JP2010185785A - Method and system for flaw detection of ultrasonic sensor in power generating equipment - Google Patents

Method and system for flaw detection of ultrasonic sensor in power generating equipment Download PDF

Info

Publication number
JP2010185785A
JP2010185785A JP2009030216A JP2009030216A JP2010185785A JP 2010185785 A JP2010185785 A JP 2010185785A JP 2009030216 A JP2009030216 A JP 2009030216A JP 2009030216 A JP2009030216 A JP 2009030216A JP 2010185785 A JP2010185785 A JP 2010185785A
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
flaw detection
heat
thermoelectric element
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009030216A
Other languages
Japanese (ja)
Inventor
Shigeo Matsumura
栄郎 松村
Hidetaka Nishida
秀高 西田
Takaya Nagahisa
堅也 永久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009030216A priority Critical patent/JP2010185785A/en
Publication of JP2010185785A publication Critical patent/JP2010185785A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform flaw detection by an ultrasonic sensor without using a cooling medium or piping, thereby eliminating the need for a complicated large-scaled apparatus, reducing the load of safety control and achieving space saving. <P>SOLUTION: The ultrasonic sensor 104 is installed on the outer surface or the like of a steam turbine wheel chamber in order to detect cracks 102 in the cast steel article present in the steam turbine wheel chamber and cooled using a heat conductor 105 and a thermocouple element 106 both of which are thermally connected in the recess of a heat insulating layer. The heat conductor 105 and the thermocouple element 106 are provided so as not to be protruded from the heat insulating layer 103, a fan 110 is provided to the recess of the heat insulating layer and the signal cable 109 of the ultrasonic sensor 104 is passed through the heat conductor 105 to enable further space saving. The thermocouple element 106 can be also protected by providing a ventilation plate 111 to the recess 108. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発電設備における超音波センサの探傷方法および探傷システムに関し、とくに導入コストやメンテナンス負担が少なく省スペースで実現することが可能な超音波センサを用いた探傷方法を実現するための技術に関する。   The present invention relates to an ultrasonic sensor flaw detection method and flaw detection system in a power generation facility, and more particularly to a technique for realizing a flaw detection method using an ultrasonic sensor that can be realized in a small space with low introduction cost and maintenance burden. .

火力発電設備である蒸気タービン車室等の鋳鋼製品のうち、蒸気が接触する高温部位には、発電設備の起動・停止に伴い発生する熱応力等により亀裂が発生することがある。このため、現状では、定期点検等の発電所停止時に亀裂の有無を検査するようにしている。しかし発電設備の運転中にリアルタイムに亀裂の発生を監視することができれば、迅速かつ確実に亀裂の有無を把握することが可能となり、発電設備の信頼性を向上させることができる。
リアルタイムに亀裂の発生を監視する方法として、蒸気タービン車室の外面等に高温型超音波センサを設け、センサからの信号を常時監視することが考えられる。しかし発電設備の運転中の車室温度(約600℃)では高温型超音波センサの圧電体の機能が失われてしまうため、センサを冷却するための仕組みが必要である。センサを冷却する仕組みとしては、例えば特許文献1に開示されたものがある。同文献によれば、冷却装置と超音波センサの間を循環する冷却媒体により、超音波センサを冷却するようにしている。
特開2000−162002号公報
Among cast steel products such as steam turbine casings that are thermal power generation facilities, cracks may occur in high-temperature parts that come into contact with steam due to thermal stresses that occur when the power generation facilities are started and stopped. For this reason, at present, the presence or absence of cracks is inspected when the power plant is stopped during periodic inspections or the like. However, if the occurrence of cracks can be monitored in real time during operation of the power generation facility, it becomes possible to quickly and reliably grasp the presence or absence of cracks, and the reliability of the power generation facility can be improved.
As a method for monitoring the occurrence of cracks in real time, it is conceivable to provide a high-temperature ultrasonic sensor on the outer surface of the steam turbine casing and to constantly monitor the signal from the sensor. However, since the function of the piezoelectric body of the high-temperature ultrasonic sensor is lost at the passenger compartment temperature (about 600 ° C.) during operation of the power generation facility, a mechanism for cooling the sensor is necessary. As a mechanism for cooling the sensor, there is one disclosed in Patent Document 1, for example. According to this document, the ultrasonic sensor is cooled by the cooling medium circulating between the cooling device and the ultrasonic sensor.
JP 2000-162002 A

