JP2010201282A - Method and apparatus for recovering volatile organic compound - Google Patents

Method and apparatus for recovering volatile organic compound Download PDF

Info

Publication number
JP2010201282A
JP2010201282A JP2009046378A JP2009046378A JP2010201282A JP 2010201282 A JP2010201282 A JP 2010201282A JP 2009046378 A JP2009046378 A JP 2009046378A JP 2009046378 A JP2009046378 A JP 2009046378A JP 2010201282 A JP2010201282 A JP 2010201282A
Authority
JP
Japan
Prior art keywords
gas
voc
cooling
condensate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009046378A
Other languages
Japanese (ja)
Other versions
JP5779310B2 (en
Inventor
Tomokiyo Takeyama
友潔 竹山
Akimasa Oda
昭昌 小田
Junya Ono
順也 大野
Tsuyoshi Ikeda
剛志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Refine Co Ltd
Original Assignee
Nippon Refine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Refine Co Ltd filed Critical Nippon Refine Co Ltd
Priority to JP2009046378A priority Critical patent/JP5779310B2/en
Publication of JP2010201282A publication Critical patent/JP2010201282A/en
Application granted granted Critical
Publication of JP5779310B2 publication Critical patent/JP5779310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for efficiently condensing the VOCs (volatile organic compounds) from VOC-containing treating gas at a higher cooling temperature than before and recovering VOCs of high concentration at high yield. <P>SOLUTION: (1) The method for recovering VOCs includes at least a cooling process of the treating gas containing volatile organic compounds (hereafter, VOCs), and a forming process of VOC condensate from the cooled treating gas, and has a circulation path for using the formed VOC condensate as a coolant, and a water feed mechanism for concentration adjustment of the VOC condensate. (2) The recovery apparatus of VOCs includes at least a cooling means of the treating gas containing volatile organic compounds (hereafter, VOCs), a forming means of VOC condensate from the cooled treating gas, a circulation path for using the VOC condensate as the coolant, and the water feed mechanism for concentration adjustment of the VOC condensate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、揮発性有機化合物の回収方法及び回収装置に関する。   The present invention relates to a volatile organic compound recovery method and recovery apparatus.

揮発性有機化合物(以下、VOCと略称することもある)を含む排ガスからのVOCの回収方法としては、(1)省エネルギータイプのガス吸収法(特許文献1)、(2)吸着法(特許文献2)、(3)深冷法(特許文献3)がある。
(1)は、排ガスの熱エネルギーを利用する方法であり、VOCの回収という面では省エネルギープロセスであるが、浄化ガスは湿度が非常に高く、乾燥用空気として再利用するためには、湿度を低減する必要があり、調湿装置の購入費用や調湿のためのランニングコストがかかってしまう。特に水を凝縮又は吸着して回収する場合には、水の凝縮熱が大きいことから必要エネルギーが大きくなり、その結果、ランニングコストが高くなる。
(2)は、活性炭やゼオライト等の吸着剤を利用する技術である。しかし、吸着後のVOCを脱着するためのエネルギーや、脱着して濃縮した後のVOCを冷却して凝縮させるためのエネルギーが必要であり、場合によっては安全のために脱着ガスとして窒素ガスを用いる必要もあるため、ランニングコストが高くなる。また、高温の脱着ガスを必要とする場合には、高温に曝されたVOCが劣化することもある。更に活性炭を使う場合には、吸着熱による発熱、発火の危険性もある。
(3)は、本発明と類似しているが、VOC凝集液に水を添加して濃度調整を行うことにより浄化ガスのVOC濃度を低くするという機能は備えていない。したがって回収効率を上げるためには、吸着装置を利用するか、又は冷却温度を非常に低く設定する必要があり、液体窒素等の特殊な冷媒が必要となるケースが多いし、凝縮率を上げるためにガスを加圧圧縮するといった特殊な方法を採用する場合には設備投資費用が高くなる。また、冷却温度は0℃以下である場合が多く、プロセス配管の凍結等のトラブルも懸念されるため、積極的に水分を除去するプロセスが必要となる。
As a method for recovering VOC from exhaust gas containing a volatile organic compound (hereinafter sometimes abbreviated as VOC), (1) energy-saving gas absorption method (Patent Document 1), (2) adsorption method (Patent Document) 2), (3) Deep cooling method (Patent Document 3).
(1) is a method that uses the thermal energy of exhaust gas, and is an energy-saving process in terms of VOC recovery, but the purified gas has a very high humidity, and in order to reuse it as drying air, the humidity must be reduced. It is necessary to reduce the cost of purchasing the humidity control device and the running cost for humidity control. In particular, when water is condensed or adsorbed and recovered, the required energy is increased because the heat of condensation of water is large, and as a result, the running cost is increased.
(2) is a technique using an adsorbent such as activated carbon or zeolite. However, energy for desorbing the VOC after adsorption and energy for cooling and condensing the VOC after desorption and concentration are necessary. In some cases, nitrogen gas is used as a desorption gas for safety. Since it is also necessary, the running cost becomes high. In addition, when a high-temperature desorption gas is required, the VOC exposed to a high temperature may be deteriorated. Furthermore, when using activated carbon, there is a risk of heat generation and ignition due to heat of adsorption.
(3) is similar to the present invention, but does not have the function of reducing the VOC concentration of the purified gas by adjusting the concentration by adding water to the VOC aggregating liquid. Therefore, in order to increase the recovery efficiency, it is necessary to use an adsorption device or set the cooling temperature very low, and there are many cases where a special refrigerant such as liquid nitrogen is required, and in order to increase the condensation rate. When a special method such as pressurizing and compressing gas is employed, the capital investment cost becomes high. In addition, the cooling temperature is often 0 ° C. or less, and there is a concern about troubles such as freezing of process pipes. Therefore, a process for positively removing moisture is required.

特開2004−230265号公報Japanese Patent Laid-Open No. 2004-230265 特開2005−138038号公報JP 2005-138038 A 特開2007−319730号公報JP 2007-319730 A

本発明は、VOCを含む被処理ガスから、従来よりも高い冷却温度で効率よくVOCを凝縮させることができ、高濃度のVOCを高収率で回収することができる方法及び装置の提供を目的とする。   An object of the present invention is to provide a method and an apparatus capable of condensing VOCs efficiently from a gas to be treated containing VOCs at a higher cooling temperature than before and recovering high-concentration VOCs in a high yield. And

上記課題は、次の1)〜7)の発明によって解決される。
1) VOCを含む被処理ガスの冷却工程と、冷却した被処理ガスからのVOC凝縮液の生成工程を少なくとも有し、生成したVOC凝縮液を冷媒として用いるための循環経路、及びVOC凝縮液の濃度調整用水供給機構を設けたことを特徴とするVOCの回収方法。
2) VOCを含む被処理ガスを、ガス−ガス熱交換器において冷却用ガスと熱交換させ、該熱交換器を通過した被処理ガスを、液−ガス直接接触型の冷却凝縮器においてVOC凝縮液と接触させるとともに、濃度調整用水供給機構により濃度調整を行ったVOC凝縮液を、液−液熱交換器において冷却媒体と熱交換させて冷却したのち、前記冷却凝縮器に戻して循環させ、前記冷却凝縮器で発生した浄化ガスを前記冷却用ガスとして用いる1)記載のVOCの回収方法。
3) VOCを含む被処理ガスを、ガス−ガス熱交換器において冷却用ガスと熱交換させ、該熱交換器を通過した被処理ガスを、液−ガス熱交換器からなる冷却凝縮器において冷却媒体と熱交換させ、生成したVOC凝縮液を回収タンクに移し、次いで、濃度調整用水供給機構により濃度調整を行った後、ミスト−凝縮液接触装置において、前記冷却凝縮器で発生したVOC含有ミストと接触させ、発生したVOC凝縮液は前記回収タンクに戻して循環使用し、発生した浄化ガスは前記冷却用ガスとして用いる1)記載のVOCの回収方法。
4) 濃度調整用水供給機構により濃度調整を行う際の水の添加量を制御して、浄化ガスの水分率を乾燥用空気に適した水分率に制御し、浄化ガスを前記冷却用ガスとして用いた後、更に乾燥用空気として再利用できるようにする2)又は3)記載のVOCの回収方法。
5) 少なくとも、揮発性有機化合物(以下、VOCという)を含む被処理ガスの冷却手段、冷却した被処理ガスからのVOC凝縮液生成手段、VOC凝縮液を冷媒として用いるための循環経路、及びVOC凝縮液の濃度調整用水供給機構を備えたことを特徴とするVOCの回収装置。
6) 被処理ガスの冷却手段が、被処理ガスと冷却用ガスとのガス−ガス熱交換器であり、VOC凝縮液生成手段が、該熱交換器を通過した被処理ガスとVOC凝縮液との液−ガス直接接触型冷却凝縮器であり、更に濃度調整されたVOC凝縮液とその冷却媒体との液−液熱交換器を備え、前記冷却凝縮器で発生した浄化ガスを、前記冷却用ガスとして用いる構造とした5)記載のVOCの回収装置。
7) 被処理ガスの冷却手段が、被処理ガスと冷却用ガスとのガス−ガス熱交換器であり、VOC凝縮液生成手段が、該熱交換器を通過した被処理ガスとその冷却媒体との液−ガス熱交換器(冷却凝縮器)であり、更にVOC凝縮液回収タンク、及び、前記冷却凝縮器で発生したVOC含有ミストとVOC凝縮液との接触装置を備え、該接触装置で発生したVOC凝縮液は循環経路により前記回収タンクに戻し、発生した浄化ガスは前記冷却用ガスとして用いる構造とした5)記載のVOCの回収装置。
The above problems are solved by the following inventions 1) to 7).
1) At least a process for cooling a gas to be processed containing VOC and a process for generating a VOC condensate from the cooled gas to be processed, a circulation path for using the generated VOC condensate as a refrigerant, and a VOC condensate A VOC recovery method comprising a concentration adjustment water supply mechanism.
2) The gas to be treated including VOC is heat exchanged with the cooling gas in the gas-gas heat exchanger, and the gas to be treated that has passed through the heat exchanger is VOC condensed in the liquid-gas direct contact type cooling condenser. The VOC condensate whose concentration is adjusted by the water supply mechanism for concentration adjustment is cooled by allowing the liquid-liquid heat exchanger to exchange heat with a cooling medium, and then returned to the cooling condenser for circulation. The VOC recovery method according to 1), wherein the purified gas generated in the cooling condenser is used as the cooling gas.
3) The gas to be processed including VOC is heat-exchanged with a cooling gas in a gas-gas heat exchanger, and the gas to be processed that has passed through the heat exchanger is cooled in a cooling condenser including a liquid-gas heat exchanger. After exchanging heat with the medium, the generated VOC condensate is transferred to a recovery tank, and then the concentration is adjusted by the water supply mechanism for concentration adjustment. Then, in the mist-condensate contact device, the VOC-containing mist generated in the cooling condenser And the generated VOC condensate is returned to the recovery tank for circulation, and the generated purified gas is used as the cooling gas.
4) By controlling the amount of water added when the concentration is adjusted by the concentration adjustment water supply mechanism, the moisture content of the purified gas is controlled to a moisture content suitable for the drying air, and the purified gas is used as the cooling gas. 2) or the method for recovering a VOC according to 3), which can be reused as drying air.
5) Cooling means for processing gas containing at least a volatile organic compound (hereinafter referred to as VOC), VOC condensate generating means from the cooled processing gas, a circulation path for using the VOC condensate as a refrigerant, and VOC A VOC recovery apparatus comprising a condensate concentration adjusting water supply mechanism.
6) The cooling means for the gas to be processed is a gas-gas heat exchanger of the gas to be processed and the cooling gas, and the VOC condensate generation means is configured to output the gas to be processed and the VOC condensate that have passed through the heat exchanger. A liquid-gas direct contact type cooling condenser, further comprising a liquid-liquid heat exchanger for adjusting the concentration of the VOC condensate and its cooling medium, and purifying gas generated in the cooling condenser for cooling The VOC recovery device according to 5), which has a structure used as a gas.
7) The cooling means for the gas to be processed is a gas-gas heat exchanger of the gas to be processed and the cooling gas, and the VOC condensate generating means is a gas to be processed that has passed through the heat exchanger and its cooling medium. Liquid-gas heat exchanger (cooling condenser), further comprising a VOC condensate recovery tank, and a contact device between the VOC-containing mist generated in the cooling condenser and the VOC condensate, and generated in the contact device The VOC recovery device according to 5), wherein the VOC condensate is returned to the recovery tank through a circulation path, and the generated purified gas is used as the cooling gas.

本発明によれば、VOCを含む被処理ガスから、従来よりも高い冷却温度で効率よくVOCを凝縮させることができ、高濃度のVOCを高収率で回収することが可能な方法及び装置を提供できる。
また、本発明は、後述するように、VOC凝縮液及び浄化ガスのVOC濃度や水分率の制御が容易であり、配管の凍結を防止しつつ冷却温度を0℃より低く設定することもでき、VOC凝縮液の劣化を抑制でき、引火点を無くして安全性を高めることもできるというような多面的な効果を奏する。
According to the present invention, there is provided a method and apparatus capable of efficiently condensing VOCs from a gas to be treated containing VOCs at a higher cooling temperature than in the prior art and recovering high-concentration VOCs in a high yield. Can be provided.
In addition, as described later, the present invention makes it easy to control the VOC concentration and moisture content of the VOC condensate and the purified gas, and the cooling temperature can be set lower than 0 ° C. while preventing freezing of the piping. Deterioration of the VOC condensate can be suppressed, and a multifaceted effect is achieved such that the flash point can be eliminated and safety can be enhanced.

本発明のVOC回収方法及び装置の一例を示す図。The figure which shows an example of the VOC collection | recovery method and apparatus of this invention. 本発明のVOC回収方法及び装置の他の例を示す図。The figure which shows the other example of the VOC collection | recovery method and apparatus of this invention. 実施例で用いたVOC回収装置の構成を示す図。The figure which shows the structure of the VOC collection | recovery apparatus used in the Example. NMP−水の固液平衡図。The solid-liquid equilibrium diagram of NMP-water. 水−DMSOの固液平衡図。The solid-liquid equilibrium diagram of water-DMSO.

以下、上記本発明について詳しく説明する。
本発明は、揮発性有機化合物(VOC)を含む被処理ガスを冷却凝縮させてVOCを回収する際に、VOC凝縮液に水を添加することによりVOCの分圧を下げること、及び、生成させたVOC凝縮液を、その生成工程において冷媒として循環使用することを主な特徴とする。ここで、揮発性有機化合物とは、大気汚染防止法で規定するものなどを指し、例えば、N−メチル−2−ピロリドン(NMP)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ブチルジグリコール(BDG)が挙げられる。また、被処理ガスとしては、各種工業製品の製造工程で排出される排ガスが挙げられる。
Hereinafter, the present invention will be described in detail.
The present invention reduces the partial pressure of VOC by adding water to the VOC condensate when the gas to be treated containing volatile organic compound (VOC) is cooled and condensed to recover VOC, and is generated. The main feature is that the VOC condensate is recycled as a refrigerant in the production process. Here, a volatile organic compound refers to what is prescribed | regulated by the air pollution prevention law, for example, N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF), dimethylsulfoxide ( DMSO) and butyl diglycol (BDG). Examples of the gas to be treated include exhaust gas discharged in the manufacturing process of various industrial products.

被処理ガスの冷却工程で用いる装置は特に限定されず、公知の熱交換器などを用いることができる。プレート式、多管式の熱交換器、蓄熱体を利用した蓄冷式熱交換器、ガスとガスの間に熱媒を循環させる間接式の熱交換器等があるが、冷却用ガスとして浄化ガスを用いるとエネルギー効率の点で有利であるため、ガス−ガス熱交換器が好ましい。
VOC凝縮液の生成工程で用いる冷却凝縮器としては、液−ガス直接接触型の冷却凝縮器や液−ガス熱交換器(プレートフィン式、エロフィン式、プレート式、多管式等)等を用いることができる。
上記熱交換器と冷却凝縮器は、設置場所、初期投資、熱回収率等を考慮して最適な組み合わせを選択すればよい。
濃度調整用水供給機構は、濃度計、水供給部、自動制御部等を備えていればよく、例えば、オンラインの濃度計の数値に基づいて間欠的に水を補給する自動制御機構が簡便で好ましい。濃度調整用水供給機構によるVOC凝縮液の水分率の調整は、大気汚染防止法などにより要求される浄化ガスのVOC濃度に合わせて行う。水の添加量は少量であり、純水等の特別な水を用いる必要はない。
実際の回収装置の稼動に際しては、起動から徐々に、冷媒として用いるVOC凝縮液の温度を下げ、冷却凝縮器中の温度を下げていくことことにより、起動時に空気中に含まれていた水分を凝縮させ、所定の冷却温度まで達した後、定常運転とするのが望ましい。
また、ガスの管理濃度は、爆発限界の下限値の1/4以下とする。ただし、実際の管理では、更に安全性を考慮して、一般に前記下限値の1/5〜1/10とする。
An apparatus used in the process of cooling the gas to be processed is not particularly limited, and a known heat exchanger or the like can be used. There are plate type, multi-tube type heat exchangers, cold storage type heat exchangers using heat storage bodies, indirect type heat exchangers that circulate a heat medium between gas and gas, etc., but purified gas as cooling gas Since it is advantageous in terms of energy efficiency, a gas-gas heat exchanger is preferable.
As the cooling condenser used in the VOC condensate production process, a liquid-gas direct contact type cooling condenser, a liquid-gas heat exchanger (plate fin type, erotic fin type, plate type, multi-tube type, etc.), etc. are used. be able to.
The heat exchanger and the cooling condenser may be selected in an optimal combination in consideration of the installation location, initial investment, heat recovery rate, and the like.
The concentration adjustment water supply mechanism only needs to include a concentration meter, a water supply unit, an automatic control unit, and the like. For example, an automatic control mechanism that replenishes water intermittently based on the values of an online concentration meter is simple and preferable. . The water content of the VOC condensate is adjusted by the concentration adjusting water supply mechanism in accordance with the VOC concentration of the purified gas required by the air pollution prevention method or the like. The amount of water added is small and there is no need to use special water such as pure water.
In actual operation of the recovery device, gradually lower the temperature of the VOC condensate used as a refrigerant and lower the temperature in the cooling condenser from the start-up, thereby removing moisture contained in the air at the start-up. It is desirable to perform steady operation after condensing and reaching a predetermined cooling temperature.
Moreover, the management concentration of gas shall be 1/4 or less of the lower limit of the explosion limit. However, in actual management, in consideration of safety, it is generally set to 1/5 to 1/10 of the lower limit value.

次に、図を参照しつつ、本発明の実施の態様例について説明する。
図1に示す例では、VOCを含む高温(通常、40〜120℃程度)の排ガスはガス−ガス熱交換器1の高温側入口に送られ、VOC冷却凝縮器2から排出される浄化ガスと熱交換して温度が下がる(通常、20〜60℃程度)。
熱交換器1を通過した排ガスは、液−ガス直接接触型のVOC冷却凝縮器2に送られ、液−液熱交換器3で冷却されたVOC凝縮液(通常、5℃以下程度)により、所定の温度まで冷却されてVOC成分が凝縮し、冷却凝縮器2の下部に溜まる。この溜まったVOC凝縮液は、濃度調整用水供給機構により水分率を調整され、次いで、VOC凝縮液と冷却媒体との液−液熱交換器3に送られて冷却された後、冷却凝縮器2に戻されて循環する。冷却媒体は一般に不凍液を用いるが、冷却温度によっては、冷却水などの他の材料を用いてもよい。また、冷却凝縮器2に溜めるVOC凝縮液は、十分に循環できる量とする必要がある。
凝縮により大部分のVOCが除去された浄化ガス(通常、10℃以下程度)は、冷却用ガスとして冷却凝縮器2から熱交換器1に送られる。
なお、回収対象となるVOCは多種多様であり、VOCを含む排ガスの条件も多種多様であるから、上記説明中の温度は一例であって、これに限定されるものではない。
Next, exemplary embodiments of the present invention will be described with reference to the drawings.
In the example shown in FIG. 1, high-temperature (usually about 40 to 120 ° C.) exhaust gas containing VOC is sent to the high-temperature side inlet of the gas-gas heat exchanger 1 and purified gas discharged from the VOC cooling condenser 2 Heat exchange reduces the temperature (usually around 20-60 ° C).
The exhaust gas that has passed through the heat exchanger 1 is sent to the liquid-gas direct contact type VOC cooling condenser 2 and is cooled by the liquid-liquid heat exchanger 3 (usually about 5 ° C. or less), The VOC component is condensed by being cooled to a predetermined temperature, and accumulated in the lower part of the cooling condenser 2. The collected VOC condensate is adjusted in water content by a concentration adjusting water supply mechanism, then sent to the liquid-liquid heat exchanger 3 between the VOC condensate and the cooling medium and cooled, and then the cooling condenser 2 It returns to and circulates. Generally, an antifreeze is used as the cooling medium, but other materials such as cooling water may be used depending on the cooling temperature. Further, the VOC condensate stored in the cooling condenser 2 needs to be an amount that can be circulated sufficiently.
The purified gas from which most of the VOC has been removed by condensation (usually about 10 ° C. or less) is sent from the cooling condenser 2 to the heat exchanger 1 as a cooling gas.
In addition, since VOC used as collection | recovery object is various and the conditions of the waste gas containing VOC are also various, the temperature in the said description is an example, Comprising: It is not limited to this.

図2に示す他の例では、ガス−ガス熱交換器1及び浄化ガスの動作については、図1の場合と同様である。
熱交換器1を通過した排ガスは、液−ガス熱交換器であるVOC冷却凝縮器4において冷却媒体により冷却凝縮され、凝縮液はVOC凝縮液回収タンクに送られる。
該回収タンクに溜まったVOC凝縮液は、濃度調整用水供給機構により水分率を調整されて、ミスト−凝縮液接触装置5に送られる。
一方、冷却凝縮器4において急冷のために発生するVOCミストは、ミストセパレータを兼ねるミスト−凝縮液接触装置5に送られ、水分率を調整されたVOC凝縮液と接触して凝縮し、VOC凝縮液回収タンクに送られる。このとき、ミスト−凝縮液接触に用いたVOC凝縮液も一緒に該回収タンクに送られるので、該回収タンクのVOC凝縮液は循環することになる。また凝縮により大部分のVOCが除去された排ガスは、浄化ガスとして冷却凝縮器4から熱交換器1に送られる。
なお、図1、図2では、熱交換器1の冷却用空気として浄化ガスを用いる場合を示したが、代りに普通の空気を用いてもよい。その場合には、浄化ガスは冷却凝縮器2又はミスト−凝縮液接触装置5から空中に放出される。また、VOC凝縮液が一定量以上溜まった場合には、液面調節計や排出バルブ等を備えた回収機構(図示せず)により回収する。
In another example shown in FIG. 2, the operations of the gas-gas heat exchanger 1 and the purified gas are the same as those in FIG.
The exhaust gas that has passed through the heat exchanger 1 is cooled and condensed by the cooling medium in the VOC cooling condenser 4 that is a liquid-gas heat exchanger, and the condensate is sent to the VOC condensate recovery tank.
The VOC condensate collected in the recovery tank is sent to the mist-condensate contact device 5 after the water content is adjusted by the concentration adjusting water supply mechanism.
On the other hand, the VOC mist generated due to rapid cooling in the cooling condenser 4 is sent to the mist-condensate contact device 5 which also serves as a mist separator, condenses in contact with the VOC condensate whose moisture content is adjusted, and condenses VOC. It is sent to the liquid recovery tank. At this time, since the VOC condensate used for the mist-condensate contact is also sent to the recovery tank, the VOC condensate in the recovery tank circulates. The exhaust gas from which most of the VOC has been removed by condensation is sent as purified gas from the cooling condenser 4 to the heat exchanger 1.
1 and 2, the case where purified gas is used as the cooling air of the heat exchanger 1 is shown, but ordinary air may be used instead. In that case, the purified gas is discharged from the cooling condenser 2 or the mist-condensate contact device 5 into the air. Further, when a predetermined amount or more of VOC condensate is collected, it is collected by a collection mechanism (not shown) equipped with a liquid level controller, a discharge valve, and the like.

本発明は従来技術に比べて次のような多くの利点を有する。
(1)VOC凝縮液に水を添加することにより、VOCを含む被処理ガスから常圧で効率よくVOCを回収するのに必要な冷却温度よりも高い温度での回収が可能となり、冷却エネルギーが少なくて済む。
(2)VOC凝縮液生成工程等において、該凝縮液を冷媒として循環使用することにより、液体窒素等の冷媒を用いることなく、従来よりも高い温度で効率よく冷却凝縮できる。
(3)本発明のように、VOC凝縮液を生成工程等において冷媒として循環使用すると、気液平衡状態の形成、装置内部の凍結防止及び飛沫同伴防止、ミスト捕集効率向上などの点で効果的である。即ち、VOC濃度が一定に制御されたVOC凝縮液と被処理ガス又はVOCミストを十分に接触させることにより、被処理ガス又はVOCミストの組成は平衡状態となり、被処理ガス又はVOCミスト中のVOC濃度及び湿度は、濃度調整したVOC凝縮液の組成により制御することができる。
(4)VOC凝縮液に水を混合することにより凝固点降下が起こるため、VOC凝縮液の冷却温度を0℃よりも低く設定することもできる。例えば図4に示すように、水−NMP系の場合、NMP約50wt%以上では、−20℃位まで冷却しても液体であり、図5に示すように、水−DMSO系の場合、DMSO約45〜75wt%の範囲では、−25℃位まで冷却しても液体である。また、この凝固点降下を利用すると、凝固点が高いVOCでも、水溶性であれば、VOC凝縮液を液体のまま取り扱うことができ、取り扱いが容易になる。更に、冷却温度を0℃よりも低く設定した場合でも、プロセス配管の凍結等のトラブルを防止できる。
The present invention has many advantages over the prior art as follows.
(1) By adding water to the VOC condensate, it becomes possible to recover at a temperature higher than the cooling temperature necessary for efficiently recovering VOC at normal pressure from the gas to be treated containing VOC, and cooling energy is reduced. Less is enough.
(2) In the VOC condensate production step or the like, the condensate is circulated and used as a refrigerant, so that it can be efficiently cooled and condensed at a higher temperature than before without using a refrigerant such as liquid nitrogen.
(3) Like the present invention, when the VOC condensate is circulated and used as a refrigerant in the production process, etc., it is effective in terms of formation of a gas-liquid equilibrium state, prevention of freezing and entrainment of the inside of the apparatus, improvement of mist collection efficiency, etc. Is. That is, when the VOC condensate whose VOC concentration is controlled to be constant and the gas to be processed or the VOC mist are sufficiently brought into contact with each other, the composition of the gas to be processed or the VOC mist becomes an equilibrium state, and the VOC in the gas to be processed or the VOC mist is obtained. Concentration and humidity can be controlled by the composition of the concentration-adjusted VOC condensate.
(4) Since the freezing point lowers by mixing water with the VOC condensate, the cooling temperature of the VOC condensate can be set lower than 0 ° C. For example, as shown in FIG. 4, in the case of water-NMP system, when NMP is about 50 wt% or more, it is liquid even when cooled to about −20 ° C., and as shown in FIG. 5, in the case of water-DMSO system, DMSO In the range of about 45 to 75 wt%, it is liquid even when cooled to about −25 ° C. Further, if this freezing point depression is used, even if the VOC has a high freezing point, the VOC condensate can be handled as a liquid as long as it is water-soluble, and the handling becomes easy. Furthermore, troubles such as freezing of process pipes can be prevented even when the cooling temperature is set lower than 0 ° C.

(5)VOC凝縮液の水分率を自動制御により調整して一定以上に保つことにより、引火点を無くし、安全性を高めて非危険物とすることができる。また、回収装置は非危険物施設として扱うことが可能となる。
(6)VOCの種類に応じて、冷却温度を下げることにより、反応性を抑制して安全性を向上させるとともに、回収したVOC凝縮液の劣化を抑制できる。
(7)VOC凝縮液の冷却温度を、VOCを効率よく回収できる温度に下げても、浄化ガスを被処理ガスの冷却に用いることにより、VOC凝縮液の冷却に使った熱を回収できるため、ランニングコストを下げることができる。
(8)浄化ガスを乾燥用空気などに再利用する場合には、被処理ガスの熱エネルギー及びVOC凝縮液の冷却に用いた冷却エネルギーを回収利用できる。
(9)吸着剤のような劣化し交換する必要のある消耗品がなく、メンテナンス性に優れており、また、装置に必要な機器点数が少なく、小型で効率よいVOC回収装置が得られる。
(5) By adjusting the moisture content of the VOC condensate by automatic control and keeping it at a certain level or more, the flash point can be eliminated and the safety can be improved to be a non-hazardous material. In addition, the recovery device can be handled as a non-dangerous material facility.
(6) By reducing the cooling temperature according to the type of VOC, it is possible to suppress the reactivity and improve the safety, and to suppress the deterioration of the collected VOC condensate.
(7) Even if the cooling temperature of the VOC condensate is lowered to a temperature at which VOC can be efficiently recovered, the heat used for cooling the VOC condensate can be recovered by using the purified gas for cooling the gas to be treated. Running costs can be reduced.
(8) When the purified gas is reused for drying air or the like, the thermal energy of the gas to be treated and the cooling energy used for cooling the VOC condensate can be recovered and utilized.
(9) There is no consumable that needs to be exchanged, such as an adsorbent, is excellent in maintainability, has a small number of equipment required for the apparatus, and can provide a small and efficient VOC recovery apparatus.

(10)浄化ガスは、熱交換器1で使用された後、更に各種製造工程等の乾燥用空気として再利用することも可能であり、その場合には、乾燥用空気として要求される湿度も考慮して水分率を調整する必要がある。その際、VOC凝縮液の冷却温度における水の蒸気圧(分圧)は、冷却温度での飽和水蒸気圧よりも低いので効果的である。また、吸着法を使うことなく、乾燥用空気に要求される湿度に対応する飽和蒸気圧に合わせるための温度制御を行うこともなく、乾燥用空気の湿度を安定的かつ簡易に調整できる。
(11)季節変動による湿度変化の影響を受けることなく制御された一定の湿度と温度の乾燥用空気を送り込むことができる。
(12)熱交換器1において排ガスと熱交換することにより浄化ガスが暖められるので、乾燥用空気として用いるための加熱エネルギーを減らすことができ、プロセス全体での省エネルギー化を達成できる。
(10) After the purified gas is used in the heat exchanger 1, it can be reused as drying air for various manufacturing processes. In that case, the humidity required as the drying air is also reduced. It is necessary to adjust the moisture content in consideration. At that time, the vapor pressure (partial pressure) of water at the cooling temperature of the VOC condensate is effective because it is lower than the saturated water vapor pressure at the cooling temperature. Further, the humidity of the drying air can be adjusted stably and easily without using an adsorption method and without performing temperature control to match the saturated vapor pressure corresponding to the humidity required for the drying air.
(11) It is possible to send drying air having a controlled constant humidity and temperature without being affected by a change in humidity due to seasonal fluctuations.
(12) Since the purified gas is heated by exchanging heat with the exhaust gas in the heat exchanger 1, heating energy for use as drying air can be reduced, and energy saving can be achieved in the entire process.

以下、実施例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
なお、実施例では図3に示す装置を用いた。11は排風機、12は送風機、13はVOC凝縮液冷却器、14は水供給用電磁弁、15はVOC凝縮液濃度測定計、16はVOC凝縮液循環ポンプ、17は不凍液流量調節弁、18はガス−ガス熱交換器、19は気液接触型ガス冷却凝縮器、20はVOC凝縮液排出用電磁弁、21は温度記録計、22は液面調節計である。
また、冷却後のガス温度の数値から、冷媒である不凍液の流量を調整して冷却温度を制御した。また、VOC凝縮液循環経路にVOC濃度測定用の濃度計を設け、その数値から添加する水の量を決め、濃度を制御した。水を添加する位置は、NMP凝縮液の冷却後の温度が、水の凍結温度まで下がっても、水の供給ラインが凍結しないように、ガス−ガス熱交換器の被処理ガス出口の直近とし、ここにノズルを設けた。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
In the examples, the apparatus shown in FIG. 3 was used. 11 is an exhaust fan, 12 is a blower, 13 is a VOC condensate cooler, 14 is a solenoid valve for water supply, 15 is a VOC condensate concentration meter, 16 is a VOC condensate circulation pump, 17 is an antifreeze flow rate control valve, 18 Is a gas-gas heat exchanger, 19 is a gas-liquid contact type gas cooled condenser, 20 is a solenoid valve for discharging a VOC condensate, 21 is a temperature recorder, and 22 is a liquid level controller.
Moreover, the cooling temperature was controlled by adjusting the flow rate of the antifreeze liquid as the refrigerant from the numerical value of the gas temperature after cooling. Further, a concentration meter for measuring the VOC concentration was provided in the VOC condensate circulation path, and the amount of water to be added was determined from the numerical value to control the concentration. The position where water is added should be close to the treated gas outlet of the gas-gas heat exchanger so that the water supply line will not freeze even if the temperature after cooling the NMP condensate falls to the water freezing temperature. A nozzle was provided here.

実施例1
リチウムイオン2次電池の製造工程では、電極用バインダーを溶解する溶剤としてNMP(分子量99)が使用されている。NMPは、バインダーを溶解したあと、乾燥工程で蒸発し、乾燥用空気と一緒に排出される。排ガス中のNMP濃度は、安全を考慮して爆発限界濃度の下限値(1.3vol%)の1/5〜1/10で管理されるため、排ガス中のNMP濃度は1000ppm.vol前後であることが多い。また、NMPは沸点が高く(202℃)、高温でないと乾燥できないため、乾燥用の空気は80℃以上まで加熱して用いるのが一般的である。
本実施例で用いたNMPを含む排ガスの流量、組成等は下記(A)のとおりである。
(A)排ガス流量:100Nm/min
排ガス温度:90℃
NMPガス濃度:1000ppm.vol
排ガス湿度(水分率):4300ppm.vol
Example 1
In a manufacturing process of a lithium ion secondary battery, NMP (molecular weight 99) is used as a solvent for dissolving an electrode binder. After the binder is dissolved, NMP evaporates in the drying process and is discharged together with the drying air. The NMP concentration in the exhaust gas is controlled at 1/5 to 1/10 of the lower limit value (1.3 vol%) of the explosion limit concentration in consideration of safety, so the NMP concentration in the exhaust gas is 1000 ppm. It is often around vol. Moreover, since NMP has a high boiling point (202 ° C.) and cannot be dried unless it is at a high temperature, the drying air is generally heated to 80 ° C. or higher.
The flow rate, composition, etc. of the exhaust gas containing NMP used in this example are as shown in (A) below.
(A) Exhaust gas flow rate: 100 Nm 3 / min
Exhaust gas temperature: 90 ° C
NMP gas concentration: 1000 ppm. vol
Exhaust gas humidity (water content): 4300 ppm. vol

上記排ガスを、ガス−ガス熱交換器18において冷却用ガス(浄化ガス)と熱交換させた結果、排ガスの流量、組成等は下記(B)のようになった。即ち、ガス温度を90℃から37.4℃まで下げることができた。熱交換器としては、装置の寸法が最適であり且つ熱回収によるメリットが十分にある熱回収率60%のものを選択した。伝熱面積を増やせば熱回収率を80%程度まで上げられるが、装置が大きくなり初期投資が大きくなる。
(B)ガス−ガス熱交換後の排ガス(熱回収率60%想定)
排ガス流量:100Nm/min
排ガス温度:37.4℃
NMPガス濃度:1000ppm.vol
排ガス湿度(水分率):4300ppm.vol
As a result of heat exchange of the exhaust gas with a cooling gas (purified gas) in the gas-gas heat exchanger 18, the flow rate and composition of the exhaust gas are as shown in (B) below. That is, the gas temperature could be lowered from 90 ° C. to 37.4 ° C. As the heat exchanger, a heat exchanger having a heat recovery rate of 60%, which has an optimal device size and has a sufficient merit by heat recovery, was selected. If the heat transfer area is increased, the heat recovery rate can be increased to about 80%, but the apparatus becomes larger and the initial investment increases.
(B) Exhaust gas after gas-gas heat exchange (assuming a heat recovery rate of 60%)
Exhaust gas flow rate: 100 Nm 3 / min
Exhaust gas temperature: 37.4 ° C
NMP gas concentration: 1000 ppm. vol
Exhaust gas humidity (water content): 4300 ppm. vol

上記(B)の排ガスを、冷却凝縮器19、凝縮液冷却器13、VOC凝縮液の濃度調整用水供給機構(水供給用電磁弁14、凝縮液濃度測定計15など)等を稼動させて処理した結果、排出された浄化ガスの流量、組成等は下記(C)のようになった。
(C)冷却凝縮器出口から排出される浄化ガス
浄化ガス流量:99.9Nm/min
浄化ガス温度:4℃
NMPガス濃度:20ppm.vol
浄化ガス湿度(水分率):4300ppm.vol
濃度100%のNMP水溶液の4℃での蒸気圧は、8.5Paであり、大気圧101325Paから換算すると、4℃冷却後のNMPのガス濃度は83.9ppm.volとなる。しかし、NMP凝縮液に水を適量添加し、NMP80wt%(42.1mol%)、水20wt%(57.9mol%)となるように凝縮液を濃度調整し、この凝縮液と排ガスとを十分に気液接触させ平衡状態にすることにより、NMP42.1mol%水溶液のときの平衡状態にまでNMPの蒸気圧を下げることができる。
その結果、理想系での計算では、8.5Pa×42.1mol%÷101325Pa×10≒35ppm.vol程度までNMPガス濃度を減少させることができる。NMPガス濃度の実測値は20ppm.volであり、理想系での計算値よりも低くなっているが、これは、水とNMPが混合したときの物性により、理想系とは異なる状態となったためである。
また、回収効率は、濃度100%のNMP凝縮液による平衡関係では91.6%となるが、濃度80wt%のNMP凝縮液の場合、96.5%となり、5%程度上昇させることができる。なお、浄化ガスを乾燥用空気として再利用する場合には、回収しきれないNMPは乾燥プロセスに戻されるので、NMPの回収率は実質100%となる。
更に、4℃の水の飽和蒸気圧は、812.5Paであり、大気圧から換算すると8019ppm.volとなる。しかし、NMPと同様に、水の蒸気圧は、水57.9mol%のときの蒸気圧まで下げることができるため、812.5Pa×57.9mol%÷101325Pa×10≒4643ppm.volまでガス中の水分率を下げることができる。4643ppm.volという水分率は、ガス温度が−3.5℃のときの飽和水蒸気圧と同じである。したがって、4℃までの冷却で、−3.5℃相当の乾燥空気を作ることが可能となる。実測値では4300ppm.volとなっているが、これは、水とNMPが混合したときの物性により、理想系とは異なる状態となったためである。
本実施例では、ガス−ガス熱交換器18によりプレ冷却を実施したため、4℃まで冷やすエネルギーを大幅に減らすことができた。
また、NMPガス濃度は20ppm.volと低く、環境基準を十分に満たしているので、浄化ガスを空気中に放出しても問題はない。
The exhaust gas of the above (B) is processed by operating the cooling condenser 19, the condensate cooler 13, the water supply mechanism for adjusting the concentration of the VOC condensate (water supply electromagnetic valve 14, condensate concentration meter 15, etc.), etc. As a result, the flow rate, composition, etc. of the exhausted purified gas were as shown in (C) below.
(C) Purified gas discharged from cooling condenser outlet Purified gas flow rate: 99.9 Nm 3 / min
Purified gas temperature: 4 ° C
NMP gas concentration: 20 ppm. vol
Purified gas humidity (water content): 4300 ppm. vol
The vapor pressure at 4 ° C. of the 100% NMP aqueous solution is 8.5 Pa. When converted from the atmospheric pressure of 101325 Pa, the NMP gas concentration after cooling at 4 ° C. is 83.9 ppm. It becomes vol. However, an appropriate amount of water is added to the NMP condensate, and the concentration of the condensate is adjusted so that NMP is 80 wt% (42.1 mol%) and water is 20 wt% (57.9 mol%). The vapor pressure of NMP can be lowered to the equilibrium state in the case of an NMP 42.1 mol% aqueous solution by bringing it into gas-liquid contact and achieving an equilibrium state.
As a result, in an ideal system calculation, 8.5 Pa × 42.1 mol% ÷ 101325 Pa × 10 6 ≈35 ppm. The NMP gas concentration can be reduced to about vol. The measured value of NMP gas concentration is 20 ppm. Although it is vol and is lower than the calculated value in the ideal system, this is because the state becomes different from the ideal system due to the physical properties when water and NMP are mixed.
Further, the recovery efficiency is 91.6% in the equilibrium relationship with the NMP condensate having a concentration of 100%, but in the case of the NMP condensate having a concentration of 80 wt%, it becomes 96.5% and can be increased by about 5%. When the purified gas is reused as drying air, NMP that cannot be recovered is returned to the drying process, so that the NMP recovery rate is substantially 100%.
Further, the saturated vapor pressure of water at 4 ° C. is 812.5 Pa, which is 8019 ppm. It becomes vol. However, like NMP, the vapor pressure of water can be lowered to the vapor pressure at the time of 57.9 mol% of water, so that 812.5 Pa × 57.9 mol% ÷ 101325 Pa × 10 6 ≈4643 ppm. The moisture content in the gas can be lowered to vol. 4643 ppm. The water content of vol is the same as the saturated water vapor pressure when the gas temperature is −3.5 ° C. Therefore, it is possible to produce dry air corresponding to -3.5 ° C by cooling to 4 ° C. The measured value is 4300 ppm. Although it is vol, this is because it became a state different from the ideal system due to physical properties when water and NMP were mixed.
In this example, since the pre-cooling was performed by the gas-gas heat exchanger 18, the energy for cooling to 4 ° C. could be greatly reduced.
The NMP gas concentration was 20 ppm. Since it is as low as vol and sufficiently satisfies the environmental standards, there is no problem even if the purified gas is released into the air.

上記(B)の排ガスを処理して得られたNMP凝縮液の回収量、組成等は下記(D)のとおりであった。
(D)NMP凝縮液
NMP回収量:25.6kg/hr
水添加量:6.4kg/hr
NMP濃度:80wt%
凝縮液温度:0℃
NMP凝縮液は、80wt%よりも低い濃度で管理することが可能であるが、回収したNMPを精製して再利用する際、水を分離するためのコストを考慮すると80wt%程度の濃い状態が最適である。また、NMPは水を15wt%以上に調整すると引火点がなくなるという事実があり、装置としての安全性が高まるほか、非危険物施設として扱うことが可能となる。NMP凝縮液は、0℃まで冷却し、並流での気液接触でも十分にガス温度が下げられるようにした。0℃まで冷却してもNMP水溶液であるため水が凍結することはなく、液体として常時循環させることができた。
The recovered amount, composition, etc. of the NMP condensate obtained by treating the exhaust gas of (B) were as shown in (D) below.
(D) NMP condensate NMP recovery amount: 25.6 kg / hr
Water addition amount: 6.4 kg / hr
NMP concentration: 80wt%
Condensate temperature: 0 ° C
The NMP condensate can be managed at a concentration lower than 80 wt%, but when the recovered NMP is purified and reused, the concentration of the NMP condensate is about 80 wt% in consideration of the cost for separating water. Is optimal. In addition, NMP has the fact that the flash point disappears when the water is adjusted to 15 wt% or more, which increases the safety of the device and allows it to be handled as a non-hazardous material facility. The NMP condensate was cooled to 0 ° C. so that the gas temperature could be lowered sufficiently even in gas-liquid contact in parallel flow. Even if it was cooled to 0 ° C., it was an NMP aqueous solution, so water did not freeze and could be circulated as a liquid at all times.

前記冷却凝縮器出口で4℃であった(C)の浄化ガスを、ガス−ガス熱交換器18において冷却用ガスとして用いたが、浄化ガスからみると排ガスによって加熱されたことになり、熱交換後の浄化ガスの風量、組成等は下記(E)のようになった。
(E)ガス−ガス熱交換後の浄化ガス
浄化ガス風量:99.9Nm/min
浄化ガス温度:63.1℃
NMPガス濃度:20ppm.vol
浄化ガス湿度:4300ppm.vol
加熱された浄化ガスの温度は約63℃であり湿度も低いため、他の製造工程等の乾燥用空気として再利用することができる。従来の方法では、乾燥用空気を大気から取り入れることが多く、常温(25℃程度)から加熱して90℃まで上げる必要がある。例えば100Nm/minのガスを、25℃から90℃までスチームにより加温する場合について、簡易的な条件で試算すると次のようになる。
スチームの蒸発潜熱を500kcal/kg、乾燥用空気1Nmの重量を1.3kg、乾燥用空気の顕熱を0.24kcal/kg・℃、スチームを作るボイラーの効率を0.6、スチームを作る燃油の燃焼熱を9700kcal/kgとすると、加温に必要な熱量は、次式のようになる。
100Nm/min×1.3kg/Nm×60min/hr×(90℃−25℃)×0.24kcal/kg・℃=121680kcal/hr
そして、この熱量を作るのに必要な燃油は、次式のようになる。
121680kcal/hr÷9700kcal/kg÷0.6≒20.9kg/hr
これに対し、本実施例のように再利用により熱回収すると、63℃から90℃まで上げる熱量だけでよく、必要な熱量は、次式のようになる。
100Nm/min×1.3kg/Nm×60min/hr×(90℃−63℃)×0.24kcal/kg・℃=50544kcal/hr
そして、この熱量を作るのに必要な燃油は、次式のようになり、前述した25℃の空気を加熱する場合に比べて、およそ6割の燃油を節約することができる。
50544kcal/hr÷9700kcal/kg÷0.6≒8.68kg/hr
なお、本実施例では熱回収率を60%としているが、熱交換器の設計次第では熱回収率70%、80%も可能であり、熱回収による用益費の削減と初期設備投資費用を考慮して、熱回収率を決定すればよい。
The purified gas (C) that was 4 ° C. at the outlet of the cooling condenser was used as a cooling gas in the gas-gas heat exchanger 18, but when viewed from the purified gas, it was heated by the exhaust gas, The air volume, composition, etc. of the purified gas after the replacement are as shown in (E) below.
(E) Purified gas after gas-gas heat exchange Purified gas air volume: 99.9 Nm 3 / min
Purified gas temperature: 63.1 ° C
NMP gas concentration: 20 ppm. vol
Purified gas humidity: 4300 ppm. vol
Since the temperature of the heated purified gas is about 63 ° C. and the humidity is low, it can be reused as drying air for other manufacturing processes. In the conventional method, drying air is often taken from the atmosphere, and it is necessary to heat from room temperature (about 25 ° C.) to 90 ° C. For example, in the case where a gas of 100 Nm 3 / min is heated from 25 ° C. to 90 ° C. with steam, the following calculation is made under simple conditions.
The latent heat of vaporization of steam is 500 kcal / kg, the weight of drying air 1 Nm 3 is 1.3 kg, the sensible heat of drying air is 0.24 kcal / kg · ° C., the efficiency of the boiler that makes steam is 0.6, and steam is made Assuming that the combustion heat of the fuel oil is 9700 kcal / kg, the amount of heat required for heating is as follows.
100Nm 3 /min×1.3kg/Nm 3 × 60min / hr × (90 ℃ -25 ℃) × 0.24kcal / kg · ℃ = 121680kcal / hr
And the fuel oil required to make this amount of heat is as follows:
121680 kcal / hr ÷ 9700 kcal / kg ÷ 0.6≈20.9 kg / hr
On the other hand, when heat is recovered by reuse as in the present embodiment, only the amount of heat raised from 63 ° C. to 90 ° C. is required, and the necessary amount of heat is given by the following equation.
100Nm 3 /min×1.3kg/Nm 3 × 60min / hr × (90 ℃ -63 ℃) × 0.24kcal / kg · ℃ = 50544kcal / hr
And the fuel oil required to make this calorie | heat amount becomes like following Formula, and can save about 60% of fuel oil compared with the case where the 25 degreeC air mentioned above is heated.
50544 kcal / hr ÷ 9700 kcal / kg ÷ 0.6≈8.68 kg / hr
In this embodiment, the heat recovery rate is set to 60%. However, depending on the design of the heat exchanger, heat recovery rates of 70% and 80% are possible. Thus, the heat recovery rate may be determined.

実施例2
液晶の製造工程では剥離液の主成分としてDMSOがよく用いられる。DMSOは凝固点が高く(18℃)、単一成分では固体となるため扱いにくい。しかし、水を添加することにより凝固点は限りなく下がり、液体として取り扱うことが出来るほか、排ガスを冷却するための冷媒としても利用可能となる。
本実施例で用いたDMSOを含む排ガスの流量、組成等は下記(A)のとおりである。
(A)排ガス流量:50Nm/min
排ガス温度:100℃
DMSOガス濃度:1000ppm.vol
排ガス湿度(水分率):5266ppm.vol
Example 2
In the liquid crystal manufacturing process, DMSO is often used as the main component of the stripping solution. DMSO has a high freezing point (18 ° C.) and is difficult to handle because it becomes a solid with a single component. However, by adding water, the freezing point is lowered as much as possible, and it can be handled as a liquid and can also be used as a refrigerant for cooling exhaust gas.
The flow rate, composition, etc. of the exhaust gas containing DMSO used in this example are as shown in (A) below.
(A) Exhaust gas flow rate: 50 Nm 3 / min
Exhaust gas temperature: 100 ° C
DMSO gas concentration: 1000 ppm. vol
Exhaust gas humidity (water content): 5266 ppm. vol

上記排ガスを、ガス−ガス熱交換器18において冷却用ガス(浄化ガス)と熱交換させた結果、排ガスの流量、組成等は下記(B)のようになった。即ち、ガス温度を100℃から35.8℃まで下げることができた。上記条件でのDMSOは35.8℃では結露せず、仮に結露したとしても融点が18℃であるため、凝固する懸念はない。本実施例は排ガス温度が高く、その熱を出来るだけ有効利用するため、熱回収率を70%に設定して熱交換器を選定した。
(B)ガス−ガス熱交換後の排ガス(熱回収率70%想定)
排ガス流量:50Nm/min
排ガス温度:35.8℃
DMSOガス濃度:1000ppm.vol
排ガス湿度(水分率):5266ppm.vol
As a result of heat exchange of the exhaust gas with a cooling gas (purified gas) in the gas-gas heat exchanger 18, the flow rate and composition of the exhaust gas are as shown in (B) below. That is, the gas temperature could be lowered from 100 ° C. to 35.8 ° C. DMSO under the above conditions does not condense at 35.8 ° C., and even if it condenses, the melting point is 18 ° C., so there is no concern about solidification. In this embodiment, the exhaust gas temperature is high, and in order to make effective use of the heat as much as possible, the heat exchanger was selected with the heat recovery rate set to 70%.
(B) Exhaust gas after gas-gas heat exchange (assuming a heat recovery rate of 70%)
Exhaust gas flow rate: 50 Nm 3 / min
Exhaust gas temperature: 35.8 ° C
DMSO gas concentration: 1000 ppm. vol
Exhaust gas humidity (water content): 5266 ppm. vol

上記(B)の排ガスを、実施例1と同様にして処理した結果、排出された浄化ガスの流量、組成等は下記(C)のようになった。
(C)冷却凝縮器出口から排出される浄化ガス
浄化ガス流量:49.9Nm/min
浄化ガス温度:10℃
DMSOガス濃度:43.9ppm.vol
浄化ガスの湿度(水分率):5266ppm.vol
As a result of treating the exhaust gas (B) in the same manner as in Example 1, the flow rate, composition, etc. of the exhausted purified gas were as shown in (C) below.
(C) Purified gas discharged from cooling condenser outlet Purified gas flow rate: 49.9 Nm 3 / min
Purified gas temperature: 10 ° C
DMSO gas concentration: 43.9 ppm. vol
Purified gas humidity (water content): 5266 ppm. vol

上記(B)の排ガスを処理して得られたDMSO凝縮液の回収量、組成等は下記(D)のとおりであった。
(D)DMSO凝縮液
DMSO回収量:10.2kg/hr
水添加量:4.39kg/hr
DMSO濃度:70wt%
凝縮液温度:5℃
本実施例では、凝縮液中のDMSO濃度を70wt%になるように制御した。これにより、DMSOの蒸気圧を下げる効果及び引火点を無くす効果が得られ、更には凝固点降下により、5℃以下でもDMSOが凝固することなく、常時液体の状態で取り扱うことが可能となった。
The recovered amount, composition, etc. of the DMSO condensate obtained by treating the exhaust gas of (B) were as shown in (D) below.
(D) DMSO condensate DMSO recovery amount: 10.2 kg / hr
Water addition amount: 4.39 kg / hr
DMSO concentration: 70wt%
Condensate temperature: 5 ° C
In this example, the DMSO concentration in the condensate was controlled to 70 wt%. As a result, the effect of lowering the vapor pressure of DMSO and the effect of eliminating the flash point were obtained, and further, DMSO did not solidify even at 5 ° C. or less due to the lowering of the freezing point.

前記冷却凝縮器出口で4℃であった(C)の浄化ガスを、ガス−ガス熱交換器18において冷却用ガスとして用いたが、浄化ガスからみると排ガスによって加熱されたことになり、熱交換後の浄化ガスの風量、組成等は下記(E)のようになった。
(E)ガス−ガス熱交換後の浄化ガス
浄化ガス流量:49.9Nm/min
浄化ガス温度:74.6℃
DMSOガス濃度:43.9ppm.vol
浄化ガス湿度(水分率):5266ppm.vol
本実施例では、熱回収率を70%に設定したため、乾燥用空気として再利用する浄化ガスの温度を74.6℃まで上げることができた。その結果、実施例1と同様に、冷却凝縮に必要なエネルギーを加味しても大幅なエネルギー節減を達成でき、且つDMSOの凝固によるトラブルを回避し、安定して排ガスからDMSOを回収することができた。
The purified gas (C) that was 4 ° C. at the outlet of the cooling condenser was used as a cooling gas in the gas-gas heat exchanger 18, but when viewed from the purified gas, it was heated by the exhaust gas, The air volume, composition, etc. of the purified gas after the replacement are as shown in (E) below.
(E) Purified gas after gas-gas heat exchange Purified gas flow rate: 49.9 Nm 3 / min
Purified gas temperature: 74.6 ° C
DMSO gas concentration: 43.9 ppm. vol
Purified gas humidity (water content): 5266 ppm. vol
In this example, since the heat recovery rate was set to 70%, the temperature of the purified gas reused as the drying air could be raised to 74.6 ° C. As a result, as in Example 1, a significant energy saving can be achieved even with the energy required for cooling condensation, and troubles due to DMSO solidification can be avoided, and DMSO can be stably recovered from exhaust gas. did it.

以上のように、本発明では、水を添加することにより、VOCの分圧(蒸気圧)を下げる効果、水の分圧(蒸気圧)を下げる効果、引火点を無くし、非危険物にすることによる安全性向上の効果、凝固点降下による低温下での液体としての取り扱いが可能となる効果が得られ、簡単な方法で効率よくガス化したVOCを液体として回収することが出来る。また、冷却エネルギーは、被処理ガスを冷却することで、エネルギー節減が可能であり、更には排出される熱エネルギーを回収することで、プロセスに戻す乾燥用空気を加熱するためのエネルギーを削減することができ、プロセス全体として大幅なエネルギー削減効果が得られる。   As described above, in the present invention, by adding water, the effect of lowering the partial pressure (vapor pressure) of VOC, the effect of lowering the partial pressure of water (vapor pressure), and the flash point are eliminated, making it a non-hazardous material. Therefore, the effect of improving the safety and the effect of being able to be handled as a liquid at a low temperature by lowering the freezing point can be obtained, and the gasified VOC can be efficiently recovered as a liquid by a simple method. In addition, the cooling energy can be reduced by cooling the gas to be processed, and further, the energy for heating the drying air to be returned to the process can be reduced by recovering the exhausted heat energy. As a result, a significant energy reduction effect can be obtained as a whole process.

本発明は、リチウムイオン2次電池の製造工程、液晶の製造工程、プリンター等に使用されているシームレスベルトの製造工程、乾式合成皮革の製造工程等で発生するVOC含有ガス、グラビア印刷やラミネート処理で発生するVOC含有ガス等の回収に好適に利用できる。   The present invention relates to a lithium ion secondary battery manufacturing process, a liquid crystal manufacturing process, a seamless belt manufacturing process used in printers, a VOC-containing gas generated in a dry synthetic leather manufacturing process, gravure printing and laminating process. Can be suitably used for recovering VOC-containing gas and the like generated in

11 排風機
12 送風機
13 VOC凝縮液冷却器
14 水供給用電磁弁
15 VOC凝縮液濃度測定計
16 VOC凝縮液循環ポンプ
17 不凍液流量調節弁
18 ガス−ガス熱交換器
19 気液接触型ガス冷却凝縮器
20 VOC凝縮液排出用電磁弁
21 温度記録計
22 液面調節計
11 Ventilator 12 Blower 13 VOC Condensate Cooler 14 Water Supply Solenoid Valve 15 VOC Condensate Concentration Meter 16 VOC Condensate Circulation Pump 17 Antifreeze Flow Control Valve 18 Gas-Gas Heat Exchanger 19 Gas-Liquid Contact Gas Cooling Condensation 20 VOC Condensate Discharge Solenoid Valve 21 Temperature Recorder 22 Liquid Level Controller

Claims (7)

揮発性有機化合物(以下、VOCという)を含む被処理ガスの冷却工程と、冷却した被処理ガスからのVOC凝縮液の生成工程を少なくとも有し、生成したVOC凝縮液を冷媒として用いるための循環経路、及びVOC凝縮液の濃度調整用水供給機構を設けたことを特徴とするVOCの回収方法。   A circulation for using at least a process for cooling a gas to be processed containing a volatile organic compound (hereinafter referred to as VOC) and a process for generating a VOC condensate from the cooled gas to be processed, and using the generated VOC condensate as a refrigerant. A VOC recovery method comprising a path and a water supply mechanism for adjusting the concentration of the VOC condensate. VOCを含む被処理ガスを、ガス−ガス熱交換器において冷却用ガスと熱交換させ、該熱交換器を通過した被処理ガスを、液−ガス直接接触型の冷却凝縮器においてVOC凝縮液と接触させるとともに、濃度調整用水供給機構により濃度調整を行ったVOC凝縮液を、液−液熱交換器において冷却媒体と熱交換させて冷却したのち、前記冷却凝縮器に戻して循環させ、前記冷却凝縮器で発生した浄化ガスを前記冷却用ガスとして用いる請求項1記載のVOCの回収方法。   The gas to be treated containing VOC is subjected to heat exchange with a cooling gas in a gas-gas heat exchanger, and the gas to be treated that has passed through the heat exchanger is converted to a VOC condensate in a liquid-gas direct contact type cooling condenser. The VOC condensate whose concentration has been adjusted by the water supply mechanism for concentration adjustment is cooled by exchanging heat with a cooling medium in a liquid-liquid heat exchanger, and then returned to the cooling condenser for circulation. The VOC recovery method according to claim 1, wherein the purified gas generated in the condenser is used as the cooling gas. VOCを含む被処理ガスを、ガス−ガス熱交換器において冷却用ガスと熱交換させ、該熱交換器を通過した被処理ガスを、液−ガス熱交換器からなる冷却凝縮器において冷却媒体と熱交換させ、生成したVOC凝縮液を回収タンクに移し、次いで、濃度調整用水供給機構により濃度調整を行った後、ミスト−凝縮液接触装置において、前記冷却凝縮器で発生したVOC含有ミストと接触させ、発生したVOC凝縮液は前記回収タンクに戻して循環使用し、発生した浄化ガスは前記冷却用ガスとして用いる請求項1記載のVOCの回収方法。   The gas to be processed including VOC is heat-exchanged with a cooling gas in a gas-gas heat exchanger, and the gas to be processed that has passed through the heat exchanger is converted into a cooling medium in a cooling condenser including a liquid-gas heat exchanger. After heat exchange, the generated VOC condensate is transferred to a recovery tank, and then the concentration is adjusted by the water supply mechanism for concentration adjustment, and then contacted with the VOC-containing mist generated in the cooling condenser in the mist-condensate contact device. 2. The VOC recovery method according to claim 1, wherein the generated VOC condensate is returned to the recovery tank for circulation, and the generated purified gas is used as the cooling gas. 濃度調整用水供給機構により濃度調整を行う際の水の添加量を制御して、浄化ガスの水分率を乾燥用空気に適した水分率に制御し、浄化ガスを前記冷却用ガスとして用いた後、更に乾燥用空気として再利用できるようにする請求項2又は3記載のVOCの回収方法。   After controlling the amount of water added during concentration adjustment by the concentration adjustment water supply mechanism, the moisture content of the purified gas is controlled to a moisture content suitable for the drying air, and after using the purified gas as the cooling gas 4. The VOC recovery method according to claim 2 or 3, wherein the VOC can be reused as drying air. 少なくとも、揮発性有機化合物(以下、VOCという)を含む被処理ガスの冷却手段、冷却した被処理ガスからのVOC凝縮液生成手段、VOC凝縮液を冷媒として用いるための循環経路、及びVOC凝縮液の濃度調整用水供給機構を備えたことを特徴とするVOCの回収装置。   Means for cooling a processing gas containing at least a volatile organic compound (hereinafter referred to as VOC), means for generating a VOC condensate from the cooled processing gas, a circulation path for using the VOC condensate as a refrigerant, and a VOC condensate A VOC recovery device comprising a water supply mechanism for adjusting the concentration of the VOC. 被処理ガスの冷却手段が、被処理ガスと冷却用ガスとのガス−ガス熱交換器であり、VOC凝縮液生成手段が、該熱交換器を通過した被処理ガスとVOC凝縮液との液−ガス直接接触型冷却凝縮器であり、更に濃度調整されたVOC凝縮液とその冷却媒体との液−液熱交換器を備え、前記冷却凝縮器で発生した浄化ガスを、前記冷却用ガスとして用いる構造とした請求項5記載のVOCの回収装置。   The cooling means for the gas to be processed is a gas-gas heat exchanger of the gas to be processed and the cooling gas, and the VOC condensate generation means is a liquid of the gas to be processed and the VOC condensate that has passed through the heat exchanger. A gas direct contact type cooling condenser, further comprising a liquid-liquid heat exchanger for adjusting the concentration of the VOC condensate and its cooling medium, and using the purified gas generated in the cooling condenser as the cooling gas The VOC recovery apparatus according to claim 5, wherein the VOC recovery apparatus is configured to be used. 被処理ガスの冷却手段が、被処理ガスと冷却用ガスとのガス−ガス熱交換器であり、VOC凝縮液生成手段が、該熱交換器を通過した被処理ガスとその冷却媒体との液−ガス熱交換器(冷却凝縮器)であり、更にVOC凝縮液回収タンク、及び、前記冷却凝縮器で発生したVOC含有ミストとVOC凝縮液との接触装置を備え、該接触装置で発生したVOC凝縮液は循環経路により前記回収タンクに戻し、発生した浄化ガスは前記冷却用ガスとして用いる構造とした請求項5記載のVOCの回収装置。   The cooling means for the gas to be processed is a gas-gas heat exchanger between the gas to be processed and the cooling gas, and the VOC condensate generating means is a liquid between the gas to be processed and the cooling medium that has passed through the heat exchanger. A gas heat exchanger (cooling condenser), further comprising a VOC condensate recovery tank, and a contact device between the VOC-containing mist generated in the cooling condenser and the VOC condensate, and the VOC generated in the contact device 6. The VOC recovery apparatus according to claim 5, wherein the condensate is returned to the recovery tank through a circulation path, and the generated purified gas is used as the cooling gas.
JP2009046378A 2009-02-27 2009-02-27 Method and apparatus for recovering volatile organic compounds Active JP5779310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046378A JP5779310B2 (en) 2009-02-27 2009-02-27 Method and apparatus for recovering volatile organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046378A JP5779310B2 (en) 2009-02-27 2009-02-27 Method and apparatus for recovering volatile organic compounds

Publications (2)

Publication Number Publication Date
JP2010201282A true JP2010201282A (en) 2010-09-16
JP5779310B2 JP5779310B2 (en) 2015-09-16

Family

ID=42963325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046378A Active JP5779310B2 (en) 2009-02-27 2009-02-27 Method and apparatus for recovering volatile organic compounds

Country Status (1)

Country Link
JP (1) JP5779310B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500192A (en) * 2011-11-11 2012-06-20 河北科技大学 Absorbent for recovering organic solvent in tail gas in artificial leather works and using method of same
CN103028269A (en) * 2011-09-30 2013-04-10 承源环境科技企业有限公司 Volatile organic compound condensing device
WO2013089035A1 (en) 2011-12-12 2013-06-20 日本リファイン株式会社 Gas-liquid contact device, distillation device, and heat exchange device
CN103277982A (en) * 2013-05-21 2013-09-04 南京九思高科技有限公司 Technology and device for circulating recycling of volatile organic compound in coating printing industry
EP2644248A1 (en) * 2012-03-31 2013-10-02 Cheng Yuan Environmental Technology Co., Ltd. Process and apparatus for treatment of volatile organic compounds
CN104226072A (en) * 2013-06-08 2014-12-24 承源环境科技企业有限公司 Water-washing type purifying device
CN105879574A (en) * 2016-05-16 2016-08-24 南京大学 Buffering adjustment device for concentration load of VOCs (Volatile Organic Compounds)
TWI562819B (en) * 2014-11-06 2016-12-21 Jg Environmental Tech Co Ltd
CN108365291A (en) * 2018-03-23 2018-08-03 中航锂电技术研究院有限公司 A kind of circulating NMP recovery systems of inert gas and its operation method
CN108479313A (en) * 2018-06-29 2018-09-04 上海蓝科石化环保科技股份有限公司 A kind of efficient hydro carbons exhaust gas self-absorption formula condensation adsorption purification method and its device
CN110141932A (en) * 2018-12-15 2019-08-20 成都科特瑞兴科技有限公司 A kind of petroleum vapor recovery process system
CN110575734A (en) * 2019-10-24 2019-12-17 青岛科技大学 gaseous cryrogenic recovery unit of VOCs based on industry is cold useless
CN113842746A (en) * 2021-09-17 2021-12-28 苏州兆和通风设备制造有限公司 Organic gas recovery modular assembly and coating machine waste gas treatment system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502614A (en) * 1987-02-27 1990-08-23 インゲンヨルスフイルマ ウテイレックス How to recover volatile compounds from the atmosphere
JPH07328380A (en) * 1994-06-06 1995-12-19 Olympus Optical Co Ltd Solvent recovery apparatus
JP2004033940A (en) * 2002-07-04 2004-02-05 Toray Ind Inc Method for recovering water-soluble organic solvent gas generated from drawing process
JP2008114203A (en) * 2006-11-08 2008-05-22 Nippon Refine Kk Method and apparatus for recovering and enriching voc from voc-containing exhaust gas and cleaning exhaust gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502614A (en) * 1987-02-27 1990-08-23 インゲンヨルスフイルマ ウテイレックス How to recover volatile compounds from the atmosphere
JPH07328380A (en) * 1994-06-06 1995-12-19 Olympus Optical Co Ltd Solvent recovery apparatus
JP2004033940A (en) * 2002-07-04 2004-02-05 Toray Ind Inc Method for recovering water-soluble organic solvent gas generated from drawing process
JP2008114203A (en) * 2006-11-08 2008-05-22 Nippon Refine Kk Method and apparatus for recovering and enriching voc from voc-containing exhaust gas and cleaning exhaust gas

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028269A (en) * 2011-09-30 2013-04-10 承源环境科技企业有限公司 Volatile organic compound condensing device
CN102500192B (en) * 2011-11-11 2014-08-06 河北科技大学 Absorbent for recovering organic solvent in tail gas in artificial leather works and using method of same
CN102500192A (en) * 2011-11-11 2012-06-20 河北科技大学 Absorbent for recovering organic solvent in tail gas in artificial leather works and using method of same
WO2013089035A1 (en) 2011-12-12 2013-06-20 日本リファイン株式会社 Gas-liquid contact device, distillation device, and heat exchange device
US10076722B2 (en) 2011-12-12 2018-09-18 Nippon Refine Co., Ltd. Gas-liquid contact device, distillation device, and heat exchange device
KR20140102233A (en) 2011-12-12 2014-08-21 니폰 리파인 가부시키가이샤 Gas-liquid contact device, distillation device, and heat exchange device
WO2013143044A1 (en) * 2012-03-31 2013-10-03 承源环境科技企业有限公司 Process and device for treating volatile organic compound
EP2644248A1 (en) * 2012-03-31 2013-10-02 Cheng Yuan Environmental Technology Co., Ltd. Process and apparatus for treatment of volatile organic compounds
CN103357191B (en) * 2012-03-31 2015-06-17 承源环境科技企业有限公司 Volatile organic compound treating method and device
CN103357191A (en) * 2012-03-31 2013-10-23 承源环境科技企业有限公司 Volatile organic compound treating method and device
CN103277982A (en) * 2013-05-21 2013-09-04 南京九思高科技有限公司 Technology and device for circulating recycling of volatile organic compound in coating printing industry
CN104226072A (en) * 2013-06-08 2014-12-24 承源环境科技企业有限公司 Water-washing type purifying device
TWI562819B (en) * 2014-11-06 2016-12-21 Jg Environmental Tech Co Ltd
CN105879574A (en) * 2016-05-16 2016-08-24 南京大学 Buffering adjustment device for concentration load of VOCs (Volatile Organic Compounds)
CN108365291A (en) * 2018-03-23 2018-08-03 中航锂电技术研究院有限公司 A kind of circulating NMP recovery systems of inert gas and its operation method
CN108365291B (en) * 2018-03-23 2023-07-25 中创新航技术研究院(江苏)有限公司 Inert gas circulating type NMP (N-methyl pyrrolidone) recovery system and operation method thereof
CN108479313A (en) * 2018-06-29 2018-09-04 上海蓝科石化环保科技股份有限公司 A kind of efficient hydro carbons exhaust gas self-absorption formula condensation adsorption purification method and its device
CN110141932A (en) * 2018-12-15 2019-08-20 成都科特瑞兴科技有限公司 A kind of petroleum vapor recovery process system
CN110575734A (en) * 2019-10-24 2019-12-17 青岛科技大学 gaseous cryrogenic recovery unit of VOCs based on industry is cold useless
CN113842746A (en) * 2021-09-17 2021-12-28 苏州兆和通风设备制造有限公司 Organic gas recovery modular assembly and coating machine waste gas treatment system

Also Published As

Publication number Publication date
JP5779310B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5779310B2 (en) Method and apparatus for recovering volatile organic compounds
KR101401813B1 (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil fired power plant
JP5243900B2 (en) Solvent recovery equipment
EP0933331B1 (en) Evaporative concentration apparatus for waste water
JP4778403B2 (en) A method and apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC.
JP5828719B2 (en) Ammonia separation device and ammonia separation method
WO2021082308A1 (en) Flue gas low-temperature adsorption denitration method
KR102528072B1 (en) Drying apparatus
US8893498B2 (en) Method of power generation by waste combustion and waste combustion system
US10967323B2 (en) Exhaust gas purifying and heat recovering system and method for sludge treatment
US20150078973A1 (en) Heat recovery in absorption and desorption processes
JP4764589B2 (en) Nitric acid production method
KR20130012125A (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil-fired power generating plant
KR101565033B1 (en) NMP recovery purification system
JP2010540243A5 (en)
WO2012067101A1 (en) Method and device for controlling system for chemically absorbing carbon dioxide
JP4831833B2 (en) CO2 recovery device and waste treatment method in CO2 recovery device
CN101987274A (en) Device and method for enhancing purification of organic waste gas by using water vapor
JP6078237B2 (en) Solvent recovery apparatus and control method thereof
CN106890545A (en) The separating technology and equipment of hydrogen sulfide in a kind of carbon disulphide production tail gas
EP2644250B1 (en) Exhaust gas treatment system
JP5351109B2 (en) Solvent recovery device
CN110590633A (en) Combined type NMP recovery system
JP5628051B2 (en) Solvent recovery system
US6132688A (en) Method and apparatus for treating exhaust gas from a semiconductor fabrication machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5779310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250