JP2010196610A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2010196610A
JP2010196610A JP2009043368A JP2009043368A JP2010196610A JP 2010196610 A JP2010196610 A JP 2010196610A JP 2009043368 A JP2009043368 A JP 2009043368A JP 2009043368 A JP2009043368 A JP 2009043368A JP 2010196610 A JP2010196610 A JP 2010196610A
Authority
JP
Japan
Prior art keywords
stator
groove
hermetic
hermetic compressor
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009043368A
Other languages
Japanese (ja)
Other versions
JP5104783B2 (en
Inventor
Akira Iwashida
鶸田  晃
Hideki Murakami
秀樹 村上
Tsutomu Tsujimoto
力 辻本
Takashi Morimoto
敬 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009043368A priority Critical patent/JP5104783B2/en
Publication of JP2010196610A publication Critical patent/JP2010196610A/en
Application granted granted Critical
Publication of JP5104783B2 publication Critical patent/JP5104783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize a hermetic compressor compatibly achieving both of improvement of efficiency of an electric motor and reduction of oil discharge. <P>SOLUTION: Deformation of a hermetic vessel 1 due to pressure is reduced by a structure in which a groove 9 extending in a cylinder axial direction is provided on an inner wall of the hermetic vessel 1 and skew is given on the groove. Thereby, a stator is prevented from coming off during operation, efficiency of the electric motor is secured since the stator is kept in a round shape, and refrigerant and oil are separated by centrifugal force and quantity of oil discharged to an outside of the hermetic vessel 1 is further reduced since refrigerant gas flows in turning flow. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、空調機、冷凍機、ブロワ、給湯機等に使用される密閉型圧縮機に関するものである。   The present invention relates to a hermetic compressor used for an air conditioner, a refrigerator, a blower, a water heater, and the like.

図11は、特許文献1に記載された従来の密閉型圧縮機を示すものである。図11に示すように、密閉容器1の内部に、固定子22と回転子24で構成される電動機2とこれによって駆動される圧縮機構部3を配設し、固定子22の外周が密閉容器1の内壁に焼き嵌めなどで固定されている。圧縮機構部3で圧縮された高温高圧の冷媒ガスが、固定子22の外周に設けられた切り欠及び固定子22と回転子24の隙間を通過し、密閉容器1上部に設けられた吐出管5から外部冷却回路に吐出されている。固定子22外周の切欠部及び固定子22内径と回転子24外径との隙間などの電動機2部を通過する冷媒ガスの通路断面積が小さいと電動機2の上部空間7と下部空間8との圧力差が生じ、上部空間7で冷媒ガスから分離されたオイルは密閉容器内底部に戻りにくくなるとともに、吐出管5から冷媒ガスとともに吐出されるオイル量が多くなっていた。そこで通路断面積を大きくすることによって、吐出されるオイル量を少なくし、圧縮機のオイルレベルの確保と冷凍サイクルの熱交換能力の低下を防止していた。   FIG. 11 shows a conventional hermetic compressor described in Patent Document 1. In FIG. As shown in FIG. 11, an electric motor 2 including a stator 22 and a rotor 24 and a compression mechanism unit 3 driven by the electric motor 2 are arranged inside the sealed container 1, and the outer periphery of the stator 22 is a sealed container. It is fixed to the inner wall of 1 by shrink fitting. The high-temperature and high-pressure refrigerant gas compressed by the compression mechanism unit 3 passes through a notch provided on the outer periphery of the stator 22 and a gap between the stator 22 and the rotor 24, and is a discharge pipe provided at the upper part of the hermetic container 1. 5 is discharged to the external cooling circuit. If the cross-sectional area of the refrigerant gas passing through the motor 2 such as the notch on the outer periphery of the stator 22 and the gap between the inner diameter of the stator 22 and the outer diameter of the rotor 24 is small, the upper space 7 and the lower space 8 of the motor 2 Due to the pressure difference, the oil separated from the refrigerant gas in the upper space 7 is difficult to return to the bottom of the sealed container, and the amount of oil discharged from the discharge pipe 5 together with the refrigerant gas is large. Therefore, by increasing the cross-sectional area of the passage, the amount of oil discharged is reduced, ensuring the oil level of the compressor and preventing the heat exchange capacity of the refrigeration cycle from being lowered.

また従来から、外周がほぼ円形の固定子を用いることによって効率のよい電動機を実現していた。
特開昭61−280727号公報 特開2004−197687号公報
Conventionally, an efficient electric motor has been realized by using a stator having a substantially circular outer periphery.
Japanese Patent Laid-Open No. 61-280727 Japanese Patent Laid-Open No. 2004-197687

しかしながら、特許文献2の構成のように、密閉容器の内壁に溝を設けて、通路断面積を拡大して、更なるオイル吐出量低減を図りつつ、外周がほぼ円形の固定子を用いることによって効率の高い電動機を実現しながら冷媒通路を確保することを考えた場合、以下の課題が発生する。   However, by using a stator having a substantially circular outer periphery while providing a groove on the inner wall of the sealed container to increase the passage cross-sectional area and further reducing the oil discharge amount, as in the configuration of Patent Document 2. The following issues arise when considering securing a refrigerant passage while realizing a highly efficient electric motor.

すなわち、固定子を密閉容器に焼き嵌めにて固定した場合、運転時に密閉容器内の圧力が上昇すると、溝を形成した密閉容器は溝を形成しない密閉容器と比べて圧力による変形量が大きいので、運転時に固定子と密閉容器の間の保持力が弱まって固定子が脱落するといった問題を有していた。また、圧力による変形量の増大分だけ焼き嵌め代を大きく設定した場合、運転時の固定子の脱落は防止することができるが、固定子にかかる密閉容器の収縮時の応力による鉄損の増加によって電動機の効率が低下するといった問題を有していた。   That is, when the stator is fixed to the closed container by shrink fitting, if the pressure in the closed container rises during operation, the closed container formed with the groove has a greater amount of deformation due to the pressure than the closed container not formed with the groove. During operation, the holding force between the stator and the hermetic container is weakened and the stator falls off. In addition, if the shrinkage allowance is set larger by the amount of deformation due to pressure, the stator can be prevented from falling off during operation, but the iron loss increases due to the stress when the sealed container on the stator contracts. As a result, the efficiency of the electric motor is reduced.

