JP2010187035A - Printed wiring board, and method of manufacturing the same - Google Patents

Printed wiring board, and method of manufacturing the same Download PDF

Info

Publication number
JP2010187035A
JP2010187035A JP2010126285A JP2010126285A JP2010187035A JP 2010187035 A JP2010187035 A JP 2010187035A JP 2010126285 A JP2010126285 A JP 2010126285A JP 2010126285 A JP2010126285 A JP 2010126285A JP 2010187035 A JP2010187035 A JP 2010187035A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
resin
circuit
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010126285A
Other languages
Japanese (ja)
Inventor
Hironori Suzuki
宏典 鈴木
Hiroshi Narisawa
浩 成沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010126285A priority Critical patent/JP2010187035A/en
Publication of JP2010187035A publication Critical patent/JP2010187035A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board which has excellent characteristics as compared with a printed wiring board manufactured by a conventional method and can be handled easily, and in which a solvent and bubbles are hardly left and a smooth insulating layer formable stronger than a simple resin layer is formed in an insulating section formed in the peripheral part of a circuit, and to provide a method of manufacturing the printed wiring board. <P>SOLUTION: In this printed wiring board, the smooth insulating layer c is formed by filling the irregularities of the circuit pattern (a) of the printed wiring board with an insulating material composed of fibers and a resin composition. This method of manufacturing the printed wiring board is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,平滑な絶縁層を有するプリント配線板と回路パターン間の絶縁層の充填方法のプリント配線板の製造方法に関する。   The present invention relates to a method for manufacturing a printed wiring board having a smooth insulating layer and a method for filling an insulating layer between circuit patterns.

近年はプリント配線板市場において、パソコンや携帯電話などの弱電分野における集積化に例を見るように、回路の多層化が進んできている。代表的な多層化手法の一つである、ビルドアップ法にて多層プリント配線板を製造するには、下層基板が平滑であることが必要である場合が多い。例えば、プリント配線板の回路パターンをサブトラクティブ法によって作製した場合、絶縁層(図1c)上に形成された回路パターン部分(図1a)が基材表面(図1b)から盛り上がってしまい、基材表面(図1b)上に回路をさらに形成することが困難であり、特にファインパターン形成には表面の凸凹の存在が不利になるため基板表面(絶縁層)を平滑化する必要がある。   In recent years, in the printed wiring board market, as the example of integration in the weak electric field such as a personal computer and a cellular phone, multilayering of circuits has progressed. In order to manufacture a multilayer printed wiring board by a build-up method, which is one of typical multilayering techniques, it is often necessary for the lower layer substrate to be smooth. For example, when the circuit pattern of the printed wiring board is produced by the subtractive method, the circuit pattern portion (FIG. 1a) formed on the insulating layer (FIG. 1c) rises from the substrate surface (FIG. 1b), and the substrate It is difficult to further form a circuit on the surface (FIG. 1 b), and it is necessary to smooth the substrate surface (insulating layer) because the presence of unevenness on the surface is disadvantageous particularly for fine pattern formation.

また、自動車部品等の大電流を流す強電分野では、回路パターン部分(図1a)の高さが高くなるため、プリプレグ等で形成した絶縁層(図1b)は、弱電分野以上に基材表面が凹凸になる場合が多かった。しかし、従来は片面板や両面板の用途であった為に、この凹凸は特に問題になることはなかった。ところが、近年強電分野においても、3層以上の回路を有する多層板の需要が高まってきており、ビルドアップするためには絶縁層を弱電分野と同様に平滑化する必要が生じてきている。しかし、大電流を流すには回路パターン部分(図1a)の高さが200μm以上と厚くする必要があり、この高さを補い、絶縁層を平滑化することは用意ではない。例えば、従来のようなプリプレグを単純にレイアップする手法では、(1)回路を充分に充填しきれず、空隙が生じる等によってプリント配線板として必要な耐熱性や電気信頼性等の特性を確保できない(2)ガラスクロスが回路に接触してしまい、プリント配線板としての電気信頼性を維持できない等の問題が生じてくる。そこで、回路間に樹脂を充填する手法が必要とされてきている。   Also, in the high electric field where a large current flows, such as automobile parts, the height of the circuit pattern portion (FIG. 1a) becomes high. Therefore, the insulating layer (FIG. 1b) formed of a prepreg or the like has a substrate surface more than the weak electric field. There were many cases of unevenness. However, this unevenness has not been a problem because it has been conventionally used as a single-sided plate or a double-sided plate. However, in recent years, there has been an increasing demand for multilayer boards having three or more circuits in the high power field, and it has become necessary to smooth the insulating layer in the same way as in the weak power field in order to build up. However, in order to flow a large current, the height of the circuit pattern portion (FIG. 1a) needs to be as thick as 200 μm or more, and it is not ready to compensate for this height and smooth the insulating layer. For example, in the conventional method of simply laying up a prepreg, (1) the circuit cannot be sufficiently filled, and voids are generated, so that the characteristics such as heat resistance and electrical reliability necessary for a printed wiring board cannot be secured. (2) The glass cloth comes into contact with the circuit, causing problems such as failure to maintain the electrical reliability as a printed wiring board. Therefore, a method for filling a resin between circuits has been required.

特開 2000−332387号公報JP 2000-332387 A 特開 2002−064273号公報JP 2002-064273 A

そこで、凹凸を平坦化するために、(a)回路を埋めるように液状の樹脂を塗布乾燥する手法や(特許文献1)(b)回路とプリプレグの間に樹脂フィルムを挿入することによって、回路の凹凸を埋める方法(特許文献1、特許文献2)が考案されている。しかし、液状樹脂を塗布する場合は、(1)塗布、乾燥等の工程が増え煩雑になってしまう(2)塗布時に気泡が入りやすく、プリント配線板になった場合欠陥となる場合がある(3)溶剤を用いた場合、強電用途のような回路の厚みが厚く、埋め込む回路間が深い場合、回路間に埋め込まれた樹脂中に溶剤が残留することがあり、プリント配線板の特性を著しく損なう場合がある等の問題があった。また、a、bいずれの手法も回路周辺部は樹脂単独の層が占めるため、強度が低く熱膨張、衝撃等によりクラックが入りやすい等の問題があった。   Therefore, in order to flatten the unevenness, (a) a method of applying and drying a liquid resin so as to fill the circuit, or (Patent Document 1) (b) inserting a resin film between the circuit and the prepreg, the circuit Have been devised (Patent Document 1, Patent Document 2). However, in the case of applying a liquid resin, (1) the steps of application and drying increase and become complicated (2) bubbles tend to enter at the time of application, and may become a defect when it becomes a printed wiring board ( 3) When a solvent is used, if the thickness of the circuit is high, such as for high-voltage applications, and the space between embedded circuits is deep, the solvent may remain in the resin embedded between the circuits, and the characteristics of the printed wiring board will be remarkably increased. There were problems such as possible damage. Further, both of the methods a and b have a problem that since the resin peripheral layer occupies the peripheral portion of the circuit, the strength is low and cracks are easily caused by thermal expansion, impact, or the like.

そこで、種々の検討の結果、簡便で、溶剤や気泡の残留の可能性が低く、さらに回路周辺部が樹脂層よりも強化された絶縁部を有し、かつ絶縁層の平滑化する手法を発明するに至った。   Therefore, as a result of various studies, the inventors have invented a method that is simple, has a low possibility of residual solvent and bubbles, and has an insulating portion in which the peripheral portion of the circuit is reinforced more than the resin layer and smoothes the insulating layer. It came to do.

本発明は次の発明に関する。
<1> プリント配線板の回路パターンの凹凸を、繊維と樹脂組成物からなる絶縁材料を充填することによって平滑な絶縁層を形成したプリント配線板。
<2> <1>記載の繊維と樹脂組成物からなる絶縁材料が、繊維と半硬化の樹脂組成物からなるシート状材料を回路上に積層する工程を経ることによって形成された、プリント配線板。
<3> <1>または<2>記載の繊維がガラス繊維、もしくはアラミド繊維のであるプリント配線板。
<4> <1>〜<3>記載の繊維と樹脂組成物からなる絶縁材料によって回路の導体上に形成される絶縁層の厚みが、回路の導体の厚みを超えず、かつ回路の厚みが50μm以上であるプリント配線板。
<5> <1>〜<4>記載のプリント配線板の製造方法。
The present invention relates to the following inventions.
<1> A printed wiring board in which a smooth insulating layer is formed by filling an irregularity of a circuit pattern of a printed wiring board with an insulating material made of a fiber and a resin composition.
<2> The printed wiring board formed by passing through a process in which the insulating material made of the fiber and the resin composition according to <1> is laminated on a circuit with a sheet-like material made of the fiber and a semi-cured resin composition. .
<3> A printed wiring board in which the fibers according to <1> or <2> are glass fibers or aramid fibers.
<4> The thickness of the insulating layer formed on the conductor of the circuit by the insulating material comprising the fiber and resin composition according to <1> to <3> does not exceed the thickness of the conductor of the circuit, and the thickness of the circuit is A printed wiring board having a size of 50 μm or more.
<5> The method for producing a printed wiring board according to <1> to <4>.

本発明により,プリント配線板の回路パターンの凹凸を、繊維と樹脂組成物からなる絶縁材料を充填することによって平滑な絶縁層を形成されたプリント配線板を得ることが出来、かつ得られたプリント配線板は、従来の手法で製造されたプリント配線板と比べて、優れた特性を得ることが出来る。また、取扱も簡便で、溶剤や気泡の残留の可能性が低く、さらに回路周辺部に形成される絶縁部は単純な樹脂層よりも強化することが出来る。   According to the present invention, it is possible to obtain a printed wiring board on which a smooth insulating layer is formed by filling the unevenness of the circuit pattern of the printed wiring board with an insulating material made of a fiber and a resin composition, and the obtained printed circuit board. The wiring board can obtain superior characteristics as compared with a printed wiring board manufactured by a conventional method. Moreover, the handling is simple, the possibility of residual solvent and bubbles is low, and the insulating portion formed in the peripheral portion of the circuit can be reinforced more than a simple resin layer.

金属張積層板の断面図である。It is sectional drawing of a metal-clad laminated board. 絶縁層が平滑化された金属張積層板の断面図の例である。It is an example of sectional drawing of the metal-clad laminated board with which the insulating layer was smooth | blunted.

本発明は、プリント配線板の回路パターンの凹凸を平坦化する手法として、回路パターン周辺部に繊維と樹脂組成物からなる絶縁層形成することを必須とする、プリント配線板および、プリント配線板の製造方法に関する。   The present invention relates to a printed wiring board and a printed wiring board, in which it is essential to form an insulating layer made of a fiber and a resin composition on the periphery of the circuit pattern as a technique for flattening the unevenness of the circuit pattern of the printed wiring board. It relates to a manufacturing method.

本発明における、繊維の材質、形状等は絶縁性を確保しつつプリント配線板としての特性を著しく損なわない物であれば無機繊維、有機繊維いずれでもよく特に定めないが、無機繊維としてはガラス繊維が好ましく、有機繊維としてはアラミド繊維が好ましい。
樹脂組成物に関しても、特に規定しないが、熱硬化性樹脂が好ましく、さらに好ましくは、エポキシ樹脂およびその硬化剤の組み合わせを有する樹脂組成物が好ましい。
In the present invention, the material, shape, etc. of the fiber are not particularly defined as long as it is an inorganic fiber or organic fiber as long as it does not significantly deteriorate the properties as a printed wiring board while ensuring insulation, but the inorganic fiber is glass fiber. Aramid fiber is preferable as the organic fiber.
The resin composition is not particularly limited, but is preferably a thermosetting resin, and more preferably a resin composition having a combination of an epoxy resin and a curing agent thereof.

これらを組合せて、繊維と半硬化の樹脂組成物からなるシート状材料(以後、樹脂含浸不織布と呼ぶ)を作製する。作製した樹脂含浸不織布を、基板(図2d)上に形成された回路(図2a)上にプリプレグと同様にレイアップし、一括で加熱加圧成形することで平坦化処理を行う。ただし、図1に例示されるように平坦化後は、樹脂含浸不織布を構成する材料(図2c)は、図2の3〜5に例示したように、回路間に全て埋め込まれえても、図2の1〜2に例示したように一部または全部の回路を覆うように成形されていてもよく、さらには、図2で1,3,5に例示したように、図2bに例示されるプリプレグ、樹脂フィルム等の材料が樹脂含浸不織布の上にレイアップされていてもよい。   By combining these, a sheet-like material (hereinafter referred to as a resin-impregnated nonwoven fabric) made of a fiber and a semi-cured resin composition is produced. The produced resin-impregnated non-woven fabric is laid up on the circuit (FIG. 2a) formed on the substrate (FIG. 2d) in the same manner as the prepreg, and is flattened by heating and pressing in a lump. However, after flattening as illustrated in FIG. 1, the material constituting the resin-impregnated nonwoven fabric (FIG. 2 c) may be embedded between the circuits as illustrated in FIGS. 2 may be formed so as to cover part or all of the circuit as illustrated in 1-2 of FIG. 2, and further illustrated in FIG. 2b as illustrated in 1, 3, and 5 in FIG. A material such as a prepreg or a resin film may be laid up on the resin-impregnated nonwoven fabric.

本発明は、プリント配線板の回路パターンの凹凸を、繊維と樹脂組成物からなるシート状材料を用い、一括加熱加圧成形により、平滑な絶縁層を有するプリント配線板およびその製造方法である。   The present invention relates to a printed wiring board having a smooth insulating layer by using a sheet-like material made of a fiber and a resin composition to form irregularities in a circuit pattern of the printed wiring board, and a manufacturing method thereof.

本発明は、回路パターンの凹凸を、繊維と樹脂組成物からなる絶縁材料によって充填することによって平滑な絶縁層を形成することを特徴とするプリント配線板およびその製造方法に関するが、プリプレグ、樹脂フィルム、樹脂付き銅はく等を併用することを制限するものではない。   The present invention relates to a printed wiring board and a manufacturing method thereof, characterized by forming a smooth insulating layer by filling irregularities of a circuit pattern with an insulating material made of a fiber and a resin composition. However, it is not limited to use copper foil with resin together.

用いる繊維の材質、形状は、電気絶縁性等プリント配線板としての特性を損なわないものであれば特に制限はなく、無機繊維、有機繊維いずれでもよい。好ましくは、ガラス、アラミド、ポリエステル、ポリエチレン、ポリプロピレン、セルロース、アクリル、ポリウレタン、キュプラ、ナイロン、ビニロン、ポリアクリロニトリル、アセテートセラミック、ロックウール、レーヨン、ビスコース、ポリミックス、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリクラール、絹、綿、毛、麻、等の繊維である。より好ましくはガラス、アラミド繊維である。   The material and shape of the fiber used are not particularly limited as long as they do not impair the properties of the printed wiring board such as electrical insulation, and may be any of inorganic fiber and organic fiber. Preferably, glass, aramid, polyester, polyethylene, polypropylene, cellulose, acrylic, polyurethane, cupra, nylon, vinylon, polyacrylonitrile, acetate ceramic, rock wool, rayon, viscose, polymix, polyvinyl chloride, polyvinylidene chloride, These are fibers such as polyacrylonitrile, polyclar, silk, cotton, wool, hemp. More preferred are glass and aramid fiber.

これら繊維の形状について、プリント配線板の特性を損なわないものであれば特に制限をしない。例えば、繊維の直径は、特に制限しないが、1〜30μmの繊維が好ましく、より好ましくは3〜20μm、特に4〜13μmが好ましい。繊維長についても規定しないが、好ましくは1〜50mmであり、より好ましくは3〜30mmであり、特に好ましくは、6〜15mmである。   The shape of these fibers is not particularly limited as long as the properties of the printed wiring board are not impaired. For example, the diameter of the fiber is not particularly limited, but a fiber of 1 to 30 μm is preferable, more preferably 3 to 20 μm, and particularly preferably 4 to 13 μm. Although it does not prescribe | regulate also about fiber length, Preferably it is 1-50 mm, More preferably, it is 3-30 mm, Most preferably, it is 6-15 mm.

また、回路パターンの凹凸に、繊維と樹脂組成物からなる絶縁材料を充填する手法は、繊維と樹脂組成物を用いて形成されたシート状材料(樹脂含浸不織布)を用いることを特徴とする。この樹脂含浸不織布の製法は、特に制限はしない。例えば、上記繊維を、抄紙して不織布を作製し、さらに樹脂を含浸、乾燥させて製造することができる。または、金網等保持面上に繊維を分散させ、そこに樹脂を含浸、乾燥の後製造することもできる。保持面から剥離するタイミングは、樹脂を含浸、乾燥する工程の前でも、含浸後の乾燥前の工程でも、乾燥後の工程でもよく、特に制限しない。これらのほかにも、ワニス中に、樹脂と同時に繊維を分散させ、これを抄紙することによって製造することもできる。   Further, the method of filling the unevenness of the circuit pattern with an insulating material composed of a fiber and a resin composition is characterized by using a sheet-like material (resin-impregnated nonwoven fabric) formed using the fiber and the resin composition. The method for producing this resin-impregnated nonwoven fabric is not particularly limited. For example, the above fibers can be produced by paper making a nonwoven fabric, impregnating and drying the resin. Alternatively, the fiber can be dispersed on a holding surface such as a wire mesh, impregnated with resin, and dried. The timing of peeling from the holding surface may be before the step of impregnating and drying the resin, before the drying after the impregnation, or after the drying, and is not particularly limited. In addition to these, fibers can be dispersed in the varnish at the same time as the resin, and paper can be produced.

樹脂含浸不織布の樹脂分についても、良好な絶縁層が形成されれば特に制限されないが、35〜99%が好ましく、さらに好ましくは45〜97%であり、より好ましくは60〜97%であり、さらに好ましくは75〜97%である。   The resin content of the resin-impregnated nonwoven fabric is not particularly limited as long as a good insulating layer is formed, but is preferably 35 to 99%, more preferably 45 to 97%, and more preferably 60 to 97%. More preferably, it is 75 to 97%.

本発明で記述する樹脂組成物とは、プリント配線板としての要求特性を著しく損なわないものであれば特に制限しない。熱硬化性樹脂、熱可塑性樹脂を主材とする樹脂組成物いずれも好ましく、特に好ましくは熱硬化性樹脂を主材とする樹脂組成物である。ここでいう、熱硬化性樹脂とは、特に制限されるものではないが、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノール樹脂が良好であり,これらを単独もしくは複数組合せて用いることができる。その中でもエポキシ樹脂を用いる場合がもっとも好ましい。ここでいうエポキシ樹脂とは,ビスフェノールA型エポキシ樹脂,ビスフェノールF型エポキシ樹脂,ビスフェノールS型エポキシ樹脂,ビフェニル型エポキシ樹脂,ナフタレンジオール型エポキシ樹脂,フェノールノボラック型エポキシ樹脂,クレゾールノボラック型エポキシ樹脂,ビスフェノールAノボラック型エポキシ樹脂,環状脂肪族エポキシ樹脂,グリシジルエステル樹脂,グリシジルアミン樹脂,複素環式エポキシ樹脂(トリグリシジルイソシアヌレート,ジグリシジルヒダントイン等),およびこれらを種々の反応性モノマで変性した変性エポキシ樹脂等が使用でき,これらの臭素化物も使用できる。また、これらのエポキシ樹脂を2種類以上適宜組合せて使用することもできる。特に,電気電子材料用途に適用できる高い耐熱性や信頼性が必要であることから,フェノールノボラック型エポキシ樹脂またはクレゾールノボラック型エポキシ樹脂またはビスフェノールAノボラック型エポキシ樹脂もしくはこれらのハロゲン化物を用いることが望ましく,その添加量は特に規定されないが,十分な硬化物を得るためには,全樹脂組成物中1〜50重量%の範囲が好ましい。   The resin composition described in the present invention is not particularly limited as long as the required characteristics as a printed wiring board are not significantly impaired. A resin composition mainly containing a thermosetting resin or a thermoplastic resin is preferred, and a resin composition mainly containing a thermosetting resin is particularly preferred. Here, the thermosetting resin is not particularly limited, but epoxy resin, urea resin, melamine resin, and phenol resin are preferable, and these can be used alone or in combination. Of these, the case of using an epoxy resin is most preferable. The epoxy resin here is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalenediol type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, bisphenol. A novolak-type epoxy resins, cycloaliphatic epoxy resins, glycidyl ester resins, glycidyl amine resins, heterocyclic epoxy resins (triglycidyl isocyanurate, diglycidyl hydantoin, etc.), and modified epoxies modified with various reactive monomers Resins and the like can be used, and these bromides can also be used. Two or more of these epoxy resins can be used in appropriate combination. In particular, it is desirable to use phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin or their halides because of high heat resistance and reliability that can be applied to electric and electronic materials. The amount added is not particularly specified, but is preferably in the range of 1 to 50% by weight in the total resin composition in order to obtain a sufficient cured product.

また,加工性改良,添加したエポキシの硬化促進等の目的で,硬化剤を添加することができる。硬化剤には,フェノール系,アミン系,シアネート系,酸無水物系,ジヒドロベンゾオキサジン環を有する化合物等ある。その添加量は,樹脂組成物の硬化反応を著しく阻害しない範囲であれば,任意の量を添加することができ,特に樹脂組成物の0〜50重量%の範囲で用いることが好ましい。具体的には,フェノールノボラック,クレゾールノボラック,ビスフェノールA,ビスフェノールF,ビスフェノールS,メラミン変性ノボラック形フェ−ノール樹脂等のフェノール性水酸基を有する硬化剤もしくはこれらハロゲン化された硬化剤,ジシアンジアミド等アミン系硬化剤等であり,公知のシアネート系硬化剤,酸無水物,ジヒドロベンゾオキサジン環を有する化合物を用いることができる。ここでいうジヒドロベンゾオキサジン環を有する化合物は,メチルエチルケトン(MEK)等の適当な溶媒中で,フェノール類,アミン類,アルデヒド類を,加熱反応させ,溶剤および水を除去することでから容易に合成できる。例えば,用いるフェノール1モルに対して,アニリンを1モル,ホルムアルデヒドを2モルの割合で配合し,還流させ任意の反応率の点で冷却。その後に,溶剤および水分,場合によっては未反応物質を除去することにより樹脂を得ることができる。フェノール類としてはフェノール,クレゾール,ビスフェノールA,ビスフェノールF,ビスフェノールS等を用いることができ,アミン類としてはアニリン,ジアミノベンゼン等を用いることができ,アルデヒド類では,ホルムアルデヒド,パラホルム等を用いることができる。むろん,これら硬化剤は単独で用いる必要はなく,複数組み合わせ用いても良い。また本発明で用いるエポキシ樹脂および硬化剤を,事前に適宜反応させてから用いることもできる。   In addition, a curing agent can be added for the purpose of improving workability and accelerating the curing of the added epoxy. Curing agents include phenolic, amine-based, cyanate-based, acid anhydride-based, and compounds having a dihydrobenzoxazine ring. As long as the addition amount is in a range that does not significantly inhibit the curing reaction of the resin composition, an arbitrary amount can be added, and it is particularly preferable to use in the range of 0 to 50% by weight of the resin composition. Specifically, phenolic novolac, cresol novolac, bisphenol A, bisphenol F, bisphenol S, curing agents having a phenolic hydroxyl group such as melamine-modified novolac phenol resin, or halogenated curing agents such as dicyandiamide Examples of the curing agent include a known cyanate curing agent, an acid anhydride, and a compound having a dihydrobenzoxazine ring. The compound having a dihydrobenzoxazine ring here is easily synthesized by heating and reacting phenols, amines and aldehydes in an appropriate solvent such as methyl ethyl ketone (MEK), and removing the solvent and water. it can. For example, 1 mole of phenol and 1 mole of aniline and 2 moles of formaldehyde are added to 1 mole of phenol to be refluxed and cooled at any reaction rate. Thereafter, the resin can be obtained by removing the solvent, moisture, and possibly unreacted substances. Phenols can be phenol, cresol, bisphenol A, bisphenol F, bisphenol S, etc., amines can be aniline, diaminobenzene, etc., and aldehydes can be formaldehyde, paraform, etc. it can. Of course, these curing agents do not need to be used alone, and may be used in combination. Further, the epoxy resin and the curing agent used in the present invention can be used after appropriately reacting in advance.

本発明の樹脂組成物は,このほかに,フィラーを添加することも可能である。シリカ,タルク,マイカ,ケイ酸カルシウム,ケイ酸カリウム,焼成クレー,酸化チタン,硫酸バリウム,酸化アルミニウム,炭酸マグネシウム,炭酸カルシウム,炭酸バリウムなど,酸化モリブデン,酸化亜鉛,珪酸マグネシウム,等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物が良く,このほかにも,モリブデン,亜鉛,カルシウム,リン,アルミニウム,カリウム等の複数の元素からなる酸化物等の化合物であっても良い。また,モリブデン,珪素,マグネシウム,亜鉛からなる酸化物の複数の組み合わせからなる化合物であっても良い。   In addition to this, the resin composition of the present invention can also contain a filler. Metal oxides such as silica, talc, mica, calcium silicate, potassium silicate, calcined clay, titanium oxide, barium sulfate, aluminum oxide, magnesium carbonate, calcium carbonate, barium carbonate, molybdenum oxide, zinc oxide, magnesium silicate, etc. Metal hydroxides such as aluminum hydroxide and magnesium hydroxide are good, and other compounds such as oxides composed of a plurality of elements such as molybdenum, zinc, calcium, phosphorus, aluminum, and potassium may be used. . Moreover, the compound which consists of a some combination of the oxide which consists of molybdenum, silicon, magnesium, and zinc may be sufficient.

また,本発明の樹脂組成物には,これら以外に高剛性化,低熱膨張化の目的で無機質充填剤を添加することもでき,これ以外に顔料,接着助剤,酸化防止剤,硬化促進剤および有機溶剤などを添加することができるが,それぞれ公知の物質を使用することができ,プリント配線板特性を低下させない物質であれば特に制限はない。   In addition to these, an inorganic filler can be added to the resin composition of the present invention for the purpose of increasing rigidity and reducing thermal expansion. In addition, pigments, adhesion assistants, antioxidants, curing accelerators can be added. There are no particular limitations as long as a known substance can be used and does not deteriorate the printed wiring board characteristics.

樹脂含浸不織布製造の際等で用いられる有機溶剤の種類と量については,樹脂組成物を構成するエポキシ樹脂と硬化剤を均一に溶解もしくは分散し,プリプレグを作製するのに適正な粘度と揮発性を有していれば特に限定されるものではないが,これらの要件を満たし,かつ価格や取扱性,安全性の観点から,メチルエチルケトン,2−メトキシエタノール,2−メトキシプロパノール,1−メトキシ−2−プロパノール,ジメチルホルムアミド(DMF)等の溶剤を含む樹脂組成物全重量の5〜60重量%程度使用することが好ましい。   Regarding the type and amount of organic solvent used in the production of resin-impregnated nonwoven fabric, etc., the viscosity and volatility appropriate for producing a prepreg by uniformly dissolving or dispersing the epoxy resin and the curing agent constituting the resin composition. However, from the viewpoints of cost, handleability, and safety, methyl ethyl ketone, 2-methoxyethanol, 2-methoxypropanol, 1-methoxy-2 are satisfied. It is preferable to use about 5 to 60% by weight of the total weight of the resin composition containing a solvent such as propanol and dimethylformamide (DMF).

これら樹脂含浸不織布を用いて、回路を繊維と樹脂組成物からなる絶縁層を形成する手法は良好なプリント配線板が獲得できれば特に制限しないが、回路上に樹脂含浸不織布をレイアップし、これを金属はくもしくは離型フィルムおよび鏡板ではさみプレスし加熱加圧成形することにより平坦化された絶縁層を獲得する手法が簡便かつ容易であり好ましい。このプレス成形の際の、樹脂含浸不織布のレイアップする枚数は1枚もしくは複数枚いずれでもよく、特に制限されるものではない。また、樹脂含浸不織布のレイアップと同時に、プリプレグ、樹脂シート、樹脂付き銅はく等をレイアップしてもよい。また、プレス後の作業性向上等の目的で、ポリテトラフルオロエチレン、ポリエチレンテレフタラート等の離型フィルムを同時に用いてもよい。形成される繊維と樹脂組成物からなる絶縁層の分布は特に制限されるものではなく、図2に示されるように、回路間に完全に埋め込まれていても、回路全体もしくは一部を覆う状態で回路を埋め込んでいてもよい。また、回路埋め込みは、樹脂含浸不織布構成成分のみで行う必要は無く、併行して用いるプリプレグ、樹脂フィルム、樹脂付き銅はく、の構成材料の全部もしくは一部によって補うことを制限しない。また、成形時の雰囲気は、プリント配線板の特性が確保されれば、特に規定しないが、400hPa以下がよく、好ましくは200hPa以下、より好ましくは100hPa以下、さらに好ましくは40hPa以下がよい。プレス成形する場合、その製品圧力は、欠点のない良好な成形が出来る値であれば特に制限しないが、仮圧着する場合の圧力を除き2.0MPa以上が好ましく、より好ましくは4.0MPa以上がよく、必要な場合は6.0MPa以上でもよい。   The method of forming an insulating layer made of a fiber and a resin composition using these resin-impregnated nonwoven fabrics is not particularly limited as long as a good printed wiring board can be obtained. A method of obtaining a flattened insulating layer by pressing with metal foil or a release film and an end plate and then heat-pressing is simple and easy, and is preferable. In the press molding, the number of the resin-impregnated nonwoven fabrics laid up may be one or a plurality, and is not particularly limited. Further, simultaneously with the layup of the resin-impregnated nonwoven fabric, prepreg, resin sheet, copper foil with resin, etc. may be laid up. For the purpose of improving workability after pressing, a release film such as polytetrafluoroethylene and polyethylene terephthalate may be used at the same time. The distribution of the insulating layer made of the fiber and the resin composition to be formed is not particularly limited, and as shown in FIG. 2, the entire circuit or part of the circuit is covered even if it is completely embedded between the circuits. The circuit may be embedded with. The circuit embedding need not be performed only with the resin-impregnated non-woven fabric component, and is not limited to being supplemented with all or a part of the constituent materials of the prepreg, resin film, and resin-coated copper foil used in parallel. The atmosphere during molding is not particularly limited as long as the characteristics of the printed wiring board are ensured, but it is preferably 400 hPa or less, preferably 200 hPa or less, more preferably 100 hPa or less, and even more preferably 40 hPa or less. In the case of press molding, the product pressure is not particularly limited as long as it is a value that allows good molding without defects, but it is preferably 2.0 MPa or more, more preferably 4.0 MPa or more, excluding the pressure for temporary pressure bonding. Well, if necessary, it may be 6.0 MPa or more.

また、成形時に樹脂含浸不織布の一部もしくは全部、および樹脂中の繊維の一部もしくは全部が切断、破断する場合もあるが、プリント配線板の特性を著しく損なう場合を除き特に制限しない。   In addition, part or all of the resin-impregnated nonwoven fabric and part or all of the fibers in the resin may be cut or broken at the time of molding, but there is no particular limitation unless the characteristics of the printed wiring board are significantly impaired.

ここで、回路パターン上に形成される繊維と樹脂組成物からなる絶縁層の厚みは回路の厚みを越えないことが望ましく、かつ回路の厚みが50μm以上である場合が特に望ましい。より好ましくは、回路厚み170μm以上のときで、そのときの回路上に形成される繊維と樹脂組成物からなる絶縁層厚が150μm以下である場合が好ましく。さらに好ましくは、回路厚250μm以上で絶縁層厚が120μm以下である。   Here, it is desirable that the thickness of the insulating layer made of the fiber and the resin composition formed on the circuit pattern does not exceed the thickness of the circuit, and it is particularly desirable that the thickness of the circuit is 50 μm or more. More preferably, when the circuit thickness is 170 μm or more, the thickness of the insulating layer made of the fiber and the resin composition formed on the circuit at that time is preferably 150 μm or less. More preferably, the circuit thickness is 250 μm or more and the insulating layer thickness is 120 μm or less.

以下,本発明の実施例およびその比較例によって本発明をさらに具体的に説明するが,本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples.

実施例および比較例においてエポキシ樹脂,硬化剤,プリプレグ等は下記のものを用いた。不織布は坪量25gのガラス不織布およびアラミド不織布を用いた。その他の有機溶剤,添加剤,汎用充填剤および、不織布、銅箔、離可型フィルムなどについては,特に記載したものを除き化学工業および電子工業分野において一般的に用いられる原材料類を用いた。
エポキシ樹脂:大日本インキ化学工業製クレゾールノボラック型エポキシ樹脂
商品名N−673(エポキシ当量210)
フェノール系硬化剤A:大日本インキ化学工業製メラミンノボラック樹脂
商品名フェノライト LA−7054
プリプレグ:プリプレグ銅張り積層板
商品名 GEA−67BE HHFQ(絶縁層厚み200μm相当)
回路つき基板:プリプレグ2plyを、厚み300μmの銅はくで両面からはさみプレスし、積層板を得た後、両面銅張積層板の表面にサブトラクティブ法により残同率50%の回路(テストパターン)を形成した。
In the examples and comparative examples, the following were used as the epoxy resin, curing agent, prepreg and the like. As the nonwoven fabric, a glass nonwoven fabric and an aramid nonwoven fabric having a basis weight of 25 g were used. For other organic solvents, additives, general-purpose fillers, non-woven fabrics, copper foils, releasable films and the like, raw materials generally used in the chemical industry and the electronics industry were used except those specifically described.
Epoxy resin: Cresol novolak type epoxy resin manufactured by Dainippon Ink and Chemicals, trade name N-673 (epoxy equivalent 210)
Phenol-based curing agent A: Melamine novolak resin manufactured by Dainippon Ink and Chemicals, trade name Phenolite LA-7054
Prepreg: Prepreg copper clad laminate Product name GEA-67BE HHFQ (insulating layer thickness equivalent to 200 μm)
Circuit board: A prepreg 2ply is sandwiched and pressed from both sides with 300μm thick copper foil to obtain a laminated board, and then a circuit (test pattern) with a residual rate of 50% on the surface of the double-sided copper-clad laminated board by the subtractive method Formed.

実施例1
エポキシ樹脂と、硬化剤をエポキシ基と水酸基の当量比で1:0.8になるように秤量し、MEK中に固形分濃度濃度75%になるように溶解した。さらに、硬化剤、粘度調整用の添加剤を加えワニスを作製した。このワニスをガラス不織布に塗布し,160〜175℃で4分間乾燥して樹脂分90%の樹脂含浸不織布(200ミクロン相当)を得た。
Example 1
The epoxy resin and the curing agent were weighed so that the equivalent ratio of epoxy group to hydroxyl group was 1: 0.8, and dissolved in MEK so as to have a solid concentration of 75%. Further, a varnish was prepared by adding a curing agent and an additive for adjusting viscosity. This varnish was applied to a glass nonwoven fabric and dried at 160 to 175 ° C. for 4 minutes to obtain a resin-impregnated nonwoven fabric (corresponding to 200 microns) having a resin content of 90%.

評価は、テストパターンの両側に、作製した樹脂含浸不織布1Plyと、プリプレグ1PlyをBF処理(黒化処理)を施したテストパターン上にレイアップし、さらにその外側に樹脂付き銅はくをはり185℃,圧力3MPaにて80分間加熱加圧成形して多層板を作製した。   The evaluation was made by laying up the prepared resin-impregnated nonwoven fabric 1Ply and the prepreg 1Ply on the test pattern subjected to BF treatment (blackening treatment) on both sides of the test pattern, and further applying a copper foil 185 with resin on the outside A multilayer board was produced by heating and pressing at 80 ° C. and 80 ° C. for 80 minutes.

この多層板をもちいて、平坦化の可否、成形性、耐熱性、衝撃試験、電気絶縁性の評価を行った。評価結果を表1に示す。   Using this multilayer board, the flatness, moldability, heat resistance, impact test, and electrical insulation were evaluated. The evaluation results are shown in Table 1.

平坦化の可否、成形性は、この多層板の両側の銅はくを全面エッチング除去した後、目視にて良否を判断した。
耐熱性は、上記で作製した多層板を、50 mm角に切断し乾燥したのち、260℃のはんだ中に10秒浸漬し、ふくれ等の以上を確認した。
衝撃試験は、落球試験とした。落球試験は、作製したプリント配線板上に100gの球状の重りを落下させ、クラックの発生する重りを落とす高さとし、その高さが50cm以上の場合を合格とした。
電気絶縁性の評価は、上記で作製した多層板を50mm角に切断し、端部を絶縁した後、内層回路の間に100Vの電圧を印加し、温度85℃、湿度85%の条件において、500h後の抵抗値(Ω)の変化量を測定した。500h後の抵抗値が100MΩ以上であった場合を合格とした。
Whether or not flattening was possible and formability were evaluated by visual inspection after removing the copper foil on both sides of the multilayer board by etching.
For heat resistance, the multilayer board produced above was cut into 50 mm squares, dried, and then immersed in 260 ° C. solder for 10 seconds to confirm over blistering and the like.
The impact test was a falling ball test. In the falling ball test, 100 g of a spherical weight was dropped on the produced printed wiring board, and the height at which the cracked weight was dropped was determined to be acceptable when the height was 50 cm or more.
The electrical insulation was evaluated by cutting the multilayer board prepared above into 50 mm squares, insulating the ends, applying a voltage of 100 V between the inner layer circuits, and at a temperature of 85 ° C. and a humidity of 85%. The amount of change in resistance value (Ω) after 500 hours was measured. The case where the resistance value after 500 hours was 100 MΩ or more was regarded as acceptable.

実施例2
実施例1と同様にアラミド不織布に、ワニスを塗布、乾燥し樹脂含浸不織布を得るとともに、多層板を作製し、同様の評価を行った。評価結果を表1に示す。
Example 2
In the same manner as in Example 1, varnish was applied to an aramid nonwoven fabric and dried to obtain a resin-impregnated nonwoven fabric, and a multilayer board was prepared and evaluated in the same manner. The evaluation results are shown in Table 1.

比較例1
テストパターンの両側に、それぞれプリプレグ2Plyをテストパターン上にレイアップし、実施例1,2と同様にプリント板を作製評価した。評価結果を表1に示す。
Comparative Example 1
On both sides of the test pattern, the prepreg 2Ply was laid up on the test pattern, and a printed board was produced and evaluated in the same manner as in Examples 1 and 2. The evaluation results are shown in Table 1.

比較例2
ガラス基板上においた離型フィルムを離型面が上になるように敷き、その上に実施例1と同じの樹脂を塗布、風乾を複数回繰返し、樹脂厚み200μmに達したところで、160〜175℃で4分間乾燥し、離型フィルムごとガラス基板から取り外すことで、キャリアフィルムつきの樹脂シートを得た。この樹脂シート1枚をテストパターン上にレイアップし、キャリアフィルム剥離後、さらにプリプレグをレイアップし、実施例1,2と同様にプリント板を作製し評価した。評価結果を表1に示す。
Comparative Example 2
A release film placed on a glass substrate is laid so that the release surface is on top, and the same resin as in Example 1 is applied thereon, and air drying is repeated a plurality of times. When the resin thickness reaches 200 μm, 160 to 175 The resin sheet with a carrier film was obtained by drying at 4 degreeC for 4 minutes and removing from the glass substrate with the release film. One resin sheet was laid up on the test pattern, the carrier film was peeled off, and the prepreg was further laid up. A printed board was prepared and evaluated in the same manner as in Examples 1 and 2. The evaluation results are shown in Table 1.

Figure 2010187035
Figure 2010187035

表1より,例示した実施例1〜2においては、試験結果が全て良好もしくは、合格(表1記載の○)であった。樹脂含浸紙の取扱性は、プリプレグと同等に容易であり、回路に繊維および樹脂組成物が充分充填され、平坦化された良好な絶縁層を得ることが出来た。また、成形性についてもボイド等の欠陥は発見されなかった。さらに、続けて実施したプリント配線板としての特性も良好であった。   From Table 1, in Examples 1-2 illustrated, all the test results were favorable or passed (circle of Table 1 description). The handling property of the resin-impregnated paper was as easy as that of the prepreg, and the circuit was sufficiently filled with the fiber and the resin composition, and a good flattened insulating layer could be obtained. Also, no defects such as voids were found in the formability. Furthermore, the characteristic as a printed wiring board implemented subsequently was also good.

しかし、比較例1においては、不良、不合格(表1記載の×)が多発した。まず、平坦化が不十分であり、かつ回路に樹脂が充分充填されなかった。耐熱性試験ではミーズリングが発生した。十分に回路が充填されていなかったため衝撃試験は、実施できなかった。また、電気絶縁性試験では、回路にガラスクロスの一部が接触していたことから充分な絶縁性が得られなかった。このように、プリプレグを用いた場合、良好なプリント配線板を得ることが出来なかった。   However, in Comparative Example 1, defects and failures (x in Table 1) occurred frequently. First, planarization was insufficient and the circuit was not sufficiently filled with resin. In the heat resistance test, measling occurred. The impact test could not be performed because the circuit was not fully filled. In the electrical insulation test, sufficient insulation was not obtained because a part of the glass cloth was in contact with the circuit. Thus, when a prepreg was used, a good printed wiring board could not be obtained.

比較例2においては、回路の平坦化は可能であったが、樹脂シートが脆く割れやすいため取扱が困難であった。また回路間に埋め込まれた絶縁層は、樹脂のみであることに起因する脆弱性により、衝撃試験でクラックが発生し、プリント配線板としての特性を損なう結果となった。   In Comparative Example 2, it was possible to flatten the circuit, but it was difficult to handle because the resin sheet was brittle and easily broken. In addition, the insulating layer embedded between the circuits was cracked in the impact test due to the fragility due to the fact that it was made of only resin, resulting in the loss of the characteristics as a printed wiring board.

a:回路パターン部分
b:基材表面
c:絶縁層
d:基板
a: circuit pattern portion b: substrate surface c: insulating layer d: substrate

Claims (5)

プリント配線板の回路パターンの凹凸を、繊維と樹脂組成物からなる絶縁材料を充填することによって平滑な絶縁層を形成したプリント配線板。   The printed wiring board which formed the smooth insulating layer by filling the unevenness | corrugation of the circuit pattern of a printed wiring board with the insulating material which consists of a fiber and a resin composition. 請求項1記載の繊維と樹脂組成物からなる絶縁材料が、繊維と半硬化の樹脂組成物からなるシート状材料を回路上に積層する工程を経ることによって形成された、プリント配線板。   A printed wiring board, wherein the insulating material comprising the fiber and the resin composition according to claim 1 is formed through a step of laminating a sheet-like material comprising the fiber and a semi-cured resin composition on a circuit. 請求項1または2記載の繊維がガラス繊維、もしくはアラミド繊維であるプリント配線板。   The printed wiring board whose fiber of Claim 1 or 2 is glass fiber or an aramid fiber. 請求項1〜3記載の繊維と樹脂組成物からなる絶縁材料によって回路の導体上に形成される絶縁層の厚みが、回路の導体の厚みを超えず、かつ回路の厚みが50μm以上であるプリント配線板。   A print in which the thickness of the insulating layer formed on the conductor of the circuit by the insulating material comprising the fiber and the resin composition according to claim 1 does not exceed the thickness of the conductor of the circuit, and the thickness of the circuit is 50 μm or more. Wiring board. 請求項1〜4記載のプリント配線板の製造方法。   The manufacturing method of the printed wiring board of Claims 1-4.
JP2010126285A 2010-06-01 2010-06-01 Printed wiring board, and method of manufacturing the same Pending JP2010187035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126285A JP2010187035A (en) 2010-06-01 2010-06-01 Printed wiring board, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126285A JP2010187035A (en) 2010-06-01 2010-06-01 Printed wiring board, and method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004351101A Division JP4784082B2 (en) 2004-12-03 2004-12-03 Printed wiring board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2010187035A true JP2010187035A (en) 2010-08-26

Family

ID=42767448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126285A Pending JP2010187035A (en) 2010-06-01 2010-06-01 Printed wiring board, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010187035A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053421A (en) * 1999-08-10 2001-02-23 Katsurayama Technol:Kk Smooth printed wiring board and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053421A (en) * 1999-08-10 2001-02-23 Katsurayama Technol:Kk Smooth printed wiring board and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6102319B2 (en) Prepreg and prepreg manufacturing method
KR101503005B1 (en) Thermosetting resin composition and Prepreg and Metal Clad laminate using the same
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
JP6624573B2 (en) Method for manufacturing metal-clad laminate, method for manufacturing printed wiring board, and method for manufacturing multilayer printed wiring board
KR20040101912A (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP4830748B2 (en) Flame retardant epoxy resin composition, resin film, prepreg and multilayer printed wiring board
TW201230912A (en) Process for the production of laminates
JP2015203038A (en) Metal foil-clad adhesive sheet, metal foil-clad laminate, metal foil-clad multilayer substrate, circuit-board production method
JP2013239701A (en) Interlayer dielectric film with carrier material, and multilayer printed circuit board using the same
TW201315767A (en) Prepreg, laminated board, semiconductor package, and method for manufacturing laminated board
JP2007128955A (en) Printed wiring board and its manufacturing method
JP5977969B2 (en) Insulating sheet, method for manufacturing insulating sheet, and multilayer substrate
JP4784082B2 (en) Printed wiring board and manufacturing method thereof
JP6631902B2 (en) Circuit board manufacturing method
JP6816566B2 (en) Resin compositions, adhesive films, prepregs, multilayer printed wiring boards and semiconductor devices
JP2010187035A (en) Printed wiring board, and method of manufacturing the same
JP2015086293A (en) Prepreg and multilayer printed wiring board
JPH09254308A (en) Metal foil with resin
WO2021201252A1 (en) Thermosetting resin sheet and printed circuit board
WO2022054928A1 (en) Method for producing frp precursor
JP2005290029A (en) Manufacturing method of prepreg and composite laminated plate
JP2014009356A (en) Epoxy resin composition, insulating film made of the same, and multilayer printed board comprising the same
KR20230124159A (en) Flexible metal clad laminate, method for manufacturing the same, and flexible printed circuit board using the flexible metal clad laminate
JP2005290030A (en) Manufacturing method of prepreg and composite laminated plate
JP2011142364A (en) Printed circuit board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A131 Notification of reasons for refusal

Effective date: 20120124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529