ところで、上記特許文献1の方法では、冷却媒体を配管によって循環させる必要があり、装置構成が複雑となり導入コストも高額になる。また配管を設置するためのスペースも必要となる。さらに導入後は冷却媒体の漏洩を監視する等、配管や冷却媒体のメンテナンス負荷が生じる。
本発明はこのような背景に鑑みてなされたものであり、導入コストやメンテナンス負担が少なく、少ない設置スペースで実現することが可能な超音波センサの探傷方法および探傷システムを提供することを目的とする。
By the way, in the method of Patent Document 1, it is necessary to circulate the cooling medium by piping, so that the apparatus configuration is complicated and the introduction cost is high. Also, a space for installing the piping is required. Further, after the introduction, a maintenance load on the piping and the cooling medium occurs, such as monitoring for leakage of the cooling medium.
The present invention has been made in view of such a background, and it is an object of the present invention to provide an ultrasonic sensor flaw detection method and flaw detection system that can be realized with a small installation space with low introduction cost and maintenance burden. To do.

上記目的を達成するための本発明の主たる発明は、
発電設備を構成している鋳鋼製品を超音波探傷により探傷する方法であって、
前記鋳鋼製品の表面に近接させて超音波センサを設け、
前記鋳鋼製品の表面に形成される保温層に前記超音波センサと熱的に結合させて熱伝導体を設け、
その吸熱面を前記熱伝導体に熱的に結合させ、その放熱面を外気と熱的に結合させて熱電素子を設け、
前記熱伝導体及び前記熱電素子を、前記保温層に形成した凹部に収容するようにすることとする。
In order to achieve the above object, the main invention of the present invention is:
A method of flaw detection by ultrasonic flaw detection for cast steel products constituting power generation equipment,
An ultrasonic sensor is provided close to the surface of the cast steel product,
Providing a heat conductor thermally coupled to the ultrasonic sensor on a heat insulating layer formed on the surface of the cast steel product;
Thermally coupling the endothermic surface to the thermal conductor, thermally coupling the heat radiating surface to the outside air, and providing a thermoelectric element,
The heat conductor and the thermoelectric element are accommodated in a recess formed in the heat retaining layer.

本発明によれば、発電用タービン車室等の鋳鋼製品から超音波センサに入力される熱を効率よく排出することができ、超音波センサを、これを有効に機能させるための許容温度以下に常時保つことができる。このため、超音波センサを用いて迅速かつ確実に亀裂の発生を監視する仕組みを実現することができ、ひいては発電設備の信頼性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat | fever input into ultrasonic sensor from cast steel products, such as a turbine casing for electric power generation, can be discharged | emitted efficiently, and it is below the allowable temperature for functioning this ultrasonic sensor effectively. It can be kept at all times. For this reason, it is possible to realize a mechanism for quickly and surely monitoring the occurrence of cracks using an ultrasonic sensor, thereby improving the reliability of the power generation equipment.

また以上の構成は、保温層への凹部の形成、凹部への超音波センサ、熱伝導体、熱電素子の取付けといった、簡素な作業のみで導入することができる。   In addition, the above configuration can be introduced by simple operations such as forming a recess in the heat retaining layer and attaching an ultrasonic sensor, a heat conductor, and a thermoelectric element to the recess.

また熱伝導体及び熱電素子を、保温層の表面から突出しないように設けることで、その導入に際しスペースを確保する必要がなく、また設置により室内空間が圧迫されることもない。   Further, by providing the heat conductor and the thermoelectric element so as not to protrude from the surface of the heat insulating layer, it is not necessary to secure a space for the introduction, and the indoor space is not compressed by the installation.

また凹部に熱電素子の放熱面に接触する外気を循環させるファンを設けることで、より効率よく超音波センサに入力される熱を排出することができる。   Further, by providing a fan that circulates outside air in contact with the heat radiation surface of the thermoelectric element in the recess, heat input to the ultrasonic sensor can be discharged more efficiently.

本発明によれば、導入コストやメンテナンス負担が少なく、少ない設置スペースで実現することが可能な超音波センサの探傷方法および探傷システムを提供することができる。  According to the present invention, it is possible to provide an ultrasonic sensor flaw detection method and a flaw detection system that can be realized with a small installation space with low introduction cost and maintenance burden.

実施例1として説明する、蒸気タービン車室内部における探傷方法及びシステムにかかわる構造を示す図である。It is a figure which shows the structure in connection with the flaw detection method and system in a steam turbine vehicle interior demonstrated as Example 1. FIG. 実施例2として説明する、蒸気タービン車室内部における探傷方法及びシステムにかかわる構造を示す図である。It is a figure which shows the structure in connection with the flaw detection method and system in a steam turbine vehicle interior demonstrated as Example 2. FIG. 実施例3として説明する、蒸気タービン車室内部における探傷方法及びシステムにかかわる構造を示す図である。It is a figure which shows the structure in connection with the flaw detection method and system in a steam turbine vehicle interior demonstrated as Example 3. FIG.

以下、図面を参照しつつ実施形態について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

[実施例1]
図1は実施例1として説明する超音波センサの探傷システムのセンサ部分の構成を示す図である。同図において、符号101は火力発電所に設置された鋳鋼製の蒸気タービン車室の外表面であり、符号102は、当該探傷システムによる探傷の対象となる、蒸気タービン車室の内部に生じた亀裂等である。また符号103は、蒸気タービン車室の外表面に所定の厚みで形成された保温層であり、符号107は、蒸気タービン車室が設置される室内空間である。
[Example 1]
FIG. 1 is a diagram showing a configuration of a sensor portion of an ultrasonic sensor flaw detection system described as a first embodiment. In the figure, reference numeral 101 denotes an outer surface of a steam turbine casing made of cast steel installed in a thermal power plant, and reference numeral 102 is generated inside the steam turbine casing, which is a target of flaw detection by the flaw detection system. Such as cracks. Reference numeral 103 denotes a heat insulating layer formed with a predetermined thickness on the outer surface of the steam turbine casing, and reference numeral 107 denotes an indoor space in which the steam turbine casing is installed.

蒸気タービン車室の内部空間には、例えば図示しないタービン翼等の部材が収容され、当該内部空間には高温高圧の蒸気が導入される。保温層103の素材は、例えばケイ酸カルシウムである。同図に示すように、保温層103には、その一部を切削することにより、略漏斗状の凹部108が形成されている。そして凹部108には、当該探傷システムにおけるセンサ部を構成している、超音波センサ104、熱伝導体105、熱電素子106等、探傷システムの構成部材が配設されている。   A member such as a turbine blade (not shown) is accommodated in the internal space of the steam turbine casing, and high-temperature and high-pressure steam is introduced into the internal space. The material of the heat insulating layer 103 is, for example, calcium silicate. As shown in the figure, a substantially funnel-shaped recess 108 is formed in the heat retaining layer 103 by cutting a part thereof. In the recess 108, constituent elements of the flaw detection system such as the ultrasonic sensor 104, the heat conductor 105, and the thermoelectric element 106 that constitute a sensor unit in the flaw detection system are disposed.

熱伝導体105は、円柱状部1051及び円錐状部1052を有し、略漏斗状の外形を呈している。熱伝導体105は、前述した凹部108の内周面に丁度嵌合し、また円錐状部1052の開口面の縁部は保温層103から室内空間107側に突出しないように形成されている。   The heat conductor 105 has a columnar portion 1051 and a conical portion 1052 and has a substantially funnel-shaped outer shape. The heat conductor 105 is just fitted to the inner peripheral surface of the recess 108 described above, and the edge of the opening surface of the conical portion 1052 is formed so as not to protrude from the heat insulating layer 103 to the indoor space 107 side.

熱伝導体105の円柱状部1051の端面には、当該熱伝導体105と熱的に結合された超音波センサ104が設けられている。超音波センサ104の出力端子(不図示)には、超音波センサ104の出力信号を、探傷システム計測/処理装置等にまで導くための信号ケーブル109が接続されている。信号ケーブル109は、例えば熱伝導体105の所定位置に設けられる孔や溝に沿って室内空間107に引き出される。   An ultrasonic sensor 104 that is thermally coupled to the thermal conductor 105 is provided on an end face of the cylindrical portion 1051 of the thermal conductor 105. A signal cable 109 is connected to an output terminal (not shown) of the ultrasonic sensor 104 to guide the output signal of the ultrasonic sensor 104 to a flaw detection system measurement / processing device or the like. The signal cable 109 is drawn out to the indoor space 107 along a hole or groove provided at a predetermined position of the heat conductor 105, for example.

熱伝導体105の円錐状部1052の内側面には、熱電素子106が敷設されている。熱電素子106は、例えば所定の厚みを有する平面板からなるペルチェ素子であり、吸熱面と放熱面を有する。熱電素子106は、その吸熱面が熱伝導体105に熱的に結合し、その放熱面が室内空間107から円錐状部1052の内部に取り込まれる外気と接するように(外気と熱的に結合させて)、円錐状部1052の内側面に敷設される。   A thermoelectric element 106 is laid on the inner surface of the conical portion 1052 of the heat conductor 105. The thermoelectric element 106 is a Peltier element made of a flat plate having a predetermined thickness, for example, and has a heat absorption surface and a heat dissipation surface. The thermoelectric element 106 has an endothermic surface thermally coupled to the thermal conductor 105, and a heat radiating surface is in contact with the outside air taken into the conical portion 1052 from the indoor space 107 (is thermally coupled to the outside air). And laid on the inner surface of the conical portion 1052.

熱電素子106の駆動電力は、例えば探傷システムの計測/処理装置等と共通の電源から供給するようにしてもよいし、探傷システムの電源とは異なる系統から供給するようにしてもよい。また例えば円錐状部1052の内部に電源設備を収容し、この電源から熱電素子106の駆動電力を供給するようにしてもよい。   For example, the driving power of the thermoelectric element 106 may be supplied from a common power source with the measurement / processing device of the flaw detection system, or may be supplied from a system different from the power source of the flaw detection system. Further, for example, a power supply facility may be housed inside the conical portion 1052, and driving power for the thermoelectric element 106 may be supplied from this power supply.

熱伝導体105の円錐状部1052の内部には、当該内部の空気を室内空間107の外気と交換し、熱電素子106の放熱面から放出される熱を室内空間107に排出するためのファン110が設けられている。また円錐状部1052の開口面には、開口面を覆うように、熱伝導体105や熱電素子106を外部からの衝撃等から保護するための通風板111が設けられており、探傷システムの信頼度を向上させる。   Inside the conical portion 1052 of the heat conductor 105, a fan 110 for exchanging the air inside the indoor space 107 with the outside air of the indoor space 107 and discharging the heat released from the heat radiation surface of the thermoelectric element 106 to the indoor space 107. Is provided. In addition, the opening surface of the conical portion 1052 is provided with a ventilation plate 111 for protecting the thermal conductor 105 and the thermoelectric element 106 from an external impact or the like so as to cover the opening surface. Improve the degree.

尚、ファン110は、熱伝導体105に固定するようにしてもよいし、通風板111に固定するようにしてもよい。後者の場合であれば通風板111を取り外すことでファン110も同時に外すことができ、メンテナンス時等における超音波センサ104、熱伝導体105、熱電素子106等へのアクセスを容易にすることができる。   The fan 110 may be fixed to the heat conductor 105 or may be fixed to the ventilation plate 111. In the latter case, the fan 110 can be removed at the same time by removing the ventilation plate 111, and access to the ultrasonic sensor 104, the thermal conductor 105, the thermoelectric element 106, etc. during maintenance can be facilitated. .

以上の構成において、超音波センサ104による測定時には、外表面101を通じ、超音波センサ104に入力される熱が熱伝導体105の円柱状部1051、円錐状部1052に熱伝導によって連続的に伝達される。そして円錐状部1052に導かれた熱は熱電素子106及びファン110によって効率よく外気に排出され、超音波センサ104から外気に至る熱の伝達経路が形成される。   In the above configuration, during measurement by the ultrasonic sensor 104, heat input to the ultrasonic sensor 104 through the outer surface 101 is continuously transferred to the cylindrical portion 1051 and the conical portion 1052 of the heat conductor 105 by heat conduction. Is done. The heat guided to the conical portion 1052 is efficiently discharged to the outside air by the thermoelectric element 106 and the fan 110, and a heat transfer path from the ultrasonic sensor 104 to the outside air is formed.

このように、以上の構成によれば、外表面101を通じて超音波センサ104に入力される熱を効率よく排出することができ、超音波センサ104を、これを有効に機能させるための許容温度以下に常時保つことができる。このため、超音波センサ104を用いて迅速かつ確実に亀裂の発生を監視する仕組みを実現することができ、これによれば発電設備の信頼性を向上させることができる。   As described above, according to the above configuration, the heat input to the ultrasonic sensor 104 through the outer surface 101 can be efficiently discharged, and the ultrasonic sensor 104 is less than an allowable temperature for effectively functioning it. Can always be kept. For this reason, the mechanism which monitors the generation | occurrence | production of a crack quickly and reliably using the ultrasonic sensor 104 is realizable, According to this, the reliability of power generation equipment can be improved.

また熱伝導体105は、保温層103の凹部108に収容され、熱伝導体105やファン110が室内空間107側に突出させないように設けているので、前述した構成を設置するためにスペースを確保する必要がなく、また設置により室内空間107が圧迫されることもない。   In addition, the heat conductor 105 is accommodated in the recess 108 of the heat insulating layer 103 so that the heat conductor 105 and the fan 110 are not protruded toward the indoor space 107, so that a space is secured to install the above-described configuration. The indoor space 107 is not compressed by the installation.

また以上の構成は、保温層103への凹部108の形成、形成した凹部108への超音波センサ104、熱伝導体105、熱電素子106の取付け、ファン110及び通風板111の取り付けといった、簡素な作業のみで既存の蒸気タービン車室等に容易に導入することができる。また超音波センサ104、熱伝導体105、及び熱電素子106の少なくともいずれかの組み合わせをユニット化し、もしくはファン110と通風板111をユニット化すれば、導入はさらに容易になる。   Further, the above configuration is simple, such as formation of the concave portion 108 in the heat insulating layer 103, attachment of the ultrasonic sensor 104, the thermal conductor 105, and the thermoelectric element 106 to the formed concave portion 108, and attachment of the fan 110 and the ventilation plate 111. It can be easily introduced into an existing steam turbine casing or the like only by work. Further, if the combination of at least one of the ultrasonic sensor 104, the thermal conductor 105, and the thermoelectric element 106 is unitized, or the fan 110 and the ventilation plate 111 are unitized, introduction is further facilitated.

[実施例2]
図2は実施例2として説明する探傷システムのセンサ部分の構成を示す図である。外表面101、亀裂102、保温層103、室内空間107、超音波センサ104、熱電素子106の構成については実施例1と同様である。実施例2は、実施例1と凹部208の形状、熱伝導体205の構成、熱電素子106の配設方法等が異なる。
[Example 2]
FIG. 2 is a diagram showing the configuration of the sensor portion of the flaw detection system described as the second embodiment. The configurations of the outer surface 101, the crack 102, the heat retaining layer 103, the indoor space 107, the ultrasonic sensor 104, and the thermoelectric element 106 are the same as those in the first embodiment. The second embodiment is different from the first embodiment in the shape of the recess 208, the configuration of the heat conductor 205, the arrangement method of the thermoelectric element 106, and the like.

同図に示すように、実施例2における熱伝導体205は、端部に超音波センサ104が熱的に結合され、外形が略円柱状の棒状部材2055と、棒状部材2055に螺合される所定厚みの円盤状部材2056とを有している。棒状部材2055の表面には、雄螺子20551が切削形成されており、また円盤状部材2056の中央には上記雄螺子20551に螺合される雌螺子20561が切削形成されている。また円盤状部材2056の周縁部には、円盤状部材2056を保温層103に固定するための取り付け螺子209が貫通されるネジ穴20562が穿孔されている。   As shown in the figure, in the thermal conductor 205 in the second embodiment, the ultrasonic sensor 104 is thermally coupled to the end portion, and the outer shape is screwed into the rod-shaped member 2055 and the rod-shaped member 2055. And a disk-shaped member 2056 having a predetermined thickness. A male screw 20551 is cut and formed on the surface of the rod-like member 2055, and a female screw 20561 that is screwed into the male screw 20551 is cut and formed in the center of the disk-like member 2056. Further, a screw hole 20562 through which a mounting screw 209 for fixing the disk-like member 2056 to the heat retaining layer 103 is penetrated is formed in the peripheral portion of the disk-like member 2056.

凹部208は、棒状部材2055の雄螺子20551を円盤状部材2056の雌螺子20561に螺合して一体化することにより構成される熱伝導体205の外形が丁度収容される形状に形成されている。   The recess 208 is formed in a shape that just accommodates the outer shape of the heat conductor 205 formed by screwing the male screw 20551 of the rod-like member 2055 into the female screw 20561 of the disk-like member 2056 and integrating them. .

熱伝導体205を凹部208に取り付ける際は、棒状部材2055に円盤状部材2056を、円盤状部材2056が脱落しない程度に浅く螺合した状態で凹部208に取り付けて予め一体化し、一体化した部材(熱伝導体205)を、凹部208に嵌合させる。その後、取り付け螺子209をネジ穴20562に挿入して締め付けることにより、円盤状部材2056を保温層103に固定する。尚、棒状部材2055と円盤状部材2056とを予め一体化するのではなく、まず棒状部材2055のみを凹部108に差し込み、その後円盤状部材2056を螺合するようにしてもよい。   When the heat conductor 205 is attached to the recess 208, the disc-like member 2056 is attached to the recess 208 in a state where the disc-like member 2056 is screwed so shallow that the disc-like member 2056 is not dropped off, and integrated in advance. The (thermal conductor 205) is fitted into the recess 208. Thereafter, the disk-like member 2056 is fixed to the heat retaining layer 103 by inserting and tightening the attachment screw 209 into the screw hole 20562. Instead of integrating the rod-shaped member 2055 and the disk-shaped member 2056 in advance, first, only the rod-shaped member 2055 may be inserted into the recess 108 and then the disk-shaped member 2056 may be screwed.

熱電素子106は、熱伝導体205の円盤状部材2056の室内空間107側の表面に敷設する。熱電素子106は、熱伝導体205を凹部208に取り付ける前に熱伝導体205に固定してもよいし、凹部208に取り付けた後に熱伝導体205に固定するようにしてもよい。   The thermoelectric element 106 is laid on the surface of the disk-shaped member 2056 of the heat conductor 205 on the indoor space 107 side. The thermoelectric element 106 may be fixed to the heat conductor 205 before the heat conductor 205 is attached to the recess 208 or may be fixed to the heat conductor 205 after being attached to the recess 208.

信号ケーブル109は、例えば棒状部材2055の中心軸に沿って貫通形成した孔を通して室内空間107に引き出すようにする。   For example, the signal cable 109 is drawn out to the indoor space 107 through a hole penetratingly formed along the central axis of the rod-shaped member 2055.

尚、凹部208のうち、円盤状部材2056が収容される部分は、室内空間107を圧迫しないよう、熱伝導体205、取り付け螺子209、熱電素子106の全てが保温層103の表面から室内空間107側に突出しない深さで形成することが好ましい。   It should be noted that the heat conductor 205, the mounting screw 209, and the thermoelectric element 106 are all from the surface of the heat insulating layer 103 so that the portion of the recess 208 in which the disk-shaped member 2056 is accommodated does not press the indoor space 107. It is preferable to form at a depth that does not protrude to the side.

本実施例の構成によれば、実施例1の場合に比べて凹部208の容積が少ないため、凹部208の形成が容易であり、その分、導入が容易である。また棒状部材2055と円盤状部材2056とを螺合することにより熱伝導体205が構成するようにしたので、取り付け時の位置決めが容易であり、また棒状部材2055と円盤状部材2056とにパーツ化されているため、導入時の運搬や供給を容易に行える。   According to the configuration of the present embodiment, since the volume of the recess 208 is smaller than that in the case of the first embodiment, the formation of the recess 208 is easy, and the introduction thereof is easier. Further, since the heat conductor 205 is configured by screwing the rod-shaped member 2055 and the disk-shaped member 2056, positioning at the time of attachment is easy, and parts are formed into the rod-shaped member 2055 and the disk-shaped member 2056. Therefore, transportation and supply at the time of introduction can be easily performed.

[実施例3]
図3は実施例3として説明する探傷システムのセンサ部分の構成を示す図である。外表面101、亀裂102、保温層103、室内空間107、超音波センサ104、熱電素子106、信号ケーブル109、ファン110、通風板111の構成については実施例1と同様である。実施例3は、実施例1と凹部308の形状、熱伝導体305の構成、熱電素子106の配設方法等が異なる。
[Example 3]
FIG. 3 is a diagram illustrating a configuration of a sensor portion of the flaw detection system described as the third embodiment. The configurations of the outer surface 101, the crack 102, the heat insulating layer 103, the indoor space 107, the ultrasonic sensor 104, the thermoelectric element 106, the signal cable 109, the fan 110, and the ventilation plate 111 are the same as in the first embodiment. The third embodiment differs from the first embodiment in the shape of the recess 308, the configuration of the heat conductor 305, the arrangement method of the thermoelectric element 106, and the like.

図3に示すように、実施例3における熱伝導体305は、室内空間107側が開口する中空円筒状の桶状部3056と、桶状部3056と同軸に当該桶状部3056よりも外表面101側に設けられる円柱状の下支部3055とを有する。下支部3055の外表面101側端部には、当該熱伝導体305と熱的に結合した超音波センサ104が設けられている。桶状部3056の上端面は保温層103から室内空間307側に突出しないように形成されている。   As shown in FIG. 3, the heat conductor 305 according to the third embodiment includes a hollow cylindrical bowl-shaped portion 3056 that is open on the indoor space 107 side, and an outer surface 101 that is coaxial with the bowl-shaped portion 3056 than the bowl-shaped portion 3056. And a cylindrical lower support portion 3055 provided on the side. An ultrasonic sensor 104 that is thermally coupled to the thermal conductor 305 is provided at the end of the lower support 3055 on the outer surface 101 side. The upper end surface of the bowl-shaped portion 3056 is formed so as not to protrude from the heat insulating layer 103 to the indoor space 307 side.

熱伝導体305の桶状部3056の内側面には、熱電素子106が敷設されている。熱電素子106は、その放熱面が室内空間107から桶状部3056の内部に取り込まれる外気と接するように(外気と熱的に結合させて)、桶状部3056の内側面に敷設される。   A thermoelectric element 106 is laid on the inner surface of the bowl-shaped portion 3056 of the heat conductor 305. The thermoelectric element 106 is laid on the inner side surface of the bowl-shaped portion 3056 so that the heat radiation surface thereof is in contact with the outside air taken into the bowl-shaped portion 3056 from the indoor space 107 (thermally coupled to the outside air).

熱伝導体305の桶状部3056の内部にはファン110が設けられ、熱伝導体305の桶状部3056の開口面を塞ぐように通風板111が設けられている。   A fan 110 is provided inside the bowl-shaped portion 3056 of the heat conductor 305, and a ventilation plate 111 is provided so as to close the opening surface of the bowl-shaped portion 3056 of the heat conductor 305.

本実施例の構成によれば、実施例1及び2の場合に比べて凹部308の開口部の面積に対する熱電素子106の放熱面積をより広く確保することができる。このため、より効率よく超音波センサ104を冷却することができる。また実施例1及び2の場合に比べて開口部の面積に対する凹部308の容積が大きく、従って熱電素子106により凹部308に放出される熱を効率よく排出することができる。   According to the configuration of the present embodiment, the heat radiation area of the thermoelectric element 106 relative to the area of the opening of the recess 308 can be ensured wider than in the first and second embodiments. For this reason, the ultrasonic sensor 104 can be cooled more efficiently. Further, the volume of the recess 308 with respect to the area of the opening is larger than in the case of the first and second embodiments, and therefore, the heat released to the recess 308 by the thermoelectric element 106 can be efficiently discharged.

以上、本発明の実施に係る探傷システムについて説明してきたが、上記発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。   The flaw detection system according to the embodiment of the present invention has been described above. However, the embodiment of the present invention is for facilitating understanding of the present invention and does not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.

101 外表面
102 亀裂
103 保温層
104 超音波センサ
105 熱伝導体
106 熱電素子
107 室内空間
108 凹部
109 信号ケーブル
110 ファン
111 通風板
205 熱伝導体
101 Outer surface 102 Crack 103 Thermal insulation layer 104 Ultrasonic sensor 105 Thermal conductor 106 Thermoelectric element 107 Indoor space 108 Recess 109 Signal cable 110 Fan 111 Ventilation plate 205 Thermal conductor

Claims (5)

発電設備を構成している鋳鋼製品を超音波探傷により探傷する方法であって、
前記鋳鋼製品の表面に近接させて超音波センサを設け、
前記鋳鋼製品の表面に形成される保温層に前記超音波センサと熱的に結合させて熱伝導体を設け、
その吸熱面を前記熱伝導体に熱的に結合させ、その放熱面を外気と熱的に結合させて熱電素子を設け、
前記熱伝導体及び前記熱電素子を、前記保温層に形成した凹部に収容するようにすること
を特徴とする超音波センサを用いた探傷方法。
A method of flaw detection by ultrasonic flaw detection for cast steel products constituting power generation equipment,
An ultrasonic sensor is provided close to the surface of the cast steel product,
Providing a heat conductor thermally coupled to the ultrasonic sensor on a heat insulating layer formed on the surface of the cast steel product;
Thermally coupling the endothermic surface to the thermal conductor, thermally coupling the heat radiating surface to the outside air, and providing a thermoelectric element,
A flaw detection method using an ultrasonic sensor, wherein the thermal conductor and the thermoelectric element are accommodated in a recess formed in the heat retaining layer.
請求項1に記載の探傷方法であって、
前記鋳鋼製品は、その表面に前記保温層が形成された発電用タービン車室であること
を特徴とする超音波センサを用いた探傷方法。
The flaw detection method according to claim 1,
The flaw detection method using an ultrasonic sensor, wherein the cast steel product is a turbine casing for power generation in which the heat insulating layer is formed on a surface thereof.
請求項1又は2のいずれか一項に記載の探傷方法であって、
前記熱伝導体及び前記熱電素子を、前記保温層の表面から突出しないように設けること
を特徴とする超音波センサを用いた探傷方法。
The flaw detection method according to any one of claims 1 and 2,
The flaw detection method using an ultrasonic sensor, wherein the thermal conductor and the thermoelectric element are provided so as not to protrude from the surface of the heat retaining layer.
請求項1又は2のいずれか一項に記載の探傷方法であって、
前記凹部に前記熱電素子の前記放熱面に接触する外気を循環させるファンを設けること
を特徴とする超音波センサを用いた探傷方法。
The flaw detection method according to any one of claims 1 and 2,
A flaw detection method using an ultrasonic sensor, characterized in that a fan for circulating outside air that contacts the heat radiation surface of the thermoelectric element is provided in the recess.
発電設備を構成している鋳鋼製品を超音波探傷により探傷するシステムであって、
前記鋳鋼製品の表面に近接させて超音波センサを設け、
前記鋳鋼製品の表面に形成される保温層に前記超音波センサと熱的に結合させて熱伝導体を設け、
その吸熱面を前記熱伝導体に熱的に結合させ、その放熱面を外気と熱的に結合させて熱電素子を設け、
前記熱伝導体及び前記熱電素子を、前記保温層に形成した凹部に収容するようにしたこと
を特徴とする超音波センサを用いた探傷システム。
A system for flaw detection of cast steel products constituting power generation equipment by ultrasonic flaw detection,
An ultrasonic sensor is provided close to the surface of the cast steel product,
Providing a heat conductor thermally coupled to the ultrasonic sensor on a heat insulating layer formed on the surface of the cast steel product;
Thermally coupling the endothermic surface to the thermal conductor, thermally coupling the heat radiating surface to the outside air, and providing a thermoelectric element,
A flaw detection system using an ultrasonic sensor, wherein the thermal conductor and the thermoelectric element are accommodated in a recess formed in the heat retaining layer.
JP2009030216A 2009-02-12 2009-02-12 Method and system for flaw detection of ultrasonic sensor in power generating equipment Pending JP2010185785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030216A JP2010185785A (en) 2009-02-12 2009-02-12 Method and system for flaw detection of ultrasonic sensor in power generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030216A JP2010185785A (en) 2009-02-12 2009-02-12 Method and system for flaw detection of ultrasonic sensor in power generating equipment

Publications (1)

Publication Number Publication Date
JP2010185785A true JP2010185785A (en) 2010-08-26

Family

ID=42766530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030216A Pending JP2010185785A (en) 2009-02-12 2009-02-12 Method and system for flaw detection of ultrasonic sensor in power generating equipment

Country Status (1)

Country Link
JP (1) JP2010185785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607820A (en) * 2021-08-10 2021-11-05 温州大学 Turbine rotor crack propagation on-site detection system under extreme working condition
JP2021532377A (en) * 2018-07-12 2021-11-25 アビリーン クリスチャン ユニバーシティ Equipment, systems, and methods for non-invasive measurements of flow in hot pipes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532377A (en) * 2018-07-12 2021-11-25 アビリーン クリスチャン ユニバーシティ Equipment, systems, and methods for non-invasive measurements of flow in hot pipes
CN113607820A (en) * 2021-08-10 2021-11-05 温州大学 Turbine rotor crack propagation on-site detection system under extreme working condition
CN113607820B (en) * 2021-08-10 2024-03-19 温州大学 Turbine rotor crack propagation in-situ detection system under extreme working condition

Similar Documents

Publication Publication Date Title
US10215191B2 (en) Vacuum pump control device and vacuum pump
KR101379830B1 (en) Heat exchanger for an energy storage device
CN106848811B (en) Laser aid
JP2010185785A (en) Method and system for flaw detection of ultrasonic sensor in power generating equipment
EP3326269B1 (en) Line replaceable unit (lru) sensor systems for motors and other machines
KR20170038876A (en) Cooling device
CN110523152A (en) A kind of explosion-proof controller of high degree of automation
WO2015002044A1 (en) Temperature detection device
RU2012138788A (en) LOCK LATCH CONTROL DEVICE, GASKET TUBE OR REPLACEMENT MECHANISM OR SIMILAR TO A METALLURGICAL VESSEL
GB2408370A (en) Device for security systems for operation of habitats on installations
US7598919B2 (en) Pick-up horn for high power thermal vacuum testing of spacecraft payloads
CN105564932A (en) Real-time speed, slip and tape break detecting equipment of adhesive tape machine
US11495945B2 (en) Pressure relief system and a container, building, enclosure or cubicle including a pressure relief system
CN104812210B (en) Cooling device for the mixing module of motor vehicle driven by mixed power
EP3671185A1 (en) Graphite furnace and transformer used in the graphite furnace
KR102010975B1 (en) Heat radiant structure and cold water tank having the same
CN201424483Y (en) Blast furnace lens with automatic refrigeration and heat insulation protector
KR20090050215A (en) Housing for ball sensor
KR20040065502A (en) A blade path thermocouple of gas turbine
US20130120936A1 (en) Scanner protection casing and system of reading the height of the pellet bed of grid cars inside a grid furnace comprising a scanner protected by said casing
RU167696U1 (en) Temperature sensor for axle box of a passenger car
US20200191671A1 (en) Dynamometer device
KR20210065507A (en) Cooling Sound Enclosure
KR101853128B1 (en) Airing Module for Process Chamber
CN220480670U (en) Mounting device and weld seam locating device