また、固定子と密閉容器の間を溶接により固定した場合、固定子にかかる密閉容器の収縮時の応力による鉄損の増加は防ぐことができるが、繰り返し変形によって溶接部が剥離し、長期間運転後に固定子が脱落するといった問題を有していた。一方で、密閉容器の厚みを大きくすると、圧力による変形量を小さくすることができるが、圧縮機重量の増大や密閉容器の材料費が上昇するといった問題を有していた。   In addition, when the stator and the sealed container are fixed by welding, an increase in iron loss due to the stress at the time of contraction of the sealed container applied to the stator can be prevented. There was a problem that the stator dropped out after driving. On the other hand, when the thickness of the sealed container is increased, the amount of deformation due to pressure can be reduced, but there is a problem that the weight of the compressor is increased and the material cost of the sealed container is increased.

本発明は、上記従来の問題点に鑑み、密閉容器の内壁に溝を設けることによって、通路断面積を拡大して更なるオイル吐出量低減を図り、外周がほぼ円形の固定子を用いることによって効率の高い電動機を実現しながら、冷媒通路を確保することを目的とした場合に
おいても、運転時の固定子の脱落を防ぎながら電動機効率の低下を抑制し、高い効率と高い信頼性を有する密閉型圧縮機を提供することを目的とする。
In view of the above-described conventional problems, the present invention provides a groove on the inner wall of the sealed container to increase the cross-sectional area of the passage and further reduce the oil discharge amount, and by using a stator having a substantially circular outer periphery. Even when aiming to secure a refrigerant passage while realizing a highly efficient electric motor, it prevents the stator from falling off during operation and suppresses the decrease in motor efficiency, and has high efficiency and high reliability. It aims at providing a type compressor.

従来の課題を解決するために、本発明の密閉型圧縮機は、密閉容器の内部に、固定子と回転子で構成される電動機と電動機で駆動される圧縮機構部を配設し、固定子の外周が密閉容器の内壁に固定される構成において、密閉容器の内壁に円筒軸方向に延びる溝を設けるとともに、溝をスキューさせたものである。この構成により、圧力による変形量を小さくすることができるので、運転時の固定子の脱落を防ぐことができる。また、冷媒ガスが旋回流となるので、冷媒とオイルを遠心力によって分離して密閉容器外へのオイル吐出量を更に減らすことができる。特に、固定子を焼き嵌めによって密閉容器に固定した場合は、固定子にかかる密閉容器の収縮時の応力による鉄損の増加を抑制し、電動機の効率が低下することを防ぐことができる。   In order to solve the conventional problems, a hermetic compressor according to the present invention includes an electric motor constituted by a stator and a rotor and a compression mechanism portion driven by the electric motor inside the hermetic container. In the configuration in which the outer periphery of the container is fixed to the inner wall of the sealed container, a groove extending in the cylindrical axial direction is provided on the inner wall of the sealed container, and the groove is skewed. With this configuration, the amount of deformation due to pressure can be reduced, so that the stator can be prevented from falling off during operation. Further, since the refrigerant gas becomes a swirl flow, the refrigerant and oil are separated by centrifugal force, and the amount of oil discharged outside the sealed container can be further reduced. In particular, when the stator is fixed to the sealed container by shrink fitting, an increase in iron loss due to stress at the time of contraction of the sealed container applied to the stator can be suppressed, and the efficiency of the electric motor can be prevented from decreasing.

本発明の密閉型圧縮機は、密閉容器の内壁に溝を設けてこれをスキューさせることで、通路断面積を拡大して更なるオイル吐出量低減を図ることができるとともに、高い効率と信頼性を実現することができる。   The hermetic compressor of the present invention has a groove formed in the inner wall of the hermetic container and skews it, so that the passage cross-sectional area can be increased to further reduce the oil discharge amount, and high efficiency and reliability can be achieved. Can be realized.

第1の発明、密閉容器の内部に、固定子と回転子で構成される電動機と電動機で駆動される圧縮機構部を配設し、固定子の外周が密閉容器の内壁に固定される構成において、密閉容器の内壁に円筒軸方向に延びる溝を設けるとともに、溝をスキューさせたものである。これによって、圧力による変形量を小さくすることができるので、運転時の固定子の脱落を防ぐことができるとともに、溝を通過する冷媒ガスが旋回流となるので、冷媒とオイルを遠心力によって分離して密閉容器外へのオイル吐出量を減らすことができる。   1st invention, the structure which arrange | positions the compression mechanism part driven with the electric motor comprised by a stator and a rotor and an electric motor inside the airtight container, and the outer periphery of a stator is fixed to the inner wall of an airtight container. A groove extending in the cylindrical axis direction is provided on the inner wall of the sealed container, and the groove is skewed. As a result, the amount of deformation due to pressure can be reduced, so that the stator can be prevented from falling off during operation, and the refrigerant gas passing through the groove becomes a swirling flow, so that the refrigerant and oil are separated by centrifugal force. Thus, the amount of oil discharged to the outside of the sealed container can be reduced.

第2発明は、第1の実施の形態による密閉型圧縮機において、固定子固定部周辺の密閉容器の内壁に溝を設けるとともに、固定子固定部周辺以外の密閉容器の内壁は円筒で構成し、溝が設けられた内壁と、円筒で構成された内壁が滑らかに遷移する溝端部を設けたものである。これによって、溝通過前と通過後の冷媒ガスの圧力差を小さくすることができるので、密閉容器内底部へオイルが戻りやすく、結果として密閉容器外へのオイル吐出量を効果的に減らすことができる。   According to a second aspect of the present invention, in the hermetic compressor according to the first embodiment, a groove is provided in the inner wall of the hermetic container around the stator fixing part, and the inner wall of the hermetic container other than the periphery of the stator fixing part is formed of a cylinder. The inner wall provided with the groove and the end of the groove where the inner wall made of a cylinder smoothly transitions are provided. This makes it possible to reduce the pressure difference between the refrigerant gas before passing through the groove and after passing through the groove, so that the oil can easily return to the bottom of the sealed container, and as a result, the amount of oil discharged outside the sealed container can be effectively reduced. it can.

