JP2010201302A - Catalyst for steam reforming of methane - Google Patents

Catalyst for steam reforming of methane Download PDF

Info

Publication number
JP2010201302A
JP2010201302A JP2009047471A JP2009047471A JP2010201302A JP 2010201302 A JP2010201302 A JP 2010201302A JP 2009047471 A JP2009047471 A JP 2009047471A JP 2009047471 A JP2009047471 A JP 2009047471A JP 2010201302 A JP2010201302 A JP 2010201302A
Authority
JP
Japan
Prior art keywords
methane
catalyst
steam reforming
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009047471A
Other languages
Japanese (ja)
Other versions
JP5268069B2 (en
Inventor
Tsugi Kyo
亜 許
Junyou Yang
君友 楊
Masahiko Demura
雅彦 出村
Toshiyuki Hirano
敏幸 平野
Toru Hara
原  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009047471A priority Critical patent/JP5268069B2/en
Publication of JP2010201302A publication Critical patent/JP2010201302A/en
Application granted granted Critical
Publication of JP5268069B2 publication Critical patent/JP5268069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for steam reforming of methane, which exhibits the catalytic activity for steam reforming higher than that of the conventional catalyst even at ≤600°C. <P>SOLUTION: The catalyst for steam reforming of methane is used for producing hydrogen by a steam reforming reaction of methane and consists of a nanoparticle of a Ni-Al intermetallic compound having the surface consisting mainly of a Ni-Al phase at the least. The nanoparticle has ≥50 m<SP>2</SP>/g BET specific surface area and is obtained by a vacuum arc plasma deposition method of a Ni-Al alloy ingot. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、メタンと水蒸気と反応して水素を生成する触媒に関する。   The present invention relates to a catalyst that reacts with methane and water vapor to produce hydrogen.

近年、水素は燃焼すると水しか発生せず、地球環境の保全という観点からクリーンなエネルギー媒体として期待されており、最近では、特に燃料電池の燃料として注目されている。このような燃料としての水素の製造方法としてはこれまでに様々なものが知られている。そのうちの最も重要な方法として、メタンなどの炭化水素(C)と水蒸気との反応により水素及び合成ガスを製造する方法があり、水蒸気改質反応とよばれる。その総括反応式は次の式で示され、大きな吸熱を伴う反応である。
+ nHO → nCO +(n+m/2)H
下記のメタン(CH)の水蒸気改質はこれらの炭化水素の水蒸気改質の中の重要な反応である。
CH + HO → CO + 3H
これらの反応は、熱力学的には高温ほど有利であり、炭化水素の種類にもよるが、700℃(50℃単位、以下同じ。)以上の反応温度が必要である。従って、炭化水素の水蒸気改質用触媒には、高い活性と共に、優れた耐熱性、高温安定性及び一定の高温強度が求められている。従来、炭化水素の水蒸気改質用触媒としては、担体上に担持された遷移金属が一般的に用いられている。メタン(CH)の水蒸気改質に対する金属の触媒活性について、次の順序を示す。
Rh,Ru>Ni>Ir>Pd,Pt,Re>Fe,Co
この中で、貴金属Rh, Ruが最も活性が高いが、コストが高いという問題がある。Niは比較的に安く、工業的によく使用されているが、活性と耐熱性が十分ではないという問題がある。
以上のような従来技術の状況において、発明者らは、メタンの水蒸気改質用触媒として、降伏強度が正の温度依存性を示し(強度の逆温度依存性と呼ばれている)、優れた高温特性、耐摩耗性を持っている金属間化合物NiAlに着目した。金属間化合物NiAlは触媒用成形体として提案されている(特許文献1)。
メタンの水蒸気改質用触媒としての適用については、特許文献2に示されている。
しかし、その触媒能は十分とは言えないばかりか、低温(600℃)以下では、良好な触媒能を発現できないという問題があった。
In recent years, hydrogen generates only water when combusted, and is expected as a clean energy medium from the viewpoint of conservation of the global environment. Recently, it has attracted attention as a fuel for fuel cells. Various methods for producing hydrogen as such a fuel have been known so far. Among them, the most important method is a method of producing hydrogen and synthesis gas by a reaction between a hydrocarbon such as methane (C n H m ) and steam, which is called a steam reforming reaction. The general reaction formula is shown by the following formula, and is a reaction with a large endotherm.
C n H m + nH 2 O → nCO + (n + m / 2) H 2
The steam reforming of methane (CH 4 ) described below is an important reaction in the steam reforming of these hydrocarbons.
CH 4 + H 2 O → CO + 3H 2
These reactions are thermodynamically more advantageous at higher temperatures, and require a reaction temperature of 700 ° C. (50 ° C. unit, the same shall apply hereinafter) or higher, depending on the type of hydrocarbon. Accordingly, hydrocarbon steam reforming catalysts are required to have high activity, excellent heat resistance, high temperature stability, and constant high temperature strength. Conventionally, transition metals supported on a carrier are generally used as hydrocarbon steam reforming catalysts. The following order is shown for the catalytic activity of the metal for the steam reforming of methane (CH 4 ).
Rh, Ru>Ni>Ir> Pd, Pt, Re> Fe, Co
Among these, the noble metals Rh and Ru have the highest activity, but there is a problem that the cost is high. Ni is relatively cheap and is often used industrially, but has a problem that its activity and heat resistance are not sufficient.
In the state of the prior art as described above, the inventors have shown that the yield strength shows a positive temperature dependency as a catalyst for steam reforming of methane (referred to as the reverse temperature dependency of strength) and is excellent. Attention was paid to the intermetallic compound Ni 3 Al having high temperature characteristics and wear resistance. Intermetallic compound Ni 3 Al has been proposed as a molded article for catalyst (Patent Document 1).
Application of methane as a steam reforming catalyst is disclosed in Patent Document 2.
However, the catalytic ability is not sufficient, and there is a problem that good catalytic ability cannot be expressed at a low temperature (600 ° C.) or lower.

本願発明は、このような実情に鑑み、600℃以下においても、従来の触媒より高いメタン水蒸気改質触媒活性を発現させることができる触媒を提供することを特徴とする。   In view of such circumstances, the present invention is characterized by providing a catalyst capable of exhibiting higher methane steam reforming catalytic activity than conventional catalysts even at 600 ° C. or lower.

発明1の触媒は、メタンの水蒸気改質反応により水素を生成する触媒であって、少なくともその表面が主にNi−Al相よりなるNi−Al金属間化合物のナノ粒子からなることを特徴とする。   The catalyst of the invention 1 is a catalyst that generates hydrogen by a steam reforming reaction of methane, and is characterized in that at least the surface thereof is composed of nanoparticles of a Ni—Al intermetallic compound mainly composed of a Ni—Al phase. .

発明2は、発明1の触媒において、ナノ粒子のBET比表面積が50m/g以上であることを特徴とすることを特徴とする。 Invention 2 is characterized in that, in the catalyst of Invention 1, the BET specific surface area of the nanoparticles is 50 m 2 / g or more.

発明3は、 発明1または2の触媒において、NiAl合金インゴットを真空アークプラズマ蒸着法によりナノ粒子化されたものであることを特徴とする。   Invention 3 is characterized in that, in the catalyst of Invention 1 or 2, the NiAl alloy ingot is made into nanoparticles by a vacuum arc plasma deposition method.

本発明の触媒は、貴金属や希少元素を含有しないにもかかわらず、メタンの水蒸気改質反応を600℃以下においても高効率で発揮し、かつそのメタンの転化率は、理論のメタン平衡転化率に近い値であった。   The catalyst of the present invention exhibits a high-efficiency steam reforming reaction of methane even at 600 ° C. or lower, despite the fact that it does not contain a noble metal or a rare element, and the methane conversion rate is the theoretical methane equilibrium conversion rate. It was close to the value.

表2のNo.1,2,4,5の各組成のナノ粒子試料の粉末X線回折測定結果を示すグラフ。The graph which shows the powder X-ray-diffraction measurement result of the nanoparticle sample of each composition of No. 1, 2, 4, 5 of Table 2. FIG. 表2のNo.2のNi25Alナノ粒子のTEM観察結果を示す写真。The photograph which shows the TEM observation result of the Ni25Al nanoparticle of No. 2 of Table 2. 反応装置システムの概略図。Schematic of the reactor system. 表2のNo.2のNi25Alナノ粒子触媒を用いて、メタンの水蒸気改質中メタンの転化率と反応温度との関係を示すグラフ。The graph which shows the relationship between the conversion rate of methane during steam reforming of methane, and reaction temperature using the Ni25Al nanoparticle catalyst of No. 2 of Table 2. 表2のNo.2の Ni25Alナノ粒子触媒を用いて、メタンの水蒸気改質中各生成ガスの生成速度と反応温度との関係を示すグラフ。同じ反応条件で500℃、600℃でのメタンの平衡転化率の計算結果も示す。The graph which shows the relationship between the production | generation speed | rate of each product gas during steam reforming of methane, and reaction temperature using the Ni25Al nanoparticle catalyst of No. 2 of Table 2. The calculation results of the equilibrium conversion of methane at 500 ° C. and 600 ° C. under the same reaction conditions are also shown.

金属間化合物ナノ粒子の粒径の好ましい範囲は1nmから100nmである。その範囲のサイズの粒子は安定的に存在することができ、高い比表面積を有するためである。
Ni−Alの重量比の範囲は、Niは76−95重量%、Alは5−24重量%である。Ni−Alの2元状態図により、この範囲では、NiAlとNiAlの金属間化合物相は存在する。
この金属間化合物ナノ粒子の相構造が、NiAl,NiAl,Ni,NiO及びAl相のすべてを表面に有する必要がなく、触媒活性を有するNiAl,NiAl等のAl成分を含有する相があれば良い。
A preferable range of the particle size of the intermetallic compound nanoparticles is 1 nm to 100 nm. This is because particles having a size within that range can exist stably and have a high specific surface area.
The range of the Ni-Al weight ratio is 76-95% by weight for Ni and 5-24% by weight for Al. In this range, there is an intermetallic compound phase of Ni 3 Al and NiAl according to the Ni—Al binary phase diagram.
The phase structure of the intermetallic compound nanoparticles does not need to have all of the Ni 3 Al, NiAl, Ni, NiO and Al 2 O 3 phases on the surface, and Al components such as Ni 3 Al and NiAl having catalytic activity can be used. It is sufficient if there is a phase to be contained.

Ni−Al金属間化合物ナノ粒子の作製
Ni(ニッケル)とAl(アルミニウム)をアーク溶解炉で以下の組成の合金インゴットを作製した。
Production of Ni-Al Intermetallic Compound Nanoparticles An alloy ingot having the following composition was produced using Ni (nickel) and Al (aluminum) in an arc melting furnace.

上記のNiAl合金インゴットを用いて、1−50 Paでの真空アークプラズマ蒸着法により、表2に示すように各組成のナノ粒子試料を作製した。粉末X線回折測定によりこれらのナノ粒子試料の相の構成を確認したところ、図1に示すように、これらのナノ粒子試料は、NiAl,NiAl,Ni,NiO及びAl相を主相とするものであった。
なお、図中の略称は、原材料とした合金の略称を示すものである。
Using the above-mentioned NiAl alloy ingot, nanoparticle samples of each composition were prepared as shown in Table 2 by vacuum arc plasma deposition at 1-50 Pa. When the composition of the phases of these nanoparticle samples was confirmed by powder X-ray diffraction measurement, as shown in FIG. 1, these nanoparticle samples contained Ni 3 Al, NiAl, Ni, NiO and Al 2 O 3 phases. It was the main phase.
In addition, the abbreviation in a figure shows the abbreviation of the alloy used as a raw material.

マイクロトラック粒度分布測定装置を用いてレーザー回折・散乱法により粒子の全体的粒度分布を測定した。表2のNo.2のナノ粒子は1nmから600nmまでの範囲で、No.5のナノ粒子は1nmから800nmまでの範囲であることが分かった。透過電子顕微鏡(TEM)及び走査透過電子顕微鏡(STEM)により作製したナノ粒子のサイズ、形状、組成を分析した。粒子サイズは主に1nmから100nmまでの範囲に分布することが分かった(図2)。
窒素ガス吸着により比表面積を測定した。これらのナノ粒子試料の比表面積(BET法)は、50から112m/gであることが分かった(表2)。これは、従来のラネーNi触媒に匹敵する(大きな比表面積(50−100m/g)である。
さらに、本ナノ粒子触媒はラネーNiより安定であるという大きなメリットがある。ラネーNi触媒は空気中で強烈に酸化・燃焼するため、水などの液体中に保存する必要がある。そのため、主に液体反応にしか適用できない。これに対して、本ナノ粒子触媒は空気中でも安定で燃えることはないので、取扱いが簡単で、高温ガス反応にも応用できる。
The overall particle size distribution of the particles was measured by a laser diffraction / scattering method using a microtrack particle size distribution measuring device. No. in Table 2 No. 2 nanoparticles range from 1 nm to 600 nm. 5 nanoparticles were found to range from 1 nm to 800 nm. The size, shape and composition of the nanoparticles prepared by transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) were analyzed. It was found that the particle size was distributed mainly in the range from 1 nm to 100 nm (FIG. 2).
The specific surface area was measured by nitrogen gas adsorption. The specific surface area (BET method) of these nanoparticle samples was found to be 50 to 112 m 2 / g (Table 2). This is comparable to a conventional Raney Ni catalyst (large specific surface area (50-100 m 2 / g).
Furthermore, this nanoparticle catalyst has a great merit that it is more stable than Raney Ni. Raney Ni catalyst oxidizes and burns strongly in the air, so it must be stored in a liquid such as water. Therefore, it can be mainly applied only to liquid reactions. On the other hand, the nanoparticle catalyst is stable even in air and does not burn, so it is easy to handle and can be applied to high temperature gas reactions.

触媒反応装置システム
触媒反応は固定床流通式触媒反応装置により行った。10mg程度のナノ粒子試料を内径8mmの石英反応管に導入し、試料層の上下に石英ウールを10mm厚さ程度詰めて、試料層を固定する。反応管を電気炉により加熱し、所定の温度で触媒反応を行った。温度制御は試料層に接触する熱電対により行った。反応管上部に,CH4, H,Nなどのガスライン及びHOの液体ラインに接続した。反応に応じて必要なガスと液体を反応管に導入した。反応管下部にガスクロマトグラフィ及びガス流量計に接続し、反応物の組成と生成量を測定した。図3は触媒反応装置システムを示す。
Catalytic reactor system The catalytic reaction was carried out by a fixed bed flow type catalytic reactor. About 10 mg of a nanoparticle sample is introduced into a quartz reaction tube having an inner diameter of 8 mm, and quartz wool is packed on the top and bottom of the sample layer to a thickness of about 10 mm to fix the sample layer. The reaction tube was heated by an electric furnace to carry out a catalytic reaction at a predetermined temperature. Temperature control was performed by a thermocouple in contact with the sample layer. The upper part of the reaction tube was connected to a liquid line of the gas line and H 2 O, such as CH4, H 2, N 2. Necessary gases and liquids were introduced into the reaction tube according to the reaction. A gas chromatograph and a gas flow meter were connected to the lower part of the reaction tube, and the composition and amount of the reaction product were measured. FIG. 3 shows a catalytic reactor system.

メタンの水蒸気改質反応に対する触媒特性
組成Ni25Alのナノ粒子試料を用いて、メタンの水蒸気改質反応を行った。反応する前に500℃で水素と窒素の混合ガス(H 30 ml/min + N 5 ml/min))により1時間の還元処理を行った。その後、N雰囲気中(N流量 30 ml/min)、メタンガス(18 ml/min)と純水(50μl/min)と、Nキャリーガス(30ml/min)と一緒に反応管に導入した。600℃から350℃までの温度範囲に、50℃ごとに30分を保持し、各温度を安定させてから、ガスクロマイトグラフィにより生成物の組成を測定した。ガス流量計によりガス流量を測定した。次の式により各温度でのメタンの転化率を計算した。表3は表2のNo.2の触媒性能を示し、計算した各温度でのメタンの転化率及び書く生成ガスの生成速度である。図4はこれらのメタンの転化率を反応温度の関数として示した結果である。
メタンの転化率〔%〕=(供給メタン−残留メタン)/供給メタン×10
Catalytic characteristics for methane steam reforming reaction A methane steam reforming reaction was carried out using a nanoparticle sample of composition Ni25Al. Prior to the reaction, reduction treatment was performed at 500 ° C. with a mixed gas of hydrogen and nitrogen (H 2 30 ml / min + N 2 5 ml / min) for 1 hour. Thereafter, in a N 2 atmosphere (N 2 flow rate 30 ml / min), methane gas (18 ml / min), pure water (50 μl / min), and N 2 carry gas (30 ml / min) were introduced into the reaction tube. . The temperature range from 600 ° C. to 350 ° C. was maintained for 30 minutes every 50 ° C., and after stabilizing each temperature, the composition of the product was measured by gas chromatography. The gas flow rate was measured with a gas flow meter. The conversion of methane at each temperature was calculated by the following formula. Table 3 shows No. 1 in Table 2. 2 shows the catalyst performance of 2, the calculated methane conversion rate at each temperature and the product gas production rate written. FIG. 4 shows the results of the conversion of these methanes as a function of reaction temperature.
Conversion rate of methane [%] = (Supply methane−Residual methane) / Supply methane × 10 2

400℃から触媒活性を示し始めた。450℃で約11%の転化率を示した。反応温度の増加に伴い、転化率が増加した。600℃では、62%以上の転化率が得られた。本実験条件の500℃と600℃でのメタンの理論平衡転化率を計算した結果、500℃での平衡転化率は40%、600℃での平衡率は75%程度である。これらの結果も図4に示す。本ナノ粒子触媒は600℃及びそれ以下の温度では、高い触媒性能を示すことが分かる。
図5は各生成ガスの生成速度を反応温度の関数として示した結果である。500℃以下の温度範囲では、温度の上昇に伴い、主にHとCOが生成された。500℃以上の温度範囲では、HとCOのほか、COも生成された。温度の上昇に伴い、H,CO,CO生成速度が共に増加した。これらの結果から、500℃以下の温度では、メタンの水蒸気改質反応以外、COの生成反応(CO+HO→CO+3H)も起っていることを示した。500℃以上の温度では、メタンの水蒸気改質反応の割合は大きくなり、COの生成量が増加することが分かった。
この傾向からすれば、700℃、800℃においても600℃と同等若しくはそれ以上の触媒機能を発現することは、特許文献2からも容易に推測できる。
本発明は、特許文献2に比べ極めて高い触媒機能を発現し得るものであるが、その要因として考えられるのは、特許文献2の粒子は、酸及びアルカリ処理により、粒子表面のAl成分が除去されており、Ni−Al系相が実質的に存在しないのに比べ、本発明では、酸及びアルカリ処理を施さないために、表面は、内部と同様に、主にNi−Al系相よりなる点、又は/及び、比表面積の相違によりもたらされたものであると思われる。
特に、600℃以下においても良好な触媒機能を発現できるのは、Ni系触媒が700℃以上でないと良好な触媒機能を発揮しなかったことから推察すると、表面の相の違いによるものと考えられる。
It started to show catalytic activity from 400 ° C. The conversion was about 11% at 450 ° C. As the reaction temperature increased, the conversion increased. At 600 ° C., a conversion rate of 62% or more was obtained. As a result of calculating the theoretical equilibrium conversion rate of methane at 500 ° C. and 600 ° C. in this experimental condition, the equilibrium conversion rate at 500 ° C. is 40%, and the equilibrium rate at 600 ° C. is about 75%. These results are also shown in FIG. It can be seen that the present nanoparticle catalyst exhibits high catalyst performance at temperatures of 600 ° C. and lower.
FIG. 5 shows the results of the production rate of each product gas as a function of reaction temperature. In the temperature range of 500 ° C. or lower, mainly H 2 and CO 2 were generated as the temperature increased. In the temperature range of 500 ° C. or higher, CO was generated in addition to H 2 and CO 2 . As the temperature increased, the H 2 , CO 2 , and CO production rates all increased. From these results, it was shown that a CO 2 production reaction (CO + H 2 O → CO 2 + 3H 2 ) occurred at a temperature of 500 ° C. or lower in addition to the steam reforming reaction of methane. It was found that at a temperature of 500 ° C. or higher, the rate of steam reforming reaction of methane increases and the amount of CO produced increases.
From this tendency, it can be easily estimated from Patent Document 2 that a catalytic function equal to or higher than 600 ° C. is exhibited even at 700 ° C. and 800 ° C.
Although the present invention can exhibit an extremely high catalytic function compared to Patent Document 2, it is considered that the Al component on the surface of the particle of Patent Document 2 is removed by acid and alkali treatment. In the present invention, the surface is mainly composed of the Ni-Al phase, as in the case of the inside, in comparison with the fact that the Ni-Al phase is not substantially present in the present invention. This is probably due to a point or / and a difference in specific surface area.
In particular, the reason why a good catalytic function can be expressed even at 600 ° C. or lower is presumed to be due to the difference in surface phase, assuming that the Ni-based catalyst does not exhibit a good catalytic function unless it is 700 ° C. or higher. .

特開昭55−88856号公報JP-A-55-88856 特開2007−90137号公報JP 2007-90137 A

Claims (3)

メタンの水蒸気改質反応により水素を生成する触媒であって、少なくともその表面が主にNi−Al系相よりなるNi−Al金属間化合物のナノ粒子からなることを特徴とする触媒。   A catalyst for generating hydrogen by a steam reforming reaction of methane, characterized in that at least the surface thereof is composed of nanoparticles of a Ni-Al intermetallic compound mainly composed of a Ni-Al-based phase. 請求項1に記載の触媒において、ナノ粒子のBET比表面積が50m/g以上であることを特徴とすることを特徴とする触媒。 2. The catalyst according to claim 1, wherein the BET specific surface area of the nanoparticles is 50 m 2 / g or more. 請求項1または2に記載の触媒において、NiAl合金インゴットを真空アークプラズマ蒸着法によりナノ粒子化されたものであることを特徴とする触媒。







3. The catalyst according to claim 1, wherein the NiAl alloy ingot is made into nanoparticles by a vacuum arc plasma deposition method.







JP2009047471A 2009-03-02 2009-03-02 Methane steam reforming catalyst Expired - Fee Related JP5268069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047471A JP5268069B2 (en) 2009-03-02 2009-03-02 Methane steam reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047471A JP5268069B2 (en) 2009-03-02 2009-03-02 Methane steam reforming catalyst

Publications (2)

Publication Number Publication Date
JP2010201302A true JP2010201302A (en) 2010-09-16
JP5268069B2 JP5268069B2 (en) 2013-08-21

Family

ID=42963343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047471A Expired - Fee Related JP5268069B2 (en) 2009-03-02 2009-03-02 Methane steam reforming catalyst

Country Status (1)

Country Link
JP (1) JP5268069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034256A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075799A (en) * 2005-09-16 2007-03-29 National Institute For Materials Science Catalyst for hydrogen production, and its production method
JP2007090137A (en) * 2005-09-27 2007-04-12 National Institute For Materials Science Catalyst for steam reforming of hydrocarbon
JP2007179963A (en) * 2005-12-28 2007-07-12 Kasatani:Kk Manufacturing method of catalyst for fuel cell, and method for carrying catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075799A (en) * 2005-09-16 2007-03-29 National Institute For Materials Science Catalyst for hydrogen production, and its production method
JP2007090137A (en) * 2005-09-27 2007-04-12 National Institute For Materials Science Catalyst for steam reforming of hydrocarbon
JP2007179963A (en) * 2005-12-28 2007-07-12 Kasatani:Kk Manufacturing method of catalyst for fuel cell, and method for carrying catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034256A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device using the same

Also Published As

Publication number Publication date
JP5268069B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
Zhu et al. Chemical looping dry reforming of methane with hydrogen generation on Fe2O3/Al2O3 oxygen carrier
Tsoukalou et al. Dry-reforming of methane over bimetallic Ni–M/La2O3 (M= Co, Fe): The effect of the rate of La2O2CO3 formation and phase stability on the catalytic activity and stability
Liu et al. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas
Mo et al. A highly dispersed and anti-coking Ni–La 2 O 3/SiO 2 catalyst for syngas production from dry carbon dioxide reforming of methane
Yin et al. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications
Franchini et al. Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming
Adhikari et al. Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts
Fan et al. Tuning the composition of metastable CoxNiyMg100− x− y (OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst
Li et al. Catalytic performance of iron-promoted nickel-based ordered mesoporous alumina FeNiAl catalysts in dry reforming of methane
JP2010516610A (en) Method and system for producing hydrogen-enriched fuels using microwave-induced methane decomposition for catalysts
RU2598931C2 (en) Hydrogen generation
JP2010516609A (en) Method and system for producing hydrogen-enriched fuel using microwave-induced methane plasma decomposition for catalyst
Luo et al. Co-production of hydrogen and syngas from chemical looping water splitting coupled with decomposition of glycerol using Fe-Ce-Ni based oxygen carriers
Gould et al. n-Dodecane reforming over nickel-based monolith catalysts: Deactivation and carbon deposition
Kong et al. Facile Synthesis of Highly Coking‐Resistant and Active Nickel‐Based Catalyst for Low‐Temperature CO2 Reforming of Methane
Hikima et al. Carbon-dioxide activation by methane with iron-doped barium zirconate in chemical looping cracking system
Esteves et al. Influence of space velocity and catalyst pretreatment on COx free hydrogen and carbon nanotubes production over CoMo/MgO catalyst
Muto et al. Methane pyrolysis characteristics for the practical application of hydrogen production system using permalloy plate catalyst
Vasilevich et al. Molybdenum Carbides: Synthesis and Application in Catalysis
JP4701455B2 (en) Catalyst for hydrogen production, method for producing the same, and method for producing hydrogen
JP5268069B2 (en) Methane steam reforming catalyst
KR100732538B1 (en) Method for directly producing a hydrogen from hydrocarbon utilizing catalyst
Shao et al. Correlating NEXAFS characterization of Co–W and Ni–W bimetallic carbide catalysts with reactivity for dry reforming of methane
JP6933337B2 (en) Low temperature methane reforming catalyst active material
JP5187845B2 (en) Methanol decomposition catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees