JP2010202421A - Branched and non-branched single-walled carbon nanohorn and method for producing the same - Google Patents

Branched and non-branched single-walled carbon nanohorn and method for producing the same Download PDF

Info

Publication number
JP2010202421A
JP2010202421A JP2009046675A JP2009046675A JP2010202421A JP 2010202421 A JP2010202421 A JP 2010202421A JP 2009046675 A JP2009046675 A JP 2009046675A JP 2009046675 A JP2009046675 A JP 2009046675A JP 2010202421 A JP2010202421 A JP 2010202421A
Authority
JP
Japan
Prior art keywords
walled carbon
carbon nanohorn
branched
swnh
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009046675A
Other languages
Japanese (ja)
Other versions
JP5305347B2 (en
Inventor
Tamiyoshi Cho
民芳 張
Masako Yudasaka
雅子 湯田坂
Sumio Iijima
澄男 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009046675A priority Critical patent/JP5305347B2/en
Publication of JP2010202421A publication Critical patent/JP2010202421A/en
Application granted granted Critical
Publication of JP5305347B2 publication Critical patent/JP5305347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain each isolated single-walled carbon nanohorn or an aggregate of single-walled carbon nanohorns in a small size. <P>SOLUTION: Branched or non-branched single-walled carbon nanohorn is isolated by oxidizing an aggregate of single-walled carbon nanohorns in air by heating, and pulverizing the oxidized aggregate of single-walled carbon nanohorns with ultrasonic waves. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、分岐型および非分岐型単層カーボンナノホーンとその製造方法に関するものである。   The present invention relates to branched and unbranched single-walled carbon nanohorns and a method for producing the same.

従来、単層カーボンナノホーン(SWNHs)は集合体として存在することが知られており(特許文献1参照)、このSWNH集合体は、例えば、中心から外方に向かって放射状に、先端部が円錐形状の単層カーボンナノホーンの閉鎖先端部が突き出た球状粒子の構造を有している。   Conventionally, it is known that single-walled carbon nanohorns (SWNHs) exist as aggregates (see Patent Document 1). For example, this SWNH aggregate is radially outward from the center and has a conical tip. The single-walled carbon nanohorn has a spherical particle structure in which the closed tip portion protrudes.

しかし、SWNH集合体から単離した単一の単層カーボンナノホーンは未だ報告されていない。   However, single single-walled carbon nanohorns isolated from SWNH aggregates have not yet been reported.

一方、カーボンナノチューブでは、切断した単層カーボンナノチューブ、すなわち長さ8〜100nmの短い単層カーボンナノチューブが得られたことが報告されている。ただし、切断した短い単層カーボンナノチューブは直径1〜2nmでストレートな管である。また、分岐構造の単層カーボンナノチューブ(Y-shaped SWNTs)の存在が見出されているが、長さは大体数ミクロンであり、単離したものは未だ報告されていない。   On the other hand, as for carbon nanotubes, it has been reported that cut single-walled carbon nanotubes, that is, short single-walled carbon nanotubes having a length of 8 to 100 nm were obtained. However, the cut short single-walled carbon nanotube is a straight tube having a diameter of 1 to 2 nm. The existence of branched single-walled carbon nanotubes (Y-shaped SWNTs) has been found, but the length is approximately several microns, and no isolated one has been reported yet.

特開2001−064004号公報JP 2001-064004 A

単層カーボンナノホーンは、高純度で大量生産が可能なカーボンナノ材料であり、その用途には、内部のナノ空間を利用したものや、外壁に触媒を担持させたもの等がある。しかし、従来の単層カーボンナノホーンは、いずれも直径が50nmを超え典型的には100nm程度の集合体であるため、単層カーボンナノホーン間の狭い空間を利用することはできなかった。   Single-walled carbon nanohorns are high-purity carbon nanomaterials that can be mass-produced. Applications of the single-walled carbon nanohorns include those using an internal nanospace and those having a catalyst supported on the outer wall. However, since all the conventional single-walled carbon nanohorns are aggregates having a diameter exceeding 50 nm and typically about 100 nm, a narrow space between the single-walled carbon nanohorns cannot be used.

