JP2010200707A - Lignin decomposing microorganism - Google Patents

Lignin decomposing microorganism Download PDF

Info

Publication number
JP2010200707A
JP2010200707A JP2009051681A JP2009051681A JP2010200707A JP 2010200707 A JP2010200707 A JP 2010200707A JP 2009051681 A JP2009051681 A JP 2009051681A JP 2009051681 A JP2009051681 A JP 2009051681A JP 2010200707 A JP2010200707 A JP 2010200707A
Authority
JP
Japan
Prior art keywords
strain
tama
lignin
microorganism
genus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009051681A
Other languages
Japanese (ja)
Inventor
Takayuki Ishizaki
孝之 石崎
Arinori Uchida
有紀 内田
Toru Okuda
徹 奥田
Tatsuo Hoshino
達雄 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HYPHAGENESIS CO Ltd
Original Assignee
HYPHAGENESIS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYPHAGENESIS CO Ltd filed Critical HYPHAGENESIS CO Ltd
Priority to JP2009051681A priority Critical patent/JP2010200707A/en
Publication of JP2010200707A publication Critical patent/JP2010200707A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fungus capable of efficiently decomposing lignin obtained as vegetable wastes at normal temperature and pressure without applying chemical treatment which applies a load on environment, by focusing attention to power of fungi to decompose organic materials. <P>SOLUTION: Lignin-decomposing microorganisms belonging to genus Marasmiellus or genus Gymnopus having laccase activity and manganese peroxidase activity are selected. Lignin in urban vegetable wastes, especially lignin in Aucuba japonica, azalea, camellia and mowed grass of lawn, bamboo grass, rice straw, etc., can be decomposed by using M. candidus TAMA 114 strain, TAMA 113 strain and Gymnopus sp. TAMA 115 strain. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シロホウライタケ(Marasmiellus)属やモリノカレバタケ(Gymnopus)属に属するリグニン分解微生物、及びこれらリグニン分解微生物を用いた刈草等のリグニン分解方法に関する。   The present invention relates to a lignin-decomposing microorganism belonging to the genus Marasmiellus and Mornopus, and a method for decomposing lignin such as mowing grass using these lignin-decomposing microorganisms.

公園、街路樹等公共施設や一般家庭から排出される都市型植物廃棄物(シバ、ツツジ等)は、一部が堆肥化され多くは焼却処分されている。生木の含水率は50〜60%と言われ、焼却炉の炉温を下げる要因になるばかりでなく、都市部においては堆肥の生産量が消費量を上回ることから、植物廃棄物の効率的な利用法が求められている。   Urban plant waste (such as shiba and azalea) discharged from public facilities such as parks and roadside trees and general households is partially composted and mostly incinerated. The moisture content of raw wood is said to be 50-60%, which not only causes the temperature of the incinerator to be lowered, but also the amount of compost exceeds the consumption in urban areas. Use is required.

自然界には動物、植物および菌類が存在し、物質循環において菌類は動植物の遺体を分解し有機物を無機物に変換する役割を持つことが知られている。植物は、主にセルロース、ヘミセルロース及びリグニンから構成されるが、このうちセルロース、ヘミセルロースは紙原料として利用する価値があるばかりでなく、一連のセルラーゼ群の処理によりグルコース、キシロースなどの糖を生成することができ、これらはバイオマスエタノールの原料になることが期待されている。しかし、植物のセルロースを効率よく利用するためには、構造上まずリグニンを除去する必要があるが、リグニンは難分解性であり、これを分解できる生物は限定されている。   There are animals, plants and fungi in nature, and it is known that fungi have a role to decompose the remains of animals and plants and convert organic matter to inorganic matter in the material cycle. Plants are mainly composed of cellulose, hemicellulose and lignin. Of these, cellulose and hemicellulose are not only useful as paper raw materials, but also produce sugars such as glucose and xylose by a series of cellulase group treatments. These are expected to be raw materials for biomass ethanol. However, in order to efficiently use plant cellulose, it is necessary to remove lignin first in terms of structure. However, lignin is hardly degradable, and organisms capable of degrading it are limited.

白色腐朽菌は、難分解性芳香族高分子であるリグニンを高度に分解する微生物である。白色腐朽菌はリグニンを分解する際、菌体外にリグニンペルオキシターゼやマンガンペルオキシダーゼといった酸化還元酵素を分泌するが、中でもリグニンペルオキシダーゼは、高分子リグニンを直接酸化分解する以外に、ダイオキシンなどの難分解性芳香族化合物を分解する能力を持つことが知られている。白色腐朽菌の代表的なものは、ヒダネシタケ目コウヤクタケ科マクカワタケ属に属する担子菌の一種であるPhanerochaete chrysosporiumであり、過去における高分子リグニン分解技術開発の多くは本菌を用いて行われてきた(非特許文献1)。また、選択的白色腐朽菌であるCeriporiopsis subvermisporaによるリグニン分解処理が知られている(特許文献1)。しかしこれらの菌は自然界で針葉樹や広葉樹硬材を分解して生育していることが知られており、元来都市型植物廃棄物に含まれるような草本や小枝、落葉を分解するものではない。   White rot fungi are microorganisms that highly degrade lignin, which is a hardly degradable aromatic polymer. When white rot decomposes lignin, it secretes redox enzymes such as lignin peroxidase and manganese peroxidase outside the cell. Among them, lignin peroxidase, in addition to direct oxidative degradation of polymer lignin, is difficult to decompose such as dioxin. It is known to have the ability to decompose aromatic compounds. A typical example of white-rot fungi is Phanerochaete chrysosporium, a kind of basidiomycete belonging to the genus Macacatake, which is a member of the family Amanita mushrooms, and many of the developments in polymer lignin degradation technology in the past have been carried out using this fungus ( Non-patent document 1). Moreover, the lignin decomposition process by Ceriporiopsis subvermispora which is a selective white rot fungus is known (patent document 1). However, these fungi are known to grow by decomposing softwood and hardwood hardwood in nature, and do not decompose herbs, twigs, and deciduous leaves originally contained in urban plant waste. .

特開2008−237164号公報JP 2008-237164 A

Tatsuro Sawada et al., Biotech. & Bioeng., Vol. 48, 719-724 (1995)Tatsuro Sawada et al., Biotech. & Bioeng., Vol. 48, 719-724 (1995)

本発明の課題は、菌類の有機物分解能力に着目し、環境に負荷のかかる化学的処理を加えず、常温常圧により植物廃棄物であるリグニンを効率的に分解する菌を提供することにある。   An object of the present invention is to provide a fungus that efficiently decomposes lignin, which is a plant waste, at room temperature and normal pressure without adding chemical treatment that is burdensome to the environment, focusing on the ability of fungi to decompose organic matter. .

本発明者らは、17,000株を超える微生物菌株ライブラリーに対し、リグニン類似化合物である、RBBR、エバンスブルー及び水溶性リグニンの分解性を指標としたスクリーニングを行った結果、これらの試薬を良好に分解する3菌株(TAMA 114株、TAMA 113株、TAMA 115株)選抜することができた。これらの菌株を形態学的、分子生物学的な同定を行なった結果、シロホウライタケ属やモリノカレバタケ属に属する担子菌であることがわかった。また、リグニンの分解にはラッカーゼやペルオキシダーゼ等、種々の分解酵素が関与していると考えられているが、液体培養上清による経時的なRBBR分解を指標にした解析の結果、候補菌3菌株は対照として用いたCeriporiopsis菌株に比べ分解速度が速いこと、さらに、ペルオキシダーゼ反応における電子供与体となる過酸化水素水非存在下において、良好に分解が進んだことから(図4)、本候補菌3菌株は非常に有用なリグニン分解菌であることが分かった。   The present inventors conducted screening using a microbial strain library of more than 17,000 strains using RBBR, Evans Blue, and water-soluble lignin, which are lignin-like compounds, as an index. It was possible to select three strains (TAMA 114 strain, TAMA 113 strain, TAMA 115 strain) that decompose well. As a result of morphological and molecular biological identification of these strains, they were found to be basidiomycetes belonging to the genus Shirohouraitake and Morinokarebatake. In addition, it is considered that various degradation enzymes such as laccase and peroxidase are involved in the degradation of lignin. As a result of analysis using RBBR degradation over time by liquid culture supernatant as an index, 3 strains of candidate bacteria Since the degradation rate was faster than that of Ceriporiopsis strain used as a control, and the degradation progressed well in the absence of hydrogen peroxide solution as an electron donor in the peroxidase reaction (Fig. 4), Three strains were found to be very useful lignin degrading bacteria.

シロホウライタケ属やモリノカレバタケ属に属する担子菌は過去にリグニンを分解する菌としての報告が無いものの、自然界ではシバ、ササ等の草本や広葉樹・針葉樹の小枝を分解する菌として知られており、都市型植物廃棄物を分解するのに適した菌であることが推定された。そこで、都市型植物廃棄物の構成要素であるアオキ、ツツジ、ツバキ、シバ、ササ及びイナワラについて、候補菌3菌株の分解性を対照菌(Ceriporiopsis菌株)と比較したところ、全ての基質において対照よりも良好な生育を示した。特にシバ、ササ、イナワラにおいて対照菌ではほとんど生育が見られなかったものの、候補菌3菌株は良好に生育し、これらの基質分解に適していることが分かった(図5)。   Although no basidiomycete belonging to the genus Shirohouraitake and Morinokarebatake has been reported in the past as a bacterium that degrades lignin, it is known in nature as a fungus that degrades herb and broadleaf and coniferous twigs such as Shiba and Sasa. It was estimated to be a suitable fungus for decomposing urban plant waste. Therefore, Aoki, Azalea, Camellia, Shiba, Sasa and Inawara, which are constituents of urban plant waste, were compared with the control strain (Ceriporiopsis strain) for the degradability of the three candidate strains. Also showed good growth. In particular, although the growth of the control bacteria was hardly observed in Shiba, Sasa and Inawara, it was found that the three candidate bacteria grew well and were suitable for degradation of these substrates (FIG. 5).

また、前記6種類の植物を基質とした固体培養における候補菌3菌株のリグニン分解酵素活性(ラッカーゼ及びマンガンペルオキシダーゼ活性)を調べたところ、アオキ、イナワラ、シバ及びツバキ分解時のラッカーゼ活性が、また、アオキ、イナワラ及びシバ分解時のマンガンペルオキシダーゼ活性が対照菌よりも高いことが分かった。さらに、6種類の植物を混合したものを基質とした場合、候補菌3菌株のマンガンペルオキシダーゼ活性は対照菌とほとんど変わらず、あるいはわずかに上回り、またラッカーゼ活性は対照菌に比べて活性が高いこと(TAMA 113株において対照の約1.6倍)が分かった(図6−2)。次に、アオキ、イナワラ、ツツジ及びシバを基質として各菌を1ヶ月間培養した培養産物の成分解析を行ったところ、候補菌TAMA 113株はイナワラを基質として培養した場合において、対照よりもリグニンの分解量が約2倍増加することが分かった(図7)。   In addition, when lignin-degrading enzyme activity (laccase and manganese peroxidase activity) of three candidate strains in solid culture using the above-mentioned six kinds of plants as a substrate, laccase activity at the time of Aoki, Inawara, Shiba and camellia degradation was It was found that the manganese peroxidase activity during decomposition of Aoki, Inowara and Shiba was higher than that of the control bacteria. Furthermore, when a mixture of six types of plants is used as a substrate, the manganese peroxidase activity of the three candidate strains is almost the same as or slightly higher than that of the control strain, and the laccase activity is higher than that of the control strain. (About 1.6 times the control in the TAMA 113 strain) was found (FIG. 6-2). Next, a component analysis was performed on culture products obtained by culturing each bacterium for 1 month using Aoki, Inawara, Azalea and Shiba as substrates. As a result, the candidate bacterium TAMA 113 strain was lignined more than the control when cultivated using Inawara as a substrate. It was found that the amount of decomposition increased approximately twice (FIG. 7).

本発明は、以上の知見により完成するに至ったもので、[1]ラッカーゼ活性及びマンガンペルオキシダーゼ活性を有するシロホウライタケ(Marasmiellus)属又はモリノカレバタケ(Gymnopus)属に属するリグニン分解微生物や、[2]シロホウライタケ(M.candidus)であることを特徴とする上記[1]の微生物や、[3]TAMA 114株又はTAMA 113株であることを特徴とする上記[2]の微生物や、[4]ジムノプス・エスピー(Gymnopus sp.)TAMA 115株であることを特徴とする上記[1]の微生物に関する。   The present invention has been completed based on the above findings. [1] A lignin-decomposing microorganism belonging to the genus Marasmiellus or the genus Mornono having laccase activity and manganese peroxidase activity, [2] The microorganism of [1] above, which is M. candidus, [3] the microorganism of [2] above, which is the TAMA 114 strain or TAMA 113 strain, [4] ] The microorganism according to [1] above, which is the Gymnopus sp. TAMA 115 strain.

また本発明は、[5]上記[1]〜[4]のいずれか記載の微生物を含むことを特徴とするリグニン処理剤や、[6]上記[1]〜[4]のいずれか記載の微生物を用いて、リグニン含有物を処理することを特徴とするリグニン分解方法や、[7]リグニン含有物が刈草であることを特徴とする上記[6]のリグニン分解方法や、[8]刈草がイナワラ及び/又はシバを含むことを特徴とする上記[7]のリグニン分解方法に関する。   The present invention also provides [5] a lignin treating agent comprising the microorganism according to any one of [1] to [4] above, and [6] any one of [1] to [4] above. A lignin decomposition method characterized by treating a lignin-containing material using a microorganism, [7] the lignin decomposition method according to [6] above, wherein the lignin-containing material is cut grass, and [8] cut grass. The present invention relates to the lignin decomposition method according to the above [7], characterized in that contains inowara and / or shiba.

都市型植物廃棄物を効率よく分解する菌として、シロホウライタケ属の2菌株とモリノカレバタケ属の1菌株を選抜した。これらのリグニン分解微生物を用いることにより、都市型植物廃棄物のセルロース資源としての活用が可能となる。   Two strains belonging to the genus Shirohouraitake and one strain belonging to the genus Morinocarabatake were selected as bacteria that efficiently decompose urban plant waste. By using these lignin-degrading microorganisms, it is possible to utilize urban plant waste as a cellulose resource.

TAMA 114株の(A)乾燥子実体写真、及び(B)担子胞子顕微鏡写真を示す図である。It is a figure which shows the (A) dry fruit body photograph of a TAMA 114 strain | stump | stock, and the (B) basidiospore micrograph. TAMA 113株の(A)乾燥子実体写真、及び(B)担子胞子顕微鏡写真を示す図である。It is a figure which shows the (A) dry fruit body photograph of a TAMA 113 strain | stump | stock, and the (B) basidiospore micrograph. TAMA 115株の(A)乾燥子実体写真、及び(B)担子胞子顕微鏡写真を示す図である。It is a figure which shows the (A) dried fruit body photograph of a TAMA 115 strain | stump | stock, and the (B) basidiospore micrograph. 候補菌3菌株(TAMA 114株、TAMA 113株、TAMA 115株)及び対照菌であるATCC96608(Ceriporiopsis subvermispora)によるレマゾールブルリリアントブルー(RRBR)分解の経時変化を示す図である。(A)〜(D)のグラフは、それぞれ異なる組成の反応系における結果を示しており、各反応系の組成は、(A)Mn2+(+)H(+)[0.2mM塩化マンガン、0.005%RBBR、0.1mM過酸化水素]、(B)Mn2+(+)H(−)[0.2mM塩化マンガン、0.005%RBBR]、(C)Mn2+(−)H(+)[0.005%RBBR、0.1mM過酸化水素]、(D)Mn2+(−)H(−)[0.005%RBBR]である。It is a figure which shows the time-dependent change of remazol brilliant blue (RRBR) decomposition | disassembly by three candidate microbes (TAMA 114 strain | stump | stock, TAMA 113 strain | stump | stock, TAMA 115 strain | stump | stock) and ATCC96608 (Ceriporiopsis subvermispora) which is a control microbe. The graphs (A) to (D) show the results in reaction systems having different compositions, and the composition of each reaction system is (A) Mn 2+ (+) H 2 O 2 (+) [0.2 mM. Manganese chloride, 0.005% RBBR, 0.1 mM hydrogen peroxide], (B) Mn 2+ (+) H 2 O 2 (−) [0.2 mM manganese chloride, 0.005% RBBR], (C) Mn 2+ (−) H 2 O 2 (+) [0.005% RBBR, 0.1 mM hydrogen peroxide], (D) Mn 2+ (−) H 2 O 2 (−) [0.005% RBBR]. . 候補菌3菌株(TAMA 114株、TAMA 113株、TAMA 115株)及び対照菌であるATCC96608(Ceriporiopsis subvermispora)による天然物基質の分解について示した図である。(A)アオキ、ツツジ、ツバキ、シバ、ササおよびイナワラをそれぞれ培地として、各菌を接種し、10日間静置培養した後、目視にて確認した結果である。図A中、◎は菌糸が培地全体に蔓延している、○は菌糸が培地全体の50%以上の部分に伸長しているが蔓延していない、△は菌糸が培地の伸長が全体の50%以下である、×は接種片からの菌糸の伸長は確認されるが天然物を基質として伸長していないことを示している。(B)アオキ、ツツジ、ツバキ、シバ、ササおよびイナワラを1:1:1:1:1:1で混合した混合物を培地(以下、模擬刈り草培地ということもある)として、各菌を接種し、10日間静置培養した結果を示す図である。It is the figure shown about decomposition | disassembly of the natural product substrate by ATCC96608 (Ceriporiopsis subvermispora) which is 3 strains of candidate bacteria (TAMA 114 strain, TAMA 113 strain, TAMA 115 strain) and a control bacterium. (A) Aoki, azalea, camellia, shiba, sasa and inawara are used as culture media, inoculated with each bacterium, and after static culture for 10 days, the results were confirmed visually. In FIG. A, ◎ indicates that the mycelium is prevalent throughout the medium, ○ indicates that the mycelium is extended to 50% or more of the whole medium, but does not spread, and Δ indicates that the hypha is 50% of the whole medium. % Indicates that elongation of the mycelium from the inoculated piece is confirmed but the natural product is not used as a substrate. (B) A mixture of Aoki, Azalea, Camellia, Shiba, Sasa and Inawara mixed at 1: 1: 1: 1: 1: 1 as a medium (hereinafter also referred to as simulated cut grass medium) and inoculated with each bacterium And it is a figure which shows the result of stationary culture for 10 days. 候補菌3菌株(TAMA 114株、TAMA 113株、TAMA 115株)及び対照菌であるATCC96608(Ceriporiopsis subvermispora)による天然物基質分解時の酵素活性を示す図である。各菌を、アオキ、ツツジ、ツバキ、シバ、ササ又はイナワラ培地にて、30日間静置培養した後、ラッカーゼ(Lac)及びマンガンペルオキシダーゼ(MnP)活性を測定した。It is a figure which shows the enzyme activity at the time of natural product substrate decomposition | disassembly by 3 candidate bacteria strains (TAMA 114 strain | stump | stock, TAMA 113 strain | stump | stock, TAMA 115 strain | stump | stock) and ATCC96608 (Ceriporiopsis subvermispora) which is a control microbe. Each bacterium was allowed to stand for 30 days in aoki, azalea, camellia, shiba, sasa or inawara media, and then laccase (Lac) and manganese peroxidase (MnP) activities were measured. 候補菌3菌株(TAMA 114株、TAMA 113株、TAMA 115株)及び対照菌であるATCC96608(Ceriporiopsis subvermispora)による天然物基質分解時の酵素活性を示す図である。各菌を、アオキ、ツツジ、ツバキ、シバ、ササ及びイナワラを混合した模擬刈り草培地にて、30日間静置培養した後、ラッカーゼ(Lac)及びマンガンペルオキシダーゼ(MnP)活性を測定した。It is a figure which shows the enzyme activity at the time of natural product substrate decomposition | disassembly by 3 candidate bacteria strains (TAMA 114 strain | stump | stock, TAMA 113 strain | stump | stock, TAMA 115 strain | stump | stock) and ATCC96608 (Ceriporiopsis subvermispora) which is a control microbe. Each bacterium was allowed to stand for 30 days in a simulated cut grass medium in which aoki, azalea, camellia, shiba, sasa and inawara were mixed, and then laccase (Lac) and manganese peroxidase (MnP) activities were measured. 微生物分解による各基質成分の変化を示す図である。候補菌3菌株(TAMA 114株、TAMA 113株、TAMA 115株)及び対照菌であるATCC96608(Ceriporiopsis subvermispora)を、アオキ、イナワラ、ツツジ、又は、シバ培地にて、30日間静置培養した後、微粉砕した試料を用いて成分分析を行なった。リグニンの定量はクラーソン法により求めた。It is a figure which shows the change of each substrate component by microbial decomposition. Three candidate strains (TAMA 114 strain, TAMA 113 strain, TAMA 115 strain) and control strain ATCC 96608 (Ceriporiopsis subvermispora) were statically cultured in Aoki, Inawara, Azalea, or Shiba medium for 30 days, Component analysis was performed using the finely pulverized sample. The quantification of lignin was determined by the Klarson method.

本発明のリグニン分解微生物としては、ラッカーゼ活性及びマンガンペルオキシダーゼ活性を有するシロホウライタケ(Marasmiellus)属に属するリグニン分解能を有する微生物や、ラッカーゼ活性及びマンガンペルオキシダーゼ活性を有するモリノカレバタケ(Gymnopus)属に属するリグニン分解能を有する微生物であれば特に制限されず、シロホウライタケ属に属するリグニン分解微生物としては、シロホウライタケ(M.candidus)、特にシロホウライタケ(M.candidus)TAMA 114株やシロホウライタケ(M.candidus)TAMA 113株を具体的に例示することができ、モリノカレバタケ属に属するリグニン分解微生物としては、ジムノプス・エスピー(Gymnopus sp.)TAMA 115株を具体的に例示することができる。   The lignin-degrading microorganism of the present invention includes a microorganism having a lignin-degrading property belonging to the genus Marasmiellus having laccase activity and manganese peroxidase activity, and a lignin-degrading property belonging to the genus Ginotnopus having laccase activity and manganese peroxidase activity. The lignin-degrading microorganism belonging to the genus Shirahori raitake is M. candidus, especially M. candidus TAMA 114 strain and Shirahori raitake (M. .candidus) TAMA 113 strain can be specifically exemplified, and as a lignin-degrading microorganism belonging to the genus Morinocarebata, the Gymnopus sp. TAMA 115 strain can be specifically exemplified.

上記のTAMA 114株、TAMA 113株、TAMA 115株の子実体の凍結乾燥標本は、玉川大学学術研究所菌学応用研究センターにそれぞれ標本番号M 644,標本番号M1050,標本番号M2672として保管され、一定の条件で貸与を受けることができる。また、これら菌株は、一定の条件で分譲を受けることができ、TAMA 113株は、独立行政法人製品評価技術基盤機構特許寄託センターに寄託されている(受託番号:NITE P−701)。   The freeze-dried specimens of the fruit bodies of the above-mentioned TAMA 114 strain, TAMA 113 strain, and TAMA 115 strain are stored as sample number M 644, sample number M1050, and sample number M2672, respectively, at the Tamagawa University Academic Research Center Mycology Application Research Center. You can receive a loan under certain conditions. In addition, these strains can be sold under certain conditions, and the TAMA 113 strain is deposited at the Patent Evaluation Center of the National Institute of Technology and Evaluation (Accession Number: NITE P-701).

本発明のリグニン処理剤としては、上記のTAMA 114株、TAMA 113株、TAMA 115株等の本発明のリグニン分解微生物の外、担体、賦形剤、配合剤、添加剤などを1種又は2種以上含むものであれば特に制限されず、担体、賦形剤、配合剤、添加剤などとしては、鋸屑、籾殻、蕎麦殻、トウモロコシ外皮、米糠、油粕、酵母エキス(ビール粕)、腐葉土、珪藻土、バーミキュライト、パーライト、モンモリロナイト、ベントナイト、ゼオライト、赤玉土、土、砂、泥炭、木炭、活性炭、コークス、他の微生物、酵素を例示することができ、これらは本発明のリグニン分解微生物と混合状態として含有させることもできる。   As the lignin treating agent of the present invention, in addition to the above-mentioned lignin-degrading microorganisms of the present invention such as the TAMA 114 strain, the TAMA 113 strain, the TAMA 115 strain, etc., one or two carriers, excipients, compounding agents, additives, etc. The carrier, excipient, compounding agent, additive, etc. are not particularly limited as long as they contain more than seeds. Sawdust, rice husk, buckwheat husk, corn hull, rice bran, oil lees, yeast extract (beer lees), humus, Examples include diatomaceous earth, vermiculite, perlite, montmorillonite, bentonite, zeolite, red crust, earth, sand, peat, charcoal, activated carbon, coke, other microorganisms, and enzymes, which are mixed with the lignin-decomposing microorganism of the present invention. It can also be contained as.

本発明のリグニン分解方法としては、上記のTAMA 114株、TAMA 113株、TAMA 115株等の本発明のリグニン分解微生物を用いて、リグニン含有物を処理する方法であれば特に制限されず、上記本発明のリグニン処理剤も有利に用いることができる。リグニン含有物として、都市型植物廃棄物、とりわけアオキ、ツツジ、ツバキ、シバ、ササ、イナワラ等の刈草を好適に例示することができる。本発明のリグニン分解微生物は、これらの中でも、イナワラやシバのリグニンの分解能に優れている。   The lignin decomposition method of the present invention is not particularly limited as long as it is a method for treating a lignin-containing material using the lignin-decomposing microorganism of the present invention such as the above-mentioned TAMA 114 strain, TAMA 113 strain, TAMA 115 strain, etc. The lignin treating agent of the present invention can also be used advantageously. Preferable examples of the lignin-containing material include urban plant wastes, especially mushrooms such as aoki, azalea, camellia, shiba, sasa and inawara. Among these, the lignin-degrading microorganism of the present invention is excellent in the resolution of Inawara and Shiba lignin.

本発明のリグニン分解方法の具体的な態様としては、例えば、天日等により乾燥させたアオキ、ツツジ、ツバキ、シバ、ササ、イナワラ等の刈草を、必要に応じて裁断し、撒水して水分調整を行なった後、ポリプロレン等の耐熱性プラスチック袋に適当量を詰め、熱殺菌処理を行った後、TAMA 114株,TAMA 113株,TAMA 115株等の本発明のリグニン分解微生物の種培養物を混和し、必要に応じて換気及び撹拌しながら30〜90日間20〜30℃で培養する。種培養物としては、TAMA 114株,TAMA 113株,TAMA 115株等の本発明のリグニン分解微生物の菌糸がイナワラ又はシバに十分繁殖した培養物を好適に例示することができる。また、上記培養物の利用法としては、製紙原料や、バイオエタノール・バイオブタノール・バイオ樹脂等のバイオリファイナリー原料、きのこ栽培における培地、家畜飼料、植物肥料、繊維製品等としての利用を例示することができる。   Specific embodiments of the lignin decomposition method of the present invention include, for example, mushrooms such as aoki, azalea, camellia, shiba, sasa, inawara, etc., dried by the sun, etc. After the adjustment, an appropriate amount is packed in a heat-resistant plastic bag such as polyprolene, and after heat sterilization, the seed culture of the lignin-degrading microorganism of the present invention such as TAMA 114 strain, TAMA 113 strain, TAMA 115 strain, etc. Incubate at 20-30 ° C. for 30-90 days with ventilation and agitation if necessary. As the seed culture, a culture in which the hyphae of the lignin-degrading microorganism of the present invention such as TAMA 114 strain, TAMA 113 strain, TAMA 115 strain and the like is sufficiently propagated in Inawara or Shiba can be preferably exemplified. In addition, examples of the use of the culture include use as a papermaking raw material, a biorefinery raw material such as bioethanol / biobutanol / bioresin, a medium in mushroom cultivation, livestock feed, plant fertilizer, a textile product, etc. Can do.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.

(候補菌3菌株の分離と同定について)
1.TAMA 114株
TAMA 114株は2000年7月群馬県にて採集したきのこ子実体から分離した。分離の方法は以下の通りである。採集したきのこ子実体のヒダの一部分をアルコール消毒したメスで切断し、ピンセットで素寒天培地の蓋の内側に貼付し、一定時間静置することにより胞子を自然落下させた。素寒天培地上に落下した胞子を実体顕微鏡下でクロラムフェニコール入りPDA培地に移植し、25℃で1週間培養した。胞子から発芽した菌糸を実体顕微鏡以下でPDA培地上に移植し、実験に供した。
(Separation and identification of 3 candidate strains)
1. TAMA 114 strain TAMA 114 strain was isolated from mushroom fruit bodies collected in Gunma Prefecture in July 2000. The separation method is as follows. Part of the collected mushroom fruit folds was cut with a scalpel sterilized with alcohol, applied to the inside of the lid of the agar medium with tweezers, and allowed to stand for a certain period of time to allow the spores to fall naturally. The spores dropped on the elementary agar medium were transplanted to a PDA medium containing chloramphenicol under a stereomicroscope and cultured at 25 ° C. for 1 week. The mycelium germinated from the spore was transplanted onto the PDA medium under a stereomicroscope and used for the experiment.

分離源となったきのこ子実体の特徴は以下の通りである。
2000年7月21日群馬県桐生市にて採集。スギ落枝材上に発生。
マクロ形態(図1A):子実体はホウライタケ型、傘は直径1.0cm、類白色、無毛、平滑。子実層托はヒダ状、ヒダは柄に対してやや垂生し、浅い連絡脈を持ち、小ヒダを交える。柄は長さ1.2cm、太さ0.5mm、偏心性、表面は中央部から基部にかけて粉状で、基部はやや黒色を呈する。なお、子実体の凍結乾燥標本は玉川大学学術研究所菌学応用研究センターに保管してある(標本番号M 644)。ミクロ形態(図1B):上表皮層は平行菌糸被、菌糸は非アミロイド、クランプを持つ。ひだ部分に棒状のシスチジアを有する。胞子は円柱形、平滑、非アミロイドで、大きさ4.2x14.7μm。以上の観察データについて、各種文献を用いて比較検討した結果、TAMA 114株はシロホウライタケ属に属する菌であり、特にシロホウライタケ(M.candidus)に非常に近縁な菌であると推定された。
The characteristics of the mushroom fruit body that became the separation source are as follows.
Collected on July 21, 2000 in Kiryu City, Gunma Prefecture. Occurs on cedar fallen timber.
Macro form (FIG. 1A): fruit body is Horaitake, umbrella is 1.0 cm in diameter, white, hairless, smooth. The grain layer is pleated, and the folds are slightly penetrating against the handle. The handle has a length of 1.2 cm, a thickness of 0.5 mm, eccentricity, the surface is powdery from the center to the base, and the base has a slightly black color. In addition, the freeze-dried specimen of the fruiting body is stored in the Tamagawa University Academic Research Center Mycology Application Research Center (Sample No. M 644). Micromorphology (FIG. 1B): The upper epidermis layer has parallel mycelia and the mycelium has non-amyloid and clamp. Has a rod-like cystidia in the folds. The spores are cylindrical, smooth, non-amyloid, and have a size of 4.2 × 14.7 μm. As a result of comparative examination of the above observation data using various literatures, it is estimated that the TAMA 114 strain belongs to the genus White-headed moss, and is particularly closely related to white-headed moth (M. candidus). It was.

次に、TAMA 114株のITS−5.8SrRNA遺伝子塩基配列を解析した。DNA抽出及び塩基配列決定の方法は以下の通りである。PDA斜面培地上に生育させた菌糸を、滅菌した白金耳で寒天ごと3mm角程度に切り取り、キアゲン社製DNeasy mini kitを用いてDNA抽出を行なった。このゲノムDNAを鋳型として、タカラバイオ社製のEx taqポリメラーゼとプライマーITS5およびITS4を用いてPCR増幅を行った。プライマーITS4とITS5の塩基配列は、ITS4:5’-TCCTCCGCTTATTGATATGC-3’(配列番号4)、ITS5:5’-GGAAGTAAAAGTCGTAACAAGG-3’(配列番号5)である。サーマルサイクラーはApplied Biosystems社製のgeneAmp PCR System 9600を用いた。反応終了後、PCR産物をロシュ・ダイアグノスティック社製のHigh Pure PCR Product Purification Kitを用いて精製した。このDNAフラグメントを直接シーケンシング反応に供し、塩基配列解析はApplied Biosystems社製のABI Prism 310 DNA Sequencerを用いて解析を行った。解析の結果、配列番号1に示す塩基配列が得られた。類似する塩基配列をDDBJからBLASTを利用して検索した結果、TAMA 114株のITS−5.8SrRNA遺伝子塩基配列は、M. candidus AHH151株のITS−5.8SrRNA遺伝子塩基配列(登録番号EF175514)に最も類似している結果(630塩基対が完全一致)が得られ、ミクロ形態及びマクロ形態の結果も併せ総合的に判断して、TAMA 114株をM. candidusと同定した。   Next, the ITS-5.8S rRNA gene base sequence of TAMA 114 strain was analyzed. The method of DNA extraction and base sequence determination is as follows. The mycelium grown on the PDA slant medium was cut into about 3 mm square together with the agar with a sterilized platinum loop, and DNA extraction was performed using a Qiagen DNeasy mini kit. Using this genomic DNA as a template, PCR amplification was performed using Ex taq polymerase manufactured by Takara Bio Inc. and primers ITS5 and ITS4. The base sequences of the primers ITS4 and ITS5 are ITS4: 5′-TCCTCCGCTTATTGATATGC-3 ′ (SEQ ID NO: 4) and ITS5: 5′-GGAAGTAAAAGTCGTAACAAGG-3 ′ (SEQ ID NO: 5). As a thermal cycler, GeneAmp PCR System 9600 manufactured by Applied Biosystems was used. After completion of the reaction, the PCR product was purified using a High Pure PCR Product Purification Kit manufactured by Roche Diagnostics. This DNA fragment was directly subjected to sequencing reaction, and base sequence analysis was performed using ABI Prism 310 DNA Sequencer manufactured by Applied Biosystems. As a result of the analysis, the base sequence shown in SEQ ID NO: 1 was obtained. As a result of searching a similar base sequence from DDBJ using BLAST, the ITS-5.8SrRNA gene base sequence of TAMA 114 strain is the ITS-5.8S rRNA gene base sequence (Registration No. EF175514) of M. candidus AHH151 strain. The most similar result (perfect match of 630 base pairs) was obtained, and the results of the micro form and the macro form were also judged comprehensively, and the TAMA 114 strain was identified as M. candidus.

2.TAMA 113株(NITE P−701)
TAMA 113は2000年9月群馬県にて採集したきのこ子実体から分離した。分離の方法はTAMA 114株で行なった方法と同様である。
分離源となったきのこ子実体の特徴は以下の通りである。
2000年9月14日群馬県桐生市にて採集。広葉樹落枝材上に発生。
マクロ形態(図2A):子実体はホウライタケ型、傘は直径0.8cm、類白色、無毛、平滑。子実層托はヒダ状、ヒダは柄に対してやや垂生、浅い連絡脈を持つ。小ヒダを交える。柄は長さ1.7cm、太さ0.5mm、中心性、表面は基部において粉状で、基部はやや黒色を呈する。尚、子実体の凍結乾燥標本は玉川大学学術研究所菌学応用研究センターに保管してある(標本番号M 1050)。ミクロ形態(図2B):上表皮層は平行菌糸被、菌糸は非アミロイド、クランプを持つ。ひだ部分に棒状のシスチジアを有する。胞子は円柱形、平滑、非アミロイドで、大きさ4.6x12.3μm。以上の観察データについて、各種文献を用いて比較検討した結果、TAMA 113株はシロホウライタケ属に属する菌であり、特に、シロホウライタケ(M. candidus)に非常に近縁な菌であると推定された。
2. TAMA 113 strain (NITE P-701)
TAMA 113 was separated from the mushroom fruit body collected in September 2000 in Gunma Prefecture. The separation method is the same as that performed with TAMA 114 strain.
The characteristics of the mushroom fruit body that became the separation source are as follows.
Collected on September 14, 2000 in Kiryu City, Gunma Prefecture. Occurs on hardwood litter.
Macro form (FIG. 2A): fruit body is Horaitake type, umbrella is 0.8 cm in diameter, white, hairless, smooth. The grain seed folds are pleated, and the folds are slightly penetrating against the handle and have shallow connection veins. Mix small folds. The handle has a length of 1.7 cm, a thickness of 0.5 mm, centrality, the surface is powdery at the base, and the base is slightly black. In addition, the freeze-dried specimen of the fruiting body is stored in Tamagawa University Academic Research Center Mycology Application Research Center (Specimen No. M 1050). Micromorphology (FIG. 2B): The upper epidermis layer has parallel mycelia and the mycelium has non-amyloid and clamp. Has a rod-like cystidia in the folds. The spores are cylindrical, smooth, non-amyloid, and have a size of 4.6 × 12.3 μm. As a result of comparing and examining the above observation data using various literatures, the TAMA 113 strain is a bacterium belonging to the genus Shilohoraitake, and in particular, is closely related to M. candidus. Estimated.

次に、TAMA 113株のITS−5.8SrRNA遺伝子塩基配列を解析した。TAMA 113株からのDNA抽出および塩基配列決定の方法はTAMA 114株で行なった方法と同様である。解析の結果、配列番号2に示す塩基配列が得られた。類似する塩基配列をDDBJからBLAST検索した結果、TAMA 113株のITS−5.8S rRNA遺伝子塩基配列は、M. candidusバウチャーDuke83のITS−5.8SrRNA遺伝子塩基配列(登録番号DQ480088)に最も類似している結果(541塩基対が完全一致)が得られ、ミクロ形態及びマクロ形態の結果も併せ総合的に判断して、TAMA 113株をM. candidusと同定した。   Next, the ITS-5.8S rRNA gene base sequence of TAMA 113 strain was analyzed. The method of DNA extraction from the TAMA 113 strain and determination of the nucleotide sequence are the same as the method performed for the TAMA 114 strain. As a result of the analysis, the base sequence shown in SEQ ID NO: 2 was obtained. As a result of BLAST search from DDBJ for a similar base sequence, the ITS-5.8S rRNA gene base sequence of TAMA 113 strain is most similar to the ITS-5.8S rRNA gene base sequence of M. candidus voucher Duke 83 (registration number DQ480088). As a result, the TAMA 113 strain was identified as M. candidus by comprehensively judging the results of the micro form and the macro form together.

3.TAMA 115株
TAMA 115株は2002年7月群馬県にて採集したきのこ子実体から分離した。分離の方法はTAMA 114株で行なった方法と同様である。分離源となったきのこ子実体の特徴は以下の通りである。
2002年7月17日群馬県桐生市にて採集した。針葉樹広葉樹混交林の落枝材上に発生していた。マクロ形態(図3A):子実体はホウライタケ型、傘は直径1.3cm、類白色、無毛、平滑。子実層托はヒダ状、ヒダは柄に対してやや垂生、浅い連絡脈を持つ。小ヒダを交える。柄は長さ1.8cm、太さ0.5mm、中心性、表面は基部において粉状で、基部はやや黒色を呈する。また、発生基質に黒色の菌糸束が見られる。なお、子実体の凍結乾燥標本は玉川大学学術研究所菌学応用研究センターに保管してある(標本番号M2672)。ミクロ形態(図3B):上表皮層は平行菌糸被でTrichodermium構造を有する。菌糸は非アミロイド、クランプを持つ。ひだ部分に棒状のシスチジアを有する。胞子は円柱形、平滑、非アミロイドで、大きさ4.5x14.3μm。以上の観察データについて、各種文献を用いて比較検討した結果、TAMA 115株はシロホウライタケ属に属する菌であると推定された。
3. TAMA 115 strain TAMA 115 strain was isolated from mushroom fruit bodies collected in Gunma Prefecture in July 2002. The separation method is the same as that performed with TAMA 114 strain. The characteristics of the mushroom fruit body that became the separation source are as follows.
Collected on July 17, 2002 in Kiryu City, Gunma Prefecture. It occurred on the litter of conifer broad-leaved mixed forest. Macro form (FIG. 3A): fruit body is Horaitake, umbrella is 1.3 cm in diameter, white, hairless, smooth. The grain seed folds are pleated, and the folds are slightly penetrating against the handle and have shallow connection veins. Mix small folds. The handle has a length of 1.8 cm, a thickness of 0.5 mm, centrality, the surface is powdery at the base, and the base is slightly black. In addition, a black mycelium bundle is seen in the development substrate. Note that the freeze-dried specimen of the fruiting body is stored at the Tamagawa University Academic Research Center Mycology Application Research Center (Sample No. M2672). Micromorphology (FIG. 3B): The upper epidermal layer is a parallel mycelium and has a Trichodermium structure. Mycelium has non-amyloid and clamp. Has a rod-like cystidia in the folds. The spores are cylindrical, smooth, non-amyloid, and have a size of 4.5 × 14.3 μm. As a result of comparative examination of the above observation data using various literatures, it was estimated that the TAMA 115 strain is a bacterium belonging to the genus Shirohouraitake.

次に、TAMA 115株のITS−5.8SrRNA遺伝子塩基配列を解析した。TAMA 115株からのDNA抽出および塩基配列決定の方法はTAMA 114株で行なった方法と同様である。解析の結果、配列番号3に示す塩基配列が得られた。類似する塩基配列をDDBJからBLASTを利用して検索した結果、TAMA 115株のITS−5.8SrRNA遺伝子塩基配列Gymnopus luxurians10350株のITS−5.8SrRNA遺伝子塩基配列(登録番号AY256709)に最も類似している結果(689塩基対が完全一致)が得られた。標本のマクロ形態観察において、本菌はGymnopus luxuriansとは著しく形態が異なる一方で、ミクロ形態観察において、Gymnopus属の一部に特徴的なTrichodermium構造を有することから、総合的に判断して、TAMA 115株をGymnopus sp.と同定した。   Next, the ITS-5.8S rRNA gene base sequence of TAMA 115 strain was analyzed. The method for DNA extraction from the TAMA 115 strain and determination of the nucleotide sequence are the same as the method performed for the TAMA 114 strain. As a result of the analysis, the base sequence shown in SEQ ID NO: 3 was obtained. As a result of searching a similar base sequence from DDBJ using BLAST, the base sequence of ITS-5.8SrRNA gene of TAMA 115 strain was most similar to the base sequence of ITS-5.8SrRNA gene of Gymnopus luxurians 10350 strain (registration number AY256709). (689 base pairs are perfectly matched). In the macroscopic observation of the specimen, this bacterium has a markedly different form from Gymnopus luxurians, while in the micromorphological observation, it has a characteristic Trichodermium structure in a part of the genus Gymnopus. 115 strains were identified as Gymnopus sp.

(RRBR分解の経時変化)
候補菌3菌株(TAMA 114株、TAMA 113株、TAMA 115株)及び対照菌(ATCC 96608(Ceriporiopsis subvermispora))を、MYG寒天培地(0.4%麦芽エキス、0.4%酵母エキス、1%グルコース、2%寒天)上で25℃にて1週間静置培養した。その後、直径6mmのコルクボーラーを用いて寒天ごと穿孔した。穿孔した菌糸・寒天片1ピースを、MYGT液体培地(0.4% 麦芽エキス、0.4%酵母エキス、1%グルコース、0.05%Tween80)5ml中に接種し、23℃、210rpmにて18日間回転振盪培養した。培養後上清を遠心分離し、RBBR(レマゾールブルリリアントブルー)分解性試験に供試した。培養上清190μlに対するRBBR分解を、総量200μlからなる反応系で測定した。各反応系の組成は、以下に示すとおりである。
Mn2+(+)H(+)
0.2 mM 塩化マンガン
0.005% RBBR
0.1 mM 過酸化水素
Mn2+(+)H(−)
0.2 mM 塩化マンガン
0.005% RBBR
Mn2+(−)H(+)
0.005% RBBR
0.1 mM 過酸化水素
Mn2+(−)H(−)
0.005% RBBR
(Change of RRBR decomposition over time)
Three candidate strains (TAMA 114 strain, TAMA 113 strain, TAMA 115 strain) and control strain (ATCC 96608 (Ceriporiopsis subvermispora)) were mixed with MYG agar medium (0.4% malt extract, 0.4% yeast extract, 1% The culture was allowed to stand at 25 ° C. for 1 week on glucose, 2% agar). Then, the agar was drilled with a 6 mm diameter cork borer. One piece of perforated mycelium / agar piece is inoculated into 5 ml of MYGT liquid medium (0.4% malt extract, 0.4% yeast extract, 1% glucose, 0.05% Tween 80), and at 23 ° C. and 210 rpm. The culture was rotated and shaken for 18 days. After incubation, the supernatant was centrifuged and subjected to RBBR (Remazol brilliant blue) degradability test. RBBR degradation for 190 μl of culture supernatant was measured in a reaction system consisting of a total volume of 200 μl. The composition of each reaction system is as shown below.
Mn 2+ (+) H 2 O 2 (+)
0.2 mM Manganese chloride 0.005% RBBR
0.1 mM hydrogen peroxide Mn 2+ (+) H 2 O 2 (−)
0.2 mM manganese chloride
0.005% RBBR
Mn 2+ (−) H 2 O 2 (+)
0.005% RBBR
0.1 mM hydrogen peroxide Mn 2+ (−) H 2 O 2 (−)
0.005% RBBR

マイクロプレートリーダーを用い、595nm及び490nmの吸光度を経時的に測定し、490nmにおける吸光度に対する595nmにおける吸光度の比を求めてグラフを作成した。図4に結果を示すように、塩化マンガン及び過酸化水素水存在下において、全サンプルともRBBRの分解に伴う急激な吸光度減少が見られた。一方、塩化マンガン存在下、過酸化水素非存在下において、TAMA 114株、TAMA 113株及びTAMA 115株培養上清はRBBRの急激な分解が見られるものの、対照菌(ATCC96608)においては分解が穏やかであった。また、塩化マンガン非存在下においては過酸化水素水の有無に関わらず、RBBRの穏やかな分解が観察され、Ceriporiopsisとは異なるリグニン分解酵素の存在が示唆された。候補菌3菌株は対照として用いたCeriporiopsis菌株に比べ分解速度が速いこと、また、ペルオキシダーゼ反応における電子供与体となる過酸化水素水非存在下において、良好に分解が進んだことから、本候補菌3菌株は非常に有用なリグニン分解菌であることが分かった。   Using a microplate reader, the absorbance at 595 nm and 490 nm was measured over time, and the ratio of the absorbance at 595 nm to the absorbance at 490 nm was determined to prepare a graph. As shown in FIG. 4, in the presence of manganese chloride and hydrogen peroxide, all samples showed a sharp decrease in absorbance due to the decomposition of RBBR. On the other hand, in the presence of manganese chloride and in the absence of hydrogen peroxide, the TAMA 114 strain, TAMA 113 strain and TAMA 115 strain culture supernatant showed rapid degradation of RBBR, but the control strain (ATCC 96608) showed mild degradation. Met. In addition, in the absence of manganese chloride, mild degradation of RBBR was observed regardless of the presence or absence of hydrogen peroxide, suggesting the presence of a lignin-degrading enzyme different from Ceriporiopsis. The three candidate strains had a faster degradation rate than the Ceriporiopsis strain used as a control, and because the degradation progressed well in the absence of hydrogen peroxide, which is an electron donor in the peroxidase reaction, this candidate strain Three strains were found to be very useful lignin degrading bacteria.

(天然物基質の分解)
次に都市型植物廃棄物の構成要素であるアオキ、ツツジ、ツバキ、シバ、ササ及びイナワラについて、候補菌3菌株の分解性を対照菌(Ceriporiopsis)と比較した。アオキ、ツツジ、ツバキ、シバ、ササ、及び、イナワラは、65℃にて一昼夜熱風乾燥し、十分に水分を除去したものを用いた。150ml容ガラス製培養瓶にそれぞれの乾燥天然物基質2g、蒸留水5mlを添加し、オートクレーブにて121℃で60分滅菌し、培地として供試した。MYG寒天培地上で25℃にて静置培養した候補菌3菌株(TAMA 114株、TAMA 113株、TAMA 115株)及び対照菌(ATCC96608)を、直径6mmのコルクボーラーを用いて寒天ごと穿孔した。穿孔した菌糸・寒天片5ピースを、培地に接種し、25℃、湿度65%にて10日間静置培養した。培養終了後、目視にて生育の状況を以下の基準で確認した。
◎:菌糸が培地全体に蔓延している。
○:菌糸が培地全体の50%以上の部分に伸長しているが蔓延していない。
△:菌糸が培地の伸長が全体の50%以下である。
×:接種片からの菌糸の伸長は確認されるが天然物を基質として伸長していない。
図5Aに結果を示すように、候補菌3菌株は全ての基質において対照よりも良好な生育を示した。特にシバ、ササ、イナワラにおいて対照菌ではほとんど生育が見られなかったものの、候補菌3菌株は良好に生育し、これらの基質分解に適していることが分かった。
(Decomposition of natural product substrate)
Next, the degradability of the three candidate strains of Aoki, Azalea, Camellia, Shiba, Sasa and Inawara, which are constituents of urban plant waste, was compared with that of the control strain (Ceriporiopsis). Aoki, azalea, camellia, shiba, sasa, and inawara were dried with hot air all day and night at 65 ° C., and the water was sufficiently removed. Each dried natural product substrate (2 g) and distilled water (5 ml) were added to a 150 ml glass culture bottle, sterilized in an autoclave at 121 ° C. for 60 minutes, and used as a medium. Three candidate strains (TAMA 114 strain, TAMA 113 strain, TAMA 115 strain) and control strain (ATCC 96608) statically cultured on MYG agar medium at 25 ° C. were perforated with agar using a 6 mm diameter cork borer. . The perforated mycelium / agar pieces (5 pieces) were inoculated into the medium, and statically cultured at 25 ° C. and 65% humidity for 10 days. After completion of the culture, the state of growth was visually confirmed according to the following criteria.
A: Mycelium is prevalent throughout the medium.
○: Mycelium extends to 50% or more of the whole medium but is not spread.
(Triangle | delta): The elongation of a culture medium is 50% or less of the whole.
X: Elongation of the mycelium from the inoculated piece is confirmed, but the natural product is not used as a substrate.
As shown in FIG. 5A, the three candidate strains grew better than the control on all substrates. In particular, although almost no growth was observed in the control bacteria in Shiba, Sasa, and Inawara, it was found that the three candidate bacteria grew well and were suitable for degradation of these substrates.

次に、上記の6種の天然物質を混合した培地に対する候補菌3菌株の分解性を対照菌(Ceriporiopsis)と比較した。150ml容ガラス製培養瓶に、乾燥したアオキ、ツツジ、ツバキ、シバ、ササ、及び、イナワラの1:1:1:1:1:1混合物1gと蒸留水30mlを添加し、オートクレーブにて121℃で60分滅菌し、培地(以下、模擬刈り草培地ということもある)として供試した。接種方法、培養条件は上に同じである。図5Bに結果を示すように、候補菌3菌株は模擬刈り草培地においても対照よりも良好な生育を示した。   Next, the degradability of the three candidate strains against the medium mixed with the above six natural substances was compared with that of the control strain (Ceriporiopsis). To a 150 ml glass culture bottle, add 1 g of a 1: 1: 1: 1: 1: 1 mixture of dried aoki, azalea, camellia, shiba, sasa, and inawara and 30 ml of distilled water, and 121 ° C. in an autoclave. And sterilized for 60 minutes and used as a medium (hereinafter sometimes referred to as simulated cut grass medium). The inoculation method and culture conditions are the same as above. As shown in FIG. 5B, the three candidate bacterial strains showed better growth than the control in the simulated cut grass medium.

(天然物基質分解時の酵素活性1)
実施例3と同様に、候補菌3菌株(TAMA 114株、TAMA 113株、TAMA 115株)及び対照菌(ATCC96608)を、アオキ、ツツジ、ツバキ、シバ、ササ、又は、イナワラ培地にて、25℃、湿度65%にて30日間静置培養した。培養終了後、ガラス製培養瓶に10mlの0.05%Tween 80を添加して30分間室温にて振盪し、上清を一部取りフィルターで濾過し、濾液100μlのラッカーゼ(Lac)及びマンガンペルオキシダーゼ(MnP)活性を、総量5mlの反応系で測定した。ラッカーゼ及びマンガンペルオキシダーゼ活性測定の反応系は以下の通りである。
ラッカーゼ活性
0.4mM グアイアコール
16mM 酢酸緩衝液(pH5.6)
マンガンペルオキシダーゼ活性
0.4mM グアイアコール
0.2mM 塩化マンガン
5μM 過酸化水素
(Enzyme activity 1 during degradation of natural product substrate)
In the same manner as in Example 3, 3 candidate strains (TAMA 114 strain, TAMA 113 strain, TAMA 115 strain) and control strain (ATCC 96608) were treated with Aoki, Azalea, Camellia, Shiba, Sasa or Inawara medium. The culture was allowed to stand at 30 ° C. and a humidity of 65% for 30 days. After completion of the culture, 10 ml of 0.05% Tween 80 was added to a glass culture bottle and shaken for 30 minutes at room temperature. A part of the supernatant was collected and filtered, and 100 μl of laccase (Lac) and manganese peroxidase were collected. (MnP) activity was measured in a total reaction volume of 5 ml. The reaction system for laccase and manganese peroxidase activity measurement is as follows.
Laccase activity 0.4 mM Guaiacol 16 mM acetate buffer (pH 5.6)
Manganese peroxidase activity 0.4 mM Guaiacol 0.2 mM Manganese chloride 5 μM Hydrogen peroxide

濾液を加えた反応液は30℃にて2時間静置した後、420nmにおける吸光度を測定した。活性は1時間に吸光度を0.1増加させる酵素量を1ユニットとした。測定の結果を図6−1に示す。ラッカーゼ活性については、アオキ、イナワラ、シバ及びツバキを基質として培養した場合に、候補菌3菌株はいずれも対照よりも高い活性を示し、特にイナワラ及びシバ分解時において、TAMA 114は対照菌のそれぞれ3.8、6.7倍、またTAMA 113株は対照菌のそれぞれ3.3、11.5倍活性が高いことがわかった。次に、マンガンペルオキシダーゼ活性については、アオキ、イナワラ及びツバキを基質として培養した場合に、候補菌3菌株はいずれも対照よりも高い活性を示し、候補菌3菌株はいずれも対照よりも高い活性を示し、特にイナワラ分解時において、TAMA 114株及びTAMA 113株は対照菌のそれぞれ4.7及び4.6倍、またシバ分解時においてTAMA 113株は13.2倍活性が高いことがわかった。このことから、本候補菌は特にイナワラ及びシバの分解に効果的であることが分かった。   The reaction solution to which the filtrate was added was allowed to stand at 30 ° C. for 2 hours, and then the absorbance at 420 nm was measured. The activity was defined as 1 unit of the amount of enzyme that increases the absorbance by 0.1 per hour. The measurement results are shown in FIG. As for laccase activity, all three candidate strains showed higher activity than the control when cultured with Aoki, Inawara, Shiba and Camellia as substrates. Especially, TAMA 114 was used for each of the control bacteria during the degradation of Inawara and Shiba. 3.8 and 6.7 times, and the TAMA 113 strain was found to be 3.3 and 11.5 times as active as the control bacteria, respectively. Next, regarding the manganese peroxidase activity, when cultivated with Aoki, Inawara and Camellia as substrates, all three candidate strains showed higher activity than the control, and all three candidate strains showed higher activity than the control. In particular, it was found that the TAMA 114 strain and the TAMA 113 strain were 4.7 times and 4.6 times higher than the control strain, respectively, and that the TAMA 113 strain was 13.2 times more active when the shiba was decomposed. From this, it was found that this candidate bacterium is particularly effective in decomposing Inawara and Shiba.

(天然物基質分解時の酵素活性2)
さらに、実施例3と同様に模擬刈り草培地に、候補菌3菌株(TAMA 114株、TAMA 113株及びTAMA 115株)及び対照菌(ATCC96608)を接種し、25℃、湿度65%にて30日間静置培養した。培養終了後、上記(天然物基質分解時の酵素活性1)に記載の手法でラッカーゼ及びリグニンペルオキシダーゼ活性を測定した。測定の結果を図6−2に示す。ラッカーゼ活性は候補菌3菌株とも対照よりもおよそ1.7倍活性が高いことが分かった。また、マンガンペルオキシダーゼ活性については、候補菌3菌株は対照とほぼ同等(0.9倍から1.0倍)の活性であった。以上のことから本候補菌は都市型植物系廃棄物にあるような樹木の混合物の分解にも優れていることが分かった。
(Enzyme activity during degradation of natural product substrate 2)
Further, in the same manner as in Example 3, the simulated cut grass medium was inoculated with 3 candidate strains (TAMA 114 strain, TAMA 113 strain and TAMA 115 strain) and a control strain (ATCC 96608), and 30 at 25 ° C. and 65% humidity. The culture was stationary for 1 day. After completion of the culture, laccase and lignin peroxidase activities were measured by the method described above (Enzyme activity 1 when decomposing natural product substrate). The measurement results are shown in FIG. The laccase activity was found to be approximately 1.7 times higher than that of the control in all three candidate strains. In addition, regarding the manganese peroxidase activity, the three candidate bacterial strains had almost the same activity (0.9 to 1.0 times) as the control. From the above, it was found that this candidate bacterium is excellent in degrading a mixture of trees as in urban plant waste.

(微生物分解による各基質成分の変化)
実施例3と同様の手法により調製したアオキ、イナワラ、ツツジ及びシバのそれぞれの培地に、候補菌3菌株(TAMA 114株、TAMA 113株、TAMA 115株)及び対照菌(ATCC96608)を接種し、25℃、湿度65%にて30日間静置培養した。培養収量後、65℃にて一昼夜乾燥し、微粉砕した試料を用いて成分分析を行なった。リグニンの定量はクラーソン法により求めた。成分分析の方法は以下の通りである。まず微粉砕試料の絶乾重量を求めた後、メタノール−ベンゼン(1:2)混合液で洗浄し、溶出量を算出した。続いて75%硫酸にて室温30分反応後、硫酸の終濃度2.5%に調整し、121℃60分間オートクレーブにて加熱した。加熱後試料を濾別し、濾液はフェノール−硫酸法にて炭水化物量を測定し、濾物は乾燥重量を測定後マッフル炉で灰化し、クラーソンリグニン量と灰分を算出した。また、クラーソンリグニン量の炭水化物量に対する比を求め、選択的リグニン分解性を比較した。図7に結果を示すように、候補菌TAMA 113株はイナワラを基質として培養した場合において、対照よりもリグニンの分解量が約2倍増加することが分かった。
(Change of each substrate component due to microbial degradation)
Each of Aoki, Inawara, Azalea and Shiba medium prepared by the same method as in Example 3 was inoculated with 3 candidate strains (TAMA 114 strain, TAMA 113 strain, TAMA 115 strain) and a control strain (ATCC 96608). Static culture was performed at 25 ° C. and humidity of 65% for 30 days. After the culture yield, component analysis was performed using a sample that was dried at 65 ° C. overnight and finely pulverized. The quantification of lignin was determined by the Klarson method. The method of component analysis is as follows. First, the absolute dry weight of the finely pulverized sample was obtained, then washed with a methanol-benzene (1: 2) mixed solution, and the elution amount was calculated. Subsequently, the mixture was reacted with 75% sulfuric acid at room temperature for 30 minutes, adjusted to a final sulfuric acid concentration of 2.5%, and heated in an autoclave at 121 ° C. for 60 minutes. After heating, the sample was separated by filtration, the amount of carbohydrate was measured for the filtrate by the phenol-sulfuric acid method, the filtrate was ashed in a muffle furnace after measuring the dry weight, and the amount of Klarson lignin and the ash content were calculated. In addition, the ratio of the amount of Klarson lignin to the amount of carbohydrate was determined, and the selective lignin degradability was compared. As shown in FIG. 7, it was found that the candidate bacterium TAMA 113 strain showed about 2-fold increase in the amount of lignin degradation over the control when cultured with Inawara as a substrate.

Claims (8)

ラッカーゼ活性及びマンガンペルオキシダーゼ活性を有するシロホウライタケ(Marasmiellus)属又はモリノカレバタケ(Gymnopus)属に属するリグニン分解微生物。 A lignin-degrading microorganism belonging to the genus Marasmiellus or Gymnopus having laccase activity and manganese peroxidase activity. シロホウライタケ(M.candidus)であることを特徴とする請求項1記載の微生物。 The microorganism according to claim 1, which is M. candidus. TAMA 114株又はTAMA 113株(NITE P−701)であることを特徴とする請求項2記載の微生物。 The microorganism according to claim 2, which is a TAMA 114 strain or a TAMA 113 strain (NITE P-701). ジムノプス・エスピー(Gymnopus sp.)TAMA 115株であることを特徴とする請求項1記載の微生物。 2. The microorganism according to claim 1, wherein the microorganism is Gymnopus sp. TAMA 115 strain. 請求項1〜4のいずれか記載の微生物を含むことを特徴とするリグニン処理剤。 A lignin treating agent comprising the microorganism according to any one of claims 1 to 4. 請求項1〜4のいずれか記載の微生物を用いて、リグニン含有物を処理することを特徴とするリグニン分解方法。 A lignin decomposition method comprising treating a lignin-containing substance using the microorganism according to any one of claims 1 to 4. リグニン含有物が、刈草であることを特徴とする請求項6記載のリグニン分解方法。 The lignin-decomposing method according to claim 6, wherein the lignin-containing material is cut grass. 刈草が、イナワラ及び/又はシバを含むことを特徴とする請求項7記載のリグニン分解方法。
The lignin decomposition method according to claim 7, wherein the mowing grass contains rice straw and / or shiba.
JP2009051681A 2009-03-05 2009-03-05 Lignin decomposing microorganism Pending JP2010200707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051681A JP2010200707A (en) 2009-03-05 2009-03-05 Lignin decomposing microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051681A JP2010200707A (en) 2009-03-05 2009-03-05 Lignin decomposing microorganism

Publications (1)

Publication Number Publication Date
JP2010200707A true JP2010200707A (en) 2010-09-16

Family

ID=42962865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051681A Pending JP2010200707A (en) 2009-03-05 2009-03-05 Lignin decomposing microorganism

Country Status (1)

Country Link
JP (1) JP2010200707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199564A (en) * 2011-03-28 2011-09-28 武汉合缘绿色生物工程有限公司 Composite microbial agent for direct decomposition of crop straws returned to field and preparation method thereof
WO2016151656A1 (en) * 2015-03-20 2016-09-29 株式会社大地クリア Aromatic chlorine compound degradation agent, and method for degrading aromatic chlorine compound using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026308A (en) * 1998-07-02 2000-01-25 Asahi Breweries Ltd Lipolysis accelerator containing edible mushroom as active ingredient
JP2006212000A (en) * 2005-02-07 2006-08-17 Univ Of Fukui Bacterium for degrading hardly degradable material, and method for cleaning environment by using the same
JP2006281010A (en) * 2005-03-31 2006-10-19 Chiba Prefecture Woody waste material decomposer and woody waste material decomposing method
JP2007037469A (en) * 2005-08-03 2007-02-15 Kyoto Univ White-rot fungus having lignocellulose-degrading activity, and utilization thereof
JP2007325604A (en) * 2007-08-28 2007-12-20 National Institute Of Advanced Industrial & Technology Method for decomposing lignin using filamentous fungus and treating agent for lignin
JP2008538914A (en) * 2005-04-26 2008-11-13 マイコエンザイム リミテッド Wood decay basidiomycetes for the production of lignin degrading enzymes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026308A (en) * 1998-07-02 2000-01-25 Asahi Breweries Ltd Lipolysis accelerator containing edible mushroom as active ingredient
JP2006212000A (en) * 2005-02-07 2006-08-17 Univ Of Fukui Bacterium for degrading hardly degradable material, and method for cleaning environment by using the same
JP2006281010A (en) * 2005-03-31 2006-10-19 Chiba Prefecture Woody waste material decomposer and woody waste material decomposing method
JP2008538914A (en) * 2005-04-26 2008-11-13 マイコエンザイム リミテッド Wood decay basidiomycetes for the production of lignin degrading enzymes
JP2007037469A (en) * 2005-08-03 2007-02-15 Kyoto Univ White-rot fungus having lignocellulose-degrading activity, and utilization thereof
JP2007325604A (en) * 2007-08-28 2007-12-20 National Institute Of Advanced Industrial & Technology Method for decomposing lignin using filamentous fungus and treating agent for lignin

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013046940; International Biodeterioration and Biodegradation Vol. 46, 2000, p. 51-59 *
JPN6013046944; Process Biochemistry Vol. 40, 2005, p. 1573-1578 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199564A (en) * 2011-03-28 2011-09-28 武汉合缘绿色生物工程有限公司 Composite microbial agent for direct decomposition of crop straws returned to field and preparation method thereof
CN102199564B (en) * 2011-03-28 2012-11-21 武汉合缘绿色生物工程有限公司 Composite microbial agent for direct decomposition of crop straws returned to field and preparation method thereof
WO2016151656A1 (en) * 2015-03-20 2016-09-29 株式会社大地クリア Aromatic chlorine compound degradation agent, and method for degrading aromatic chlorine compound using same
JPWO2016151656A1 (en) * 2015-03-20 2018-01-11 株式会社大地クリア Aromatic chlorine compound decomposing agent and method for decomposing aromatic chlorine compound using the same

Similar Documents

Publication Publication Date Title
CN111876351B (en) Bacillus belgii and application thereof in relieving apple continuous cropping obstacle
Hatvani et al. Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process
Pant et al. Identification, ligninolytic enzyme activity and decolorization potential of two fungi isolated from a distillery effluent contaminated site
JP6346982B1 (en) Method for isolating Raulterra microorganisms, method for producing plant waste treatment agent, and method for treating plant waste
Insam Microorganisms and humus in soils
Suzuki et al. Differences in soil bacterial community compositions in paddy fields under organic and conventional farming conditions
Hewavitharana et al. Isolation, identification and mass production of five Trichoderma spp. on solid and liquid carrier media for commercialization
Ważny et al. Biotization of highbush blueberry with ericoid mycorrhizal and endophytic fungi improves plant growth and vitality
JP4947672B2 (en) Novel microorganism and method for producing compost using the same
Kausar et al. A novel lignocellulolytic bacterium for bioconversion of rice straw.
JP2010200707A (en) Lignin decomposing microorganism
Buraimoh et al. Characterization of lignocellulolytic bacterial strains associated with decomposing wood residues in the Lagos lagoon, Nigeria
Haseena et al. A consortium of thermophilic microorganisms for aerobic composting
US8445252B2 (en) Method for producing functional compost, functional compost and compost for proliferation of filamentous fungus
CN115181673A (en) Phanerochaete chrysosporium and application thereof
CN110042063B (en) Gliocladium roseum (Clinostacchys rosea) strain YZC3 and application thereof
US20110177519A1 (en) Method for Detecting Functional Mold, Method for Evaluating Functional Mold-Containing Product and Primer Pair
Nayak et al. Isolation, Screening and Morphological characterization of Laccase producing fungi
CN103122316B (en) Phlebia acerina strain and application thereof in degrading metalaxyl pesticide residue
JP4065911B2 (en) Pear tree waste decomposing agent and pear tree waste decomposing method
Chaijak et al. Screening of laccase producing fungi from mound-building termite in Phatthalung province, Southern of Thailand
Urbaniak et al. Decolorization of azo and triphenylmethane dyes by MW113 Beauveria bassiana strain
CN116024127B (en) Strain with effect of efficiently degrading imidacloprid and rapidly decomposing vegetable wastes and application thereof
KR100991298B1 (en) Biotic pesticide using Arthrobacter zoysiae with inhibition activity of germinaton and growth of seeds
Singh et al. Molecular characterization of potent biocontrol isolates of Trichoderma asperellum and Pseudomonas fluorescens from tomato rhizosphere

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131212