JP2010189242A - サファイア単結晶の製造方法およびサファイア単結晶引き上げ装置 - Google Patents

サファイア単結晶の製造方法およびサファイア単結晶引き上げ装置 Download PDF

Info

Publication number
JP2010189242A
JP2010189242A JP2009038013A JP2009038013A JP2010189242A JP 2010189242 A JP2010189242 A JP 2010189242A JP 2009038013 A JP2009038013 A JP 2009038013A JP 2009038013 A JP2009038013 A JP 2009038013A JP 2010189242 A JP2010189242 A JP 2010189242A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
pulling
sapphire single
alumina melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2009038013A
Other languages
English (en)
Inventor
Tomohiro Shonai
智博 庄内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009038013A priority Critical patent/JP2010189242A/ja
Publication of JP2010189242A publication Critical patent/JP2010189242A/ja
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】るつぼ内に投入された酸化アルミニウムの原材料から得られるサファイア単結晶の収率を向上させることが可能なサファイア単結晶の製造方法を提供する。
【解決手段】周縁部に比べて中央部が凹んだ底部内面21aと、底部内面21aの周縁部から立ち上がる円筒状の壁部内面22aとを有するるつぼ20に収容されたアルミナ融液300から、サファイアインゴット200を構成する肩部220および直胴部220を連続的に引き上げて成長させた後、るつぼ20中のアルミナ融液300の液面高さSが底部内面21aと壁部内面22aとの境界である内径変化開始位置Cに到達した後に、サファイアインゴット200をさらに引き上げてアルミナ融液300から引き離す。
【選択図】図5

Description

本発明は、酸化アルミニウムの融液を用いたサファイア単結晶の製造方法およびサファイア単結晶引き上げ装置に関する。
近年、サファイア単結晶は、例えば青色LEDを製造する際のIII族窒化物半導体(GaN等)のエピ膜成長用の基板材料として広く利用されている。また、サファイア単結晶は、例えば液晶プロジェクタに用いられる偏光子の保持部材等としても広く用いられている。
このようなサファイア単結晶の板材すなわちウエハは、一般に、サファイア単結晶のインゴットを所定の厚さに切り出すことによって得られる。サファイア単結晶のインゴットを製造する方法については種々の提案がなされているが、その結晶特性がよいことや大きな結晶径のものが得やすいということから、溶融固化法で製造されることが多い。特に、溶融固化法の一つであるチョクラルスキー法(Cz法)は、サファイア単結晶のインゴットの製造に広く用いられている。
チョクラルスキー法によってサファイア単結晶のインゴットを製造するには、まず坩堝に酸化アルミニウムの原料を充填し、高周波誘導加熱法や抵抗加熱法によって坩堝を加熱し原料を溶融する。原料が溶融した後、所定の結晶方位に切り出した種結晶を原料融液表面に接触させ、種結晶を所定の回転速度で回転させながら所定の速度で上方に引き上げて、種結晶の下部に肩部および直胴部が形成された単結晶を成長させる(特許文献1参照)。
ところで、チョクラルスキー法によって単結晶のインゴットを製造する際、インゴットの製造中に原料融液と接するインゴットの先端部(尾部という)の形状が凸状となってしまうことがある。このようにインゴットの尾部が凸状になると、インゴットの成長に伴って坩堝中の融液量が低下した状態において、尾部の先端が坩堝の底面に当たってしまい、それ以上の結晶成長が行えなくなってしまう。このようにして形成された凸状部は、ウエハとしては使用できないので、ウエハの切り出しに使用することのできるインゴットの有効長が短くなってしまい、歩留まりの低下を招いてしまう。
公報記載の従来技術として、GaAs等の化合物半導体結晶成長用のるつぼにおいて、るつぼの底部を曲面で構成するとともに、るつぼの底部曲率半径Rと引き上げられる単結晶直径Dとの比であるR/Dを1〜3の範囲から選択するものが存在する(特許文献2参照)。
特開2008−207992号公報 特開平1−167295号公報
ところで、るつぼに収容される酸化アルミニウムの融液(アルミナ融液)からサファイア単結晶のインゴットの引き上げを行う場合、結晶成長に伴ってるつぼ中のアルミナ融液の量は徐々に減少する。これに伴い、るつぼ中のアルミナ融液の液面高さは徐々に低下していく。
ここで、底部の中央部が下側に凹んだるつぼを用いた場合、液面高さが底部側まで低下した後は、結晶成長に伴う液面高さの減少量が急激に増加する。このため、直胴部の最下部側の結晶性が直胴部の他の部位の結晶性と異なってしまうおそれがあった。なお、直胴部内で結晶性に違いが生じるような場合、結晶性が異なる部位は、ウエハとしては使用できないので、ウエハの切り出しに使用することのできるインゴットの有効長が短くなってしまい、歩留まりの低下を招いてしまう。
本発明は、るつぼ内に投入された酸化アルミニウムの原材料から得られるサファイア単結晶の収率を向上させるとともに、サファイア単結晶から得られるウエハの収率を向上させることを目的とする。
かかる目的のもと、本発明が適用されるサファイア単結晶の製造方法は、周縁部に比べて中央部が凹んだ底部内面と、底部内面の周縁部から立ち上がる円筒状の壁部内面とを有するるつぼに収容されたアルミナ融液から、サファイア単結晶を引き上げて成長させる成長工程と、るつぼ中のアルミナ融液の液面高さが底部内面と壁部内面との境界部に到達した後に、サファイア単結晶をさらに引き上げてアルミナ融液から引き離して分離する分離工程とを有している。
このようなサファイア単結晶の製造方法では、成長工程において、サファイア単結晶をc軸方向に成長させることを特徴とすることができる。
また、他の観点から捉えると、本発明が適用されるサファイア単結晶の製造方法は、高さ方向に対し内径が一定な壁部内面と、壁部内面の一端側に壁部内面に連続して形成され、高さ方向に対し内径が漸次減少する底部内面とを有するるつぼに、アルミナ原料を投入する投入工程と、アルミナ原料が投入されたるつぼを加熱してるつぼ内のアルミナ原料を溶融させてアルミナ融液とする溶融工程と、るつぼ中のアルミナ融液からサファイア単結晶を引き上げて成長させる成長工程と、るつぼ中のアルミナ融液の液面高さが内径の変化点に到達した後に、サファイア単結晶をさらに引き上げてアルミナ融液から引き離して分離する分離工程とを有している。
さらに、他の観点から捉えると、本発明が適用されるサファイア単結晶引き上げ装置は、周縁部に比べて中央部が凹んだ底部内面と、底部内面の周縁部から立ち上がる円筒状の壁部内面とを有するるつぼと、るつぼ中に収容されたアルミナ融液からサファイア単結晶を引き上げるとともに、るつぼ中のアルミナ融液の液面高さが底部内面と壁部内面との境界部に到達した後に、サファイア単結晶をさらに引き上げてアルミナ融液から引き離す引き上げ手段とを含んでいる。
このようなサファイア単結晶引き上げ装置において、るつぼを誘導加熱する誘導加熱手段をさらに含み、るつぼがイリジウム、イリジウムを含む合金、白金、あるいは白金を含む合金で構成されることを特徴とすることができる。
また、るつぼを抵抗加熱ヒータにて加熱する抵抗加熱手段をさらに含み、るつぼがモリブデンで構成されることを特徴とすることができる。
さらに、引き上げ手段は、アルミナ融液からc軸方向に成長させたサファイア単結晶を引き上げることを特徴とすることができる。
本発明によれば、るつぼ内に投入された酸化アルミニウムの原材料から得られるサファイア単結晶の収率を向上させるとともに、サファイア単結晶から得られるウエハの収率を向上させることができる。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1は本実施の形態が適用される単結晶引き上げ装置1の構成の一例を説明するための図である。
この単結晶引き上げ装置1は、サファイアの単結晶からなるサファイアインゴット200を成長させるための加熱炉10を備えている。この加熱炉10は断熱容器11を備えている。ここで、断熱容器11は円柱状の外形を有しており、その内部には円柱状の空間が形成されている。そして、断熱容器11は、ジルコニア製の断熱材からなる部品を組み立てることで構成されている。また、加熱炉10は、内部の空間に断熱容器11を収容するチャンバ14をさらに備えている。さらに、加熱炉10は、チャンバ14の側面に貫通形成され、チャンバ14の外部からチャンバ14を介して断熱容器11の内部にガスを供給するガス供給管12と、同じくチャンバ14の側面に貫通形成され、断熱容器11の内部からチャンバ14を介して外部にガスを排出するガス排出管13とをさらに備えている。
また、断熱容器11の内側下方には、酸化アルミニウムを溶融してなるアルミナ融液300を収容するるつぼ20が、鉛直上方に向かって開口するように配置されている。なお、るつぼ20の構成の詳細については後述する。
さらに、加熱炉10は、断熱容器11の下部側の側面外側であってチャンバ14の下部側の側面内側となる部位に巻き回された金属製の加熱コイル30を備えている。ここで、加熱コイル30は、断熱容器11を介してるつぼ20の壁面と対向するように配置されている。そして、加熱コイル30の下側端部はるつぼ20の下端よりも下側に位置し、加熱コイル30の上側端部はるつぼ20の上端よりも上側に位置するようになっている。
さらにまた、加熱炉10は、断熱容器11、チャンバ14それぞれの上面に設けられた貫通孔を介して上方から下方に伸びる引き上げ棒40を備えている。この引き上げ棒40は、鉛直方向への移動および軸を中心とする回転が可能となるように取り付けられている。なお、チャンバ14に設けられた貫通孔と引き上げ棒40との間には、図示しないシール材が設けられている。そして、引き上げ棒40の鉛直下方側の端部には、サファイアインゴット200を成長させるための基となる種結晶210(後述する図2参照)を装着、保持させるための保持部材41が取り付けられている。
また、単結晶引き上げ装置1は、引き上げ棒40を鉛直上方に引き上げるための引き上げ駆動部50および引き上げ棒40を回転させるための回転駆動部60を備えている。ここで、引き上げ駆動部50はモータ等で構成されており、引き上げ棒40の引き上げ速度を調整できるようになっている。また、回転駆動部60もモータ等で構成されており、引き上げ棒40の回転速度を調整できるようになっている。
さらに、単結晶引き上げ装置1は、ガス供給管12を介してチャンバ14の内部にガスを供給するガス供給部70を備えている。本実施の形態において、ガス供給部70は、O2源71から供給される酸素とN2源72から供給される窒素とを混合した混合ガスを供給するようになっている。そして、ガス供給部70は、酸素と窒素との混合比を可変することで混合ガス中の酸素の濃度の調整が可能となっており、また、チャンバ14の内部に供給する混合ガスの流量の調整も可能となっている。
一方、単結晶引き上げ装置1は、ガス排出管13を介してチャンバ14の内部からガスを排出する排気部80を備えている。排気部80は例えば真空ポンプ等を備えており、チャンバ14内の減圧や、ガス供給部70から供給されたガスの排気をすることが可能となっている。
さらにまた、単結晶引き上げ装置1は、加熱コイル30に交流電流を供給するコイル電源90を備えている。コイル電源90は、加熱コイル30への交流電流の供給の有無および供給する電流量、さらには加熱コイル30に供給する交流電流の周波数を設定できるようになっている。
また、単結晶引き上げ装置1は、引き上げ棒40を介して引き上げ棒40の下部側に成長するサファイアインゴット200の重量を検出する重量検出部110を備えている。この重量検出部110は、例えば公知の重量センサ等を含んで構成される。
そして、単結晶引き上げ装置1は、上述した引き上げ駆動部50、回転駆動部60、ガス供給部70、排気部80およびコイル電源90の動作を制御する制御部100を備えている。また、制御部100は、重量検出部110から出力される重量信号に基づき、引き上げられるサファイアインゴット200の結晶直径の計算を行い、コイル電源90にフィードバックする。さらに、制御部100は、重量検出部110から出力される重量信号に基づき、るつぼ20内に残存するアルミナ融液300の量およびアルミナ融液の液面高さの計算を行い、引き上げ駆動部50にフィードバックする。
なお、本実施の形態では、保持部材41、引き上げ棒40および引き上げ駆動部50が、引き上げ手段の一例として機能している。また、加熱コイル30およびコイル電源90が、誘導加熱手段の一例として機能している。
図2は、図1に示す単結晶引き上げ装置1を用いて製造されるサファイアインゴット200の構成の一例を示している。
このサファイアインゴット200は、サファイアインゴット200を成長させるための基となる種結晶210と、種結晶210の下部に延在しこの種結晶210と一体化した肩部220と、肩部220の下部に延在し肩部220と一体化した直胴部230と、直胴部230の下部に延在し直胴部230と一体化した尾部240とを備えている。そして、このサファイアインゴット200においては、上方すなわち種結晶210側から下方すなわち尾部240側に向けてc軸方向にサファイアの単結晶が成長している。
ここで、肩部220は、種結晶210側から直胴部230側に向けて、徐々にその直径が拡大していく形状を有している。また、直胴部230は、上方から下方に向けてその直径がほぼ同じとなるような形状を有している。なお、直胴部230の直径は、所望とするサファイア単結晶のウエハの直径よりもわずかに大きな値に設定される。そして、尾部240は、上方から下方に向けて徐々にその直径が縮小していくことにより、上方から下方に向けて凸状となる形状を有している。
なお、本実施の形態において、c軸方向に結晶成長させたサファイアインゴット200を製造しているのは、次の理由による。
一般的に、青色LEDの基板材料や液晶プロジェクタの偏光子の保持部材等では、サファイア単結晶のc軸に垂直な面((0001面))が主面となるように、インゴットから切り出されたウエハが用いられることが多い。したがって、歩留まりの観点からすれば、c軸方向に結晶成長させたサファイア単結晶のインゴットをウエハの切り出しに用いることが好ましい。このため、本実施の形態では、このような後工程での利便性を考慮し、c軸方向に結晶成長させたサファイアインゴット200の製造を行っている。
図3は、本実施の形態で用いたるつぼ20の断面形状の一例を示す図である。
本実施の形態において、るつぼ20はイリジウムによって構成されており、鉛直上方に開口する形状を有している。また、るつぼ20は、イリジウムのほか、イリジウムを含む合金、白金、あるいは白金を含む合金によって構成される。このるつぼ20は、全体としてみたときにU字状の断面を有しており、底部21と、底部21の周縁から上方に立ち上がる壁部22とを有している。これにより、るつぼ20には、凹部23が形成されている。
底部21は上部側からみたときに円形状となっている。また、底部21は下側に向かって湾曲して形成されており、その内側には下側に凹んだ断面曲線状の底部内面21aが形成されている。より詳しく説明すると、底部内面21aは、周縁部に比べて中央部が凹んだ形状を有している。
これに対し、壁部22は円筒状の形状を有しており、その内側には上部に向かって断面直線状の壁部内面22aが形成されている。なお、本実施の形態では、壁部内面22aも円筒状の形状を有している。
そして、凹部23を構成する底部21の内側は、るつぼ20の高さに応じ、上部側から下部側にかけてその内径である底部内面直径R1が漸次減少するように構成されている。一方、同じく凹部23を構成する壁部22の内側は、るつぼ20の高さとは無関係に、上部側から下部側にかけてその内径である壁部内面直径R2が一定となるように構成されている。そして、境界部あるいは内径の変化点の一例としての内径変化開始位置Cにおいて、底部内面直径R1は壁部内面直径R2に等しくなっている。すなわち、底部内面21aおよび壁部内面22aは、内径変化位置Cにおいて連続している。
なお、以下の説明においては、凹部23を構成する壁部内面22aの最上部を最上部位置Tと呼び、凹部23を構成する底部内面21aの最下部を最下部位置Bと呼ぶ。また、凹部23を構成する壁部内面22aと底部内面21aとの境界部すなわち凹部23の内径の切り替わりが始まる部位を内径変化開始位置Cと呼ぶ。
そして、るつぼ20の直径は150mm、高さは200mm、厚さは2mmとなっている。
図4は、図1に示す単結晶引き上げ装置1を用いて、図2に示すサファイアインゴット200を製造する工程の一例を説明するためのフローチャートである。
サファイアインゴット200の製造にあたっては、まず、チャンバ14内のるつぼ20内に充填された固体の酸化アルミニウムを加熱によって溶融する溶融工程を実行する(ステップ101)。
次に、酸化アルミニウムの融液すなわちアルミナ融液300に種結晶210の下端部を接触させた状態で温度調整を行う種付け工程を実行する(ステップ102)。
次いで、アルミナ融液300に接触させた種結晶210を回転させながら上方に引き上げることにより、種結晶210の下方に肩部220を形成する肩部形成工程を実行する(ステップ103)。
引き続いて、種結晶210を介して肩部220を回転させながら上方に引き上げることにより、肩部220の下方に直胴部230を形成する直胴部形成工程を実行する(ステップ104)。
さらに引き続いて、種結晶210および肩部220を介して直胴部230を回転させながら上方に引き上げてアルミナ融液300から引き離すことにより、直胴部230の下方に尾部240を形成する尾部形成工程を実行する(ステップ105)。
その後、得られたサファイアインゴット200が冷却された後にチャンバ14の外部に取り出され、一連の製造工程を完了する。
なお、このようにして得られたサファイアインゴット200は、まず、肩部220と直胴部230との境界および直胴部230と尾部240との境界においてそれぞれ切断され、直胴部230が切り出される。次に、切り出された直胴部230は、さらに、長手方向に直交する方向に切断され、サファイア単結晶のウエハとなる。このとき、本実施の形態のサファイアインゴット200はc軸方向に結晶成長していることから、得られるウエハの主面はc面((0001)面)となる。そして、得られたウエハは、青色LEDや偏光子の製造等に用いられる。
では、上述した各工程について具体的に説明を行う。ただし、ここでは、ステップ101の溶融工程の前に実行される準備工程から順を追って説明を行う。
また、図5は、上述したサファイアインゴット200の製造工程を説明するための図である。ただし、図5には、種付け工程から尾部形成工程の完了時までを例示している。
(準備工程)
準備工程では、まず、<0001>c軸の種結晶210を用意する。次に、引き上げ棒の40の保持部材41に種結晶210を取り付け、所定の位置にセットする。続いて、るつぼ20内に酸化アルミニウムの原材料すなわちアルミナ原料を充填し、ジルコニア製の断熱材からなる部品を用いて、チャンバ14内に断熱容器11を組み立てる。
そして、ガス供給部70からのガス供給を行わない状態で、排気部80を用いてチャンバ14内を減圧する。その後、ガス供給部70がN2源72を用いてチャンバ14内に窒素を供給し、チャンバ14の内部を常圧にする。したがって、準備工程が完了した状態において、チャンバ14の内部は、窒素濃度が非常に高く、且つ、酸素濃度が非常に低い状態に設定される。
(溶融工程)
溶融工程では、ガス供給部70が、引き続きN2源72を用いて5l/minの流量でチャンバ14内に窒素の供給を行う。このとき、回転駆動部60は、引き上げ棒40を第1の回転速度で回転させる。
また、コイル電源90が加熱コイル30に高周波の交流電流(以下の説明では高周波電流と呼ぶ)を供給する。コイル電源90から加熱コイル30に高周波電流が供給されると、加熱コイル30の周囲において磁束が生成・消滅を繰り返す。そして、加熱コイル30で生じた磁束が、断熱容器11を介してるつぼ20を横切ると、るつぼ20の壁面にはその磁界の変化をさまたげるような磁界が発生し、それによってるつぼ20内に渦電流が発生する。そして、るつぼ20は、渦電流(I)によってるつぼ20の表皮抵抗(R)に比例したジュール熱(W=IR)が発生し、るつぼ20が加熱されることになる。るつぼ20が加熱され、それに伴ってるつぼ20内に収容される酸化アルミニウムがその融点(2054℃)を超えて加熱されると、るつぼ20内において酸化アルミニウムが溶融し、アルミナ融液300となる。
(種付け工程)
種付け工程では、ガス供給部70が、O2源71およびN2源72を用いて窒素および酸素を所定の割合で混合させた混合ガスをチャンバ14内に供給する。ただし、種付け工程においては、後述するように、必ずしも酸素と窒素との混合ガスを供給する必要はなく、例えば窒素のみを供給するようにしても差し支えない。
さらに、引き上げ駆動部50は、保持部材41に取り付けられた種結晶210の下端が、るつぼ20内のアルミナ融液300と接触する位置まで引き上げ棒40を下降させて停止させる。その状態で、コイル電源90は、重量検出部110からの重量信号をもとに加熱コイル30に供給する高周波電流を調節する。
図5(a)は、種付け工程における各部の状態を示している。
種付け工程において、るつぼ20では、アルミナ融液300の液面高さSがるつぼ20の最上部位置Tよりわずかに低い位置となっている。そして、この液面高さSの位置に、種結晶210の下端が接触している。
(肩部形成工程)
肩部形成工程では、コイル電源90が加熱コイル30に供給する高周波電流を調節したのち、アルミナ融液300の温度が安定するまでしばらくの間保持し、その後、引き上げ棒40を第1の回転速度で回転させながら第1の引き上げ速度にて引き上げる。
すると、種結晶210は、その下端部がアルミナ融液300に浸った状態で回転されつつ引き上げられることになり、種結晶210の下端には、鉛直下方に向かって拡開する肩部220が形成されていく。
なお、肩部220の直径が所望とするウエハの直径よりも数mm程度大きくなった時点で、肩部形成工程を完了する。
図5(b)は、肩部形成工程における各部の状態を示している。
肩部形成工程において、るつぼ20では、肩部220の成長に伴ってアルミナ融液300の量が減少する。その結果、アルミナ融液300の液面高さSが低下し、内径変化開始位置C側に近づく。
(直胴部形成工程)
直胴部形成工程では、ガス供給部70がO2源71およびN2源72を用いて窒素および酸素を所定の割合で混合させ、酸素濃度を0.6体積%以上且つ3.0体積%以下の範囲に設定した混合ガスをチャンバ14内に供給する。
また、コイル電源90は、引き続き加熱コイル30に高周波電流の供給を行い、るつぼ20を介したアルミナ融液300を加熱する。
さらに、引き上げ駆動部50は、引き上げ棒40を第2の引き上げ速度にて引き上げる。ここで第2の引き上げ速度は、肩部形成工程における第1の引き上げ速度と同じ速度であってもよいし、異なる速度であってもよい。
さらにまた、回転駆動部60は、引き上げ棒40を第2の回転速度で回転させる。ここで、第2の回転速度は、肩部形成工程における第1の回転速度と同じ速度であってもよいし、異なる速度であってもよい。
種結晶210と一体化した肩部220は、その下端部がアルミナ融液300に浸った状態で回転されつつ引き上げられることになるため、肩部220の下端部には、好ましくは円柱状の直胴部230が形成されていく。直胴部230は、所望とするウエハの直径以上の胴体であればよい。
図5(c)は、直胴部形成工程の途中における各部の状態を示している。また、図5(d)は、直胴部形成工程の終盤における各部の状態を示している。
直胴部形成工程において、るつぼ20では、直胴部230の成長に伴ってアルミナ融液300の量がさらに減少する。その結果、アルミナ融液300の液面高さSが低下し、さらに内径変化開始位置Cに近づいていく。そして、図5(d)に示すように、アルミナ融液300の液面高さSが内径変化開始位置Cに到達すると、直胴部形成工程を終了する。
ここで、るつぼ20内のアルミナ融液300の液面高さSは、直接的に検出するようにしてもよいし、間接的に検出するようにしてもよい。本実施の形態では、初期状態におけるるつぼ20中のアルミナ融液300の量と、アルミナ融液300から引き上げられるサファイアインゴット200の重量と、るつぼ20内におけるサファイア融液300の液面高さSとの関係を予め調査し、サファイアインゴット200の重量とサファイア融液300の液面高さSとの関係を把握している。そして、サファイアインゴット200の引き上げ作業中に重量検出部110から出力される重量信号を用いて、るつぼ20中のアルミナ融液300の液面高さSが内径変化開始位置Cに到達したか否かを間接的に検出している。
(尾部形成工程)
尾部形成工程では、ガス供給部70がO2源71およびN2源72を用いて窒素および酸素を所定の割合で混合させた混合ガスをチャンバ14内に供給する。なお、尾部形成工程における混合ガス中の酸素濃度については、るつぼ20の酸化による劣化を抑制するという観点からすれば、直胴部形成工程と同程度とするかあるいは直胴部形成工程よりも低濃度とすることが好ましいが、得られるサファイアインゴット200における尾部240の鉛直方向長さを短くし、生産性の向上を図るという観点からすれば、直胴部形成工程よりも高濃度とすることが好ましい。
また、コイル電源90は、引き続き加熱コイル30に高周波電流の供給を行い、るつぼ20を介したアルミナ融液300を加熱する。
さらに、引き上げ駆動部50は、引き上げ棒40を第3の引き上げ速度にて引き上げる。ここで第3の引き上げ速度は、肩部形成工程における第1の引き上げ速度あるいは直胴部形成工程における第2の引き上げ速度と同じ速度であってもよいし、これらとは異なる速度であってもよい。
さらにまた、回転駆動部60は、引き上げ棒40を第3の回転速度で回転させる。ここで、第3の回転速度は、肩部形成工程における第1の回転速度あるいは直胴部形成工程における第2の回転速度と同じ速度であってもよいし、これらとは異なる速度であってもよい。
なお、尾部形成工程の序盤において、尾部240の下端は、アルミナ融液300と接触した状態を維持する。
そして、所定の時間が経過した尾部形成工程の終盤において、引き上げ駆動部50は、引き上げ棒40の引き上げ速度を増速させて引き上げ棒40をさらに上方に引き上げさせることにより、尾部240の下端をアルミナ融液300から引き離す。これにより、図2に示すサファイアインゴット200が得られる。
図5(e)は、尾部形成工程が終了し、るつぼ20内のアルミナ融液300からサファイアインゴット200が引き離された状態を示している。
このとき、るつぼ20では、アルミナ融液300の液面高さSが尾部240の容積分だけさらに低下し、内径変化開始位置Cより低くなって最下部位置Bに近づく。なお、図5(e)に示すように、サファイアインゴット200が引き離された後も、るつぼ20内にはアルミナ融液300が残存する。
以上説明したように、本実施の形態では、下側に凹んだ断面曲線状の底部内面21aを有するるつぼ20を用いて、るつぼ20内のアルミナ融液300からサファイアインゴット200の引き上げを行うようにした。これにより、最下部位置Bの高さにおいて平坦な底部内面21aを有するるつぼ20を用いた場合と比較して、より少ないアルミナ融液300すなわち酸化アルミニウムの原材料から、同じ高さのサファイアインゴット200を得ることができる。つまり、従来と比較して、るつぼ20内に投入された酸化アルミニウムの原材料から得られるサファイア単結晶の収率を向上させることができる。
また、本実施の形態では、るつぼ20における底部内面21aと壁部内面22aとの境界である内径変化開始位置Cにるつぼ20内のサファイア融液300の液面高さSが到達した時点で、サファイアインゴット200を構成する直胴部230の形成を完了するようにした。ここで、液面高さSが内径変化開始位置Cよりも下側となった後は、液面高さSが内径変化開始位置Cよりも上側にあったときよりも、直胴部230の引き上げに伴うアルミナ融液300の減少量が著しく増加するため、直胴部230の結晶性が変化するおそれがある。したがって、液面高さSが内径変化開始位置Cに到達した時点で直胴部230の形成を完了することにより、得られたサファイアインゴット200の直胴部230を切断して得られるウエハの収率を向上させることが可能になる。
なお、本実施の形態では、サファイアインゴット200の製造に用いるるつぼ20において、底部21を湾曲面にて構成していたが、これに限られない。
例えば図6(a)に示すように、底部21の外側の面は平面とし、凹部23を形成する底部内面21aを曲面としてもかまわない。
また、例えば図6(b)および図6(c)に示すように、凹部23bを形成する底部21の底部内面21aの断面形状を、直線の組み合わせとしてもよい。
さらに、本実施の形態では、イリジウムで構成されたるつぼ20を用い、このるつぼ20を加熱コイル30等を用いて誘導加熱することにより、るつぼ20内の酸化アルミニウムを加熱溶融してアルミナ融液300を得るようにしていたが、アルミナ融液300を得る手法についてはこれに限られない。
すなわち、例えばモリブデンにてるつぼ20を構成するとともに、このるつぼ20を炭化シリコン(SiC)、炭素(C)、モリブデン(Mo)、タングステン(W)等からなる抵抗加熱手段の一例としての抵抗に通電を行うことによって加熱することにより、るつぼ20内の酸化アルミニウムを加熱溶融してアルミナ融液300を得るようにしてもよい。
本実施の形態が適用される単結晶引き上げ装置の構成の一例を説明するための図である。 単結晶引き上げ装置を用いて得られたサファイアインゴットの構成の一例を示す図である。 本実施の形態で用いたるつぼの断面形状の一例を示す図である。 単結晶引き上げ装置を用いてサファイアインゴットを製造する手順の一例を説明するためのフローチャートである。 サファイアインゴットの製造工程を説明するための図である。 変形例におけるるつぼの断面を示す図である。
1…単結晶引き上げ装置、10…加熱炉、11…断熱容器、12…ガス供給管、13…ガス排出管、14…チャンバ、20…るつぼ、30…加熱コイル、40…引き上げ棒、41…保持部材、50…引き上げ駆動部、60…回転駆動部、70…ガス供給部、71…O2源、72…N2源、80…排気部、90…コイル電源、100…制御部、110…重量検出部、200…サファイアインゴット、210…種結晶、220…肩部、230…直胴部、240…尾部、300…アルミナ融液

Claims (7)

  1. 周縁部に比べて中央部が凹んだ底部内面と、当該底部内面の当該周縁部から立ち上がる円筒状の壁部内面とを有するるつぼに収容されたアルミナ融液から、サファイア単結晶を引き上げて成長させる成長工程と、
    前記るつぼ中の前記アルミナ融液の液面高さが前記底部内面と前記壁部内面との境界部に到達した後に、前記サファイア単結晶をさらに引き上げて当該アルミナ融液から引き離して分離する分離工程と
    を有するサファイア単結晶の製造方法。
  2. 前記成長工程において、前記サファイア単結晶をc軸方向に成長させることを特徴とする請求項1記載のサファイア単結晶の製造方法。
  3. 高さ方向に対し内径が一定な壁部内面と、当該壁部内面の一端側に当該壁部内面に連続して形成され、高さ方向に対し内径が漸次減少する底部内面とを有するるつぼに、アルミナ原料を投入する投入工程と、
    前記アルミナ原料が投入されたるつぼを加熱して当該るつぼ内の前記アルミナ原料を溶融させてアルミナ融液とする溶融工程と、
    前記るつぼ中の前記アルミナ融液からサファイア単結晶を引き上げて成長させる成長工程と、
    前記るつぼ中の前記アルミナ融液の液面高さが前記内径の変化点に到達した後に、前記サファイア単結晶をさらに引き上げて当該アルミナ融液から引き離して分離する分離工程と
    を有するサファイア単結晶の製造方法。
  4. 周縁部に比べて中央部が凹んだ底部内面と、当該底部内面の当該周縁部から立ち上がる円筒状の壁部内面とを有するるつぼと、
    前記るつぼ中に収容されたアルミナ融液からサファイア単結晶を引き上げるとともに、当該るつぼ中の当該アルミナ融液の液面高さが前記底部内面と前記壁部内面との境界部に到達した後に、前記サファイア単結晶をさらに引き上げて当該アルミナ融液から引き離す引き上げ手段と
    を含むサファイア単結晶引き上げ装置。
  5. 前記るつぼを誘導加熱する誘導加熱手段をさらに含み、
    前記るつぼがイリジウム、イリジウムを含む合金、白金、あるいは白金を含む合金で構成されることを特徴とする請求項4記載のサファイア単結晶引き上げ装置。
  6. 前記るつぼを抵抗加熱ヒータにて加熱する抵抗加熱手段をさらに含み、
    前記るつぼがモリブデンで構成されることを特徴とする請求項4記載のサファイア単結晶引き上げ装置。
  7. 前記引き上げ手段は、前記アルミナ融液からc軸方向に成長させた前記サファイア単結晶を引き上げることを特徴とする請求項4乃至6のいずれか1項記載のサファイア単結晶引き上げ装置。
JP2009038013A 2009-02-20 2009-02-20 サファイア単結晶の製造方法およびサファイア単結晶引き上げ装置 Abandoned JP2010189242A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038013A JP2010189242A (ja) 2009-02-20 2009-02-20 サファイア単結晶の製造方法およびサファイア単結晶引き上げ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038013A JP2010189242A (ja) 2009-02-20 2009-02-20 サファイア単結晶の製造方法およびサファイア単結晶引き上げ装置

Publications (1)

Publication Number Publication Date
JP2010189242A true JP2010189242A (ja) 2010-09-02

Family

ID=42815718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038013A Abandoned JP2010189242A (ja) 2009-02-20 2009-02-20 サファイア単結晶の製造方法およびサファイア単結晶引き上げ装置

Country Status (1)

Country Link
JP (1) JP2010189242A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250874A (ja) * 2011-06-02 2012-12-20 Shin-Etsu Chemical Co Ltd イリジウムルツボ及びそれを用いたタンタル酸リチウム単結晶の製造方法
JP2013209257A (ja) * 2012-03-30 2013-10-10 Sumco Corp サファイア単結晶及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250874A (ja) * 2011-06-02 2012-12-20 Shin-Etsu Chemical Co Ltd イリジウムルツボ及びそれを用いたタンタル酸リチウム単結晶の製造方法
JP2013209257A (ja) * 2012-03-30 2013-10-10 Sumco Corp サファイア単結晶及びその製造方法

Similar Documents

Publication Publication Date Title
WO2010071142A1 (ja) サファイア単結晶の製造方法
WO2010073945A1 (ja) サファイア単結晶の製造方法
WO2011062092A1 (ja) 単結晶引き上げ装置
JP5831436B2 (ja) シリコン単結晶の製造方法
US8795432B2 (en) Apparatus for pulling silicon single crystal
KR101501036B1 (ko) 사파이어 단결정 및 그의 제조 방법
WO2011074533A1 (ja) 単結晶引き上げ装置および単結晶引き上げ方法
JP2011006314A (ja) 単結晶引き上げ装置
JP2010173929A (ja) サファイア単結晶引き上げ装置、サファイア単結晶製造用るつぼ、サファイア単結晶の製造方法
WO2018198663A1 (ja) n型シリコン単結晶の製造方法、n型シリコン単結晶のインゴット、シリコンウェーハ、およびエピタキシャルシリコンウェーハ
WO2014129414A1 (ja) サファイア単結晶コアおよびその製造方法
JP2010189242A (ja) サファイア単結晶の製造方法およびサファイア単結晶引き上げ装置
WO2011108417A1 (ja) サファイア単結晶の製造方法、サファイア単結晶引き上げ装置及びサファイア単結晶
JP2011037643A (ja) 単結晶引き上げ装置、単結晶の製造方法及び単結晶
CN110284183B (zh) ScAlMgO4单晶基板及其制造方法
JP2013147361A (ja) サファイア単結晶およびサファイア単結晶の製造方法
JP2011032104A (ja) サファイア単結晶およびサファイア単結晶の製造方法
JP2011046558A (ja) サファイア単結晶の製造方法、サファイア単結晶引き上げ装置
JP2005145742A (ja) 単結晶の製造方法及び黒鉛ヒーターならびに単結晶製造装置
JP2018203563A (ja) 磁歪材料の製造方法
JP6699620B2 (ja) シリコン単結晶の製造方法
JP2004217504A (ja) 単結晶製造用黒鉛ヒーター及び単結晶製造装置ならびに単結晶製造方法
JP6323382B2 (ja) 単結晶の製造方法
JP2021098622A (ja) 単結晶シリコンインゴットの製造方法
JP2014189413A (ja) サファイアインゴットの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A977 Report on retrieval

Effective date: 20120614

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120626