また、生体内で使用する場合には、単層カーボンナノホーン集合体の100nmというサイズは大きく、対外排出が困難であるという問題点があった。   In addition, when used in vivo, the single-walled carbon nanohorn aggregate has a large size of 100 nm, which makes it difficult to discharge outside.

このように、個々の単層カーボンナノホーンを単離すること、あるいはサイズの小さい単層カーボンナノホーン集合体を得ることが望まれていた。   Thus, it has been desired to isolate individual single-walled carbon nanohorns or obtain single-walled carbon nanohorn aggregates having a small size.

本発明は、以上の通りの事情に鑑みてなされたものであり、個々の単離した単層カーボンナノホーン、あるいはサイズの小さい単層カーボンナノホーン集合体を得ることを課題としている。   The present invention has been made in view of the circumstances as described above, and an object thereof is to obtain individual isolated single-walled carbon nanohorns or small-sized single-walled carbon nanohorn aggregates.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1:他のカーボンナノホーンと集合体を形成せずに分離して1本で単独に存在し、分岐構造を有している分岐型単層カーボンナノホーン。   First: A branched single-walled carbon nanohorn having a branched structure that is separated from other carbon nanohorns without forming an aggregate and exists alone.

第2:二方型、三方型、または多方型の分岐構造を有している上記第1の分岐型単層カーボンナノホーン。   Second: The first branched single-walled carbon nanohorn having the bifurcated, trigonal, or multidirectional branched structure.

第3:閉鎖構造を有している上記第1または第2の分岐型単層カーボンナノホーン。   Third: The first or second branched single-walled carbon nanohorn having the closed structure.

第4:開孔を有している上記第1または第2の分岐型単層カーボンナノホーン。   Fourth: The first or second branched single-walled carbon nanohorn having the opening.

第5:他のカーボンナノホーンと集合体を形成せずに分離して1本で単独に存在し、非分岐構造を有している非分岐型単層カーボンナノホーン。   Fifth: An unbranched single-walled carbon nanohorn that is separated from other carbon nanohorns without forming an aggregate and exists alone and has an unbranched structure.

第6:閉鎖構造を有している上記第5の非分岐型単層カーボンナノホーン。   Sixth: The fifth unbranched single-walled carbon nanohorn having the closed structure.

第7:開孔を有している上記第5の非分岐型単層カーボンナノホーン。   Seventh: The fifth unbranched single-walled carbon nanohorn having an opening.

第8:動的光散乱法による直径が10〜50nmの単層カーボンナノホーン集合体。   Eighth: A single-walled carbon nanohorn aggregate having a diameter of 10 to 50 nm by a dynamic light scattering method.

第9:上記第1〜第4のいずれかの分岐型単層カーボンナノホーン、上記第5〜第7のいずれかの分岐型単層カーボンナノホーン、および上記第8の単層カーボンナノホーン集合体から選ばれる少なくとも1種を含有する単層カーボンナノホーン分散液。   Ninth: Selected from any one of the first to fourth branched single-walled carbon nanohorns, any one of the fifth to seventh branched single-walled carbon nanohorns, and the eighth single-layered carbon nanohorn aggregate. Single-layer carbon nanohorn dispersion containing at least one selected from the above.

第10:上記第1〜第4のいずれかの分岐型単層カーボンナノホーンを製造する方法であって、空気中、加熱下で単層カーボンナノホーン集合体を酸化処理する工程と、酸化処理した単層カーボンナノホーン集合体を超音波破砕する工程とを含むことを特徴とする分岐型単層カーボンナノホーンの製造方法。   Tenth: A method for producing any one of the first to fourth branched single-walled carbon nanohorns, the step of oxidizing the single-walled carbon nanohorn aggregate in the air under heating, and the oxidized single unit And a step of ultrasonically crushing the single-walled carbon nanohorn aggregate. A method for producing a branched single-walled carbon nanohorn.

第11:上記第5〜第7のいずれかの非分岐型単層カーボンナノホーンを製造する方法であって、空気中、加熱下で単層カーボンナノホーン集合体を酸化処理する工程と、酸化処理した単層カーボンナノホーン集合体を超音波破砕する工程とを含むことを特徴とする非分岐型単層カーボンナノホーンの製造方法。   Eleventh: A method for producing the unbranched single-walled carbon nanohorn according to any one of the fifth to seventh, wherein the single-walled carbon nanohorn aggregate is oxidized in air and heated, and the oxidized treatment is performed. And a step of ultrasonically crushing the single-walled carbon nanohorn aggregate. A method for producing an unbranched single-walled carbon nanohorn.

本発明によれば、個々の単離した単層カーボンナノホーンあるいはサイズの小さい単層カーボンナノホーン集合体、およびこれらを効率良く得ることができる製造方法が提供される。   According to the present invention, there are provided individual isolated single-walled carbon nanohorns or small-sized single-walled carbon nanohorn aggregates, and a production method capable of efficiently obtaining them.

左の写真は、濃度の異なるショ糖水溶液を層状に遠心管内に収容した後、最上部にコール酸で分散させたSWNHsを入れた状態(左)、および遠心分離後、上から4つの区画に分けて、分散液を分取する直前の状態(右)を示す。右のグラフは、得られた4区画のそれぞれに対して動的光散乱測定を行った結果得られた粒子サイズ分布を示す。The left photo shows sucrose aqueous solutions with different concentrations in layers in a centrifuge tube, followed by SWNHs dispersed with cholic acid at the top (left), and after centrifugation, in the four compartments from the top. The state (right) just before separating the dispersion is shown. The graph on the right shows the particle size distribution obtained as a result of dynamic light scattering measurements for each of the four compartments obtained. str-SWNHおよびbrn-SWNHのTEM写真である。It is a TEM photograph of str-SWNH and brn-SWNH. brn-SWNHのTEM写真である。It is a TEM photograph of brn-SWNH. brn-SWNH等のTEM写真である。It is a TEM photograph such as brn-SWNH. 小径のSWNH集合体のTEM写真である。It is a TEM photograph of a small diameter SWNH aggregate. 実施例1において得られた各形状のSWNHsの個数の割合を示すグラフである。4 is a graph showing the ratio of the number of SWNHs of each shape obtained in Example 1. 実施例1において単離したstr-SWNH、brn-SWNHの直径分布を示すグラフである。直径値は各個SWNHの最大太さである。2 is a graph showing the diameter distribution of str-SWNH and brn-SWNH isolated in Example 1. The diameter value is the maximum thickness of each SWNH. 実施例1において単離したstr-SWNH、brn-SWNHの長さ分布を示すグラフである。長さの数値は各個SWNHの最長方向の長さである。2 is a graph showing the length distribution of str-SWNH and brn-SWNH isolated in Example 1. The numerical value of the length is the longest length of each SWNH. 実施例2で得られた、Gd2O3を内包するstr-SWNHおよびbrn-SWNHのTEM写真である。 3 is a TEM photograph of str-SWNH and brn-SWNH containing Gd 2 O 3 obtained in Example 2. FIG. 比較例1において、密度勾配遠心分離した遠心管最上部のas-grown SWNHのTEM写真である。In Comparative Example 1, it is a TEM photograph of as-grown SWNH at the top of the centrifuge tube subjected to density gradient centrifugation. 空気中酸化処理の温度と単離されたstr-SWNHおよびbrn-SWNHの相対量との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the oxidation process in air, and the relative amount of isolated str-SWNH and brn-SWNH.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図2は、本発明の分岐型単層カーボンナノホーンおよび非分岐型単層カーボンナノホーンのTEM像である。同図中(a)の左側、(b)〜(e)、(g)にY字に分岐した二方型の分岐型単層カーボンナノホーンが観察され、同図中(a)の右側、および(f)に非分岐型単層カーボンナノホーンが観察される。   FIG. 2 is a TEM image of the branched single-walled carbon nanohorn and the unbranched single-walled carbon nanohorn of the present invention. In the figure, a left-hand side of (a), (b) to (e), (g), a bilateral branched single-walled carbon nanohorn branched into a Y-shape is observed, and in the figure, the right side of (a), and Unbranched single-layer carbon nanohorns are observed in (f).

また図3(a)〜(h)、図4(a)〜(c)のTEM像には、三方に分岐した三方型の分岐型単層カーボンナノホーン、それ以上の多方に分岐した多方型の分岐型単層カーボンナノホーンも観察される。   In addition, the TEM images of FIGS. 3 (a) to 3 (h) and FIGS. 4 (a) to 4 (c) have three-way branched single-walled carbon nanohorns branched in three directions and multi-way branched in many directions. Branched single-walled carbon nanohorns are also observed.

分岐型単層カーボンナノホーン(branched SWNH: brn-SWNH)は、他のカーボンナノホーンと集合体を形成せずに分離して1本で単独に存在している。非分岐型単層カーボンナノホーン(straight SWNH: str-SWNH)も同様に、他のカーボンナノホーンと集合体を形成せずに分離して1本で単独に存在している。   Branched single-walled carbon nanohorns (branched SWNH: brn-SWNH) are separated from other carbon nanohorns without forming an aggregate, and exist alone as one. Similarly, unbranched single-layer carbon nanohorns (straight SWNH: str-SWNH) are separated from other carbon nanohorns without forming an aggregate, and exist alone as one.

brn-SWNHおよびstr-SWNHは、先端が閉じたホーン形状をしており、管の直径は例えば2〜15 nmであり、長さは、例えば5〜100nmであり30〜80nmのものが多く存在する。   brn-SWNH and str-SWNH have a horn shape with a closed tip, the diameter of the tube is, for example, 2 to 15 nm, the length is, for example, 5 to 100 nm, and many of them have a thickness of 30 to 80 nm To do.

brn-SWNHおよびstr-SWNHのホーン形状の円錐角は、特に限定されないが、典型的には19°程度である。   The cone angle of the horn shape of brn-SWNH and str-SWNH is not particularly limited, but is typically about 19 °.

本発明のbrn-SWNHおよびstr-SWNHは、例えば、従来から知られている単層カーボンナノホーン集合体(SWNH集合体)を原料として、空気中、加熱下で単層カーボンナノホーンを酸化処理した後、酸化処理した単層カーボンナノホーンを超音波破砕することで、SWNH集合体が分解して得ることができる。酸化処理時の温度は、例えば350〜450℃である。   The brn-SWNH and str-SWNH of the present invention are obtained by, for example, subjecting a single-walled carbon nanohorn aggregate (SWNH aggregate) as a raw material to oxidation treatment of the single-walled carbon nanohorn under heating in air. The SWNH aggregate can be decomposed and obtained by ultrasonically crushing the oxidized single-walled carbon nanohorn. The temperature during the oxidation treatment is, for example, 350 to 450 ° C.

本発明のbrn-SWNHおよびstr-SWNHは、先端部を含む全体が閉じた閉鎖構造を有するものとして得ることもできるが、上記の酸化処理により形成された開孔を有しているものであってもよい。図9は、酸化したSWNHsにGd2O3を内包した後、Gd2O3@SWNHsの集合体を超音波処理し密度勾配遠心分離を行って得られたstr-SWNH(同図(b)、(c))およびbrn-SWNH(同図(a))であり、先端が閉じたstr-SWNHおよびbrn-SWNHの中に酸化開孔を通じてGd2O3が内包されていることが分かる。 The brn-SWNH and str-SWNH of the present invention can be obtained as having a closed structure in which the entire tip portion is closed, but has an opening formed by the above oxidation treatment. May be. 9, after encapsulating Gd 2 O 3 in SWNHs oxidized, Gd 2 O 3 to @SWNHs collection of sonicated density gradient centrifugation was obtained by performing str-SWNH (Fig (b) , (C)) and brn-SWNH ((a) in the same figure), and it can be seen that Gd 2 O 3 is encapsulated in the str-SWNH and brn-SWNH closed at the tip through the oxidation hole.

また、本発明の方法によれば、上記のbrn-SWNHおよびstr-SWNHと共に、図5(a)〜(c)の矢印で示す、as-grown SWNH集合体よりも径の小さい、例えば動的光散乱法による直径が10〜50nm、さらには10〜40nmのSWNH集合体が得られる。このSWNH集合体は、典型的には球状であり、図4にもbrn-SWNH等と共にこのような径の小さいSWNH集合体が見られる。   Further, according to the method of the present invention, together with the above-described brn-SWNH and str-SWNH, the diameter is smaller than the as-grown SWNH aggregate indicated by the arrows in FIGS. A SWNH aggregate having a diameter of 10 to 50 nm, further 10 to 40 nm by a light scattering method is obtained. This SWNH aggregate is typically spherical, and a SWNH aggregate with such a small diameter can be seen in FIG. 4 together with brn-SWNH and the like.

本発明により得られるbrn-SWNH、str-SWNH、および直径50nm以下のSWNH集合体、あるいはこれらの混合物は、例えば、水系媒体等にこれらが分散された分散液として得ることができる。   The brn-SWNH, str-SWNH and SWNH aggregate having a diameter of 50 nm or less obtained by the present invention, or a mixture thereof can be obtained as a dispersion in which they are dispersed in an aqueous medium or the like, for example.

本発明のstr-SWNHおよびbrn-SWNHは、例えば、これらをドラッグキャリアーとして用いたドラッグデリバリーシステムへの応用、これらにマグネタイトを内包したもののMRI撮像や高周波磁場温熱治療への応用、酸化開孔を形成したもののガス吸着材としての応用、電界電子放出端子への応用、これらにGd酸化物を内包することで生体内におけるstr-SWNHまたはbrn-SWNHの分布を測定する技術への応用、Pt、Pd、Rh等の触媒担持体としての応用等が期待できる。   The str-SWNH and brn-SWNH of the present invention can be applied, for example, to a drug delivery system using these as a drug carrier, MRI imaging of those containing magnetite in them, application to high-frequency magnetic field thermotherapy, and oxidation opening. Application of the formed material as a gas adsorbent, application to a field electron emission terminal, application to technology for measuring the distribution of str-SWNH or brn-SWNH in vivo by enclosing Gd oxide in these, Pt, Applications such as Pd and Rh as catalyst carriers can be expected.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

<実施例1>
空気中、450℃で酸化処理したas-grown SWNH集合体をコール酸水溶液に分散(2mg/ml)させて、超音波破砕(300W、1〜3時間)を行った。
<Example 1>
As-grown SWNH aggregates oxidized in air at 450 ° C. were dispersed in a cholic acid aqueous solution (2 mg / ml) and subjected to ultrasonic crushing (300 W, 1 to 3 hours).

得られた分散液を密度勾配(ショ糖水溶液、5、10、15%)遠心分離にて分離した(約4500G, 3時間)。遠心管の長さ方向3〜4区画から液を分取し(図1左、写真)、各々に含まれるSWNH集合体のサイズを動的光散乱法で測定したところ、遠心管の上から下に向かって粒子径が大きくなることが分かった(図1右、グラフ)。   The resulting dispersion was separated by density gradient (sucrose aqueous solution, 5, 10, 15%) by centrifugation (about 4500 G, 3 hours). The liquid was collected from 3 to 4 sections in the length direction of the centrifuge tube (Figure 1, left, photograph), and the size of SWNH aggregates contained in each was measured by dynamic light scattering. It was found that the particle diameter increased toward (Fig. 1, right, graph).

また、SWNHsの構造とサイズを透過電子顕微鏡(TEM)で観察したところ、遠心管最上層には、as-grown SWNH集合体よりも径の小さい集合体(図4、図5)と共に、単一のstr-SWNHおよびbrn-SWNHが見られた(図2〜図5)。   In addition, when the structure and size of SWNHs were observed with a transmission electron microscope (TEM), the top layer of the centrifuge tube was single with an aggregate having a smaller diameter than the as-grown SWNH aggregate (FIGS. 4 and 5). Str-SWNH and brn-SWNH were observed (FIGS. 2 to 5).

TEM写真より、str-SWNHおよびbrn-SWNHの個数の割合は、単離したSWNHs(遠心管最上部)の中にそれぞれ約20〜30%であることが分かった(図6)。また、単離したstr-SWNH、brn-SWNHの直径分布(図7)は2〜15nmで広い範囲にあること、長さ(図8)は30〜80nmのものが多く存在することが明らかになった。これらの結果は全て同じ条件で(空気中450℃で酸化処理し、超音波破砕(300W, 1.5時間)、密度勾配遠心(4600g, 5時間)により単離したSWNHsから得たものである。
<実施例2>
酸化処理したSWNH集合体にGd2O3を内包した後、Gd2O3@SWNH集合体を実施例1と同様に超音波破砕し、密度勾配遠心分離を行ったところ、Gd2O3を内包するstr-SWNHおよびbrn-SWNHを得ることが可能であった(図9)。図9より、単離したstr-SWNHおよびbrn-SWNHの先端部は閉じていることが分かる。
<比較例1>
未酸化処理as-grown SWNHの集合体を実施例1と同様に超音波破砕し、密度勾配遠心分離を行ったが、str-SWNHおよびbrn-SWNHは得られなかった。図10は、密度勾配遠心分離した遠心管最上部のas-grown SWNHのTEM写真である。
From the TEM photograph, it was found that the ratio of the number of str-SWNH and brn-SWNH was about 20-30% in the isolated SWNHs (top of the centrifuge tube) (FIG. 6). In addition, the diameter distribution of isolated str-SWNH and brn-SWNH (Fig. 7) is in the wide range of 2 to 15 nm, and the length (Fig. 8) is clearly in the range of 30 to 80 nm. became. All of these results were obtained from SWNHs isolated under the same conditions (oxidation in air at 450 ° C., sonication (300 W, 1.5 hours) and density gradient centrifugation (4600 g, 5 hours).
<Example 2>
After encapsulating Gd 2 O 3 to SWNH assemblies oxidized, Gd 2 O 3 to @SWNH aggregate similarly sonicated as in Example 1, was subjected to density gradient centrifugation, the Gd 2 O 3 It was possible to obtain encapsulated str-SWNH and brn-SWNH (FIG. 9). FIG. 9 shows that the ends of the isolated str-SWNH and brn-SWNH are closed.
<Comparative Example 1>
The aggregate of unoxidized as-grown SWNH was sonicated in the same manner as in Example 1 and subjected to density gradient centrifugation, but str-SWNH and brn-SWNH were not obtained. FIG. 10 is a TEM photograph of as-grown SWNH at the top of the centrifuge tube subjected to density gradient centrifugation.

このように、酸化処理はstr-SWNHおよびbrn-SWNHの形成に必要である。なお、強酸の酸化処理(HNO3/H2SO4またはH2O2/H2SO4)は、カーボンナノチューブの切断によく用いられているが、SWNHsは欠陥が多いので、酸によりSWNHの構造が壊れる。これに対して本発明では、低温(例えば350〜450℃)での空気中酸化処理により、大量のstr-SWNHおよびbrn-SWNHの単離ができるようになった(図11)。 Thus, oxidation treatment is necessary for the formation of str-SWNH and brn-SWNH. In addition, oxidation treatment of strong acid (HNO 3 / H 2 SO 4 or H 2 O 2 / H 2 SO 4 ) is often used for cutting carbon nanotubes, but SWNHs have many defects. The structure is broken. In contrast, in the present invention, a large amount of str-SWNH and brn-SWNH can be isolated by oxidation in air at a low temperature (for example, 350 to 450 ° C.) (FIG. 11).

Claims (11)

他のカーボンナノホーンと集合体を形成せずに分離して1本で単独に存在し、分岐構造を有している分岐型単層カーボンナノホーン。   A branched single-walled carbon nanohorn having a branched structure that is separated from other carbon nanohorns without forming an aggregate and exists alone. 二方型、三方型、または多方型の分岐構造を有している請求項1に記載の分岐型単層カーボンナノホーン。   The branched single-walled carbon nanohorn according to claim 1, wherein the branched single-walled carbon nanohorn has a bilateral, trigonal, or multidirectional branched structure. 閉鎖構造を有している請求項1または2に記載の分岐型単層カーボンナノホーン。   The branched single-walled carbon nanohorn according to claim 1 or 2, having a closed structure. 開孔を有している請求項1または2に記載の分岐型単層カーボンナノホーン。   The branched single-walled carbon nanohorn according to claim 1 or 2 having an aperture. 他のカーボンナノホーンと集合体を形成せずに分離して1本で単独に存在し、非分岐構造を有している非分岐型単層カーボンナノホーン。   An unbranched single-walled carbon nanohorn that is separated from other carbon nanohorns without forming an aggregate and exists alone and has an unbranched structure. 閉鎖構造を有している請求項5に記載の非分岐型単層カーボンナノホーン。   The unbranched single-walled carbon nanohorn according to claim 5 having a closed structure. 開孔を有している請求項5に記載の非分岐型単層カーボンナノホーン。   The unbranched single-walled carbon nanohorn according to claim 5 having an aperture. 動的光散乱法による直径が10〜50nmの単層カーボンナノホーン集合体。   Single-walled carbon nanohorn aggregate with a diameter of 10-50 nm by dynamic light scattering. 請求項1〜4のいずれかに記載の分岐型単層カーボンナノホーン、請求項5〜7のいずれかに記載の分岐型単層カーボンナノホーン、および請求項8に記載の単層カーボンナノホーン集合体から選ばれる少なくとも1種を含有する単層カーボンナノホーン分散液。   From the branched single-walled carbon nanohorn according to any one of claims 1 to 4, the branched single-walled carbon nanohorn according to any of claims 5 to 7, and the single-walled carbon nanohorn aggregate according to claim 8. Single-layer carbon nanohorn dispersion containing at least one selected. 請求項1〜4のいずれかに記載の分岐型単層カーボンナノホーンを製造する方法であって、空気中、加熱下で単層カーボンナノホーン集合体を酸化処理する工程と、酸化処理した単層カーボンナノホーン集合体を超音波破砕する工程とを含むことを特徴とする分岐型単層カーボンナノホーンの製造方法。   A method for producing the branched single-walled carbon nanohorn according to any one of claims 1 to 4, comprising a step of oxidizing the single-walled carbon nanohorn aggregate under heating in air, and an oxidized single-walled carbon And a step of ultrasonically crushing the nanohorn aggregate. A method for producing a branched single-walled carbon nanohorn, comprising: 請求項5〜7のいずれかに記載の非分岐型単層カーボンナノホーンを製造する方法であって、空気中、加熱下で単層カーボンナノホーン集合体を酸化処理する工程と、酸化処理した単層カーボンナノホーン集合体を超音波破砕する工程とを含むことを特徴とする非分岐型単層カーボンナノホーンの製造方法。   A method for producing the unbranched single-walled carbon nanohorn according to any one of claims 5 to 7, comprising a step of oxidizing the single-walled carbon nanohorn aggregate under heating in air, and an oxidized single layer. And a step of ultrasonically crushing the carbon nanohorn aggregate. A method for producing an unbranched single-layer carbon nanohorn.
JP2009046675A 2009-02-27 2009-02-27 Branched single-walled carbon nanohorn and its dispersion Expired - Fee Related JP5305347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046675A JP5305347B2 (en) 2009-02-27 2009-02-27 Branched single-walled carbon nanohorn and its dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046675A JP5305347B2 (en) 2009-02-27 2009-02-27 Branched single-walled carbon nanohorn and its dispersion

Publications (2)

Publication Number Publication Date
JP2010202421A true JP2010202421A (en) 2010-09-16
JP5305347B2 JP5305347B2 (en) 2013-10-02

Family

ID=42964301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046675A Expired - Fee Related JP5305347B2 (en) 2009-02-27 2009-02-27 Branched single-walled carbon nanohorn and its dispersion

Country Status (1)

Country Link
JP (1) JP5305347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150893A (en) * 2015-02-19 2016-08-22 国立研究開発法人産業技術総合研究所 Method for producing graphene oxide sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007281A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Single layer carbon nanohorn adsorbent and manufacturing method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005007281A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Single layer carbon nanohorn adsorbent and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150893A (en) * 2015-02-19 2016-08-22 国立研究開発法人産業技術総合研究所 Method for producing graphene oxide sheet

Also Published As

Publication number Publication date
JP5305347B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
Chao-Mujica et al. Carbon quantum dots by submerged arc discharge in water: Synthesis, characterization, and mechanism of formation
Georgakilas et al. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures
Fan et al. Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications
Wang et al. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio
Fan et al. Highly conductive few‐layer graphene/Al2O3 nanocomposites with tunable charge carrier type
Rojas et al. Optimization of Triton X-100 removal and ultrasound probe parameters in the preparation of multiwalled carbon nanotube buckypaper
Oku et al. Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials
Simões et al. Influence of dispersion/mixture time on mechanical properties of Al–CNTs nanocomposites
Yang et al. Synthesis of graphene/Ag nanocomposite with good dispersibility and electroconductibility via solvothermal method
Zhu et al. Flexible Magnetic Nanoparticles–Reduced Graphene Oxide Composite Membranes Formed by Self‐Assembly in Solution
Chen et al. Rupturing C60 molecules into graphene‐oxide‐like quantum dots: structure, photoluminescence, and catalytic application
Wang et al. Template-assisted synthesis of uniform nanosheet-assembled silver hollow microcubes
Xu et al. What is inside carbon nanohorn aggregates?
Zhou et al. Ambient template synthesis of multiferroic MnWO4 nanowires and nanowire arrays
Das et al. Nanomaterials in science and technology
Chen et al. Synthesis, characterization and magnetic properties of ultrafine Co3O4 octahedra
Yavari et al. Controlled assembly and alignment of CNTs in ferrofluid: Application in tunable heat transfer
JP5305347B2 (en) Branched single-walled carbon nanohorn and its dispersion
Boran Encapsulation of CuO nanoparticles inside the channels of the multi-walled carbon nanotubes functionalized with thermal stress
Das et al. Magnetite (Fe 3 O 4)-filled carbon nanofibers as electro-conducting/superparamagnetic nanohybrids and their multifunctional polymer composites
Huang et al. A facile carboxylation of CNT/Fe3O4 composite nanofibers for biomedical applications
Mi et al. The Effect of Thickness‐Tunable ZrO2 Shell on Enhancing the Tunneling Magnetoresistance of Fe3O4 Supraparticles
Tello et al. The synthesis of hybrid nanostructures of gold nanoparticles and carbon nanotubes and their transformation to solid carbon nanorods
KR101440226B1 (en) Method for preparing graphene based quantum dots, graphene based quantum dots prepared by the same and application devices using the same
Kizuka et al. Structure of hollow carbon nanocapsules synthesized by resistive heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees