JP2010195657A - Method for producing ultrafine particle tin oxide powder - Google Patents

Method for producing ultrafine particle tin oxide powder Download PDF

Info

Publication number
JP2010195657A
JP2010195657A JP2009044932A JP2009044932A JP2010195657A JP 2010195657 A JP2010195657 A JP 2010195657A JP 2009044932 A JP2009044932 A JP 2009044932A JP 2009044932 A JP2009044932 A JP 2009044932A JP 2010195657 A JP2010195657 A JP 2010195657A
Authority
JP
Japan
Prior art keywords
tin oxide
tin
solution
stannous chloride
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009044932A
Other languages
Japanese (ja)
Inventor
Hiromi Mochida
裕美 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009044932A priority Critical patent/JP2010195657A/en
Publication of JP2010195657A publication Critical patent/JP2010195657A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a tin oxide fine powder having a specific surface area of ≥10 m<SP>2</SP>by a simple treatment means. <P>SOLUTION: The method for producing a tin oxide fine powder having a specific surface area of ≥10 m<SP>2</SP>includes: mixing a stannous chloride solution with hot water of a gram-equivalent of ≥150 times the gram-equivalent of tin contained in the stannous chloride solution in the presence of hydrogen peroxide; then recovering formed precipitate of tin oxide by filtration; and after drying, heat treating the dried precipitate. It is preferable that hot water having a temperature of 45-75°C is used, and the stannous chloride solution is dropped while taking a time of ≥30 min, and after adding pure water to the recovered precipitate of tin oxide, the recovered precipitate is calcined. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超微細な酸化錫粉末の製造方法に関し、より詳しくは、比表面積10m2以上の超微細な酸化錫粉末を容易に製造する方法に関する。 The present invention relates to a method for producing ultrafine tin oxide powder, and more particularly to a method for easily producing ultrafine tin oxide powder having a specific surface area of 10 m 2 or more.

液晶表示装置などに透明導電材料のITO等の薄膜が広く用いられている。近年、液晶表示装置などの高精細化や高透明化のために、ITO薄膜を形成するターゲット(酸化In−酸化錫、酸化Ga−酸化錫など)について、内部構造の均一化、および利用効率の向上のためノジュール発生低減化による高性能化が求められている。このため、副成分の酸化錫についても微細粉末が求められている。   Thin films of transparent conductive material such as ITO are widely used in liquid crystal display devices and the like. In recent years, targets for forming an ITO thin film (such as oxide In-tin oxide and oxide oxide Ga-tin oxide) for high definition and high transparency of liquid crystal display devices, etc. There is a need for higher performance by reducing the generation of nodules for improvement. For this reason, fine powders are also required for the subcomponent tin oxide.

従来、酸化錫粉末の製造方法として以下の方法が知られている。
(イ)塩化第二錫溶液をアンモニア等で中和し、メタ錫酸と水酸化錫の混合沈澱を生成させ、これを回収し、空気中で500℃以上に強熱して酸化錫粉末を製造する方法。
(ロ)金属錫を硝酸溶解し、あるいは電解酸化してメタ錫酸を形成した後に、焼成酸化して酸化錫粉末を製造する方法(特許文献1:特許第3173440号公報)。
(ハ)塩化第二錫をアルコールに溶解した溶液と、アンモニア水とアルコールの混合溶液を徐々に混合して錫酸化物を生成させ、この錫酸化物を濾別し、回収した錫酸化物ケーキに水を加えて攪拌し、濾過する処理を数回繰り返して酸根を除去した後に、水を加えて錫酸化物ゾルを製造する方法(特許文献2:特開2003−89524号公報)。
Conventionally, the following methods are known as methods for producing tin oxide powder.
(B) The stannic chloride solution is neutralized with ammonia, etc., to produce a mixed precipitate of metastannic acid and tin hydroxide, which is recovered and ignited in air at 500 ° C. or higher to produce tin oxide powder. how to.
(B) A method of producing tin oxide powder by dissolving metal tin in nitric acid or electrolytically oxidizing it to form metastannic acid, followed by baking oxidation (Patent Document 1: Japanese Patent No. 3173440).
(C) A solution in which stannic chloride is dissolved in alcohol and a mixed solution of aqueous ammonia and alcohol are gradually mixed to produce tin oxide, and this tin oxide is filtered and recovered. A method of adding tin to water, stirring and filtering several times to remove acid radicals and then adding water to produce a tin oxide sol (Patent Document 2: JP 2003-89524 A).

上記(イ)(ロ)の方法によって製造される酸化錫粉末は比表面積10m2未満であり、これより微細な酸化錫粉末を得ることができない。また、これらの酸化錫粉末をビーズミルなどでひたすら粉砕しても、最大でも比表面積9m2程度であり、これ以上に微粉化するのが難しい。一方、上記(ハ)の方法によれば粒径がサブミクロンの酸化錫微粒子が懸濁したゾルが形成される。しかし、有機溶媒中で塩化錫を加水分解する方法であるため処理に手間がかかり面倒である。また、この方法で得られるのは錫酸化物ゾル(酸化錫含有量6〜12重量%)であり、通常の濾布では濾別することができないので、乾燥粉末化するのに手間がかかる。 The tin oxide powder produced by the above methods (a) and (b) has a specific surface area of less than 10 m 2 , and a finer tin oxide powder cannot be obtained. Moreover, even if these tin oxide powder was earnestly ground in bead mill, a specific surface area 9m 2 approximately at the maximum, it is difficult to finely divided further into. On the other hand, according to the method (c), a sol in which tin oxide fine particles having a particle size of submicron are suspended is formed. However, since it is a method of hydrolyzing tin chloride in an organic solvent, the process is troublesome and troublesome. Further, a tin oxide sol (tin oxide content: 6 to 12% by weight) obtained by this method cannot be separated by a normal filter cloth, so that it takes time and effort to form a dry powder.

また、従来の上記製造方法(イ)(ロ)は、回収した殿物を空気中で焼成し酸化させてSnO2にするため、焼成時に融着しやすく、微細な酸化錫粉末を得るのが難しい。また、上記(ロ)の方法は、メタ錫酸の粒径が比較的大きいため、低温で長時間かけて焼成しても微細な酸化錫粉末を得られない。さらに、これらの酸化錫粉末をさらに機械粉砕する方法では微細化に限界があり、粉砕装置からの不純物の混入も問題になる。 In addition, since the conventional production methods (a) and (b) are fired and oxidized in the air to oxidize SnO 2 , it is easy to fuse during firing, and a fine tin oxide powder is obtained. difficult. In the method (b), since the particle diameter of metastannic acid is relatively large, fine tin oxide powder cannot be obtained even if it is fired for a long time at a low temperature. Furthermore, the method of further mechanically pulverizing these tin oxide powders has a limit in miniaturization, and mixing of impurities from the pulverizer becomes a problem.

特許第3173440号公報Japanese Patent No. 3173440 特開2003−89524号公報JP 2003-89524 A

本発明は、従来の製造方法における上記問題を解決したものであり、簡単な処理手段によって比表面積10m2以上の酸化錫微粉末を製造する方法を提供する。 The present invention solves the above-mentioned problems in the conventional production method, and provides a method for producing a tin oxide fine powder having a specific surface area of 10 m 2 or more by simple processing means.

本発明は、以下の構成によって上記問題を解決した酸化錫微粉末の製造方法に関する。
〔1〕塩化第一錫溶液を、過酸化水素の存在下、該溶液中の錫量に対して150グラム当量倍以上の加熱水に混合し、生成した酸化錫沈澱を濾別回収し、乾燥後、熱処理することによって比表面積10m2以上の酸化錫粉末を製造することを特徴とする酸化錫微粉末の製造方法。
〔2〕錫濃度10g/L以上の塩化第一錫溶液を、過酸化水素の存在下、該溶液中の錫量に対して150グラム当量倍以上の45℃以上に加熱した純水に、攪拌下、少量づつ添加し、酸化錫沈澱を生成させる上記[1]の酸化錫微粉末の製造方法。
〔3〕塩化第一錫溶液を、該溶液中の錫量に対して1当量以上の過酸化水素を含み、該溶液中の錫量に対して150グラム当量倍以上の45℃〜75℃に加熱した純水に混合する上記[1]または上記[2]に記載する酸化錫微粉末の製造方法。
〔4〕塩化第一錫溶液に該溶液中の錫量に対して1当量以上の過酸化水素を加えてなる前駆体溶液を、該溶液中の錫量に対して150グラム当量倍以上の45℃〜75℃に加熱した純水に混合する上記[1]または上記[2]に記載する酸化錫微粉末の製造方法。
〔5〕塩化第一錫溶液を、該溶液中の錫量に対して150グラム当量倍以上の加熱水に、攪拌しながら、30分以上の時間をかけて滴下する上記[1]〜上記[4]の何れかに記載する酸化錫微粉末の製造方法。
〔6〕回収した酸化錫沈澱を50℃〜150℃に加熱乾燥し、純水を加えた後に200℃〜750℃で仮焼する上記[1]〜上記[5]の何れかに記載する酸化錫微粉末の製造方法。
The present invention relates to a method for producing a tin oxide fine powder that solves the above problems by the following constitution.
[1] Stannous chloride solution is mixed with heated water at least 150 gram equivalent times the amount of tin in the presence of hydrogen peroxide, and the resulting tin oxide precipitate is collected by filtration and dried. Thereafter, a tin oxide powder having a specific surface area of 10 m 2 or more is produced by heat treatment.
[2] Stir a stannous chloride solution having a tin concentration of 10 g / L or more in pure water heated to 45 ° C. or more, which is 150 grams equivalent times or more the amount of tin in the solution in the presence of hydrogen peroxide. The method for producing a fine powder of tin oxide according to the above [1], wherein the fine powder is added little by little to produce a tin oxide precipitate.
[3] The stannous chloride solution contains 1 equivalent or more of hydrogen peroxide with respect to the amount of tin in the solution, and is 45 ° C. to 75 ° C., which is 150 grams equivalent or more with respect to the amount of tin in the solution. The method for producing a tin oxide fine powder according to the above [1] or [2], which is mixed with heated pure water.
[4] A precursor solution obtained by adding one equivalent or more of hydrogen peroxide to the stannous chloride solution with respect to the amount of tin in the solution is 45 grams equivalent to 45 times or more of the amount of tin in the solution. The manufacturing method of the tin oxide fine powder as described in the above [1] or the above [2], which is mixed with pure water heated to from 75 ° C to 75 ° C.
[5] The above-mentioned [1] to [[] above, wherein the stannous chloride solution is added dropwise to heated water of 150 gram equivalent times or more with respect to the amount of tin in the solution over 30 minutes while stirring. 4] The method for producing a tin oxide fine powder according to any one of [4].
[6] The recovered tin oxide precipitate is heated and dried at 50 ° C to 150 ° C, pure water is added, and then calcined at 200 ° C to 750 ° C. The oxidation according to any one of [1] to [5] above Manufacturing method of tin fine powder.

本発明の方法によれば、塩化第一錫溶液から適度に微細な酸化錫粉末を容易に製造することができる。本発明の方法によって製造される酸化錫微粉末は比表面積が大きく、10m2以上であるので、高い活性を有し、ITOの酸化錫材料に用いたときに、高密度で焼結性のよいターゲットを得ることができる。 According to the method of the present invention, a moderately fine tin oxide powder can be easily produced from a stannous chloride solution. Since the tin oxide fine powder produced by the method of the present invention has a large specific surface area of 10 m 2 or more, it has a high activity and has a high density and good sinterability when used as an ITO tin oxide material. You can get a target.

本発明の製造方法では、塩化第一錫溶液を大量の加熱水に混合し、過酸化水素の存在下で生成した酸化錫沈澱は、市販されている通常の濾布によって濾過することができるので、酸化錫沈澱の回収が容易である。さらに、塩化第一錫溶液を大量の加熱水に混合することによって塩素含有量の少ない酸化錫粉末を得ることができる。   In the production method of the present invention, the stannous chloride solution produced by mixing the stannous chloride solution with a large amount of heated water and in the presence of hydrogen peroxide can be filtered through a commercially available ordinary filter cloth. Recovery of the tin oxide precipitate is easy. Furthermore, a tin oxide powder with a low chlorine content can be obtained by mixing the stannous chloride solution with a large amount of heated water.

また、本発明の製造方法では、回収した酸化錫沈澱を加熱乾燥した後に、純水を加えて仮焼することによって、仮焼しても焼結しない粉末状態の微細な酸化錫粉末を容易に得ることができる。本発明の製造方法は、加熱水の水中で酸化錫を直接生成させので、仮焼時には酸化反応せず、焼結し難いので微細な粉末が得られる。なお、結晶水を
Further, in the production method of the present invention, the recovered tin oxide precipitate is heated and dried, and then pure water is added and calcined to easily obtain fine tin oxide powder in a powder state that does not sinter even if calcined. Obtainable. According to the production method of the present invention, tin oxide is directly generated in heated water, so that it does not undergo oxidation reaction during calcination and is difficult to sinter, so that a fine powder can be obtained. In addition, crystal water

以下、本発明を実施形態に基づき具体的に説明する。
本発明の製造方法は、塩化第一錫溶液を、過酸化水素の存在下、該溶液中の錫量に対して150グラム当量倍以上の加熱水に混合し、生成した酸化錫沈澱を濾別回収し、乾燥後、熱処理することによって比表面積10m2以上の酸化錫粉末を製造することを特徴とする酸化錫微粉末の製造方法である。
Hereinafter, the present invention will be specifically described based on embodiments.
In the production method of the present invention, a stannous chloride solution is mixed with heated water at least 150 gram equivalent times the amount of tin in the solution in the presence of hydrogen peroxide, and the resulting tin oxide precipitate is filtered off. A method for producing a fine tin oxide powder comprising producing a tin oxide powder having a specific surface area of 10 m 2 or more by collecting, drying and heat-treating.

本発明の製造方法に用いる塩化第一錫溶液(SnCl2・2H2O)は、金属錫を塩酸で加熱溶解して調製した塩化第一錫塩酸溶液を用いることができる。あるいは、塩化第一錫を水または希塩酸水(十分に精製された塩化第一錫を用いる場合には塩酸を用いなくてもよい)に溶解して調製した塩化第一錫溶液を用いることができる。塩化第一錫溶液は液中の錫濃度が10g/L以上の高濃度溶液が好ましい。溶液中の錫濃度がこれより低いと、生成物が微細になり、濾過が難しくなる。実操業では錫濃度40〜110g/Lの塩化第一錫溶液が適当である。塩化第一錫溶液は余剰な塩酸を含むものでもよい。なお、塩化第二錫溶液(SnCl4・5H2O)を用いてもよいが、一般に塩化第二錫は高価であるので、コストの点で不利になる。 As the stannous chloride solution (SnCl 2 .2H 2 O) used in the production method of the present invention, a stannous chloride hydrochloric acid solution prepared by heating and dissolving metallic tin with hydrochloric acid can be used. Alternatively, a stannous chloride solution prepared by dissolving stannous chloride in water or dilute hydrochloric acid water (in the case of using sufficiently purified stannous chloride, hydrochloric acid may not be used) can be used. . The stannous chloride solution is preferably a high concentration solution having a tin concentration of 10 g / L or more. If the tin concentration in the solution is lower than this, the product becomes fine and filtration becomes difficult. In actual operation, a stannous chloride solution having a tin concentration of 40 to 110 g / L is suitable. The stannous chloride solution may contain excess hydrochloric acid. Although a stannic chloride solution (SnCl 4 .5H 2 O) may be used, since stannic chloride is generally expensive, it is disadvantageous in terms of cost.

過酸化水素(H2O2)は、塩化第一錫溶液に添加した前駆体溶液として用いてもよく、あるいは加熱水に添加してもよい。過酸化水素の添加量は上記塩化第一錫溶液中の錫量に対して1当量以上が好ましい。この量が1当量より少ないと、過酸化水素を添加したときに茶色い沈澱になり、濾過性のよい酸化錫沈澱が得られず、歩留まりが低下する。 Hydrogen peroxide (H 2 O 2 ) may be used as a precursor solution added to the stannous chloride solution, or may be added to heated water. The amount of hydrogen peroxide added is preferably 1 equivalent or more with respect to the amount of tin in the stannous chloride solution. When this amount is less than 1 equivalent, a brown precipitate is formed when hydrogen peroxide is added, and a tin oxide precipitate with good filterability cannot be obtained, resulting in a decrease in yield.

塩化第一錫溶液を混合する加熱水は、上記溶液中の錫量に対して150グラム当量倍以上の水量が用いられる。塩化第一錫溶液を大量の加熱水に混合することによって塩素含有量の少ない酸化錫粉末を得ることができる。加熱水の水量がこれより少ないと、生成物の歩留まりが低下し、また生成物中の塩素含有量が高くなる。加熱水の温度は45℃以上が適当であり、45℃〜75℃が好ましい。加熱水の温度が45℃より低いと濾過性のよい酸化錫沈澱が得られず、75℃より高いと装置上の問題が生じると共にエネルギーが無駄になる。   As the heating water for mixing the stannous chloride solution, an amount of water that is 150 grams equivalent times or more the amount of tin in the solution is used. By mixing the stannous chloride solution with a large amount of heated water, a tin oxide powder having a low chlorine content can be obtained. If the amount of heated water is less than this, the yield of the product will decrease, and the chlorine content in the product will increase. The temperature of the heated water is suitably 45 ° C or higher, preferably 45 ° C to 75 ° C. If the temperature of the heated water is lower than 45 ° C., a tin oxide precipitate having good filterability cannot be obtained, and if it is higher than 75 ° C., problems on the apparatus occur and energy is wasted.

塩化第一錫溶液を、過酸化水素の存在下で、加熱水に混合するには、塩化第一錫溶液を少量づつ攪拌した加熱水に添加する。例えば、塩化第一錫溶液を30分以上の時間をかけて滴下するのが好ましい。   To mix the stannous chloride solution with heated water in the presence of hydrogen peroxide, the stannous chloride solution is added in small portions to the stirred heated water. For example, it is preferable to drop the stannous chloride solution over 30 minutes or more.

上記添加方法とは逆に、塩化第一錫溶液に加熱水を少量づつ添加すると沈澱物粒子が過小になり、濾過性のよい酸化錫沈澱は得られない。また、上記沈澱生成工程において、従来の製造方法で使用されている加水分解剤のアンモニア等を用いる必要はない。塩化第一錫溶液を過酸化水素の存在下で加熱水に滴下することによって、アンモニア等を用いずに、実用的なフィルター濾過が可能な濾過性の良い超微細な酸化錫沈澱を形成することができる。   Contrary to the above addition method, when heating water is added to the stannous chloride solution little by little, the precipitate particles become too small, and a tin oxide precipitate with good filterability cannot be obtained. Moreover, it is not necessary to use ammonia of the hydrolyzing agent currently used by the conventional manufacturing method in the said precipitation production | generation process. By dropping the stannous chloride solution into heated water in the presence of hydrogen peroxide to form ultrafine tin oxide precipitates with good filterability that can be practically filtered without using ammonia, etc. Can do.

塩化第一錫(SnCl2・2H2O)は、過酸化水素によって酸化されて、過酸化な錫の前駆体溶液になり、これを加熱水に混合することによって、加熱によって次式[1]〜[3]の反応が進み、酸化錫(SnO2)の沈澱が直接生じる。この沈澱物を濾過して回収し、加熱乾燥した後に、純水を加えて仮焼する。 Stannous chloride (SnCl 2 · 2H 2 O) is oxidized by hydrogen peroxide to become a peroxidized tin precursor solution, which is mixed with heated water and heated to the following formula [1] The reaction of [3] proceeds, and precipitation of tin oxide (SnO 2 ) occurs directly. This precipitate is collected by filtration, dried by heating, and then calcined with pure water.

SnCl2+H2O2 → SnO2↓+2HCl 〔1〕
SnCl2+2HCl+H2O2 → SnCl4+2H2O 〔2〕
SnCl4+2H2O → SnO2↓+4HCl 〔3〕
SnCl 2 + H 2 O 2 → SnO 2 ↓ + 2HCl [1]
SnCl 2 + 2HCl + H 2 O 2 → SnCl 4 + 2H 2 O [2]
SnCl 4 + 2H 2 O → SnO 2 ↓ + 4HCl [3]

回収した沈殿物を50℃〜150℃に加熱して乾燥し、純水を加えると水が弾けて沈澱物を粉状態にすることができる。これを200℃〜750℃で仮焼しても焼結し難いので、比表面積10m2以上の微細な酸化錫粉末を容易に得ることができる。また、沈殿物を加熱乾燥した後に純水を添加することによって、ゲル状の硬く固結した状態の生成物が粉末化し、また沈殿物に残留する塩素も除去することができる。回収沈澱に加える純水の水量は沈澱1gに対して1g以上が好ましく、余剰な水分は濾過して除去すればよい。 The collected precipitate is heated to 50 ° C. to 150 ° C. and dried, and when pure water is added, the water is repelled and the precipitate can be made into a powder state. Since it is difficult to sinter even if calcined at 200 ° C. to 750 ° C., fine tin oxide powder having a specific surface area of 10 m 2 or more can be easily obtained. Further, by adding pure water after the precipitate is heated and dried, the gel-like hard and consolidated product is pulverized, and chlorine remaining in the precipitate can be removed. The amount of pure water added to the recovered precipitate is preferably 1 g or more with respect to 1 g of the precipitate, and excess water may be removed by filtration.

さらに、仮焼することによって残留塩素が揮発して除去される。沈澱物に残留する塩化第二錫は沸点が低い(約114℃)ので、200℃以上に仮焼することによって除去することができる。仮焼後に粒度調整のために微粉砕あるいは解砕しても良い。仮焼温度は200℃〜750℃が適当である。200℃より低いと残留塩素の除去が不十分になり、750℃を上回ると酸化錫が焼結しやすくなり、比表面積が急激に低下する。なお、結晶水を除きたい場合には高温で仮焼するほどよい。   Furthermore, residual chlorine volatilizes and is removed by calcination. Since stannic chloride remaining in the precipitate has a low boiling point (about 114 ° C.), it can be removed by calcination at 200 ° C. or higher. After calcination, fine pulverization or pulverization may be performed for particle size adjustment. The calcining temperature is suitably 200 ° C to 750 ° C. When the temperature is lower than 200 ° C., residual chlorine is not sufficiently removed. When the temperature is higher than 750 ° C., tin oxide is easily sintered and the specific surface area is rapidly decreased. In addition, when it is desired to remove crystal water, it is better to calcine at high temperature.

本発明の実施例を以下に示す。結果を表1に示す。
〔比表面積〕酸化錫粉末の比表面積はQUANTACHROME社製AUTOSORB−1MP機を用い、BET3点法に従ってBET比表面積を測定した。
Examples of the present invention are shown below. The results are shown in Table 1.
[Specific surface area] The BET specific surface area of the tin oxide powder was measured according to the BET three-point method using an AUTOSORB-1MP machine manufactured by QUANTACHROME.

〔実施例1〕
塩化第一錫500gを純水2.8リットルおよび塩酸150ccに溶解して原料液を調製した。一方、純水5リットルと過酸化水素390ccを混合し、60℃に加熱した加熱水を調製した。加熱水を攪拌しながら上記原料液を加熱水に90分かけて滴下した。生成した沈澱560gを濾過して回収し、60℃に加熱して乾燥し、2リットルの純水を加え後に濾過し、500℃で仮焼し、酸化錫粉末330gを得た。この酸化錫粉末の比表面積および塩素濃度を表1に示した。
[Example 1]
A raw material solution was prepared by dissolving 500 g of stannous chloride in 2.8 liters of pure water and 150 cc of hydrochloric acid. Meanwhile, 5 liters of pure water and 390 cc of hydrogen peroxide were mixed and heated water heated to 60 ° C. was prepared. The raw material liquid was added dropwise to the heated water over 90 minutes while stirring the heated water. 560 g of the generated precipitate was collected by filtration, heated to 60 ° C. and dried, filtered after adding 2 liters of pure water, and calcined at 500 ° C. to obtain 330 g of tin oxide powder. The specific surface area and chlorine concentration of this tin oxide powder are shown in Table 1.

〔実施例2〕
塩化第一錫500g、純水2.8リットル、塩酸250cc、および過酸化水素250ccを冷却しながら混合して前駆体原料液を調製した。一方、純水50リットルを50℃に加熱した。この加熱水を攪拌しながら、上記前駆体原料液をこの加熱水に60分かけて滴下した。生成した沈澱560gを濾過して回収し、120℃に加熱して乾燥し、0.2リットルの純水を加えて600℃で仮焼することによって、酸化錫粉末331gを得た。この酸化錫粉末のBET比表面積および塩素濃度を表1に示した。
[Example 2]
A precursor raw material solution was prepared by mixing 500 g of stannous chloride, 2.8 liters of pure water, 250 cc of hydrochloric acid, and 250 cc of hydrogen peroxide while cooling. Meanwhile, 50 liters of pure water was heated to 50 ° C. The precursor raw material liquid was added dropwise to the heated water over 60 minutes while stirring the heated water. 560 g of the generated precipitate was collected by filtration, heated to 120 ° C. and dried, and then added with 0.2 liters of pure water and calcined at 600 ° C. to obtain 331 g of tin oxide powder. Table 1 shows the BET specific surface area and chlorine concentration of the tin oxide powder.

〔実施例3〕
塩化第一錫500g、純水6.1リットル、および過酸化水素390ccを混合した前駆体原料液(塩酸なし)を調製した。一方、純水8リットルを65℃に加熱した。この加熱水を攪拌しながら、上記前駆体原料液をこの加熱水に90分かけて滴下した。生成した沈澱520gを濾過して回収し、120℃に加熱して乾燥し、0.5リットルの純水を加えて450℃で仮焼することによって、酸化錫粉末307gを得た。この酸化錫粉末のBET比表面積および塩素濃度を表1に示した。
Example 3
A precursor raw material liquid (without hydrochloric acid) in which 500 g of stannous chloride, 6.1 liters of pure water, and 390 cc of hydrogen peroxide were mixed was prepared. Meanwhile, 8 liters of pure water was heated to 65 ° C. The precursor raw material liquid was dropped into the heated water over 90 minutes while stirring the heated water. The produced precipitate 520 g was collected by filtration, heated to 120 ° C., dried, added with 0.5 liters of pure water and calcined at 450 ° C. to obtain 307 g of tin oxide powder. Table 1 shows the BET specific surface area and chlorine concentration of the tin oxide powder.

〔実施例4〕
塩化第一錫500g、純水1.9リットル、塩酸210cc、および過酸化水素390ccを冷却しながら混合して前駆体原料液を調製した。一方、純水22リットルを75℃に加熱した。この加熱水を攪拌しながら、上記前駆体原料液をこの加熱水に30分かけて滴下した。生成した沈澱555gを濾過して回収し、60℃に加熱して乾燥し、5リットルの純水を加えて濾過し、750℃で仮焼することによって、酸化錫粉末325gを得た。この酸化錫粉末のBET比表面積および塩素濃度を表1に示した。
Example 4
A precursor raw material liquid was prepared by mixing 500 g of stannous chloride, 1.9 liters of pure water, 210 cc of hydrochloric acid, and 390 cc of hydrogen peroxide while cooling. On the other hand, 22 liters of pure water was heated to 75 ° C. The precursor raw material liquid was dropped into the heated water over 30 minutes while stirring the heated water. 555 g of the generated precipitate was collected by filtration, heated to 60 ° C. and dried, filtered by adding 5 liters of pure water, and calcined at 750 ° C. to obtain 325 g of tin oxide powder. Table 1 shows the BET specific surface area and chlorine concentration of the tin oxide powder.

〔実施例5〕
金属錫265gを塩酸600ccに加熱して溶解させ、これに純水16.5リットルを加えた後に、過酸化水素290ccを冷却しながら混合して前駆体原料液を調製した。一方、純水6リットルを60℃に加熱した。この加熱水を攪拌しながら、上記前駆体原料液をこの加熱水に90分かけて滴下した。生成した沈澱510gを濾過して回収し、100℃に加熱して乾燥し、2リットルの純水を加えて濾過し、350℃で仮焼することによって、酸化錫粉末300gを得た。この酸化錫粉末のBET比表面積および塩素濃度を表1に示した。
Example 5
265 g of metallic tin was dissolved in 600 cc of hydrochloric acid by heating, 16.5 liters of pure water was added thereto, and then 290 cc of hydrogen peroxide was mixed while cooling to prepare a precursor raw material solution. Meanwhile, 6 liters of pure water was heated to 60 ° C. The precursor raw material liquid was dropped into the heated water over 90 minutes while stirring the heated water. The produced precipitate 510 g was collected by filtration, heated to 100 ° C. and dried, filtered by adding 2 liters of pure water, and calcined at 350 ° C. to obtain 300 g of tin oxide powder. Table 1 shows the BET specific surface area and chlorine concentration of the tin oxide powder.

〔比較例1〕
塩化第一錫500g、純水2.8リットル、塩酸150cc、および過酸化水素390ccを冷却しながら混合して前駆体原料液を調製した。一方、純水3リットルを60℃に加熱した。この加熱水を攪拌しながら、上記前駆体原料液をこの加熱水に60分かけて滴下した。生成した沈澱450gを濾過して回収し、120℃に加熱して乾燥し、0.2リットルの純水を加えて濾過し、600℃で仮焼することによって、酸化錫粉末265gを得た。この酸化錫粉末のBET比表面積は30m2/gであり、塩素濃度は85ppmに上昇した。
[Comparative Example 1]
A precursor raw material solution was prepared by mixing 500 g of stannous chloride, 2.8 liters of pure water, 150 cc of hydrochloric acid, and 390 cc of hydrogen peroxide while cooling. Meanwhile, 3 liters of pure water was heated to 60 ° C. The precursor raw material liquid was added dropwise to the heated water over 60 minutes while stirring the heated water. 450 g of the produced precipitate was collected by filtration, heated to 120 ° C., dried, filtered by adding 0.2 liter of pure water, and calcined at 600 ° C. to obtain 265 g of tin oxide powder. The tin oxide powder had a BET specific surface area of 30 m 2 / g and a chlorine concentration increased to 85 ppm.

〔比較例2〕
塩化第一錫500g、純水2.8リットル、塩酸150cc、および過酸化水素390ccを冷却しながら混合して前駆体原料液を調製した。一方、純水25リットルを40℃に加熱した。この加熱水を攪拌しながら、上記前駆体原料液をこの加熱水に60分かけて滴下した。生成した沈澱は20gであった。
[Comparative Example 2]
A precursor raw material solution was prepared by mixing 500 g of stannous chloride, 2.8 liters of pure water, 150 cc of hydrochloric acid, and 390 cc of hydrogen peroxide while cooling. Meanwhile, 25 liters of pure water was heated to 40 ° C. The precursor raw material liquid was added dropwise to the heated water over 60 minutes while stirring the heated water. The produced precipitate was 20 g.

〔比較例3〕
塩化第一錫500g、純水1.9リットル、塩酸210cc、および過酸化水素390ccを冷却しながら混合して前駆体原料液を調製した。一方、純水25リットルを上記前駆体溶液に加えて混合し、65℃まで加熱し攪拌した。生成した沈殿物を濾過したところ、回収できた沈殿物は5gであった。
[Comparative Example 3]
A precursor raw material liquid was prepared by mixing 500 g of stannous chloride, 1.9 liters of pure water, 210 cc of hydrochloric acid, and 390 cc of hydrogen peroxide while cooling. On the other hand, 25 liters of pure water was added to the precursor solution, mixed, heated to 65 ° C. and stirred. The produced precipitate was filtered, and the recovered precipitate was 5 g.

〔比較例4〕
実施例1において製造した乾燥物に純水を加えずに500℃で仮焼したところ、堅い固形物になり、粉末を得るには粉砕する必要があった。また、粉末には粉砕機からの不純物が混入し、鉄およびニッケルの量が高くなり、塩素含有量も50ppmと高かった。
[Comparative Example 4]
When the dried product produced in Example 1 was calcined at 500 ° C. without adding pure water, it became a hard solid and needed to be pulverized to obtain a powder. Further, impurities from the pulverizer were mixed in the powder, the amount of iron and nickel was high, and the chlorine content was as high as 50 ppm.

〔比較例5〕
電解酸化法、硝酸溶解法で製造した酸化錫粉末は、例えば、500℃で焼成した粉末のBET比表面積は何れも7m2/g程度である。
[Comparative Example 5]
In the tin oxide powder produced by the electrolytic oxidation method or nitric acid dissolution method, for example, the BET specific surface area of the powder fired at 500 ° C. is about 7 m 2 / g.

Figure 2010195657
Figure 2010195657

Claims (6)

塩化第一錫溶液を、過酸化水素の存在下、該溶液中の錫量に対して150グラム当量倍以上の加熱水に混合し、生成した酸化錫沈澱を濾別回収し、乾燥後、熱処理することによって比表面積10m2以上の酸化錫粉末を製造することを特徴とする酸化錫微粉末の製造方法。
The stannous chloride solution is mixed with heated water in an amount of 150 gram equivalents or more with respect to the amount of tin in the solution in the presence of hydrogen peroxide, and the resulting tin oxide precipitate is collected by filtration, dried, and heat treated. To produce a tin oxide powder having a specific surface area of 10 m 2 or more.
錫濃度10g/L以上の塩化第一錫溶液を、過酸化水素の存在下、該溶液中の錫量に対して150グラム当量倍以上の45℃以上に加熱した純水に、攪拌下、少量づつ添加し、酸化錫沈澱を生成させる請求項1の酸化錫微粉末の製造方法。
A small amount of a stannous chloride solution having a tin concentration of 10 g / L or more in pure water heated to 45 ° C. or more that is 150 grams equivalent times or more the amount of tin in the solution in the presence of hydrogen peroxide with stirring. The method for producing a fine powder of tin oxide according to claim 1, wherein the fine powder is added step by step to form a tin oxide precipitate.
塩化第一錫溶液を、該溶液中の錫量に対して1当量以上の過酸化水素を含み、該溶液中の錫量に対して150グラム当量倍以上の45℃〜75℃に加熱した純水に混合する請求項1または請求項2に記載する酸化錫微粉末の製造方法。
A stannous chloride solution containing 1 equivalent or more hydrogen peroxide with respect to the amount of tin in the solution and heated to 45 ° C. to 75 ° C., which is 150 grams equivalent times or more with respect to the amount of tin in the solution The manufacturing method of the tin oxide fine powder of Claim 1 or Claim 2 mixed with water.
塩化第一錫溶液に該溶液中の錫量に対して1当量以上の過酸化水素を加えてなる前駆体溶液を、該溶液中の錫量に対して150グラム当量倍以上の45℃〜75℃に加熱した純水に混合する請求項1または請求項2に記載する酸化錫微粉末の製造方法。
A precursor solution obtained by adding one equivalent or more of hydrogen peroxide to the stannous chloride solution with respect to the amount of tin in the solution is 45 ° C to 75 times 150 grams equivalent or more with respect to the amount of tin in the solution. The manufacturing method of the tin oxide fine powder of Claim 1 or Claim 2 mixed with the pure water heated at degreeC.
塩化第一錫溶液を、該溶液中の錫量に対して150グラム当量倍以上の加熱水に、攪拌しながら、30分以上の時間をかけて滴下する請求項1〜請求項4の何れかに記載する酸化錫微粉末の製造方法。
The stannous chloride solution is dropped into heated water of 150 gram equivalent times or more with respect to the amount of tin in the solution over 30 minutes while stirring. The manufacturing method of the tin oxide fine powder described in 2.
回収した酸化錫沈澱を50℃〜150℃に加熱乾燥し、純水を加えた後に200℃〜750℃で仮焼する請求項1〜請求項5の何れかに記載する酸化錫微粉末の製造方法。 6. The tin oxide fine powder according to claim 1, wherein the recovered tin oxide precipitate is dried by heating to 50 ° C. to 150 ° C., pure water is added, and then calcined at 200 ° C. to 750 ° C. Method.
JP2009044932A 2009-02-26 2009-02-26 Method for producing ultrafine particle tin oxide powder Withdrawn JP2010195657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044932A JP2010195657A (en) 2009-02-26 2009-02-26 Method for producing ultrafine particle tin oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044932A JP2010195657A (en) 2009-02-26 2009-02-26 Method for producing ultrafine particle tin oxide powder

Publications (1)

Publication Number Publication Date
JP2010195657A true JP2010195657A (en) 2010-09-09

Family

ID=42820788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044932A Withdrawn JP2010195657A (en) 2009-02-26 2009-02-26 Method for producing ultrafine particle tin oxide powder

Country Status (1)

Country Link
JP (1) JP2010195657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229439A (en) * 2011-04-22 2011-11-02 浙江大学 Low-temperature preparation method of nanocrystalline tin dioxide lithium ion battery negative electrode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046924A (en) * 1983-08-25 1985-03-14 Mitsubishi Metal Corp Production of fine powder of tin oxide having low electrical resistance
JPS63112421A (en) * 1986-10-29 1988-05-17 Mitsubishi Metal Corp Production of antiomony-doped tin oxide powder
JPH11310415A (en) * 1998-04-27 1999-11-09 Mitsubishi Materials Corp Highly pure tin oxide and its production
JP2008222540A (en) * 2007-03-09 2008-09-25 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing tin oxide sol, and method for controlling average grain diameter of tin oxide sol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046924A (en) * 1983-08-25 1985-03-14 Mitsubishi Metal Corp Production of fine powder of tin oxide having low electrical resistance
JPS63112421A (en) * 1986-10-29 1988-05-17 Mitsubishi Metal Corp Production of antiomony-doped tin oxide powder
JPH11310415A (en) * 1998-04-27 1999-11-09 Mitsubishi Materials Corp Highly pure tin oxide and its production
JP2008222540A (en) * 2007-03-09 2008-09-25 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing tin oxide sol, and method for controlling average grain diameter of tin oxide sol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229439A (en) * 2011-04-22 2011-11-02 浙江大学 Low-temperature preparation method of nanocrystalline tin dioxide lithium ion battery negative electrode material

Similar Documents

Publication Publication Date Title
JP5907169B2 (en) Nickel oxide fine powder and method for producing the same
JP5942659B2 (en) Method for producing nickel oxide fine powder and method for producing nickel hydroxide powder for raw material for producing nickel oxide fine powder
JP5862919B2 (en) Nickel oxide fine powder and method for producing the same
JP5168070B2 (en) Nickel oxide powder and method for producing the same
JP6159306B2 (en) Nickel oxide powder
JP2009196870A (en) Nickel oxide powder and its production method
JP4060187B2 (en) Method for producing ITO powder in which tin is dissolved in indium oxide and method for producing ITO target
JP5648803B2 (en) Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution
JP5621268B2 (en) Nickel oxide fine powder and method for producing the same
JP4253721B2 (en) Tin-doped indium oxide powder and method for producing the same
JP5733101B2 (en) Method for producing nickel oxide powder
JP2011225395A (en) Nickel oxide fine powder, and method for producing the same
JP5504750B2 (en) Nickel oxide fine powder and method for producing the same
JPH01136910A (en) Manufacture of granular fine metal powder
JP2010195657A (en) Method for producing ultrafine particle tin oxide powder
KR101305903B1 (en) Tin oxide powder and manufacturing method of producing the same
JP2003206137A (en) Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
JP5869361B2 (en) Method for producing ITO powder and method for producing ITO sputtering target
JP5509725B2 (en) Nickel oxide powder and method for producing the same
JP5790292B2 (en) Method for producing nickel oxide powder
JP2015160780A (en) Method of producing nickel oxide, and nickel oxide fine powder obtainable therefrom
KR20020017672A (en) Method for preparing indium tin oxide powder from indium tin oxide scrap
JP2018123019A (en) Method for producing nickel oxide fine powders
CN110655101B (en) Preparation method and application of high-transparency nano zinc oxide
JP2005272186A (en) Tin oxide powder and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121031

A761 Written withdrawal of application

Effective date: 20121114

Free format text: JAPANESE INTERMEDIATE CODE: A761