第3の発明は、第1または第2の発明の密閉型圧縮機において、溝が円筒軸方向に複数存在するものである。これによって、圧力による変形量をより小さくすることができるので、運転時の固定子の脱落をより効果的に防ぐことができる。   According to a third invention, in the hermetic compressor of the first or second invention, a plurality of grooves are present in the cylindrical axis direction. As a result, the amount of deformation due to pressure can be further reduced, so that the stator can be more effectively prevented from falling off during operation.

第4の発明は、第2または第3の発明の密閉型圧縮機において、溝の円筒軸方向長さを固定子より長く形成したものである。これによって、溝通過前と通過後の冷媒ガスの圧力差を小さくすることができるので、密閉容器内底部へオイルが戻りやすく、密閉容器外へのオイル吐出量を効果的に減らすことができる。   According to a fourth aspect of the invention, in the hermetic compressor of the second or third aspect, the length of the groove in the cylindrical axis direction is longer than that of the stator. As a result, the pressure difference between the refrigerant gas before and after passage through the groove can be reduced, so that the oil can easily return to the inner bottom of the sealed container, and the amount of oil discharged outside the sealed container can be effectively reduced.

第5の発明は、第1から第4の発明の密閉型圧縮機において、固定子の外周形状が円形であるもので、円形の固定子を用いることによって効率の高い電動機を実現しながら、冷媒通路を確保することができるので、高い効率の密閉型圧縮機を提供することができる。   According to a fifth aspect of the present invention, in the hermetic compressor according to the first to fourth aspects, the outer peripheral shape of the stator is circular. Since the passage can be secured, a highly efficient hermetic compressor can be provided.

第6の発明は、第1から第5の発明の密閉型圧縮機において、溝のスキュー角度を円筒軸方向位置によって変化させたものである。これによって、スキュー角度を変化させた位置の溝内壁面に冷媒ガスが衝突して、冷媒ガスと一緒に巻き上げられたオイルを効果的に
分離して密閉容器外へのオイル吐出量を減らすことができる。また、スキュー角度が変化させた部分の機械的強度を上げることができるので、圧力による変形量をより小さくして、運転時の固定子の脱落をより効果的に防ぐことができる。
According to a sixth aspect of the present invention, in the hermetic compressor according to the first to fifth aspects, the skew angle of the groove is changed depending on the position in the cylindrical axial direction. As a result, the refrigerant gas collides with the inner wall surface of the groove at the position where the skew angle is changed, and the oil rolled up together with the refrigerant gas is effectively separated to reduce the oil discharge amount to the outside of the sealed container. it can. In addition, since the mechanical strength of the portion where the skew angle is changed can be increased, the amount of deformation due to pressure can be reduced, and the stator can be more effectively prevented from falling off during operation.

第7の発明は、第1から第6の発明の密閉型圧縮機において、回転子の回転方向と、溝のスキュー方向を同じにしたものである。これによって、冷媒ガスの旋回流を回転子の回転によって加速させることができるので、特に冷媒ガスの速度が小さい運転条件の場合においても、冷媒とオイルを遠心力によって分離して密閉容器外へのオイル吐出量を効果的に減らすことができる。   A seventh invention is the hermetic compressor of the first to sixth inventions, wherein the rotation direction of the rotor and the skew direction of the groove are made the same. As a result, the swirling flow of the refrigerant gas can be accelerated by the rotation of the rotor, so that the refrigerant and the oil are separated by the centrifugal force to the outside of the sealed container even in the operating condition where the speed of the refrigerant gas is small. The oil discharge amount can be effectively reduced.

第8の発明は、第1から第6の発明の密閉型圧縮機において、回転子の回転方向と、溝のスキュー方向を反対にしたものである。これによって、冷媒ガスの旋回流を固定子の回転によって減速させることができるので、特に冷媒ガスの速度が大きい運転条件の場合においても、溝通過前と通過後の冷媒ガスの圧力差を小さくすることができるので、密閉容器内底部へオイルが戻りやすく、結果として密閉容器外へのオイル吐出量を効果的に減らすことができる。   An eighth invention is the hermetic compressor according to the first to sixth inventions, wherein the rotation direction of the rotor and the skew direction of the groove are reversed. As a result, the swirling flow of the refrigerant gas can be decelerated by the rotation of the stator, and therefore the pressure difference between the refrigerant gas before and after passing through the groove is reduced even in the operating condition where the speed of the refrigerant gas is particularly high. Therefore, the oil can easily return to the bottom of the sealed container, and as a result, the amount of oil discharged to the outside of the sealed container can be effectively reduced.

第9の発明は、第1から第8の発明の密閉型圧縮機において、固定子を焼き嵌めにて密閉容器に固定したものである。これによって、圧力による変形量を小さくすることができるので、固定子にかかる密閉容器の収縮時の応力による鉄損の増加を抑制し、運転時の固定子の脱落を防止しながら電動機の効率低下を最小限にすることができる。   According to a ninth aspect, in the hermetic compressor according to the first to eighth aspects, the stator is fixed to the hermetic container by shrink fitting. As a result, the amount of deformation due to pressure can be reduced, so that the increase in iron loss due to the stress at the time of contraction of the sealed container applied to the stator is suppressed, and the efficiency of the motor is reduced while preventing the stator from falling off during operation. Can be minimized.

第10の発明は、第1から第8の発明の密閉型圧縮機において、固定子を溶接にて密閉容器に固定したものである。これによって、圧力による変形量を小さくすることができるので、繰り返し変形によって溶接部が剥離することを防いで、長期間運転後に固定子が脱落することを防ぐことができる。   According to a tenth aspect, in the hermetic compressor according to the first to eighth aspects, the stator is fixed to the hermetic container by welding. As a result, the amount of deformation due to pressure can be reduced, so that it is possible to prevent the weld from peeling off due to repeated deformation, and to prevent the stator from falling off after long-term operation.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の第1の実施の形態における密閉型圧縮機の縦断面図であり、図2は、同密閉型圧縮機の密閉容器の斜視図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention, and FIG. 2 is a perspective view of a hermetic container of the hermetic compressor.

図1において圧縮機は、底部にオイルの貯溜されたオイル溜り6を有する密閉容器1で、この容器内には上側に電動機2が、下側に圧縮機構部3がそれぞれ収納されている。電動機2は回転軸31に装着された回転子24と、外周に切欠部28を形成した固定子22とで構成されている。圧縮機構部3は、シリンダ30と、回転軸31の偏芯部31aによりシリンダ30内を回転するピストン32とこのピストン32に接してシリンダ30内を分けるベーン(図示せず)とシリンダ30の開口を封じる上軸受部34と下軸受部35と、この上軸受部34に取り付けられた吐出弁(図示せず)と、この吐出弁を覆うカップマフラー37とで構成されており、回転子24からの駆動によりシリンダ30内をピストン32が回転し冷媒が圧縮される構造となっている。また、図2に示すように、密閉容器1の内壁にスキューした溝部9を設けている。ここで、図1の断面図においては、図2中のB−B´で示す、図1の切断断面に沿って切断した縦断面図としている。なお、同切断断面は図2に示すように、溝部9については溝部9中央に沿って切断している。   In FIG. 1, the compressor is an airtight container 1 having an oil reservoir 6 in which oil is stored at the bottom, and an electric motor 2 is accommodated in the upper part and a compression mechanism part 3 is accommodated in the lower part. The electric motor 2 includes a rotor 24 mounted on a rotating shaft 31 and a stator 22 having a notch 28 formed on the outer periphery. The compression mechanism 3 includes a cylinder 30, a piston 32 that rotates in the cylinder 30 by the eccentric portion 31 a of the rotating shaft 31, a vane (not shown) that contacts the piston 32 and divides the cylinder 30, and an opening of the cylinder 30. Are composed of an upper bearing portion 34 and a lower bearing portion 35, a discharge valve (not shown) attached to the upper bearing portion 34, and a cup muffler 37 covering the discharge valve. By driving this, the piston 32 rotates in the cylinder 30 and the refrigerant is compressed. Further, as shown in FIG. 2, a skewed groove portion 9 is provided on the inner wall of the sealed container 1. Here, in the cross-sectional view of FIG. 1, a vertical cross-sectional view taken along the cut cross-section of FIG. 1 indicated by BB ′ in FIG. 2 is used. As shown in FIG. 2, the cross section of the groove portion 9 is cut along the center of the groove portion 9.

図3は、本発明の第1の実施の形態における図1中のA−A´で示した位置での電動機部の上部空間から見た横断面図を示している。図3に示すように、固定子22の外周が密閉容器1の内壁に固定されている。   FIG. 3 is a cross-sectional view seen from the upper space of the motor unit at the position indicated by AA ′ in FIG. 1 in the first embodiment of the present invention. As shown in FIG. 3, the outer periphery of the stator 22 is fixed to the inner wall of the sealed container 1.

図1及び図2に示すように、密閉容器1内の空間が、電動機2を挟んで上部空間7と下部空間8の大きく二つに分離される密閉型圧縮機において、密閉容器1の内壁に設けた溝部9を固定子の縦(積厚)寸法と同等以上の長さで密閉容器1の円筒軸方向に形成し、かつ固定子上部空間7と下部空間8の両方に開口する構成としている。   As shown in FIG. 1 and FIG. 2, in a hermetic compressor in which the space in the hermetic container 1 is largely divided into an upper space 7 and a lower space 8 with the electric motor 2 interposed therebetween, The provided groove 9 is formed in the cylindrical axis direction of the hermetic container 1 with a length equal to or greater than the vertical (stack thickness) dimension of the stator, and is open to both the stator upper space 7 and the lower space 8. .

図1において、圧縮された冷媒は、カップマフラー37より密閉容器1内に吐出され、固定子22と密閉容器1内壁で形成された切欠部28と、固定子22と密閉容器1の内壁で形成された溝部9および、電動機2のエアギャップ26を通って、電動機2の上部空間7に送り出され、冷媒吐出管5から密閉容器1の外に吐出される。矢印は、冷媒の流れを示す。   In FIG. 1, the compressed refrigerant is discharged from the cup muffler 37 into the sealed container 1, and is formed by the notch portion 28 formed by the stator 22 and the inner wall of the sealed container 1, and the stator 22 and the inner wall of the sealed container 1. Through the groove 9 and the air gap 26 of the electric motor 2, the air is sent to the upper space 7 of the electric motor 2 and discharged from the refrigerant discharge pipe 5 to the outside of the sealed container 1. Arrows indicate the refrigerant flow.

図4に本実施の形態におけるスキュー角度の定義を、図5及び図6にスキュー角度と圧力による変形量の関係を示す。図4に示すように、本実施の形態においては、円筒軸方向と溝部9の中心線がなす角度をスキュー角度と定義する。図5は、溝部9がない従来の密閉容器(base)と図4で定義されたスキュー角度を0deg、30deg、45degと変化させたときの圧力による変形量をFEM解析した結果を示している。なお、解析結果として、固定子22の外周が密閉容器1に固定されている内壁平面のみに着目し、密閉容器1の内壁に1MPaの圧力を作用させた結果を示している。   FIG. 4 shows the definition of the skew angle in this embodiment, and FIGS. 5 and 6 show the relationship between the skew angle and the amount of deformation due to pressure. As shown in FIG. 4, in the present embodiment, an angle formed by the cylindrical axis direction and the center line of the groove portion 9 is defined as a skew angle. FIG. 5 shows the result of FEM analysis of the deformation amount due to pressure when the conventional sealed container (base) without the groove 9 and the skew angle defined in FIG. 4 are changed to 0 deg, 30 deg, and 45 deg. As an analysis result, only the inner wall plane in which the outer periphery of the stator 22 is fixed to the sealed container 1 is focused, and the result of applying a pressure of 1 MPa to the inner wall of the sealed container 1 is shown.

図5を見ても分かるように、スキュー角度を大きくしていくと、圧力による変形量が小さくなることが分かる。また、溝部9がない従来の密閉容器(base)は変形が一様であるが、溝部9がある場合は、固定子22の外周が密閉容器1に固定されている内壁平面の中でも変形量が大きい個所と小さい個所があることが分かる。すなわち、溝部9付近は変化量が小さく、溝が形成されていない円筒部は圧力による変化量が大きい。   As can be seen from FIG. 5, it can be seen that the amount of deformation due to pressure decreases as the skew angle increases. In addition, the conventional closed container (base) without the groove 9 is uniformly deformed, but when the groove 9 is present, the deformation amount is also within the inner wall plane where the outer periphery of the stator 22 is fixed to the closed container 1. You can see that there are big and small parts. That is, the amount of change is small in the vicinity of the groove 9, and the amount of change due to pressure is large in the cylindrical portion where no groove is formed.

ここで、本実施の形態においては、固定子22を焼き嵌めにて密閉容器1に固定している。運転時に圧力が作用したときには、密閉容器1は図5で示されるように変形するので、圧力による変形量が小さい個所にて固定子22が保持されることになる。   Here, in the present embodiment, the stator 22 is fixed to the sealed container 1 by shrink fitting. When pressure is applied during operation, the sealed container 1 is deformed as shown in FIG. 5, so that the stator 22 is held at a location where the amount of deformation due to pressure is small.

図6に、各スキュー角度における、最大変位量と最小変位量を溝部9がない従来の密閉容器1の変形量と比較したものを示す。図6を見ても分かるように、前述の固定子22の保持に関係する最小変位量に着目すると、スキュー角度を大きくすると溝部9のない従来の密閉容器(base)とほぼ同じ量まで低減することができる。つまり、溝部9のない従来の密閉容器(base)とスキュー角度45degの密閉容器1では、焼き嵌め代はほぼ同じ値に設定できることを意味している。よって、固定子22にかかる密閉容器1の収縮時の応力による鉄損の増加によって電動機の効率を低下させることが無いので、運転時の固定子22の脱落を防ぎながら、効率の高い密閉型圧縮機を提供することができる。   FIG. 6 shows a comparison between the maximum displacement amount and the minimum displacement amount at each skew angle with the deformation amount of the conventional closed container 1 without the groove 9. As can be seen from FIG. 6, paying attention to the above-described minimum displacement amount related to the holding of the stator 22, when the skew angle is increased, the amount is reduced to substantially the same amount as that of a conventional closed container (base) without the groove portion 9. be able to. That is, it means that the shrinkage allowance can be set to almost the same value in the conventional closed container (base) without the groove 9 and the closed container 1 with a skew angle of 45 deg. Therefore, since the efficiency of the electric motor is not lowered due to an increase in iron loss due to the stress at the time of contraction of the hermetic container 1 applied to the stator 22, the highly efficient hermetic compression while preventing the stator 22 from falling off during operation. Machine can be provided.

なお、固定子22を溶接にて密閉容器1に固定した場合(図示せず)、図5で示されている溝部9近傍の圧力による変形量が小さい個所を溶接個所とすることが好ましい。この構成によれば、長期間運転による繰り返し変形によって溶接部が剥離することを防いで長期間運転後に固定子22が密閉容器1から脱落することを防ぐことができる。   In addition, when the stator 22 is fixed to the sealed container 1 by welding (not shown), it is preferable that a place where a deformation amount due to pressure near the groove portion 9 shown in FIG. According to this configuration, it is possible to prevent the welded portion from being peeled off due to repeated deformation due to long-term operation, and to prevent the stator 22 from falling off the sealed container 1 after long-term operation.

なお、密閉容器1は内圧によって円筒半径方向に変形するが、溝部9が円筒軸方向に複数存在すれば、溝部9がリブとなって、溝部9に囲まれた密閉容器1の平面の変形を抑制することができる。図4はスキュー角度を45degにした場合の溝部9の位置を示しているが、図4を見ても分かるように溝部9が円筒軸方向に2個所存在していることがわかる。例えば、本実施例のようにスキュー角度を調節することによって、円筒軸方向の溝部9の存在個所を増やすと、圧力による密閉容器1の変形量を抑制することができる。   The sealed container 1 is deformed in the cylindrical radial direction by internal pressure. However, if there are a plurality of the groove portions 9 in the cylindrical axis direction, the groove portions 9 become ribs, and the plane of the sealed container 1 surrounded by the groove portions 9 is deformed. Can be suppressed. FIG. 4 shows the position of the groove 9 when the skew angle is 45 deg. As can be seen from FIG. 4, it can be seen that there are two grooves 9 in the cylindrical axis direction. For example, the amount of deformation of the sealed container 1 due to pressure can be suppressed by adjusting the skew angle as in the present embodiment to increase the number of locations of the groove 9 in the cylindrical axis direction.

さらに、溝部9を設けることで、冷媒の通路断面積が増加し、吐出された冷媒ガスが下部空間8から上部空間7に移動する時の流速が遅くなるため、上部空間7と下部空間8の圧力差が減少する。よって、冷媒から分離されたオイルが自重により、上部空間7から下部空間8のオイル溜り6に戻りやすくなるため、圧縮機のオイルレベルが確保できる。また、上部空間7のオイルが少なくなるため、吐出冷媒とともに巻き上げられるオイルも少なくなって、圧縮機本体から吐出されるオイル量も減少し、冷凍サイクルの熱交換能力の低下を防止することができる。   Furthermore, the provision of the groove 9 increases the cross-sectional area of the refrigerant passage, and the flow rate when the discharged refrigerant gas moves from the lower space 8 to the upper space 7 is reduced. Therefore, the upper space 7 and the lower space 8 Pressure difference decreases. Therefore, the oil separated from the refrigerant easily returns from the upper space 7 to the oil sump 6 in the lower space 8 due to its own weight, so that the oil level of the compressor can be secured. Further, since the oil in the upper space 7 is reduced, the amount of oil that is rolled up with the discharged refrigerant is reduced, the amount of oil discharged from the compressor body is reduced, and the heat exchange capacity of the refrigeration cycle can be prevented from being lowered. .

また、溝部9はスキューさせているので、溝部9を通過する冷媒ガスが旋回流となる。結果、冷媒より密度の高いオイルを遠心力によって分離して、密閉容器1の内壁への付着を促進させることができるので、上部空間7でのオイル分離効果を高めて、密閉容器1外へのオイル吐出量を更に低減させることができる。   Further, since the groove 9 is skewed, the refrigerant gas passing through the groove 9 becomes a swirling flow. As a result, oil having a density higher than that of the refrigerant can be separated by centrifugal force and adhesion to the inner wall of the sealed container 1 can be promoted, so that the oil separation effect in the upper space 7 can be enhanced and The oil discharge amount can be further reduced.

また、固定子22の固定部周辺の密閉容器1の内壁に溝部9を設けるとともに、固定子22の固定部周辺以外の密閉容器1の内壁は円筒で構成し、溝部9が設けられた内壁と、円筒で構成された内壁を滑らかに遷移する溝端部を設けている。この構成によれば、冷媒ガスの通路を滑らかに変化させることができるので、溝部9通過前と通過後の冷媒ガスの圧力損失を防ぐことができる。結果、溝部9通過前と通過後の冷媒ガスの圧力差を小さくすることができるので、密閉容器1内底部へオイルが戻りやすく、結果として密閉容器1外へのオイル吐出量を効果的に減らすことができる。   In addition, the groove portion 9 is provided on the inner wall of the sealed container 1 around the fixed portion of the stator 22, and the inner wall of the sealed container 1 other than the periphery of the fixed portion of the stator 22 is formed of a cylinder, and the inner wall provided with the groove portion 9 The groove end that smoothly transitions the inner wall formed of a cylinder is provided. According to this configuration, since the refrigerant gas passage can be changed smoothly, pressure loss of the refrigerant gas before and after passage through the groove 9 can be prevented. As a result, the pressure difference between the refrigerant gas before and after passage through the groove 9 can be reduced, so that the oil easily returns to the inner bottom of the sealed container 1, and as a result, the amount of oil discharged to the outside of the sealed container 1 is effectively reduced. be able to.

また、溝部9の円筒軸方向長さを固定子22より長く形成している。この構成によれば、固定子22の上部及び下部のコイルエンド部においても圧力損失を防ぐことができる。結果、溝部9通過前と通過後の冷媒ガスの圧力差を小さくすることができるので、密閉容器内底部へオイルが戻りやすく、結果として密閉容器1外へのオイル吐出量を効果的に減らすことができる。   Further, the length of the groove portion 9 in the cylindrical axis direction is longer than that of the stator 22. According to this configuration, pressure loss can be prevented also in the upper and lower coil end portions of the stator 22. As a result, the pressure difference between the refrigerant gas before and after passage through the groove 9 can be reduced, so that oil can easily return to the bottom of the sealed container, and as a result, the amount of oil discharged outside the sealed container 1 can be effectively reduced. Can do.

なお、回転子24の回転方向と、溝部9のスキュー方向を同じにすると、冷媒ガスの旋回流を回転子24の回転によって加速させることができるので、特に冷媒ガスの速度が小さい運転条件の場合においても、冷媒とオイルを遠心力によって分離して密閉容器1外へのオイル吐出量を効果的に減らすことができる。   If the rotation direction of the rotor 24 and the skew direction of the groove 9 are the same, the swirling flow of the refrigerant gas can be accelerated by the rotation of the rotor 24. Therefore, particularly in the case of operating conditions where the speed of the refrigerant gas is low. In this case, the refrigerant and oil can be separated by centrifugal force, and the amount of oil discharged to the outside of the sealed container 1 can be effectively reduced.

また、回転子24の回転方向と、溝部9のスキュー方向を反対にした場合には、冷媒ガスの旋回流を固定子24の回転によって減速させることができるので、特に冷媒ガスの速度が大きい運転条件の場合においても、溝部9通過前と通過後の冷媒ガスの圧力差を小さくすることができるので、密閉容器内底部へオイルが戻りやすく、結果として密閉容器外へのオイル吐出量を効果的に減らすことができる。   In addition, when the rotation direction of the rotor 24 and the skew direction of the groove 9 are reversed, the swirling flow of the refrigerant gas can be decelerated by the rotation of the stator 24, so that the operation with a particularly high refrigerant gas speed is performed. Even in the case of the condition, the pressure difference between the refrigerant gas before and after passing through the groove 9 can be reduced, so that the oil easily returns to the bottom of the sealed container, and as a result, the oil discharge amount to the outside of the sealed container is effectively reduced. Can be reduced.

なお、溝部9を複数個設けることで、冷媒ガスの通路断面積をさらに大きくすることができるため、上部空間7と下部空間8の圧力差を小さくすることが可能となる。   In addition, since the passage sectional area of the refrigerant gas can be further increased by providing a plurality of groove portions 9, the pressure difference between the upper space 7 and the lower space 8 can be reduced.

なお、図7に示すように、密閉容器1内の下側に電動機2が、上側に圧縮機構部3が収納されている場合も、本実施の形態におけるスキューさせた溝部9を設けることで、同等の効果が得られることは明らかである。   As shown in FIG. 7, even when the electric motor 2 is housed in the lower side of the sealed container 1 and the compression mechanism unit 3 is housed in the upper side, by providing the skewed groove portion 9 in the present embodiment, It is clear that an equivalent effect can be obtained.

(実施の形態2)
図8は本発明の第2の実施の形態における密閉型圧縮機の電動機部2を上部空間から見た横断面図である。図8に示すように、固定子22の外周をほぼ円筒形の構成をしている。
(Embodiment 2)
FIG. 8 is a cross-sectional view of the motor unit 2 of the hermetic compressor according to the second embodiment of the present invention as viewed from the upper space. As shown in FIG. 8, the outer periphery of the stator 22 has a substantially cylindrical configuration.

電動機2外周に切り欠きを設けている時と比べて、固定子22の鉄損や磁気抵抗が増加する要因を排除出来ることで電動機2の効率が向上させている。ここで、密閉容器1内壁には溝部9を設けているため、電動機2の外周に切り欠きを設けている時と同様の冷媒の通路断面積を確保できることから、吐出されるオイル量を少なくすることが出来る。よって本実施の形態の密閉型圧縮機は、電動機2の効率を向上させると同時に吐出されるオイル量を電動機1の切り欠きがあった時と同等に維持することが可能となる。   Compared with the case where notches are provided on the outer periphery of the electric motor 2, the efficiency of the electric motor 2 can be improved by eliminating factors that increase the iron loss and magnetic resistance of the stator 22. Here, since the groove portion 9 is provided on the inner wall of the hermetic container 1, the same passage cross-sectional area of the refrigerant as when the notch is provided on the outer periphery of the electric motor 2 can be secured, so that the amount of oil discharged is reduced. I can do it. Therefore, the hermetic compressor of the present embodiment can improve the efficiency of the electric motor 2 and at the same time maintain the amount of oil discharged to the same level as when the electric motor 1 is notched.

(実施の形態3)
図9、図10は本発明の第3の実施の形態における密閉型圧縮機の密閉容器1の斜視図及び横から見た図である。
(Embodiment 3)
FIGS. 9 and 10 are a perspective view and a side view of the hermetic container 1 of the hermetic compressor according to the third embodiment of the present invention.

図9及び図10に示すように、溝部9のスキュー角度を円筒軸方向のある位置で変化させている。スキュー角度を変化させた位置の溝部9内壁面には冷媒ガスが衝突して溝部9の壁面への付着を促進することで、冷媒ガスと一緒に巻き上げられたオイルを効果的に分離して密閉容器外へのオイル吐出量を減らすことができる。また、スキュー角度が変化させた部分に着目すると、密閉容器1の平面は溝部9に囲まれているので、溝部9がリブとなって変形を抑制することができる。すなわち、本実施の形態の密閉型圧縮機においては、圧力による変形量をより小さくして、運転時の固定子の脱落をより効果的に防ぐことができる。   As shown in FIGS. 9 and 10, the skew angle of the groove 9 is changed at a certain position in the cylindrical axis direction. Refrigerant gas collides with the inner wall surface of the groove 9 at the position where the skew angle is changed and promotes adhesion to the wall surface of the groove 9, thereby effectively separating and sealing the oil rolled up together with the refrigerant gas. The amount of oil discharged outside the container can be reduced. Further, when attention is paid to the portion where the skew angle is changed, the flat surface of the sealed container 1 is surrounded by the groove portion 9, so that the groove portion 9 becomes a rib and deformation can be suppressed. That is, in the hermetic compressor according to the present embodiment, the amount of deformation due to pressure can be reduced, and the stator can be more effectively prevented from falling off during operation.

以上のように、本発明の密閉型圧縮機は、密閉容器の内壁に溝を設けることによって、通路断面積を拡大して更なるオイル吐出量低減が図れるとともに、外周がほぼ円形の固定子を用いることによって効率の高い電動機を実現しながら冷媒通路を確保すること運転時の固定子の脱落を防ぎながら電動機効率を確保することができるので、HFC系冷媒やHCFC系冷媒を用いたエアーコンディショナー用圧縮機のほかに、自然冷媒(二酸化炭素など)を用いたエアーコンディショナーやヒートポンプ式給湯機などの用途にも適用できる。   As described above, the hermetic compressor of the present invention has a groove on the inner wall of the hermetic container, thereby expanding the passage cross-sectional area and further reducing the oil discharge amount. Securing the refrigerant passage while realizing a highly efficient motor by using it can ensure the motor efficiency while preventing the stator from falling off during operation. For air conditioners using HFC refrigerant or HCFC refrigerant In addition to compressors, it can also be used for applications such as air conditioners and heat pump water heaters using natural refrigerants (such as carbon dioxide).

本発明の第1の実施の形態における上側に電動機、下側に圧縮機構部を配置する密閉型圧縮機の縦断面図1 is a longitudinal sectional view of a hermetic compressor in which an electric motor is arranged on the upper side and a compression mechanism part is arranged on the lower side in the first embodiment of the present invention. 本発明の第1の実施の形態における密閉容器の斜視図The perspective view of the airtight container in the 1st Embodiment of this invention 本発明の第1の実施の形態における電動機部の上部空間から見た横断面図The cross-sectional view seen from the upper space of the electric motor part in the 1st Embodiment of this invention 本発明の第1の実施の形態における密閉容器を横から見た図とスキュー角度の定義を示す図The figure which looked at the airtight container in the 1st Embodiment of this invention from the side, and the figure which shows the definition of a skew angle 本発明の第1の実施の形態におけるスキュー角度を変化させたときの圧力による変形量を示す図The figure which shows the deformation amount by the pressure when the skew angle in the 1st Embodiment of this invention is changed. 本発明の第1の実施の形態におけるスキュー角度を変化させたときの最大変位量と最小変位量を示す図The figure which shows the maximum displacement amount and minimum displacement amount when changing the skew angle in the 1st Embodiment of this invention. 本発明の第1の実施の形態における上側に圧縮機構部、下側に電動機を配置する密閉型圧縮機の縦断面図1 is a longitudinal sectional view of a hermetic compressor in which a compression mechanism section is arranged on the upper side and an electric motor is arranged on the lower side in the first embodiment of the present invention. 本発明の第2の実施の形態における電動機部の上部空間から見た横断面図The cross-sectional view seen from the upper space of the electric motor part in the 2nd Embodiment of this invention 本発明の第3の実施の形態における密閉容器の斜視図The perspective view of the airtight container in the 3rd Embodiment of this invention 同密閉容器を横から見た図View of the sealed container from the side 従来の密閉型圧縮機の断面図Cross section of a conventional hermetic compressor

1 密閉容器
2 電動機
3 圧縮機構部
4 上シェル
5 冷媒吐出管
6 オイル溜り
7 上部空間
8 下部空間
9 溝部
22 固定子
24 回転子
26 エアギャップ
28 切欠部
30 シリンダ
31 回転軸
31a 偏芯部
32 ピストン
34 上軸受部
35 下軸受部
37 カップマフラー
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Electric motor 3 Compression mechanism part 4 Upper shell 5 Refrigerant discharge pipe 6 Oil reservoir 7 Upper space 8 Lower space 9 Groove part 22 Stator 24 Rotor 26 Air gap 28 Notch part 30 Cylinder 31 Rotating shaft 31a Eccentric part 32 Piston 34 Upper bearing part 35 Lower bearing part 37 Cup muffler

Claims (10)

密閉容器の内部に、固定子と回転子で構成される電動機と前記電動機で駆動される圧縮機構部を配設し、前記固定子の外周が前記密閉容器の内壁に固定される構成において、前記密閉容器の内壁に円筒軸方向に延びる溝を設けるとともに、前記溝をスキューさせたことを特徴とする密閉型圧縮機。 In a configuration in which an electric motor composed of a stator and a rotor and a compression mechanism portion driven by the electric motor are disposed inside the hermetic container, and an outer periphery of the stator is fixed to an inner wall of the hermetic container, A hermetic compressor characterized in that a groove extending in the cylindrical axial direction is provided on the inner wall of the hermetic container and the groove is skewed. 固定子の固定部周辺の前記密閉容器の内壁に前記溝を設けるとともに、前記固定子の固定部周辺以外の前記密閉容器の内壁は円筒で構成し、前記溝が設けられた内壁と、前記円筒で構成された内壁とが滑らかに遷移する溝端部を設けたことを特徴とする請求項1に記載の密閉型圧縮機。 The groove is provided on the inner wall of the sealed container around the fixed part of the stator, the inner wall of the sealed container other than the periphery of the fixed part of the stator is formed of a cylinder, the inner wall provided with the groove, and the cylinder The hermetic compressor according to claim 1, further comprising a groove end portion that smoothly transitions to an inner wall constituted by 前記溝が円筒軸方向に複数存在する請求項1または請求項2に記載の密閉型圧縮機。 The hermetic compressor according to claim 1, wherein a plurality of the grooves are present in a cylindrical axis direction. 前記溝の円筒軸方向長さを前記固定子より長くしたことを特徴とする請求項2または請求項3に記載の密閉型圧縮機。 The hermetic compressor according to claim 2 or 3, wherein a length of the groove in a cylindrical axial direction is longer than that of the stator. 前記固定子の外周形状が円形である事を特徴とする請求項1〜4のいずれか1項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 4, wherein an outer peripheral shape of the stator is circular. 前記溝のスキュー角度を円筒軸方向位置によって変化させたことを特徴とする請求項1〜5のいずれか1項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 5, wherein a skew angle of the groove is changed depending on a cylindrical axial position. 前記回転子の回転方向と、前記溝のスキュー方向を同じにしたことを特徴とする請求項1〜6のいずれか1項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 6, wherein a rotation direction of the rotor and a skew direction of the groove are the same. 前記回転子の回転方向と、前記溝のスキュー方向を反対にしたことを特徴とする請求項1〜6のいずれか1項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 6, wherein a rotation direction of the rotor and a skew direction of the groove are reversed. 前記固定子を焼き嵌めにて密閉容器に固定したことを特徴とする請求項1〜8のいずれか1項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 8, wherein the stator is fixed to the hermetic container by shrink fitting. 前記固定子を溶接にて密閉容器に固定したことを特徴とする請求項1〜8のいずれか1項に記載の密閉型圧縮機。 The hermetic compressor according to claim 1, wherein the stator is fixed to the hermetic container by welding.
JP2009043368A 2009-02-26 2009-02-26 Hermetic compressor Expired - Fee Related JP5104783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009043368A JP5104783B2 (en) 2009-02-26 2009-02-26 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009043368A JP5104783B2 (en) 2009-02-26 2009-02-26 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2010196610A true JP2010196610A (en) 2010-09-09
JP5104783B2 JP5104783B2 (en) 2012-12-19

Family

ID=42821569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043368A Expired - Fee Related JP5104783B2 (en) 2009-02-26 2009-02-26 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP5104783B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245640A (en) * 2012-05-29 2013-12-09 Panasonic Corp Hermetic compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258182A (en) * 1986-05-02 1987-11-10 Hitachi Ltd Closed type scroll compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258182A (en) * 1986-05-02 1987-11-10 Hitachi Ltd Closed type scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245640A (en) * 2012-05-29 2013-12-09 Panasonic Corp Hermetic compressor

Also Published As

Publication number Publication date
JP5104783B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP4841536B2 (en) Motor and refrigerant compressor provided with the same
JP6345099B2 (en) Sealed electric compressor and air conditioner
JP6521048B2 (en) Scroll compressor
JP6388715B2 (en) Compressor
EP3343065A1 (en) Inertia adjuster and rotary compressor
JP5079670B2 (en) Rotary compressor
JP6548915B2 (en) Compressor
JP2007205227A (en) Compressor
JP5104783B2 (en) Hermetic compressor
CN105201846B (en) Rotary compressor
JP3992071B1 (en) Compressor
JP4552910B2 (en) Compressor
JP2011038485A (en) Hermetic compressor
JP6407432B2 (en) Compressor and refrigeration cycle apparatus
JP2011179453A (en) Rotary compressor device
JP5135779B2 (en) Compressor
JP5789581B2 (en) Scroll compressor
KR102320908B1 (en) Compressors and refrigeration cycle units
JP2018102039A (en) Rotor of electric motor, and compressor
KR101474019B1 (en) Motor and compressor with it
WO2015068308A1 (en) Scroll compressor
JP5358591B2 (en) Rotary compressor
JP2016089625A (en) Rotary compressor
JP5157148B2 (en) Compressor
JP5469612B2 (en) Rotary fluid machinery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R151 Written notification of patent or utility model registration

Ref document number: 5104783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees