レンズ13,13によりフレネルレンズ12,12により集光した光を平行光に近づけた後に受光側光ファイバケーブル14,15へ入射させていることにより、フレネルレンズにより焦点距離を短くしてコンパクトに構成することができるとともに、受光側光ファイバケーブル14,15へ平行光に近づけた光が入射することにより、分光側光ファイバケーブル16から出射する光も平行光に近くなることから、受光器21Rのスリット29でのロスを少なくすることができるため、透過光を効率的に回折格子31へ当てることができる。   Further, plano-concave lenses 13 and 13 are attached to the light-receiving side optical fiber cables 14 and 15 on the Fresnel lenses 12 and 12 side, and the light collected by the Fresnel lenses 12 and 12 is received by the plano-concave lenses 13 and 13 after being brought close to parallel light. By making the light incident on the side optical fiber cables 14 and 15, the focal length can be shortened by the Fresnel lens so that the optical fiber cables 14 and 15 can be made compact, and light close to parallel light is incident on the light receiving side optical fiber cables 14 and 15. By doing so, the light emitted from the spectral-side optical fiber cable 16 is also close to parallel light, so that the loss at the slit 29 of the light receiver 21R can be reduced, so that the transmitted light is efficiently transmitted to the diffraction grating 31. You can guess.

以上の説明においては、上下方向に長く搬送方向に短い形状のフレネルレンズ12を上下に複数設置する構成について説明したが、測定対象物の大きさ等に応じて、前記形状のフレネルレンズ12を1個のみ又は3個以上設置する構成としてもよい。   In the above description, the configuration in which a plurality of Fresnel lenses 12 having a shape that is long in the vertical direction and short in the conveyance direction is installed in the vertical direction is described. However, the Fresnel lens 12 having the shape described above is 1 according to the size of the measurement object. Only one or three or more may be installed.

本発明の実施の形態に係る品質測定装置の斜視図である。It is a perspective view of a quality measuring device concerning an embodiment of the invention. 図1においてカバーを取り外した状態を示す斜視図である。It is a perspective view which shows the state which removed the cover in FIG. 同じく拡大正面図である。It is also an enlarged front view. 図3の矢視X−X断面図である。It is arrow XX sectional drawing of FIG. 投光器を右方から見た拡大図である。It is the enlarged view which looked at the projector from the right side. 図5の矢視Y−Y断面図である。FIG. 6 is a cross-sectional view taken along line YY in FIG. 5. サイズ測定部及び品質測定部の構成を示す概略部分断面平面図である。It is a general | schematic fragmentary sectional top view which shows the structure of a size measurement part and a quality measurement part. 品質測定部の構成を示す後方から見た概略部分断面図である。It is the general | schematic fragmentary sectional view seen from the back which shows the structure of a quality measurement part. フレネルレンズ及び平凹レンズを保持するとともに受光側光ファイバケーブルが接続された基体を示す図であり、(a)は平面図、(b)は後方から見た図、(c)は後方から見た縦断面図である。It is a figure which shows the base | substrate with which the receiving side optical fiber cable was connected while holding a Fresnel lens and a plano-concave lens, (a) is a top view, (b) is the figure seen from back, (c) is seen from back It is a longitudinal cross-sectional view.

A 搬送方向
V 玉ねぎ(測定対象物)
1 搬送部
2 サイズ計測部
3 品質測定部
4 信号処理及び制御装置
6 搬送ベルト
10 筐体
11 基体
12 フレネルレンズ(集光レンズ)
13 平凹レンズ
14,15 受光側光ファイバケーブル
16 分光側光ファイバケーブル
17 合流部
21E 投光器
21R 受光器
22 光源ケース
22A 投光口
23 ハロゲンランプ(光源)
24 反射鏡
25 集光レンズ
26 光源用シャッタ
27 遮光ケース
27A 開口
28 可視光カットフィルタ
29 スリット
30 シャッタ駆動用アクチュエータ
30A オフセット取得用シャッタ(黒色シャッタ)
30B NDフィルタ
31 回折格子(分光器)
32 ラインセンサ(分光光量検出器)
A Transport direction V Onion (object to be measured)
DESCRIPTION OF SYMBOLS 1 Conveyance part 2 Size measurement part 3 Quality measurement part 4 Signal processing and control apparatus 6 Conveyance belt 10 Housing | casing 11 Base | substrate 12 Fresnel lens (Condensing lens)
13 Plano-concave lenses 14 and 15 Light-receiving side optical fiber cable 16 Spectroscopic side optical fiber cable 17 Junction 21E Light projector 21R Light receiver 22 Light source case 22A Light outlet 23 Halogen lamp (light source)
24 reflecting mirror 25 condensing lens 26 light source shutter 27 light shielding case 27A opening 28 visible light cut filter 29 slit 30 shutter drive actuator 30A offset acquisition shutter (black shutter)
30B ND filter 31 Diffraction grating (spectrometer)
32 line sensor (spectral light detector)

Claims (4)

測定対象物を搬送する搬送部と、該搬送部により搬送されてきた測定対象物に光を照射する投光器、前記測定対象物からの透過光又は反射光を集光する集光レンズ、該集光レンズにより集光された光を分光する分光光度計、並びに、前記分光光度計の検出値を演算処理及び波形分析するとともに、前記測定対象物の品質を評価するための演算式を用いて演算処理する信号処理及び制御装置からなる品質測定部とを備えた、前記測定対象物の内部品質をオンラインで測定して選別するための品質測定装置であって、
前記集光レンズを、上下方向に長く搬送方向に短い形状としてなることを特徴とする品質測定装置。
A transport unit that transports a measurement object, a projector that irradiates light to the measurement object transported by the transport unit, a condensing lens that collects transmitted light or reflected light from the measurement object, and the light collecting A spectrophotometer that splits the light collected by the lens, and a calculation process and waveform analysis of the detection value of the spectrophotometer, and an arithmetic process using an arithmetic expression for evaluating the quality of the measurement object A quality measurement device for measuring and selecting the internal quality of the measurement object online, comprising a quality measurement unit comprising a signal processing and control device,
The quality measuring apparatus, wherein the condenser lens has a shape that is long in the vertical direction and short in the conveyance direction.
前記上下方向に長く搬送方向に短い形状の集光レンズを基体内に保持して上下方向に複数設け、前記基体に接続された、前記集光レンズにより集光された光を伝送する複数の受光側光ファイバケーブルの素線を合わせて1本の分光側光ファイバケーブルとし、前記複数の集光レンズにより集光した光を前記受光側光ファイバケーブル及び分光側光ファイバケーブルを通して伝送することにより、単一の前記分光光度計により分光してなる請求項1記載の品質測定装置。   A plurality of light collecting lenses that are long in the vertical direction and short in the conveying direction are held in the base and provided in the vertical direction, and are connected to the base to transmit the light collected by the light collecting lens. By combining the strands of the side optical fiber cable into one spectral side optical fiber cable, and transmitting the light condensed by the plurality of condenser lenses through the light receiving side optical fiber cable and the spectral side optical fiber cable, The quality measuring apparatus according to claim 1, wherein the quality is measured by a single spectrophotometer. 前記受光側光ファイバケーブルの前記集光レンズ側に平凹レンズを取り付け、該平凹レンズにより前記集光レンズにより集光した光を平行光に近づけた後に前記受光側光ファイバケーブルへ入射させてなる請求項2記載の品質測定装置。   A plano-concave lens is attached to the condensing lens side of the light-receiving side optical fiber cable, and the light condensed by the condensing lens is made close to parallel light by the plano-concave lens and then incident on the light-receiving side optical fiber cable. Item 3. The quality measuring apparatus according to Item 2. 前記集光レンズがフレネルレンズである請求項1〜3の何れかに記載の品質測定装置。
The quality measuring apparatus according to claim 1, wherein the condenser lens is a Fresnel lens.
JP2009046415A 2009-02-27 2009-02-27 Quality measuring device Expired - Fee Related JP5391734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046415A JP5391734B2 (en) 2009-02-27 2009-02-27 Quality measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046415A JP5391734B2 (en) 2009-02-27 2009-02-27 Quality measuring device

Publications (2)

Publication Number Publication Date
JP2010203781A true JP2010203781A (en) 2010-09-16
JP5391734B2 JP5391734B2 (en) 2014-01-15

Family

ID=42965420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046415A Expired - Fee Related JP5391734B2 (en) 2009-02-27 2009-02-27 Quality measuring device

Country Status (1)

Country Link
JP (1) JP5391734B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062005A (en) * 2013-08-20 2015-04-02 三井金属計測機工株式会社 Evaluation device for produce and evaluation method for produce
JP2015148453A (en) * 2014-02-05 2015-08-20 国立大学法人神戸大学 Fruit/vegetable quality measuring apparatus and fruit/vegetable quality measuring method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334523A (en) * 1986-07-30 1988-02-15 Maki Seisakusho:Kk Illuminating device for measuring conveying object
JPH041567A (en) * 1990-04-17 1992-01-07 Aloka Co Ltd Liquid specimen inspecting device for medical purpose
JPH06213804A (en) * 1993-01-20 1994-08-05 Saika Gijutsu Kenkyusho Method and apparatus for measuring percentage sugar content
JPH06300689A (en) * 1993-04-14 1994-10-28 Mitsui Mining & Smelting Co Ltd Interior quality measuring method for unripe fruit by transmission method
JPH11183250A (en) * 1997-12-25 1999-07-09 Towa Electric Industry Co Ltd Spectroscope
JP2002202265A (en) * 2000-12-28 2002-07-19 Satake Corp Rice grain quality level discrimination device
JP2005043295A (en) * 2003-07-25 2005-02-17 Nireco Corp Internal quality inspection device and internal quality inspection method
JP2007121025A (en) * 2005-10-26 2007-05-17 Toshiba Corp Analyzer
JP2007155575A (en) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd Surface inspection apparatus and surface inspection method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334523A (en) * 1986-07-30 1988-02-15 Maki Seisakusho:Kk Illuminating device for measuring conveying object
JPH041567A (en) * 1990-04-17 1992-01-07 Aloka Co Ltd Liquid specimen inspecting device for medical purpose
JPH06213804A (en) * 1993-01-20 1994-08-05 Saika Gijutsu Kenkyusho Method and apparatus for measuring percentage sugar content
JPH06300689A (en) * 1993-04-14 1994-10-28 Mitsui Mining & Smelting Co Ltd Interior quality measuring method for unripe fruit by transmission method
JPH11183250A (en) * 1997-12-25 1999-07-09 Towa Electric Industry Co Ltd Spectroscope
JP2002202265A (en) * 2000-12-28 2002-07-19 Satake Corp Rice grain quality level discrimination device
JP2005043295A (en) * 2003-07-25 2005-02-17 Nireco Corp Internal quality inspection device and internal quality inspection method
JP2007121025A (en) * 2005-10-26 2007-05-17 Toshiba Corp Analyzer
JP2007155575A (en) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd Surface inspection apparatus and surface inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062005A (en) * 2013-08-20 2015-04-02 三井金属計測機工株式会社 Evaluation device for produce and evaluation method for produce
JP2015148453A (en) * 2014-02-05 2015-08-20 国立大学法人神戸大学 Fruit/vegetable quality measuring apparatus and fruit/vegetable quality measuring method

Also Published As

Publication number Publication date
JP5391734B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP3746453B2 (en) Double-sided multi-lamp online internal quality inspection system
KR100806555B1 (en) Measurement apparatus for measuring internal quality of object and method of controlling the same
CA2629292A1 (en) Mixture identification system
WO2000079247A1 (en) Side multiple-lamp on-line inside quality inspecting device
JPH07229840A (en) Method and apparatus for optical measurement
JP2010197151A (en) Quality measuring instrument
JP5391734B2 (en) Quality measuring device
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JP2015227858A5 (en)
JP3576105B2 (en) Internal quality measurement device
JP3611519B2 (en) Agricultural product internal quality evaluation system
JP3821734B2 (en) Spectroscopic analyzer
JP3847285B2 (en) Spectroscopic analyzer
JP2004219376A (en) Quality evaluation system for fruits and vegetables
JP4362423B2 (en) Spectroscopic analyzer
JP3923018B2 (en) Fruit and vegetable quality evaluation equipment
JP6708479B2 (en) Internal quality judgment system
JP3919491B2 (en) Agricultural product quality measuring device
JP3821727B2 (en) Spectroscopic analyzer
JP2004219375A (en) Apparatus for evaluating quality of fruits and vegetables
JP2005037294A (en) Quality evaluation apparatus of fruit vegetables
JP2004037470A (en) Apparatus for evaluating internal quality of agricultural produce
JP3611512B2 (en) Spectroscopic analyzer
JP2003287496A (en) Spectrophotometer
JP2006047217A (en) Device for evaluating internal quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5391734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees