JP2010200730A - Methanation inhibitor for ruminant and feed composition - Google Patents

Methanation inhibitor for ruminant and feed composition Download PDF

Info

Publication number
JP2010200730A
JP2010200730A JP2009072749A JP2009072749A JP2010200730A JP 2010200730 A JP2010200730 A JP 2010200730A JP 2009072749 A JP2009072749 A JP 2009072749A JP 2009072749 A JP2009072749 A JP 2009072749A JP 2010200730 A JP2010200730 A JP 2010200730A
Authority
JP
Japan
Prior art keywords
lactic acid
culture
methane production
producing
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009072749A
Other languages
Japanese (ja)
Inventor
Sei Hirakawa
聖 平川
Akiyoshi Uehara
章敬 上原
Hiroaki Rachi
博昭 良知
Junichi Takahashi
潤一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Obihiro University of Agriculture and Veterinary Medicine NUC
Original Assignee
Ajinomoto Co Inc
Obihiro University of Agriculture and Veterinary Medicine NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc, Obihiro University of Agriculture and Veterinary Medicine NUC filed Critical Ajinomoto Co Inc
Priority to JP2009072749A priority Critical patent/JP2010200730A/en
Publication of JP2010200730A publication Critical patent/JP2010200730A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To search a lactobacillus strain producing a substance to suppress methanation in a lumen of a ruminant and provide a culture method to stably produce a methanation suppressing substance by the lactobacillus strain. <P>SOLUTION: The method for producing the methanation suppressing agent for the ruminant is characterized in that dissolved oxygen concentration in a culture liquid is maintained to ≥0.35 ppm at the later stage of culture of the lactobacillus strain to produce a protease-resistant bacteriocin. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反芻動物用のメタン生成抑制剤および飼料組成物に関し、さらに詳しくは乳酸菌を用いた発酵法で反芻動物用メタン生成抑制剤を製造する方法並びにこれを使用した反芻動物用飼料組成物及びこれを使用して反芻動物の飼料効率を向上させて発育の改善を図る方法に関する。  The present invention relates to a methane production inhibitor for ruminants and a feed composition, and more specifically, a method for producing a methane production inhibitor for ruminants by a fermentation method using lactic acid bacteria, and a feed composition for ruminants using the same. The present invention also relates to a method for improving the feed efficiency of ruminants by using this to improve growth.

反芻動物のルーメンからのメタン発生は、飼料のエネルギー利用効率の損失となるのみでなく、メタンは地球温暖化現象に寄与する強力な温室効果ガスであり、反芻動物のルーメンにおけるメタン生成を減らすことは極めて重要である。  Methane generation from ruminant rumen not only results in a loss of feed energy use efficiency, but methane is a powerful greenhouse gas that contributes to global warming, reducing methane production in ruminant rumen Is extremely important.

ルーメン内では多種多様の微生物による発酵が行われており、種々の代謝産物が生成される。メタンもその1つでメタン生成細菌により生成すると考えられている。ルーメン内メタン生成細菌は水素資化菌で、水素を利用して二酸化炭素を還元し、メタンを生成する。従って、これより強力な還元反応が存在すれば、メタン生成は阻害される。(特許文献1)  In the lumen, fermentation by a wide variety of microorganisms is performed, and various metabolites are generated. One of them is thought to be produced by methanogenic bacteria. The rumen methane-producing bacteria are hydrogen-utilizing bacteria that use hydrogen to reduce carbon dioxide and produce methane. Therefore, if there is a stronger reduction reaction than this, methane production is inhibited. (Patent Document 1)

ルーメン内のメタン発生を抑制する方法としては、反芻動物にモネンシンやアイベリンといったイオノフォアを給与する方法が知られている。一方、ルーメンでの還元能の調節に着目した方法として、システインを給与する方法(特許文献3)、フマル酸を給与する方法特許文献2および3)などが知られている。また、硝酸塩を添加することも効果があると報告されているが、ルーメン内に毒性のある亜硝酸が蓄積するため、反芻動物の亜硝酸中毒を引き起こすことも知られている。  As a method for suppressing methane generation in the rumen, a method of feeding ruminants with ionophores such as monensin and ivelin is known. On the other hand, as a method paying attention to the regulation of reducing ability in rumen, a method of feeding cysteine (Patent Document 3), a method of feeding fumaric acid, Patent Documents 2 and 3), and the like are known. Addition of nitrate has also been reported to be effective, but toxic nitrite accumulates in the rumen, which is known to cause ruminant poisoning in ruminants.

微生物の産出する抗菌物質バクテリオシンについても検討が実施されている。乳酸菌の産出するナイシンを単独で用いる報告もあるが(特許文献4)、ナイシンはルーメン中で容易に分解されるため持続効果がなく、またナイシン耐性菌も出現すると報告されている(非特許文献1)。また、ソルビン酸とバクテリオシンの調製物を併用することで飼料効率を改善する方法もあるが(特許文献5)、反芻動物の飼料として添加した場合のメタン発生抑制については明らかにされていない。  Studies are also underway on the antibacterial bacteriocin produced by microorganisms. Although there is a report that uses nisin produced by lactic acid bacteria alone (Patent Document 4), it is reported that nisin has no sustained effect because it is easily degraded in rumen, and nisin-resistant bacteria also appear (Non-patent Document). 1). Moreover, although there exists a method of improving feed efficiency by using the preparation of sorbic acid and bacteriocin together (patent document 5), it is not clarified about suppression of methane generation when added as ruminant feed.

さらに、乳酸菌由来のプロテアーゼ耐性バクテリオシン(以下、プロテアーゼ耐性バクテリオシンをPRBと略記することがある)を有効成分とする反芻動物用メタン生成抑制剤も近年提案されているが(特許文献6)、ここには、種々の乳酸菌培養液中にそのようなPRBの産生されていることが開示されてはいるが、乳酸菌の培養は常法によるもので(同文献[0022])、PRBの産生に有利な培養条件の開示はない。  In addition, a ruminant methane production inhibitor containing a protease-resistant bacteriocin derived from lactic acid bacteria (hereinafter, protease-resistant bacteriocin may be abbreviated as PRB) as an active ingredient has been recently proposed (Patent Document 6). Although it is disclosed here that such PRB is produced in various lactic acid bacteria culture solutions, the cultivation of lactic acid bacteria is in accordance with a conventional method (the same document [0022]), and PRB is produced. There is no disclosure of advantageous culture conditions.

国際公開第WO96/39860号パンフレットInternational Publication No. WO96 / 39860 Pamphlet 特開2003−88301号公報JP 2003-88301 A 特開平7−322828号公報JP-A-7-322828 国際公開第WO99/41978号パンフレットInternational Publication No. WO99 / 41978 Pamphlet 特開2002−262780号公報JP 2002-262780 A 特開2006−166853号公報JP 2006-166853 A

James B.Russelletal,Current Microbiology,Vol.35,p.90−96,(1997)James B.B. Russelletal, Current Microbiology, Vol. 35, p. 90-96, (1997)

そこで、本発明は、反芻動物のルーメン内メタン発生を抑制して飼料効率を向上させ、延いては反芻動物の発育を改善させるPRBを産生する乳酸菌について、それら乳酸菌が安定してPRBを産生する培養条件を見出し、延いてはメタン生成抑制剤を多量に生産することのできる、その製造方法を提供することを目的とする。  Therefore, the present invention relates to lactic acid bacteria that produce PRB which suppresses methane generation in rumen of ruminants and thereby improves feed efficiency, and thus improves the development of ruminants, and these lactic acid bacteria stably produce PRB. It is an object of the present invention to find a culture condition and to provide a production method for producing a large amount of a methane production inhibitor.

本発明者らは、上記課題を解決するために、反芻動物のルーメン内メタン発生を抑制するメタン生成抑制物質を産生する乳酸菌群を探索した。その結果、特定の培養条件下においてメタン生成抑制物質のPRBを多量に産生する乳酸菌群を見出した。  In order to solve the above-mentioned problems, the present inventors searched for a group of lactic acid bacteria that produce a methane production inhibitor that suppresses methane generation in rumen of ruminants. As a result, a group of lactic acid bacteria that produced a large amount of PRB, a methanogenesis inhibitor, under specific culture conditions was found.

また、一般に、乳酸菌は通性嫌気性菌であるため、通常は準嫌気的な条件で培養を行うが、上記本発明に係わる乳酸菌群がメタン生成抑制物質を産生せしめてメタン生成抑制剤を製造するには培地中に一定濃度以上の溶存酸素の存在が必要であることを見出した。  In general, since lactic acid bacteria are facultative anaerobic bacteria, they are normally cultured under semi-anaerobic conditions. However, the lactic acid bacteria group according to the present invention produces a methane production inhibitor to produce a methane production inhibitor. It has been found that the presence of dissolved oxygen at a certain concentration or higher is necessary in the medium.

すなわち、培養の全過程を通して、特に培養後期において酸素の供給を行い、酸素の供給を行った結果、培養液の溶存酸素濃度が0.35ppm以上になるような条件下で培養することにより上記乳酸菌群はメタン生成抑制物質のPRBを産生するのである。  That is, throughout the entire culture process, the lactic acid bacteria are cultured by culturing under conditions such that the oxygen concentration is supplied at a later stage of the culture, and the dissolved oxygen concentration of the culture solution is 0.35 ppm or more as a result of the oxygen supply. The group produces PRB, a methanogenesis inhibitor.

そして、本発明は以下の様態を包含する。
(1)プロテアーゼ耐性バクテリオシン産生乳酸菌を用いる反芻動物用メタン生成抑制剤の製造において、プロテアーゼ耐性バクテリオシン産生乳酸菌の培養を培養後期において、培養液中の溶存酸素濃度を0.35ppm以上で行うことを特徴とする反芻動物用メタン生成抑制剤の製造方法。
(2)該乳酸菌が、ラクトバシラス(Lactobacillus)属、ラクトコッカス(Lactococcus)属、ロイコノストック(Leuconostoc)属、ワイセラ(Weissella)属及びペディオコッカス(Pediococcus)属からなる群から選ばれる1種又は2種以上の乳酸菌であることを特徴とする上記(1)に記載のメタン生成抑制剤の製造方法。
(3)該ラクトバシラス属乳酸菌が、ラクトバシラス・プランタラム(L.plantarum)、ラクトバシラス・デルブリッキー(L.delbrueckii)及び/又はラクトバシラス・カゼイ(L.casei)であることを特徴とする上記(2)に記載のメタン生成抑制剤の製造方法。
(4)該ラクトコッカス属乳酸菌が、ラクトコッカス・ラクティス(L.lactis)であることを特徴とする上記(2)に記載のメタン生成抑制剤の製造方法。
(5)該ロイコノストック属乳酸菌が、ロイコノストック・メセンテロイデス(L.mesenteroides)、ロイコノストック・ラクティス(L,lactis)及び/又はロイコノストック・シトレウム(L.citreum)であることを特徴とする上記(2)に記載のメタン生成抑制剤の製造方法。
(6)該ワイセラ属乳酸菌が、ワイセラ・シバリア(W.cibaria)、ワイセラ・コンフューサ(W.confusa)及び/又はワイセラ・ヘレニカ(W.hellenica)であることを特徴とする上記(2)に記載のメタン生成抑制剤の製造方法。
(7)該ペディオコッカス属乳酸菌が特にペディオコッカス・ペントサセウス(P.pentosaceus)、ペディオコッカス・アシディラクティス(P.acidilactici)及び/又はペディオコッカス・ハロフィラス(P.halophilus)であることを特徴とする上記(2)に記載のメタン生成抑制剤の製造方法。
(8)有効成分として、上記(1)〜(7)のいずれかに記載のメタン生成抑制剤の製造法において得られる当該乳酸菌培養液及び/又は乳酸菌培養上清を含有することを特徴とするメタン生成抑制剤。
(9)上記(8)に記載のメタン生成抑制剤を含有することを特徴とする反芻動物用飼料組成物。
(10)上記(8)に記載のメタン生成抑制剤及び/又は上記(9)に記載の飼料組成物を反芻動物に投与することを特徴とする反芻動物の発育を改善する方法。
And this invention includes the following aspects.
(1) In the production of a ruminant methane production inhibitor using protease-resistant bacteriocin-producing lactic acid bacteria, the protease-resistant bacteriocin-producing lactic acid bacteria are cultured at a later stage of culture at a dissolved oxygen concentration of 0.35 ppm or more. A method for producing a methane production inhibitor for ruminants.
(2) One or more selected from the group consisting of the genus Lactobacillus, Lactococcus, Leuconostoc, Weissella, and Pediococcus The method for producing a methane production inhibitor according to (1) above, wherein the methane production inhibitor is two or more lactic acid bacteria.
(3) In the above (2), the Lactobacillus lactic acid bacterium is L. plantarum (L. plantarum), Lactobacillus delbruecki (L. delbrueckii) and / or Lactobacillus casei (L. casei) The manufacturing method of the methane formation inhibitor of description.
(4) The method for producing a methane production inhibitor according to (2), wherein the Lactococcus lactic acid bacterium is L. lactis.
(5) The lactic acid bacterium belonging to the genus Leuconostoc is Leuconostoc mesenteroides (L. mesenteroides), Leuconostoc lactis (L, lactis) and / or Leuconostoc citreum (L. citreum) The method for producing a methane production inhibitor according to (2) above.
(6) The lactic acid bacterium belonging to the genus Weisella is Weicella siberia, W. confusa and / or W. hellenica, described in (2) above Method for producing a methane production inhibitor.
(7) The pedicococcus lactic acid bacterium is in particular pediococcus pentosaceus, pediococcus acidilacticis and / or pediococcus halophyllus. A process for producing a methane production inhibitor as described in (2) above.
(8) The lactic acid bacteria culture solution and / or the lactic acid bacteria culture supernatant obtained in the method for producing a methane production inhibitor according to any one of (1) to (7) above is contained as an active ingredient. Methane production inhibitor.
(9) A ruminant feed composition comprising the methane production inhibitor according to (8) above.
(10) A method for improving the development of a ruminant, comprising administering the methane production inhibitor according to (8) and / or the feed composition according to (9) to a ruminant.

本発明のメタン生成抑制剤の投与により、反芻動物のルーメンにおけるメタン生成は有意に抑制され、飼料のエネルギー効率が向上し、延いては反芻動物の発育が改善される。また、温室効果ガスであるメタン生成を減らすことによって地球温暖化現象などの環境問題へも貢献できる。  By the administration of the methane production inhibitor of the present invention, methane production in rumen rumen is significantly suppressed, the energy efficiency of the feed is improved, and the development of the ruminant is improved. It can also contribute to environmental problems such as global warming by reducing the production of methane, a greenhouse gas.

図1は、酸素濃度決定実験における培養時のpHの推移を示す説明図である。
図2は、酸素濃度決定実験における培養時のpLの推移を示す説明図である。
図3は、空気を通過した培養基のpLの推移を示す説明図である。
FIG. 1 is an explanatory diagram showing transition of pH during culture in an oxygen concentration determination experiment.
FIG. 2 is an explanatory diagram showing transition of pL during culture in the oxygen concentration determination experiment.
FIG. 3 is an explanatory diagram showing the transition of the pL of the culture medium that has passed through the air.

以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.

本発明のメタン生成抑制剤は、有効成分として、特定条件下で、すなわち、特に培養後期において、培養液の溶存酸素濃度が0.35ppm以上になるような条件下でPRB産生乳酸菌を培養して得た乳酸菌培養液及び/又は乳酸菌培養上清を含むことを特徴とする反芻動物用のメタン生成抑制剤である。また、本発明における反芻動物とは、偶蹄目反芻亜目に属する哺乳類のことであり、胃が3または4室に分かれ、食物を反芻するもののことを指す。例えば、牛、羊などが挙げられる。  The methane production inhibitor of the present invention is obtained by culturing PRB-producing lactic acid bacteria as an active ingredient under specific conditions, that is, particularly in the later stage of culture, under conditions such that the dissolved oxygen concentration of the culture solution is 0.35 ppm or more. A methane production inhibitor for ruminants comprising the obtained lactic acid bacteria culture solution and / or lactic acid bacteria culture supernatant. In addition, the ruminant in the present invention refers to a mammal belonging to the order of the artiodactylid ruminant, and refers to one in which the stomach is divided into 3 or 4 chambers and ruins food. Examples include cows and sheep.

本発明のメタン生成抑制剤は、有効成分の生産菌が乳酸菌であり、安全性が高く、反芻動物の健康面から好ましいものである。  The methane production inhibitor of the present invention is preferable in view of the health of ruminants because the active bacteria producing lactic acid bacteria are high in safety.

このメタン生成抑制剤は、以下に例示するPRB産生乳酸菌を培養することにより効率よく製造することが出来る。  This methane production inhibitor can be efficiently produced by culturing the PRB-producing lactic acid bacteria exemplified below.

本発明に用いられる乳酸菌は、ラクトバシラス属、ラクトコッカス属、ロイコノストック属、ワイセラ属及びペディオコッカス属に属する乳酸菌が好適であり、ラクトバシラス属に属する乳酸菌の中では特にラクトバシラス・プランタラム、ラクトバシラス・デルブリッキー及びラクトバシラス・カゼイ、ラクトコッカス属に属する乳酸菌の中では特にラクトコッカス・ラクティス、ロイコノストック属に属する乳酸菌の中では特にロイコノストック・メセンテロイデス、ロイコノストック・ラクティス及びロイコノストック・シトレウム、ワイセラ属に属する乳酸菌の中では特にワイセラ・シバリア、ワイセラ・コンフューサ及びワイセラ・ヘレニカ、そしてペディオコッカス属に属する乳酸菌の中ては特にペディオコッカス・ペントサセウス、ペディオコッカス・アシディラクティス及びペディオコッカス・ハロフィラスを好適なものとして挙げることができる。  The lactic acid bacterium used in the present invention is preferably a lactic acid bacterium belonging to the genus Lactobacillus, Lactococcus, Leuconostoc, Weissera and Pediococcus. Among the lactic acid bacteria belonging to the genus Lactobacillus, particularly Lactobacillus plantarum, Lactobacillus Among the lactic acid bacteria belonging to the genus Lactobacillus belonging to the genus Lactococcus, Lactobacillus casei and Lactobacillus casei Among the lactic acid bacteria belonging to the genus Weisella, in particular, Weisella sivalia, Weisella confusa and Weisella Helenica, and among the lactic acid bacteria belonging to the genus Pediococcus, particularly Pediococcus pentosacea Vinegar, can be mentioned Pediococcus reeds di lactis and Pediococcus halophilus as suitable.

これらの種に属する乳酸菌の中でもラクトバシラス・プランタラム、ラクトコッカス・ラクティス、ワイセラ・シバリア、ワイセラ・コンフューサなどが本発明の乳酸菌として特に好適である。  Among the lactic acid bacteria belonging to these species, Lactobacillus plantarum, Lactococcus lactis, Weicera siberia, Weicera confusa and the like are particularly suitable as the lactic acid bacterium of the present invention.

本発明のPRB産生乳酸菌の培養に用いる培地としては、そのような乳酸菌が増殖でき、メタン生成抑制物質を産生しうるものであればいずれを使用してもよい。例えば、炭素源には乳清、澱粉糖化液、食品用グルコース等が使用でき、窒素源としては乳清タンパク質濃縮物の加水分解産物、コーンペプチド、大豆ペプチド、業務用調味液原料、焼酎粕、酵母エキス等が使用できる。その他、乳酸菌の生育、及びPRB産生に必要な各種の有機物や無機物またはこれを含有するもの、例えば、リン酸塩、マグネシウム塩、カルシウム塩、マンガン塩等の塩類や、ビタミン類、酵母エキス等を適宜追加することも出来る。  Any medium may be used as the medium used for culturing the PRB-producing lactic acid bacteria of the present invention as long as such lactic acid bacteria can grow and produce a methanogenesis inhibitor. For example, whey, starch saccharified solution, food grade glucose, etc. can be used as a carbon source, and as a nitrogen source, hydrolyzate of whey protein concentrate, corn peptide, soybean peptide, commercial seasoning raw material, shochu, Yeast extract and the like can be used. In addition, various organic and inorganic substances necessary for the growth of lactic acid bacteria and PRB production, or those containing it, such as phosphates, magnesium salts, calcium salts, manganese salts, vitamins, yeast extracts, etc. It can also be added as appropriate.

培養温度およびpHは、上記PRB産生乳酸菌株が生育する条件でよく、例えば、10〜40℃およびpH4〜8とするのが望ましい。  The culture temperature and pH may be the conditions under which the PRB-producing lactic acid strain grows. For example, the culture temperature and pH are preferably 10 to 40 ° C. and pH 4 to 8.

本発明では、メタン生成抑制物質を産生する能力を有する乳酸菌を上記の培地で培養する。培養にあたり、特に培養後期において酸素を供給し、培養液のDO(溶存酸素濃度)を上昇させることが重要である。空気を通気した場合、DOは最終的に21%即ち8.11ppmとなりコストやハンドリングの点で好ましいが、上限値には限りはなく、DOを0以上に上昇させればよい。DOの下限値は使用した発酵用溶存酸素電極の実際的な検出限界から0.35ppm以上と定義した。培養において特に酸素を供給しない場合には、上記乳酸菌はメタン生成抑制物質を産生しないが、上記条件にて酸素を供給することによりメタン生成抑制物質を産生する。DOセンサーは発酵用溶存酸素電極TYPE S(株式会社バイオット)を使用した。本電極の測定範囲は0〜15ppmであり、再現性は±1%である。  In the present invention, lactic acid bacteria having the ability to produce a methanogenesis inhibitor are cultured in the above medium. In culturing, it is important to supply oxygen particularly in the later stage of culturing to increase DO (dissolved oxygen concentration) of the culture solution. When air is ventilated, DO finally becomes 21%, that is, 8.11 ppm, which is preferable in terms of cost and handling. However, the upper limit is not limited, and DO may be increased to 0 or more. The lower limit of DO was defined as 0.35 ppm or more from the practical detection limit of the used dissolved oxygen electrode for fermentation. When oxygen is not particularly supplied in the culture, the lactic acid bacteria do not produce a methanogenesis inhibitor, but produce oxygen by supplying oxygen under the above conditions. The DO sensor used a dissolved oxygen electrode TYPE S (Biot Co., Ltd.) for fermentation. The measurement range of this electrode is 0 to 15 ppm, and the reproducibility is ± 1%.

なお、本発明に関して言う培養後期とは、単位培養液あたりの乳酸菌の存在量(菌体密度)が十分に上昇してから後の段階を指す。培養後期とそれ以前の培養の境界は培養条件等により大きく影響されるために、所与の場合に物理化学的な計測値に基づいて事前に一義的に決定することは困難であり、そのため予備実験などにより経験的に設定される。本発明に関して言う培養後期を簡易に定義する一つの指標として菌体密度が使用できる。予め上記条件で培養を行い、到達しうる最大の菌体密度を求めておき、同じ条件で再度培養を行って菌体密度が最大値の50%以上、好ましくは60%以上に達してからを本発明に関して言う培養後期と定義する。また、一般に乳酸菌をバッチ培養する場合、菌体密度とpH及び/又は有機酸産生量の間には強い相関関係がある。従って、菌体密度を測定する代わりにpH及び/又は有機酸産生量を測定することで菌体密度を算出することも出来る。  The term “late culture phase” as used in the present invention refers to a later stage after the abundance (bacterial cell density) of lactic acid bacteria per unit culture is sufficiently increased. Since the boundary between the late culture and the previous culture is greatly influenced by the culture conditions, it is difficult to determine in advance based on physicochemical measurements in a given case. It is set empirically by experiments. Cell density can be used as one index for simply defining the late stage of culture referred to in the present invention. Cultivate in advance under the above conditions, obtain the maximum cell density that can be reached, and after culturing again under the same conditions, the cell density reaches 50% or more, preferably 60% or more of the maximum value. It is defined as the late culture period referred to in the present invention. In general, when lactic acid bacteria are batch-cultured, there is a strong correlation between cell density and pH and / or organic acid production. Therefore, the cell density can also be calculated by measuring the pH and / or the amount of organic acid produced instead of measuring the cell density.

培養中に培養液中の溶存酸素濃度(DO)を確認するために酸素濃度を測定するが、その測定法には特に制限は無く、培養液に直接設置あるいはその一部を採取して溶存酸素電極を用いて測定する方法や、培養液の一部を採取して亜硫酸ナトリウムによる滴定法等を用いることが出来る。  The oxygen concentration is measured in order to confirm the dissolved oxygen concentration (DO) in the culture medium during the culture, but the measurement method is not particularly limited. A measurement method using an electrode or a titration method using sodium sulfite after collecting a part of the culture solution can be used.

培養中、特に培養後期に培養液中のDOが0.35ppm以上に上昇するように酸素を供給して培養するが、その際に酸素供給量を調節する方法としては、培地の撹拌速度を上げる方法、供給ガス(空気など)の通気量を上げる方法、通気ガスの酸素分圧を上げる方法等、いずれの方法を用いてもよい。  During culturing, especially in the later stage of culturing, oxygen is supplied so that DO in the culture solution rises to 0.35 ppm or more. As a method for adjusting the oxygen supply amount at that time, the stirring speed of the medium is increased. Any method may be used such as a method, a method of increasing the aeration amount of a supply gas (such as air), and a method of increasing the oxygen partial pressure of the aeration gas.

本発明に係る反芻動物用メタン生成抑制剤は様々な形態で用いることが可能であり、例えば粉末、顆粒、錠剤等の各種の形態が挙げられ、必要に応じて賦形剤、増量剤等を適宜添加することもできる。メタン生成抑制剤の投与時期は、本発明のメタン生成抑制効果の奏される限りは特に制限されるものではない。本発明のメタン生成抑制剤の投与量についても、本発明のメタン生成抑制効果の奏される限りは特に制限はない。予備試験により使用乳酸菌や投与動物によって適宜調整する。本発明に係わる反芻動物用飼料組成物の調製も、本発明のメタン生成抑制剤を添加することを除いては、特別の制限はなく、またこのような飼料組成物を反芻動物に投与する際にも特別の制限はない。なお、これらについては、特開2006−166853号公報(前掲特許文献6)の[0025]〜[0030]の記載によることができる。  The ruminant methane production inhibitor according to the present invention can be used in various forms, for example, various forms such as powders, granules, tablets and the like, and if necessary, excipients, extenders, etc. It can also be added as appropriate. The administration timing of the methane production inhibitor is not particularly limited as long as the methane production inhibitory effect of the present invention is exhibited. The dosage of the methane production inhibitor of the present invention is not particularly limited as long as the methane production inhibitory effect of the present invention is exhibited. Adjust appropriately according to the lactic acid bacteria used and the animals to be administered in preliminary tests The preparation of a ruminant feed composition according to the present invention is not particularly limited except that the methanogenesis inhibitor of the present invention is added, and when such a feed composition is administered to ruminants. There are no special restrictions. In addition, about these, it is based on description of [0025]-[0030] of Unexamined-Japanese-Patent No. 2006-166853 (above-mentioned patent document 6).

以下、実施例により本発明を更に説明する。なお、本発明はこれらの実施例のみに限定されるものではなく、発明の要旨を逸脱しない範囲で任意に変更が可能であることは言うまでも無い。  The following examples further illustrate the present invention. Needless to say, the present invention is not limited to these examples, and can be arbitrarily changed without departing from the scope of the invention.

上記乳酸菌が産生するメタン生成抑制物質のメタン生成抑制活性は、主に以下に説明する2つの活性測定法にて確認できた。  The methane production inhibitory activity of the methane production inhibitor produced by the lactic acid bacteria could be confirmed mainly by the two activity measurement methods described below.

(1)in vitro連続培養法(人工ル一メン法)
<材料、実験機器および実験方法>
緩衝液および固形飼料の投入口、サーミスタープローブ、窒素ガス投入口、磁気的スターラー、近赤外メタン及び二酸化炭素計測器を備えた4連の1,000ml培養発酵槽からなるin vitro連続発酵ガス解析システム(高杉製作所社製、東京)を用いた。供試動物として2頭のフィステル装着ホルスタイン乾乳牛(平均体重800kg)をフリーストールで飼育し、クレイングラス乾草(DM:87.33%,OM:98.98%,CP:14.0%,ADF:38.84%,NDF:73.26%,ADL:4.1%,GE:4.45Mcal/kgDM)を維持量(55gDM/kg0.75)朝夕2回に分けて給与した。水及び鉱塩(Fe:1232,Cu:150,Co:25,Zn:500,I:50,Se:15,Na:382mg/kg)は自由摂取とした。
(1) In vitro continuous culture method (artificial rumen method)
<Materials, experimental equipment and experimental methods>
In vitro continuous fermentation gas consisting of four 1000 ml culture fermenters equipped with buffer and solid feed inlet, thermistor probe, nitrogen gas inlet, magnetic stirrer, near infrared methane and carbon dioxide meter An analysis system (manufactured by Takasugi Seisakusho, Tokyo) was used. Two fistula-equipped Holstein dry cows (average body weight 800 kg) were raised as test animals in free stall, and Cranegrass hay (DM: 87.33%, OM: 98.98%, CP: 14.0%, ADF) : 38.84%, NDF: 73.26%, ADL: 4.1%, GE: 4.45 Mcal / kg DM) were fed in the maintenance amount (55 g DM / kg 0.75 ) in the morning and evening. Water and mineral salts (Fe: 1232, Cu: 150, Co: 25, Zn: 500, I: 50, Se: 15, Na: 382 mg / kg) were freely consumed.

発酵ガス計測前に、ガス分析計までのチューブ内や計測器に残留している二酸化炭素やメタンを窒素によって置換した。発酵槽の中に、予め二酸化炭素を1時間通気しておいたMcDougall人工唾液(McDougall,1948)を400ml入れ、飼料給与前の上記乾乳牛から直接採取したルーメン液をナイロン布で濾過し、接種菌液として400ml添加した(McDougall人工唾液と濾過ルーメン液の混合比はこれに限らず、ルーメン内発酵が正常に起こる範囲内であれば適宜変更しても良い)。発酵基質として風乾粉砕(1mmスクリーンユニット)した上記クレイングラス乾草および濃厚飼料(DM:94.13%,CP:16.06%,ADF:6.55%,NDF:19.06%,ADL:1.14%,GE:1.77 Mcal/kgDM)を合わせて10g(クレイングラス乾草粉末および濃厚飼料粉末の配合比は実験のデザインにより任意に決定して良い)加えた後、活性測定サンプルをそれぞれ80ml添加し、磁気的スターラーにて38rpmで撹拌を行った。培養時には全体を暗幕で覆い、流量20ml/minで窒素を通気し、嫌気条件下39℃にて48時間までの時間で適宜実施した。  Prior to the measurement of fermentation gas, carbon dioxide and methane remaining in the tube up to the gas analyzer and in the measuring instrument were replaced with nitrogen. Put 400 ml of McDoughall artificial saliva (McDoughall, 1948), pre-vented with carbon dioxide for 1 hour, into the fermenter, filter the rumen solution collected directly from the dry cow before feeding the feed with a nylon cloth, and inoculate 400 ml was added as a bacterial solution (the mixing ratio of McDougal artificial saliva and filtered rumen solution is not limited to this, and may be appropriately changed as long as the fermentation within the rumen occurs normally). The above-described Kleingrass hay and concentrated feed (DM: 94.13%, CP: 16.06%, ADF: 6.55%, NDF: 19.06%, ADL: 1), which were air-dried (1 mm screen unit) as a fermentation substrate .14%, GE: 1.77 Mcal / kg DM) and 10 g in total (the mixing ratio of Kleingrass hay powder and concentrated feed powder may be arbitrarily determined according to the design of the experiment) 80 ml was added and stirred with a magnetic stirrer at 38 rpm. At the time of culture, the whole was covered with a black screen, aerated with nitrogen at a flow rate of 20 ml / min, and appropriately performed at 39 ° C. for up to 48 hours under anaerobic conditions.

<メタン、二酸化炭素の分析方法>
培養中の生成メタン及び二酸化炭素濃度は、4基の発酵槽の内、モニタリングを行う発酵槽を10分間毎に順次切り替えながら赤外線分析計(島津製作所)により連続的に分析した。従って、各発酵槽においては40分毎に一回10分間連続的にガス分析が行われるが、測定された10分間の内最初の6分間のデータは排除し、残りの4分間の値をコンピュータ(Windows(登録商標)XP Professional 1−2 CPU,IBM Corporation)に記録した。分析計中の流量と濃度からメタン及び二酸化炭素ガスの発生量を算出し、4分間の平均値を40分間の平均産生量とした。
<Analysis method of methane and carbon dioxide>
The methane and carbon dioxide concentrations in the culture were continuously analyzed by an infrared analyzer (Shimadzu Corporation) while sequentially switching the fermenter to be monitored among the four fermenters every 10 minutes. Therefore, in each fermenter, gas analysis is continuously performed once every 40 minutes for 10 minutes, but the data for the first 6 minutes of the measured 10 minutes is excluded, and the values for the remaining 4 minutes are calculated by the computer. (Windows (registered trademark) XP Professional 1-2 CPU, IBM Corporation). The generation amount of methane and carbon dioxide gas was calculated from the flow rate and concentration in the analyzer, and the average value for 4 minutes was defined as the average production amount for 40 minutes.

(2)ルーメン発酵簡易評価法(試験管スケール)
<材料および実験方法>
乾草を中心に飼育された牛から飼料給与前に採取したルーメン液を使用した(牛の種類や乾草の種類、ルーメン液採取方法は本分野における常法に則る限り特に限定しない)。上記McDougall人工唾液7mlおよびルーメン液2ml、活性測定サンプル1mlを15ml容試験管内で混合した(コントロールには活性測定サンプル1mlの代わりにMcDougall人工唾液1mlを用いた)。更に発酵基質として上記クレイングラス乾草粉末および上記濃厚飼料粉末を0.05gずつ添加した。シリコン栓にて密栓し、内容物を十分に混合した後、テルモシリンジ(TERUMO)およびテルモ注射針18G(TERUMO)をシリコン栓に刺し、試験管内にて発生したガスがシリンジに捕集される様にした。尚、実験操作中ルーメン液は常に35℃以上40℃未満に保ち、嫌気条件下で行った(酸素濃度1%以下)。振盪培養機BR−3000LF(TAITEC)を使用し、40℃、150rpmにて20〜24h培養を行った。
(2) Rumen fermentation simple evaluation method (test tube scale)
<Materials and experimental methods>
Rumen fluid collected from cattle raised mainly in hay before feeding was used (type of cattle, type of hay, and rumen fluid collection method are not particularly limited as long as they are in accordance with conventional methods in this field). 7 ml of the above-mentioned McDoughall artificial saliva, 2 ml of rumen fluid, and 1 ml of activity measurement sample were mixed in a 15 ml test tube (1 ml of McDoughall artificial saliva was used for control instead of 1 ml of activity measurement sample). Furthermore, 0.05 g of the above-mentioned Kleingrass hay powder and the above-mentioned concentrated feed powder were added as fermentation substrates. After sealing with a silicon stopper and thoroughly mixing the contents, the Terumo syringe (TERUMO) and the Terumo injection needle 18G (TERUMO) are inserted into the silicon stopper, and the gas generated in the test tube is collected in the syringe. I made it. Note that the rumen solution was always kept at 35 ° C. or higher and lower than 40 ° C. under the anaerobic condition during the experimental operation (oxygen concentration 1% or less). Using a shaking culture machine BR-3000LF (TAITEC), culture was performed at 40 ° C. and 150 rpm for 20 to 24 hours.

<メタンの分析方法>
培養後、シリンジ内に捕集された発生ガスをインジェクター(Pressure−Lok、VICI)を用いて一部採取し、ガスクロマトグラフィーGC320(GL Sciences)によりメタンと酸素を分析した。カラムはGC320 JK12(GL Sciences)を使用し、分析データはインテグレーターD−7500(HITACHI)にて出力を行った。ガス分析を行ったサンプル中の酸素濃度から、サンプル採取時に混入した空気量を計算し補正を行うことで発生したガス中のメタン濃度を算出した。
<Method for analyzing methane>
After the culture, a part of the generated gas collected in the syringe was collected using an injector (Pressure-Lok, VICI), and methane and oxygen were analyzed by gas chromatography GC320 (GL Sciences). The column used was GC320 JK12 (GL Sciences), and the analysis data was output by an integrator D-7500 (HITACHI). From the oxygen concentration in the sample subjected to gas analysis, the amount of air mixed at the time of sample collection was calculated and corrected to calculate the methane concentration in the generated gas.

実施例1:メタン抑制物質を生産する乳酸菌の探索
<乳酸菌の培養及び処理>
下記表1に示した各種乳酸菌のグリセロールストック50μlを10mlのMRS培地を含む直径16mmの試験管に植菌し、30℃、20h静置培養した。この前培養液をGYKP培地(グルコース10g/l,クエン酸三ナトリウム二水和物2.0g/l,酢酸ナトリウム(無水)5.0g/l,リン酸二水素カリウム12g/l,リン酸水素二カリウム11g/l,酵母エキス20g/l,硫酸マンガン五水和物0.05g/l)2mlを含む直径16mmの試験管に終濃度0.1%となるように植菌し、30℃、150rpmにて24〜48h振盪培養を行った。得られた培養液を8,000xgにて5分間遠心した後、上清を0.45μmメンブレンフィルター(DISMIC−25C、ADVANTEC)で濾過し、乳酸菌培養上清液を調製した。
Example 1: Search for lactic acid bacteria producing methane-inhibiting substances <Culture and treatment of lactic acid bacteria>
50 μl of glycerol stocks of various lactic acid bacteria shown in Table 1 below were inoculated into a test tube having a diameter of 16 mm containing 10 ml of MRS medium, followed by stationary culture at 30 ° C. for 20 hours. This pre-cultured solution was treated with GYKP medium (glucose 10 g / l, trisodium citrate dihydrate 2.0 g / l, sodium acetate (anhydrous) 5.0 g / l, potassium dihydrogen phosphate 12 g / l, hydrogen phosphate Inoculated into a 16 mm diameter test tube containing 2 ml of dipotassium 11 g / l, yeast extract 20 g / l, manganese sulfate pentahydrate 0.05 g / l) at a final concentration of 0.1%, The shaking culture was performed at 150 rpm for 24-48 h. The obtained culture solution was centrifuged at 8,000 × g for 5 minutes, and then the supernatant was filtered through a 0.45 μm membrane filter (DISMIC-25C, ADVANTEC) to prepare a lactic acid bacteria culture supernatant.

<各種乳酸菌の培養上清液のメタン抑制活性>
上記のルーメン発酵簡易評価法にて各乳酸菌培養上清液のメタン抑制活性を測定した。各サンプルを添加した場合に発生したガス中のメタン濃度を、乳酸菌培養上清液の代わりに生理食塩水を添加した対照区において発生したガス中のメタン量を100%として下記表1に示した。ラクトバシラス属、ラクトコッカス属、ロイコノストック属及びワイセラ属に属する乳酸菌の培養上清液がメタン抑制活性を示した。ペディオコッカス属についても微弱ながらメタン生成抑制活性が見出された。
<Methane inhibitory activity of culture supernatants of various lactic acid bacteria>
The methane inhibitory activity of each lactic acid bacteria culture supernatant was measured by the simple rumen fermentation evaluation method. The methane concentration in the gas generated when each sample was added is shown in Table 1 below, assuming that the amount of methane in the gas generated in the control group to which physiological saline was added instead of the lactic acid bacteria culture supernatant was 100%. . Culture supernatants of lactic acid bacteria belonging to the genus Lactobacillus, Lactococcus, Leuconostoc and Weissella showed methane inhibitory activity. Pediococcus genus was also found to have a methanogenic inhibitory activity.

Figure 2010200730
Figure 2010200730

実施例2:酸素の有無によるメタン生成抑制物質生産への影響
上記、メタン生成抑制物質を生産する上記表1の乳酸菌群の中からLactobacillusplantarum TUA1490L株(FERM P−21709)を選択し、メタン生成抑制物質を生産するための培養条件の検討を行った。
Example 2: Effect on presence or absence of oxygen on production of methane production inhibitory substance The Lactobacillus splantarum TUA1490L strain (FERM P-21709) is selected from the lactic acid bacteria group in Table 1 that produces the above methane production inhibitory substance, and methane production is inhibited. The culture conditions for producing the substance were examined.

乳酸菌の培養はS型パネル加圧培養装置(Biott)を使用し、GYKP培地にて30℃て行った。培養開始から培養後期(培養後期の定義は[0025]に示した通り。)前までは通気をせず、準嫌気的な条件で培養を行った。培養後期以降は1/10VVMで通気するサンプルと通気を行わないサンプルの2通りで、300rpmで攪拌し、培養を行った。通気を行ったサンプルについては通気開始と共にDOが上昇し、最終的には8.11ppmまで上昇した。通気を行わなかったサンプルについてはDOが0から上昇せず、[0024]に定義したように0.35ppm以下であった。通気開始時刻から1時間後、4時間後、7時間後、10時間後および13時間後にそれぞれからサンプリングを行った。得られた培養液を8,000×gにて20分間遠心し、上清をフィルター濾過(Stericup、MILLIPORE)することでメタン生成抑制剤のサンプルとした。  Lactic acid bacteria were cultured at 30 ° C. in GYKP medium using an S-type panel pressure culture apparatus (Biott). The culture was carried out under a semi-anaerobic condition without aeration from the start of culture until the late stage of culture (the definition of the late stage of culture is as shown in [0025]). From the latter stage of the culture, the sample was aerated at 1/10 VVM and the sample without aeration, and the mixture was stirred at 300 rpm and cultured. With respect to the sample subjected to aeration, DO increased with the start of aeration, and finally increased to 8.11 ppm. For the sample that was not ventilated, DO did not increase from 0 and was 0.35 ppm or less as defined in [0024]. Sampling was performed from 1 hour, 4 hours, 7 hours, 10 hours and 13 hours after the start of aeration. The obtained culture broth was centrifuged at 8,000 × g for 20 minutes, and the supernatant was filtered (Stericup, MILLIPORE) to obtain a sample of a methane production inhibitor.

<ルーメン発酵簡易評価法による活性確認>
上記[0040]のサンプルのメタン生成抑制活性を上記[0034]〜[0035]のルーメン発酵簡易評価法にて測定した。その結果、通気を行った培養液(好気培養)では通気3時間後から強いメタン生成抑制活性が確認されたのに対して、通気を行わなかった培養液(嫌気培養)では通気13時間後までメタン生成抑制活性は確認されなかった(下記表2)。この結果から、上記乳酸菌群によるメタン生成抑制物質の生産には培養中に酸素の供給が必要であることが分かった。
<Activity confirmation by simple rumen fermentation evaluation method>
The methane production inhibitory activity of the sample [0040] was measured by the rumen fermentation simple evaluation method [0034] to [0035]. As a result, a strong methane production inhibitory activity was confirmed after 3 hours of aeration in the culture medium subjected to aeration (aerobic culture), whereas after 13 hours of aeration in the culture medium without aeration (anaerobic culture). Until then, no methane production inhibitory activity was confirmed (Table 2 below). From this result, it was found that the supply of oxygen during the cultivation was necessary for the production of the methanogenesis inhibitor by the lactic acid bacteria group.

Figure 2010200730
Figure 2010200730

<in vitro連続培養法による活性確認>
上記[0040]のサンプルのうち、通気開始時刻から1時間後、4時間後、7時間後および10時間後のメタン生成抑制活性を[0031]〜[0033]のin vitro連続培養法にて測定した。その結果、[0041]の結果と同様に、通気を行った培養液では通気3時間後から強いメタン生成抑制活性が確認されたのに対して、通気を行わなかった培養液では通気13時間後までメタン生成抑制活性は確認されなかった(下記表3)。また、メタン生成抑制活性を有するサンプルを投与した試験区においては培養の最初から最後まで強くメタンの発生が抑制されることが確認された。以上により、試験管スケールのルーメン発酵簡易評価法よりもより実際のルーメンに近いin vitro連続培養法(人工ルーメン法)により当該乳酸菌培養液のメタン生成抑制活性が確認された。
<Activity confirmation by in vitro continuous culture method>
Among the samples of [0040] above, the methanogenesis inhibitory activity after 1 hour, 4 hours, 7 hours and 10 hours after the start of aeration was measured by the in vitro continuous culture method of [0031] to [0033]. did. As a result, similar to the result of [0041], a strong methane production inhibitory activity was confirmed after 3 hours of aeration in the aerated culture solution, whereas 13 hours after aeration in the non-aerated culture solution. Until then, no methane production inhibitory activity was confirmed (Table 3 below). In addition, it was confirmed that the generation of methane was strongly suppressed from the beginning to the end of the culture in the test group administered with the sample having methane production inhibitory activity. From the above, the methane production inhibitory activity of the culture solution of lactic acid bacteria was confirmed by an in vitro continuous culture method (artificial rumen method) closer to the actual lumen than by the simple rumen fermentation evaluation method on a test tube scale.

Figure 2010200730
Figure 2010200730

実施例3:酸素濃度依存的なメタン生成抑制物質生産
上記実施例2と同様に、前記乳酸菌(Lactobacillus plantarum TUA1490L株)の培養はS型パネル加圧培養装置(Biott)を使用し、GYKP培地にて30℃で行った。培養開始から培養後期までは通気をせず、準嫌気的な条件で培養を行った。培養後期以降は酸素濃度0、5.0、10%の酸素・窒素混合ガスを1/4VVMで通気し、300rpmで攪拌することでそれぞれ酸素供給を行った。通気を32時間行った後、サンプリングを行い、得られた培養液を8,000×gにて5分間遠心し、上清をフィルター濾過(DISMIC−25C、ADVANTEC)することでメタン生成抑制剤のサンプルとした。培養時のpH(水素イオン指数)およびpL(溶存酸素指数)のデータを図1および図2に示す。また、メタン生成抑制物質を確実に生産することが確認されている条件(GYKP培地、30℃、培養後期から1/10VVMで空気を通気、300rpm)で培養を行った際のpLのデータを参考として図3に示す。
Example 3 Oxygen Concentration-Dependent Methane Production Suppressor Production As in Example 2 above, the lactic acid bacterium (Lactobacillus plantarum TUA1490L strain) was cultured using an S-type panel pressurization culture apparatus (Biott) in a GYKP medium. At 30 ° C. From the start of culture to the late stage of culture, the culture was carried out under a semi-anaerobic condition without aeration. From the latter stage of culture, oxygen / nitrogen mixed gas having an oxygen concentration of 0, 5.0, and 10% was aerated at 1/4 VVM, and stirred at 300 rpm to supply oxygen. After performing aeration for 32 hours, sampling is performed, and the obtained culture solution is centrifuged at 8,000 × g for 5 minutes, and the supernatant is filtered (DISMIC-25C, ADVANTEC) to thereby reduce the methane production inhibitor. A sample was used. The pH (hydrogen ion index) and pL (dissolved oxygen index) data during culture are shown in FIG. 1 and FIG. In addition, refer to the pL data when cultured under conditions that have been confirmed to produce methane production inhibitory substances reliably (GYKP medium, 30 ° C., 1/10 VVM aerated from the late stage of culture, 300 rpm) As shown in FIG.

なお、図1において、X軸(横軸)は培養時間(単位は時間)を示し、Y軸(縦軸)はpHを示す。矢印が指す時点からそれぞれの濃度の酸素を通気し、実線は10%、長破線は5%、短破線は0%の酸素を通気した試験区をそれぞれ示す。また、図2において、X軸(横軸)は培養時間(単位は時間)を示し、Y軸(縦軸)はpLを示す。矢印が指す時点からそれぞれの濃度の酸素を通気し、実線は10%、長破線は5%、短破線は0%の酸素を通気した試験区をそれぞれ示す。因みに、30℃、1気圧下で酸素濃度約21%の空気が純水に飽和したとき(溶存酸素濃度7.53ppm)にpL=21を示す。図3において、X軸(横軸)は培養時間(単位は時間)を示し、Y軸(縦軸)はpLを示す。矢印が指す時点から空気を通気した。  In FIG. 1, the X-axis (horizontal axis) indicates the culture time (unit: hours), and the Y-axis (vertical axis) indicates pH. Each concentration of oxygen was vented from the time pointed by the arrow, and the solid line represents the test zone where 10%, the long dashed line was vented, and the short dashed line was vented with 0% oxygen. In FIG. 2, the X axis (horizontal axis) indicates the culture time (unit: hours), and the Y axis (vertical axis) indicates pL. Each concentration of oxygen was vented from the time pointed by the arrow, and the solid line represents the test zone where 10%, the long dashed line was vented, and the short dashed line was vented with 0% oxygen. Incidentally, when air having an oxygen concentration of about 21% is saturated in pure water at 30 ° C. and 1 atm (dissolved oxygen concentration 7.53 ppm), pL = 21 is shown. In FIG. 3, the X-axis (horizontal axis) indicates the culture time (unit: hours), and the Y-axis (vertical axis) indicates pL. Air was vented from the point indicated by the arrow.

<ルーメン発酵簡易評価法による活性確認>
上記[0045]のサンプルのメタン生成抑制活性を[0034]〜[0035]のルーメン発酵簡易評価法にて測定した。その結果、本条件において通気開始後32時間までにメタン生成抑制物質を生産するものは無かった。また、10%の酸素を1/4VVMで供給したにも拘わらず、通気開始後DOは全く上昇しなかった(図2参照)。乳酸菌の酸素処理能力について明確に定義されている文献はなく、乳酸菌は一般的に通性嫌気性菌と考えられているが、本結果から該乳酸菌は酸素に対して十分な処理能力を有していることが分かった。以上から、乳酸菌を準嫌気的な条件で培養し、培養後期以降、溶存酸素濃度が0ppmである状態から酸素供給を開始して、それ以降の溶存酸素濃度が上昇する様な酸素供給量がこれら乳酸菌によるメタン生成抑制剤の生産に必要であることが確認された。
<Activity confirmation by simple rumen fermentation evaluation method>
The methane production inhibitory activity of the sample [0045] was measured by the simple rumen fermentation evaluation method [0034] to [0035]. As a result, none of these conditions produced a methane production inhibitor by 32 hours after the start of aeration. Despite the supply of 10% oxygen at 1/4 VVM, DO did not increase at all after the start of ventilation (see FIG. 2). There is no literature that clearly defines the oxygen processing capacity of lactic acid bacteria, and lactic acid bacteria are generally considered to be facultative anaerobic bacteria. However, these results indicate that the lactic acid bacteria have a sufficient capacity for oxygen. I found out. From the above, lactic acid bacteria were cultured under semi-anaerobic conditions, and oxygen supply was started from the state where the dissolved oxygen concentration was 0 ppm after the latter stage of culture, and the oxygen supply amount so that the dissolved oxygen concentration thereafter increased. It was confirmed that it is necessary for the production of methane production inhibitors by lactic acid bacteria.

実施例4:空気の通気上限の検討
上記実施例2と同様に、乳酸菌(Lactobacillus plantarum TUA1490L株)の培養はS型パネル加圧培養装置(Biott)を使用し、GYKP培地にて30℃て行った。培養開始から培養後期前までは通気をせず、準嫌気的な条件で培養を行った。培養後期以降は空気を0VVM(無通気)、1/10VVM(標準条件)、1/2VVM(標準条件の5倍量)にて通気し、300rpmで攪拌することでそれぞれ酸素供給を行った。通気開始6時間後の培養液を8,000×gにて5分間遠心し、上清をフィルター濾過(DISMIC−25C、ADVANTEC)することでメタン生成抑制剤のサンプルとした。
Example 4: Examination of the upper limit of air ventilation As in Example 2 above, culture of lactic acid bacteria (Lactobacillus plantarum TUA1490L strain) was performed at 30 ° C. in a GYKP medium using an S-type panel pressure culture apparatus (Biott). It was. From the start of culture until the last stage of culture, the culture was performed under semi-anaerobic conditions without aeration. From the latter stage of the culture, air was supplied at 0 VVM (no aeration), 1/10 VVM (standard conditions), 1/2 VVM (5 times the standard conditions), and stirred at 300 rpm to supply oxygen. The culture solution 6 hours after the start of aeration was centrifuged at 8,000 × g for 5 minutes, and the supernatant was filtered (DISMIC-25C, ADVANTEC) to obtain a sample of a methane production inhibitor.

<ルーメン発酵簡易評価法による活性確認>
上記[0048]のサンプルのメタン生成抑制活性を[0034]〜[0035]のルーメン発酵簡易評価法にて測定した。その結果、1/10VVMと1/2VVMの通気量の違いによるメタン生成抑制物質生産への影響は確認されなかった(下記表4)。乳酸菌は一般的に通性嫌気性菌であるが、完全に好気的条件と言える1/2VVMでの通気でメタン生成抑制物質の生産が可能であったことから、乳酸菌によるメタン生成抑制物質生産における通気量の上限は特に設定する必要がない。
<Activity confirmation by simple rumen fermentation evaluation method>
The methane production inhibitory activity of the sample of [0048] was measured by the rumen fermentation simple evaluation method of [0034] to [0035]. As a result, the influence on the production of methane production-inhibiting substances due to the difference in the ventilation rate between 1/10 VVM and 1/2 VVM was not confirmed (Table 4 below). Lactic acid bacteria are generally facultative anaerobic bacteria, but production of methane production inhibitory substances was possible by aeration at 1/2 VVM, which can be said to be completely aerobic. There is no particular need to set the upper limit of the air flow rate at.

Figure 2010200730
Figure 2010200730

実施例5:培養開始直後からの酸素供給によるメタン生成抑制物質生産への影響
培養開始直後から酸素を供給した場合のメタン生成抑制物質生産への影響を調べた。上記実施例2と同様に、乳酸菌(Lactobacillus plantarum TUA1490L株)の培養はS型パネル加圧培養装置(Biott)を使用し、GYKP培地にて30℃で行った。培養開始直後から1/10VVMで通気し、攪拌は300rpmで行った。培養開始24時間後の培養液についてメタン生成抑制活性をルーメン発酵簡易評価法にて測定したところ、乳酸菌培養上清液を添加しない対照区に比べてサンプル添加区においてはメタン発生量が3%程度にまで減少した。この結果から、上記実施例3で示した以上の酸素供給を行うならば、乳酸菌によるメタン生成抑制物質生産は酸素供給開始のタイミングに関わらないことが示された。
Example 5: Effect on Methane Production Inhibitory Substance Production due to Oxygen Supply from Immediately after the Start of Culture The influence on production of a methane formation inhibitory substance when oxygen was supplied immediately after the start of culture was examined. In the same manner as in Example 2, lactic acid bacteria (Lactobacillus plantarum TUA1490L strain) were cultured at 30 ° C. in a GYKP medium using an S-type panel pressure culture apparatus (Biott). Immediately after the start of the culture, aeration was performed at 1/10 VVM, and stirring was performed at 300 rpm. When the methane production inhibitory activity of the culture solution 24 hours after the start of the culture was measured by the simple rumen fermentation evaluation method, the amount of methane generated was about 3% in the sample addition group compared to the control group to which no lactic acid bacteria culture supernatant was added. Decreased to. From this result, it was shown that if oxygen supply more than that shown in Example 3 was performed, production of a methane production inhibitor by lactic acid bacteria was not related to the timing of oxygen supply start.

本発明により、反芻動物から排出される強力な温室効果ガスであるメタンを削減可能であり、さらにメタンを削減することにより反芻動物の飼料エネルギーの効率が向上し、延いては反芻動物の発育が改善するため、本発明は極めて有用である。According to the present invention, it is possible to reduce methane, which is a powerful greenhouse gas discharged from ruminants, and by further reducing methane, the efficiency of ruminant feed energy is improved, and thus the development of ruminants is increased. In order to improve, the present invention is extremely useful.

Claims (10)

プロテアーゼ耐性バクテリオシン産生乳酸菌を用いる反芻動物用メタン生成抑制剤の製造において、プロテアーゼ耐性バクテリオシン産生乳酸菌の培養を培養後期において、培養液中の溶存酸素濃度を0.35ppm以上で行うことを特徴とする反芻動物用メタン生成抑制剤の製造方法。  In the production of a ruminant methane production inhibitor using a protease-resistant bacteriocin-producing lactic acid bacterium, the culture of the protease-resistant bacteriocin-producing lactic acid bacterium is carried out at a later stage of the culture, and the dissolved oxygen concentration in the culture solution is 0.35 ppm or more A method for producing a ruminant methane production inhibitor. 該乳酸菌が、ラクトバシラス(Lactobacillus)属、ラクトコッカス(Lactococcus)属、ロイコノストック(Leuconostoc)属、ワイセラ(Weissella)属及びペディオコッカス(Pediococcus)属からなる群から選ばれる1種又は2種以上の乳酸菌であることを特徴とする請求項1記載のメタン生成抑制剤の製造方法。  The lactic acid bacterium is one or more selected from the group consisting of the genus Lactobacillus, the genus Lactococcus, the genus Leuconostoc, the genus Weissella, and the genus Pediococcus. The method for producing a methane production inhibitor according to claim 1, wherein 該ラクトバシラス属乳酸菌が、ラクトバシラス・プランタラム(L.plantarum)、ラクトバシラス・デルブリッキー(L.delbrueckii)及び/又はラクトバシラス・カゼイ(L.casei)であることを特徴とする請求項2に記載のメタン生成抑制剤の製造方法。  Methane production according to claim 2, characterized in that the Lactobacillus lactic acid bacterium is L. plantarum, L. delbrueckii and / or L. casei A method for producing an inhibitor. 該ラクトコッカス属乳酸菌が、ラクトコッカス・ラクティス(L.lactis)であることを特徴とする請求項2に記載のメタン生成抑制剤の製造方法。  The method for producing a methane production inhibitor according to claim 2, wherein the lactic acid bacterium of the genus Lactococcus is L. lactis. 該ロイコノストック属乳酸菌が、ロイコノストック・メセンテロイデス(L.mesenteroides)、ロイコノストック・ラクティス(L.lactis)及び/又はロイコノストック・シトレウム(L.citreum)であることを特徴とする請求項2に記載のメタン生成抑制剤の製造方法。  The lactic acid bacterium belonging to the genus Leuconostoc is Leuconostoc mesenteroides (L. mesenteroides), Leuconostoc lactis (L. lactis) and / or Leuconostoc citreum (L. citreum), Item 3. A method for producing a methane production inhibitor according to Item 2. 該ワイセラ属乳酸菌が、ワイセラ・シバリア(W.cibaria)、ワイセラ・コンフューサ(W.confusa)及び/又はワイセラ・ヘレニカ(W.hellenica)であることを特徴とする請求項2に記載のメタン生成抑制剤の製造方法。  3. The suppression of methane production according to claim 2, wherein the Weisella lactic acid bacterium is Weisella siberia, W. confusa and / or W. hellenica. Manufacturing method. 該ペディオコッカス属乳酸菌が特にペディオコッカス・ペントサセウス(P.pentosaceus)、ペディオコッカス・アシディラクティス(P.acidilactici)及び/又はペディオコッカス・ハロフィラス(P.halophilus)であることを特徴とする請求項2に記載のメタン生成抑制剤の製造方法。  The pedicococcus lactic acid bacterium is in particular Pediococcus pentosaceus, P. acidophilacti and / or P. halophilus, The method for producing a methane production inhibitor according to claim 2. 有効成分として、請求項1〜7のいずれかに記載のメタン生成抑制剤の製造法において得られる当該乳酸菌培養液及び/又は乳酸菌培養上清を含有することを特徴とするメタン生成抑制剤。  A methane production inhibitor comprising, as an active ingredient, the lactic acid bacteria culture solution and / or lactic acid bacteria culture supernatant obtained in the method for producing a methane production inhibitor according to any one of claims 1 to 7. 請求項8に記載のメタン生成抑制剤を含有することを特徴とする反芻動物用飼料組成物。  A feed composition for ruminants, comprising the methane production inhibitor according to claim 8. 請求項8に記載のメタン生成抑制剤及び/又は請求項9に記載の飼料組成物を反芻動物に投与することを特徴とする反芻動物の発育を改善する方法。  A method for improving the development of ruminants, comprising administering the methanogenesis inhibitor according to claim 8 and / or the feed composition according to claim 9 to ruminants.
JP2009072749A 2009-02-27 2009-02-27 Methanation inhibitor for ruminant and feed composition Pending JP2010200730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072749A JP2010200730A (en) 2009-02-27 2009-02-27 Methanation inhibitor for ruminant and feed composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009072749A JP2010200730A (en) 2009-02-27 2009-02-27 Methanation inhibitor for ruminant and feed composition

Publications (1)

Publication Number Publication Date
JP2010200730A true JP2010200730A (en) 2010-09-16

Family

ID=42962885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072749A Pending JP2010200730A (en) 2009-02-27 2009-02-27 Methanation inhibitor for ruminant and feed composition

Country Status (1)

Country Link
JP (1) JP2010200730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545485A (en) * 2010-12-20 2013-12-26 ディーエスエム アイピー アセッツ ビー.ブイ. Use of nitrooxy organic molecules in feed to reduce ruminant methane emissions and / or improve ruminant productivity
WO2018003034A1 (en) * 2016-06-29 2018-01-04 株式会社 メニコン Agent for improving feed efficiency in livestock, livestock feed for promoting body weight gain, method for feeding livestock, and method for suppressing methane generation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545485A (en) * 2010-12-20 2013-12-26 ディーエスエム アイピー アセッツ ビー.ブイ. Use of nitrooxy organic molecules in feed to reduce ruminant methane emissions and / or improve ruminant productivity
WO2018003034A1 (en) * 2016-06-29 2018-01-04 株式会社 メニコン Agent for improving feed efficiency in livestock, livestock feed for promoting body weight gain, method for feeding livestock, and method for suppressing methane generation
JPWO2018003034A1 (en) * 2016-06-29 2018-07-05 株式会社メニコン Livestock feed efficiency improving agent, livestock weight gain promotion feed, livestock breeding method, and methane generation suppression method
EP3479700A4 (en) * 2016-06-29 2019-12-18 Menicon Co., Ltd. Agent for improving feed efficiency in livestock, livestock feed for promoting body weight gain, method for feeding livestock, and method for suppressing methane generation

Similar Documents

Publication Publication Date Title
Nollet et al. Effect of 2-bromoethanesulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogenesis in the ruminal ecosystem by selective inhibition of methanogenesis
Fonty et al. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs
Lopez et al. Influence of sodium fumarate addition on rumen fermentation in vitro
Krause et al. Board-invited review: rumen microbiology: leading the way in microbial ecology
JP5778669B2 (en) Method for suppressing methane production
JP5940780B2 (en) Lactic acid bacteria isolated from traditional fermented foods in Ishikawa Prefecture, their cultures and their use
Nollet et al. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80
EP1673983A1 (en) A methane production reducer, and feed composition for ruminant
Kim et al. Fumarate reductase-producing enterococci reduce methane production in rumen fermentation in vitro
JP6663977B2 (en) Feed additive containing Bacillus subtilis and Bacillus licheniformis, feed composition containing the additive, and method for producing the feed additive
CN115322932B (en) Lactobacillus plantarum with anti-alcohol and sobering-up capabilities and application thereof
Sedighi et al. Assessment of probiotic effects of isolated Megasphaera elsdenii strains in Mehraban sheep and Holstein lactating cows
CN114806929A (en) Lactobacillus reuteri LR4009 capable of highly producing reuterin and application thereof
JP2006166853A5 (en)
AU2010336620B2 (en) Composition containing bacterium capable of producing propionic acid bacterium, and use thereof
CN107455570A (en) Animal and fowl fodder and preparation method thereof
Zhao et al. Lactobacillus plantarum and propionic acid improve the fermentation quality of high-moisture amaranth silage by altering the microbial community composition
JP2010200730A (en) Methanation inhibitor for ruminant and feed composition
JP2015517807A (en) Newly isolated Bacillus licheniformis and probiotics using the same
JP2006063002A (en) Methanation inhibitor and composition for feed for ruminant
CN107242350B (en) Selenium-rich lactobacillus preparation capable of degrading oxalic acid and preparation method and application thereof
JP5192108B2 (en) Composition for inhibiting methanogenesis and composition for feed for ruminants
KR20150115697A (en) Microorganism capable for reducing methane produced by rumen of ruminant animals
WO2010071222A1 (en) Methane emission inhibitor for ruminants and feed composition
CN107048087A (en) A kind of preparation method of cynoglossus semilaevis cultivation feed addictive