JP2010185389A - Cross-flow wind mill and wind turbine generator - Google Patents

Cross-flow wind mill and wind turbine generator Download PDF

Info

Publication number
JP2010185389A
JP2010185389A JP2009030623A JP2009030623A JP2010185389A JP 2010185389 A JP2010185389 A JP 2010185389A JP 2009030623 A JP2009030623 A JP 2009030623A JP 2009030623 A JP2009030623 A JP 2009030623A JP 2010185389 A JP2010185389 A JP 2010185389A
Authority
JP
Japan
Prior art keywords
wind turbine
synthetic resin
rotating plate
crossflow
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009030623A
Other languages
Japanese (ja)
Inventor
Hideaki Takezaki
秀昭 竹崎
Yoichi Ikemoto
陽一 池本
Kazuhiro Kudo
一博 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Kudo Kensetsu Corp
Original Assignee
Sekisui Chemical Co Ltd
Kudo Kensetsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Kudo Kensetsu Corp filed Critical Sekisui Chemical Co Ltd
Priority to JP2009030623A priority Critical patent/JP2010185389A/en
Publication of JP2010185389A publication Critical patent/JP2010185389A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cross-flow wind mill and a wind turbine generator which can be inexpensively manufactured with excellent rotation efficiency. <P>SOLUTION: The cross-flow wind mill 1 includes a disk-like rotation plate 21 rotatably supported around a center shaft, and a wind mill body 2 having a plurality of blade bodies 22 standing on the rotation plate at equal pitches to the circumferential direction of the rotation plate. In the cross-flow wind mill 1, the blade bodies are erected on the rotation plate in a state that the outermost edges are conformed to a virtual circle with a diameter R on the rotation plate, and formed of strips formed of synthetic resin with circular cross sections in which a diameter r of the virtual circle including an inner arc satisfies a relationship of R>r>(1/8)R. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、たとえば、小型風力発電装置に用いられるクロスフロー風車及び風力発電装置に関する。   The present invention relates to, for example, a crossflow wind turbine and a wind power generator used in a small wind power generator.

風車は、近年における環境問題の意識の高まりから、環境に影響を与える物質を発生させない風力発電などの動力源として注目を集めており、小型の羽根構造の風車から大型のプロペラ型の風車まで各種の構成のものが提案され実施されてきている。
しかし、大型のプロペラ型風車を用いる風力発電装置は、イニシャル費用が高価なこともあり市場導入は補助金等が頼みの綱である。
Wind turbines are attracting attention as a power source for wind power generation that does not generate substances that affect the environment due to increasing awareness of environmental issues in recent years. Various types of wind turbines, from small bladed wind turbines to large propeller type wind turbines, are attracting attention. The thing of the structure of this is proposed and implemented.
However, wind power generators using large propeller-type wind turbines are expensive in initial cost, and subsidies are the main reason for the introduction to the market.

そこで、大型のプロペラ型風車など他の風車に比べ、微風域での自力回転可能で回転効率が優れている点でクロスフロー風車が注目されている。
このクロスフロー風車としては、より微風域での回転効率をよくするために、ガイドベーンを設けるようにしたものが提案されている(特許文献1、2参照)。
Therefore, compared to other wind turbines such as large propeller type wind turbines, cross flow wind turbines are attracting attention because they can rotate by themselves in a light wind region and have excellent rotational efficiency.
As this cross-flow wind turbine, in order to improve the rotational efficiency in a fine wind region, a guide vane is provided (see Patent Documents 1 and 2).

しかし、上記のような従来のクロスフロー風車の場合、他の風車に比べ微風域での回転効率にすぐれているものの、風車本体がステンレス鋼で形成されているため、風車本体が重くまだまだ十分なものではない。
また、風車のイニシャルコストを削減するためには、製造原価の低下が必要不可欠であり、1つ1つの部材が大量生産、大量消費のプロセスに乗ることが必要である。しかしながら、世間は環境ブームとはいえ、イニシャルコストを数年のランニングコストで回収しきれない現状では、爆発的に売れる状況ではない。結果、部材はオーダーメード的にならざるをえない。まして、近年高騰している金属類を使用することや、手作業にてクロスフロー風車特有の数多い羽根体を1つ1つ作製して翼形状に加工していくことは、他の風車と比較してもコスト的に非常に不利である。
However, in the case of the conventional cross-flow wind turbine as described above, although the rotational efficiency in the light wind region is superior to other wind turbines, the wind turbine body is made of stainless steel, so the wind turbine body is heavy and still sufficient. It is not a thing.
Further, in order to reduce the initial cost of the wind turbine, it is indispensable to lower the manufacturing cost, and it is necessary for each member to enter a process of mass production and mass consumption. However, even though the world is in an environmental boom, it is not an explosive selling situation in which the initial cost cannot be recovered with the running cost of several years. As a result, the members must be made to order. In addition, the use of metals that have been soaring in recent years, and the production of many individual blades unique to crossflow wind turbines and processing them into blade shapes, compared to other wind turbines. However, it is very disadvantageous in terms of cost.

一方、風車での発電不足を補うために、太陽光パネルと併用したものも提案されている(特許文献3参照)が、太陽光パネルの設置スペースが必要となり大型化するとともに、製造コストもかかると言う問題がある。   On the other hand, in order to make up for the power generation shortage in the windmill, a solar panel combined with a solar panel has been proposed (see Patent Document 3), but the installation space for the solar panel is required, which increases the size and the manufacturing cost. There is a problem to say.

実開昭61−33980号公報Japanese Utility Model Publication No. 61-33980 登録実用新案第3099488号公報Registered Utility Model No. 3099488 特開2003−42052号公報JP 2003-42052 A

本発明は、上記事情に鑑みて、回転効率がよく、安価に製造することができるクロスフロー風車及び風力発電装置を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a cross-flow wind turbine and a wind turbine generator that can be manufactured at low cost with high rotational efficiency.

上記目的を達成するために、本発明にかかるクロスフロー風車は、中心軸周りに回転自在に支持された円盤状の回転板と、この回転板の周方向に等ピッチで回転板に立設された複数の羽根体とを有する風車本体を備えるクロスフロー風車において、
前記羽根体が、最外縁を前記回転板上の直径Rの仮想円に一致させた状態で回転板に立設されているとともに、内弧面を含む仮想円の直径rがR>r>1/8Rの関係を満足する断面円弧状をした合成樹脂製の短冊状片から形成されていることを特徴としている。
また、本発明のクロスフロー風車は、短冊状片が押出成形加工された合成樹脂管を合成樹脂管の管軸を含む面に沿って2〜20に等分割されて得られるようにすることが好ましい。さらに、風車本体の周囲を囲むようにガイドベーンを備えている構成、羽根体が、ゴム成分を含んだ耐衝撃性ポリ塩化ビニル系樹脂組成物で形成されている構成としてもよい。
In order to achieve the above object, a cross-flow wind turbine according to the present invention is provided with a disk-shaped rotating plate that is rotatably supported around a central axis, and is erected on the rotating plate at an equal pitch in the circumferential direction of the rotating plate. In a crossflow wind turbine comprising a wind turbine body having a plurality of blades,
The blade body is erected on the rotating plate with its outermost edge coinciding with the virtual circle of diameter R on the rotating plate, and the diameter r of the virtual circle including the inner arc surface is R>r> 1 It is characterized by being formed from a strip-shaped piece made of synthetic resin having a circular arc shape that satisfies the relationship of / 8R.
In the crossflow wind turbine of the present invention, a synthetic resin tube obtained by extruding a strip-shaped piece is equally divided into 2 to 20 along a surface including the tube axis of the synthetic resin tube. preferable. Furthermore, it is good also as a structure provided with the guide vane so that the circumference | surroundings of a windmill main body may be enclosed, and the structure by which the blade | wing body was formed with the impact-resistant polyvinyl chloride resin composition containing the rubber component.

上記のように、本発明のクロスフロー風車は、羽根体が、最外縁を前記回転板上の直径Rの仮想円に一致させた状態で回転板に立設されているとともに、内弧面を含む仮想円の直径rがR>r>1/8Rの関係を満足する断面円弧状をした合成樹脂製の短冊状片から形成されていることに限定されるが、その理由は以下のとおりである。
すなわち、直径rが直径Rより大きいと、羽根体の曲面が平面に近くなり十分に揚力を受けることができない。また、短冊状片を、上記のように合成樹脂管を合成樹脂管の管軸を含む面に沿って分割することによって得るようにした場合、原材料となる合成樹脂管の内径も大きいものとなり、結果厚肉の管を使用することから不必要な厚みの部材となってしまったり、余りの端材が多く発生してしまい非効率である。
一方、直径rが1/8Rより小さいと、羽根体で十分に風を受けることができなくなり回転能力の低下を招くこととなる。
As described above, in the crossflow wind turbine of the present invention, the blade body is erected on the rotating plate with the outermost edge coinciding with the virtual circle having the diameter R on the rotating plate, and the inner arc surface is Although the diameter r of the containing virtual circle is limited to being formed from a strip-shaped piece made of a synthetic resin having a circular arc shape that satisfies the relationship of R>r> 1 / 8R, the reason is as follows. is there.
That is, if the diameter r is larger than the diameter R, the curved surface of the blade body is close to a flat surface and cannot receive sufficient lift. In addition, when the strip-like piece is obtained by dividing the synthetic resin tube along the surface including the tube axis of the synthetic resin tube as described above, the inner diameter of the synthetic resin tube as a raw material becomes large, As a result, a thick-walled tube is used, resulting in a member having an unnecessary thickness, and excessive end material is generated, which is inefficient.
On the other hand, if the diameter r is smaller than 1 / 8R, the blades cannot sufficiently receive the wind, resulting in a decrease in rotational ability.

上記羽根体の原材料となる合成樹脂管の材質としては、特に限定されないが、例えば、ポリエチレン、架橋ポリエチレン、ポリプロピレン、ポリブテン、ポリフェニレンスルフィド(PPS)、ポリエチレンテレフタレート、ポリ塩化ビニル等が挙げられ、好ましくは、近年高騰する石油価格に伴って価格の上昇の少ない樹脂で、また溶剤等を利用した接着性の優れるポリ塩化ビニル系樹脂組成物を使用することが好ましく、ポリ塩化ビニル系樹脂組成物のなかでも、耐衝撃性を向上させるために、ゴム成分を含んだポリ塩化ビニル系樹脂組成物がより好ましい。   The material of the synthetic resin tube used as the raw material of the blade body is not particularly limited, and examples thereof include polyethylene, cross-linked polyethylene, polypropylene, polybutene, polyphenylene sulfide (PPS), polyethylene terephthalate, and polyvinyl chloride. However, it is preferable to use a polyvinyl chloride resin composition that is excellent in adhesiveness using a solvent, etc., with a resin that does not increase in price with the recent rising oil price, and among the polyvinyl chloride resin compositions However, in order to improve impact resistance, a polyvinyl chloride resin composition containing a rubber component is more preferable.

上記ゴム成分としては、特に限定されないが、例えば、塩素化ポリエチレン、エチレン・酢酸ビニル共重合体、アクリロニトリル・ブタジエン・スチレン(ABS)ゴム、メチルメタクリレート・ブタジエン・スチレン(MBS)ゴム、アクリル系ゴム等が挙げられる。
上記ゴム成分としての添加量は、少なすぎると耐衝撃性向上効果が得られず、多すぎると硬度や耐たわみ性が低下するので、ポリ塩化ビニル系樹脂100重量部に対して、2〜20重量部が好ましい。
The rubber component is not particularly limited. For example, chlorinated polyethylene, ethylene / vinyl acetate copolymer, acrylonitrile / butadiene / styrene (ABS) rubber, methyl methacrylate / butadiene / styrene (MBS) rubber, acrylic rubber, etc. Is mentioned.
If the addition amount as the rubber component is too small, the impact resistance improving effect cannot be obtained, and if it is too large, the hardness and the flex resistance decrease, so 2 to 20 with respect to 100 parts by weight of the polyvinyl chloride resin. Part by weight is preferred.

さらに、上記ポリ塩化ビニル系樹脂組成物には、有機錫系安定剤及び滑剤が添加されるのが好ましい。有機錫系安定剤としては、従来から使用されているものが使用され、例えば、ジブチル錫ラウレート等のラウレート系錫安定剤、ジブチル錫マレエート等のマレエート系錫安定剤、ジブチル錫メルカプチド、ジオクチル錫メルカプチド等のメルカプチド系錫安定剤、モノブチル錫サルファイド等のサルファイド系錫安定剤等が挙げられる。有機錫系安定剤の添加量は、少なすぎると安定化効果が得られず、必要量以上多くても安定化効果が殆ど変わらないので、ポリ塩化ビニル系樹脂100重量部に対して、0.1〜5重量部が好ましい。   Further, an organotin stabilizer and a lubricant are preferably added to the polyvinyl chloride resin composition. As the organic tin stabilizer, those conventionally used are used, for example, laurate tin stabilizer such as dibutyltin laurate, maleate tin stabilizer such as dibutyltin maleate, dibutyltin mercaptide, dioctyltin mercaptide. And mercaptide-based tin stabilizers such as monobutyltin sulfide, and the like. If the addition amount of the organic tin stabilizer is too small, the stabilizing effect cannot be obtained, and if it is more than the required amount, the stabilizing effect is hardly changed. 1 to 5 parts by weight is preferred.

上記滑剤としては、樹脂の流動性を向上させると同時に、押出用金型表面との摩擦抵抗を減じて粘着を防止し、成形加工を容易にするものであって、例えば、ステアリン酸、パルミチン酸等の高級脂肪酸とその誘導体、金属石鹸類、カルバナワックス、キャンデリラワックス等の天然ワックス類、低重合度ポリエチレンのような合成ワックス類、パラフィンワックス類等の石油系ワックス類などが挙げられる。滑剤の添加量としては、少なすぎると樹脂の流動性向上効果が得られず、多すぎると必要物性が得られないので、ポリ塩化ビニル系樹脂100重量部に対して、0.1〜2重量部が好ましい。   As the above-mentioned lubricant, the fluidity of the resin is improved, and at the same time, the friction resistance with the surface of the extrusion mold is reduced to prevent sticking, facilitating the molding process. For example, stearic acid, palmitic acid Higher fatty acids and derivatives thereof, metal soaps, natural waxes such as carbana wax and candelilla wax, synthetic waxes such as low-polymerization polyethylene, and petroleum waxes such as paraffin wax. If the amount of the lubricant is too small, the effect of improving the fluidity of the resin cannot be obtained. If the amount is too large, the necessary physical properties cannot be obtained. Therefore, 0.1 to 2 weights per 100 parts by weight of the polyvinyl chloride resin. Part is preferred.

また、上記合成樹脂管を構成する合成樹脂中には、光、熱、遷移金属イオンなどの作用によってラジカルが生成し、これらが自動酸化の連鎖サイクルに入ってしまい酸化反応が継続することによる合成樹脂の劣化を防ぐために、酸化防止剤を配合することが好ましい。
さらに、合成樹脂管を構成する合成樹脂中には、必要に応じて、成形性を向上させる目的で各種粘度調整剤・界面活性剤を配合したり、付加的成分、例えば、帯電防止剤、難燃剤、結露防止剤、及びこれらマスターバッチの付加的樹脂成分などを配合することが可能である。
Moreover, in the synthetic resin constituting the synthetic resin tube, radicals are generated by the action of light, heat, transition metal ions, etc., and these are entered into the auto-oxidation chain cycle, and the synthesis reaction is continued. In order to prevent deterioration of the resin, it is preferable to add an antioxidant.
Furthermore, in the synthetic resin constituting the synthetic resin tube, various viscosity modifiers / surfactants may be blended as necessary for the purpose of improving moldability, or additional components such as antistatic agents, It is possible to add a flame retardant, an anti-condensation agent, and an additional resin component of these master batches.

また、本発明のクロスフロー風車は、特に限定されないが、風車本体の周囲を囲むようにガイドベーンを備えていることが好ましい。
ガイドベーンの材質としては、特に限定されず、金属製でも合成樹脂製でも構わないが、軽量で薄く強度的に優れたもの、例えば塩ビ板やFRP製などの合成樹脂板、アルミニウム、ステンレス等が好ましい。
Moreover, the crossflow windmill of the present invention is not particularly limited, but it is preferable that a guide vane is provided so as to surround the periphery of the windmill body.
The material of the guide vane is not particularly limited, and may be made of metal or synthetic resin. However, it is lightweight, thin and excellent in strength, for example, a synthetic resin plate such as a PVC plate or FRP, aluminum, stainless steel, etc. preferable.

本発明にかかるクロスフロー風車は、以上のように、最外縁を前記回転板上の直径Rの仮想円に一致させた状態で回転板に立設されているとともに、内弧面を含む仮想円の直径rがR>r>1/8Rの関係を満足する断面円弧状をした合成樹脂製の短冊状片から形成されているので、微風でも回転板が容易に回転するとともに安価で製造することができる。
したがって、小型で発電効率のよい、風力発電装置を提供することができ、環境にやさしい風力発電装置の普及につながる。
また、海岸沿岸地域等の塩害が発生する地域では羽根体が金属製であると、腐食・さびが発生してしまい風車の機能が果たせなくなるところ、羽根体が合成樹脂製であるので、腐食レスとなり、耐久性に富んだものとすることができる。
As described above, the crossflow wind turbine according to the present invention is erected on the rotating plate in a state where the outermost edge coincides with the virtual circle having the diameter R on the rotating plate, and includes a virtual circle including an inner arc surface. Is formed from a strip-shaped piece made of synthetic resin having a circular arc cross section satisfying the relationship of R>r> 1 / 8R, so that the rotating plate can be easily rotated and manufactured at low cost even with a slight wind. Can do.
Therefore, it is possible to provide a wind power generator that is small and has high power generation efficiency, leading to the spread of environmentally friendly wind power generators.
In areas where salt damage occurs, such as coastal coastal areas, if the blades are made of metal, corrosion and rust will occur and the windmill will not function. Thus, it can be made durable.

そして、上記短冊状片を、押出成形加工された合成樹脂管を、その管軸を含む面に沿って2〜20に等分割することによって得るようにすれば、板から切り出したように断面形状が平面でなく、元の管形状を生かして、風を受ける側に湾曲した形状となるため、風による揚力を受けやすくなり風車として回転する上で効果的となる。
また、原材料として押出成形加工された合成樹脂管を用いることによって羽根体を軽量化することができて回転効率のよいものとすることができるとともに、小型のものであれば、羽根体の回転軸方向の寸法も短いものであるので、配管施工時に発生する合成樹脂管の端材を用いることができて、端材の有効利用を図ることができる。
If the strip-like piece is obtained by equally dividing the extruded synthetic resin tube into 2 to 20 along the surface including the tube axis, the cross-sectional shape is cut out from the plate. Is not a flat surface, but a shape that is curved toward the wind receiving side by utilizing the original tube shape, so that it is easy to receive lift from the wind and is effective in rotating as a windmill.
Further, by using an extruded synthetic resin tube as a raw material, it is possible to reduce the weight of the blade body and to improve the rotation efficiency. Since the direction dimension is also short, the end material of the synthetic resin pipe generated at the time of piping construction can be used, and the end material can be effectively used.

また、風車本体の周囲を囲むようにガイドベーンを備えている構成とすれば、より回転効率がよくなる。
そして、羽根体を、ゴム成分を含んだ耐衝撃性ポリ塩化ビニル樹脂組成物で形成しておくと、風とともに飛んできた異物が羽根体にあたっても破損することが少なく、耐久性に優れたものとすることができる。
Moreover, if it is set as the structure provided with the guide vane so that the circumference | surroundings of a windmill main body may be enclosed, rotational efficiency will become better.
And, if the blade body is made of an impact-resistant polyvinyl chloride resin composition containing a rubber component, the foreign matter flying with the wind is less likely to break on the blade body, and has excellent durability. It can be.

一方、本発明にかかる風力発電装置は、上記本発明のクロスフロー風車と、風車による回転駆動力を受けて発電する発電部とを搭載したので、安価で塩害にも強いものとすることができる。   On the other hand, since the wind turbine generator according to the present invention is equipped with the cross-flow wind turbine of the present invention and the power generation unit that generates power by receiving the rotational driving force of the wind turbine, it can be made inexpensive and resistant to salt damage. .

本発明にかかるクロスフロー風車の1つの実施の形態をあらわす斜視図である。It is a perspective view showing one embodiment of a cross flow windmill concerning the present invention. 図1のクロスフロー風車の風車本体の斜視図である。It is a perspective view of the windmill main body of the crossflow windmill of FIG. 図1のクロスフロー風車の横断面図である。It is a cross-sectional view of the crossflow wind turbine of FIG. 図2の風車本体の回転板の平面図である。It is a top view of the rotating plate of the windmill main body of FIG. 図2の風車本体の羽根体となる短冊状片を製造する方法を説明する図である。It is a figure explaining the method of manufacturing the strip-shaped piece used as the blade | wing body of the windmill main body of FIG. 図5の短冊状片を用いて羽根体を製造する方法を説明する図である。It is a figure explaining the method to manufacture a blade | wing body using the strip-shaped piece of FIG. 図1のクロスフロー風車の風の流れを説明する説明図である。It is explanatory drawing explaining the flow of the wind of the crossflow windmill of FIG. 本発明のクロスフロー風車を搭載した発電装置の1例をあらわす模式図である。It is a schematic diagram showing an example of the electric power generating apparatus carrying the crossflow windmill of this invention. 実施例1及び比較例1で得たクロスフロー風車の変動発電能力について調べた結果を示すグラフである。It is a graph which shows the result of having investigated about the variable power generation capability of the crossflow windmill obtained in Example 1 and Comparative Example 1. FIG.

以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1は本発明の実施形態であるクロスフロー風車の1つの実施の形態をあらわしている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG. 1 shows one embodiment of a crossflow wind turbine according to an embodiment of the present invention.

図1に示すように、このクロスフロー風車1は、風車本体2と、ガイドベーン部3とを備えている。
風車本体2は、図1〜図3に示すように、2枚の回転板21と、6枚の羽根体22とを備えている。
As shown in FIG. 1, the crossflow wind turbine 1 includes a wind turbine body 2 and a guide vane portion 3.
As shown in FIGS. 1 to 3, the windmill body 2 includes two rotating plates 21 and six blade bodies 22.

2枚の回転板21は、それぞれポリ塩化ビニル樹脂組成物から形成され、その直径がRの円盤状をしていて、一方の面に円盤の中心軸に沿うようにステンレス鋼製の回転軸23が突設されていて、この回転軸23が突設されていない面(以下、「対向面」)21aを対向させて配置されている。
また、2枚の回転板21の対向面21aには、図4に示すように、それぞれ後述する羽根体22の両端から突出する嵌合突部22aが嵌合する嵌合穴24が穿設されている。
The two rotating plates 21 are each formed of a polyvinyl chloride resin composition, have a disk shape with a diameter of R, and have a rotating shaft 23 made of stainless steel on one surface along the central axis of the disk. Is provided so that a surface (hereinafter referred to as an “opposing surface”) 21a on which the rotating shaft 23 is not provided is opposed.
Further, as shown in FIG. 4, fitting holes 24 into which fitting protrusions 22 a protruding from both ends of a blade body 22 to be described later are fitted are formed in the opposing surfaces 21 a of the two rotating plates 21. ing.

羽根体22は、以下のようにして形成されている。すなわち、図5に示すように、内径rが上記回転板21の直径Rに対してR>r>1/8Rの関係を満足するとともに、ゴム成分を含んだ耐衝撃性ポリ塩化ビニル樹脂組成物を押出成形して得た合成樹脂管Pを破線で示すようにその管軸を含む面に沿って6等分割して、図6に示すように、断面円弧状の短冊状片P1を得る。この短冊状片P1の長手方向の両端を図6に鎖線で示すように切削することによって得られる。したがって、長手方向の両端から嵌合突部22aが突出している。   The blade body 22 is formed as follows. That is, as shown in FIG. 5, the inner diameter r satisfies the relationship of R> r> 1 / 8R with respect to the diameter R of the rotating plate 21, and an impact resistant polyvinyl chloride resin composition containing a rubber component. The synthetic resin pipe P obtained by extrusion molding is divided into six equal parts along the plane including the pipe axis as shown by a broken line to obtain a strip-like piece P1 having an arcuate cross section as shown in FIG. It is obtained by cutting both ends in the longitudinal direction of the strip-shaped piece P1 as shown by a chain line in FIG. Therefore, the fitting protrusion 22a protrudes from both ends in the longitudinal direction.

そして、羽根体22は、両側の嵌合突部22aを回転板21の嵌合穴24に嵌合させるとともに、接着固定することによって、等ピッチで中心軸に対して同じ角度となるとともに、最外縁が回転板21の端縁に一致した状態で、すなわち、最外縁が直径Rの仮想円上に一致した状態で回転板21間に固定されている。
また、羽根体22は、内径rの合成樹脂管Pをその管軸を含む面に沿って6等分割して得た断面円弧状の短冊状片P1から形成されているので、羽根体22の内弧面を含む仮想円の直径も同様にrとなる。
The blade body 22 is fitted with the fitting protrusions 22a on both sides in the fitting holes 24 of the rotating plate 21 and bonded and fixed, so that the blade body 22 has the same angle with respect to the central axis at an equal pitch. The outer edges are fixed between the rotating plates 21 in a state where the outer edges coincide with the end edges of the rotating plates 21, that is, in a state where the outermost edge coincides with a virtual circle having a diameter R.
Further, since the blade body 22 is formed from a strip-shaped piece P1 having an arc-shaped cross section obtained by dividing the synthetic resin pipe P having an inner diameter r into six equal parts along the surface including the tube axis, The diameter of the virtual circle including the inner arc surface is also r.

ガイドベーン部3は、図1及び図3に示すように、ステンレス鋼製の2枚の固定板31と、6枚のガイドベーン32とを備えている。
2枚の固定板31は、一方が風車本体2の上、他方が風車本体2の下に配置されて、回転板21から突設された回転軸23を、ベアリング34を介して回転自在に支持している。
ガイドベーン32は、羽根体22外側に対向するように、かつ互いに間隔をもって2つの固定板31間に立設されて、固定板31に溶接固定されていて、羽根体22方向へ空気流れを導くようになっている。
As shown in FIGS. 1 and 3, the guide vane unit 3 includes two fixing plates 31 made of stainless steel and six guide vanes 32.
One of the two fixed plates 31 is disposed above the windmill body 2 and the other is disposed below the windmill body 2, and rotatably supports the rotating shaft 23 protruding from the rotating plate 21 via a bearing 34. is doing.
The guide vane 32 is erected between the two fixed plates 31 so as to face the outer side of the blade body 22 and spaced from each other, and is welded and fixed to the fixed plate 31 to guide the air flow toward the blade body 22. It is like that.

そして、このクロスフロー風車1は、図7に示すように、矢印A方向から風が流れている場合、その風がガイドベーン32によって風車本体2に導かれ風車本体2の羽根体22に当たり、羽根体22が風力によって押され、風車本体2が回転軸23を中心に回転する。しかも、このとき、羽根体22の形状が断面円弧状をしているため、羽根体22の両側部分に流れる空気流によって揚力が発生し、これが羽根体22の回転力に加わることで実質的に回転トルクが増加することとなる。
また、風車本体2の回転板21と、回転板21との間には、羽根体22しか設けられておらず、中央部には、空気の流れを阻害するものがない空間部Sが形成されているとともに、2つの回転板21によって空間部Sの上下が閉鎖されているため、矢印で示す空気流に対して乱れを起こす要因がなく、よって、空間部Sにおけるクロスフローの発生、および羽根体22における揚力の発生が効果的に行われることとなる。
As shown in FIG. 7, when the wind flows from the direction of arrow A, the crossflow wind turbine 1 is guided to the wind turbine body 2 by the guide vane 32 and hits the blade body 22 of the wind turbine body 2. The body 22 is pushed by the wind force, and the windmill body 2 rotates around the rotation shaft 23. In addition, at this time, since the shape of the blade body 22 has an arc shape in cross section, lift is generated by the air flow flowing on both side portions of the blade body 22, which is substantially added to the rotational force of the blade body 22. The rotational torque will increase.
Further, only the blade body 22 is provided between the rotating plate 21 and the rotating plate 21 of the windmill body 2, and a space portion S that does not obstruct the flow of air is formed in the center portion. In addition, since the upper and lower portions of the space portion S are closed by the two rotating plates 21, there is no factor causing disturbance to the air flow indicated by the arrows. Therefore, the occurrence of crossflow in the space portion S and the blades The generation of lift in the body 22 is effectively performed.

しかも、羽根体22がゴム成分を含んだ耐衝撃性ポリ塩化ビニル系樹脂組成物で形成されているので、風車本体2が軽量化され微風でもよく回転するようになるとともに、耐衝撃性に優れ耐久性に富んだものとなる。
また、羽根体22が耐衝撃性ポリ塩化ビニル系樹脂組成物を押出成形して得た合成樹脂管を、その管軸を含む面に沿って6等分割して短冊状片の端部を加工するだけで形成されるので、安価に大量生産することができる。したがって、風車全体の製造コストを下げることができる。
In addition, since the blade body 22 is formed of an impact-resistant polyvinyl chloride resin composition containing a rubber component, the windmill body 2 is reduced in weight so that it can rotate even in a breeze and has excellent impact resistance. It is rich in durability.
Further, a synthetic resin tube obtained by extruding the impact-resistant polyvinyl chloride resin composition with the blade body 22 is divided into 6 equal parts along the surface including the tube axis to process the end of the strip-shaped piece. Since it is formed only by doing, it can be mass-produced at low cost. Therefore, the manufacturing cost of the whole windmill can be reduced.

図8は、上記クロスフロー風車1を備えた本発明の風力発電装置の1つの実施の形態をあらわしている。
図8に示すように、この風力発電装置Bは、上記クロスフロー風車1と、動力伝達手段4と、発電機5と、制御機6と、蓄電池7とを備えている。
FIG. 8 shows one embodiment of the wind power generator of the present invention provided with the crossflow wind turbine 1.
As shown in FIG. 8, the wind power generator B includes the crossflow wind turbine 1, power transmission means 4, a generator 5, a controller 6, and a storage battery 7.

クロスフロー風車1は、上下の回転軸23が固定板31に支持されたベアリング34に回転自在に支持されている。
また、クロスフロー風車1は、下方の固定板31が支持脚8によって設置面より上方に支持されている。
The crossflow wind turbine 1 is rotatably supported by a bearing 34 having upper and lower rotary shafts 23 supported by a fixed plate 31.
In the crossflow wind turbine 1, the lower fixing plate 31 is supported above the installation surface by the support legs 8.

動力伝達手段4は、プーリーやベルト、ギアなどからなり、回転軸23の回転力を発電機5に伝えるようになっている。
制御機6は、風力の変化により発電機5によって発電される電圧が安定しないため、インバータを用いて蓄電池7の特性に応じた電圧に変換制御するようになっている。
The power transmission means 4 includes a pulley, a belt, a gear, and the like, and transmits the rotational force of the rotary shaft 23 to the generator 5.
Since the voltage generated by the generator 5 is not stable due to a change in wind power, the controller 6 uses an inverter to convert and control the voltage according to the characteristics of the storage battery 7.

本発明は、上記の実施の形態に限定されるものではない。例えば、上記の実施の形態では、羽根体の外側の端縁が回転板の周縁に一致した状態で回転板間に固定されているが、各羽根体の最外縁を結ぶ仮想円の直径RがR>r>1/8Rを満足するならば、各羽根体の最外縁を回転板の周縁から内側(回転板の中心軸側)になるように設けても構わない。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the outer edge of the blade body is fixed between the rotating plates in a state where the outer edge of the blade body coincides with the periphery of the rotating plate, but the diameter R of the virtual circle connecting the outermost edges of the blade bodies is If R> r> 1 / 8R is satisfied, the outermost edge of each blade body may be provided so as to be inside from the periphery of the rotating plate (on the central axis side of the rotating plate).

また、上記の実施の形態では、羽根体の両端から嵌合突部が突出するように設けられていたが、短冊状片をそのまま回転板の対向面に接着固定するようにしても構わない。
さらに、羽根体は接着による固定だけでなく、融着やボルト固定でも構わない。
また、上記の実施の形態では、回転軸が上下の回転板のそれぞれに固定板方向に突出するように設けられていたが、強度を考慮すれば、1本の回転軸を上下の回転板を貫通するように設けてもよい。
In the above embodiment, the fitting protrusions are provided so as to protrude from both ends of the blade body. However, the strip-like pieces may be bonded and fixed to the opposing surfaces of the rotating plate as they are.
Furthermore, the blade body may be not only fixed by adhesion but also fused or bolted.
In the above embodiment, the rotating shaft is provided so as to protrude in the direction of the fixed plate on each of the upper and lower rotating plates. However, considering the strength, one rotating shaft is connected to the upper and lower rotating plates. You may provide so that it may penetrate.

以下に、本発明の具体的な実施例を比較例と対比させて説明するが、本発明は以下の実施例に限定されるものではない。   Specific examples of the present invention will be described below in comparison with comparative examples, but the present invention is not limited to the following examples.

(実施例1)
ポリ塩化ビニル樹脂(徳山積水工業社製、品番「TS−1000R」)に対して、有機錫系安定剤(三共有機合成社製、商品名「SNT−461K」)3重量部と、ステアリン酸カルシウム(堺化学社製、商品名「SC−100」)1重量部、ステアリン酸(ヘンケル白水社製、商品名「G−20」)1重量部とを含むポリ塩化ビニル系樹脂組成物を押出成形して内径125mm、外径140mmのポリ塩化ビニル系樹脂組成物からなる合成樹脂管Pを作製するとともに、得られた合成樹脂管を図5に示すように6等分にカットし、図6に示すように短冊状片(内弧面を含む仮想円の直径r=125mm)を作製した。
そして、この短冊状片の両端を切削加工して両端に嵌合突部が突設された長手方向の寸法が1200mmの羽根体を得た。
つぎに、厚さ5mmの汎用ポリ塩化ビニル板(積水成型社製)を外径400mmの円盤状に加工して得た2枚の回転板の対向面にそれぞれ等ピッチで22の嵌合穴を形成したのち、上記のようにして得られた22枚の羽根体を、嵌合突部を嵌合穴に嵌合し接着固定することによって22枚の羽根体をその最外縁が回転板の端縁に一致した状態で回転板間に立設した。すなわち、羽根体を、全ての羽根体の最外縁を通る仮想円の直径R=400mmとなった状態で回転板間に立設した。
また、上下の回転板にステンレス鋼製の回転軸を取り付けて風車本体を作製した。
そして、厚さ1mmのステンレス鋼板からなる外径が880mの固定板と、高さ寸法が1248mm、幅が315mmである厚さ1mmのステンレス鋼板からなる6枚のガイドベーンを有するガイドベーン部内に上記風車本体を、その回転軸を図中心に回転自在に収容してクロスフロー風車を得た(R=400mm、r=125mm、r/R=3/8)。
なお、固定板とガイドベーンとは、溶接によって固定した。
Example 1
3 parts by weight of an organic tin-based stabilizer (trade name “SNT-461K” manufactured by Sansha Kogyo Co., Ltd.) and calcium stearate with respect to the polyvinyl chloride resin (product number “TS-1000R” manufactured by Tokuyama Sekisui Industry Co., Ltd.) A polyvinyl chloride resin composition containing 1 part by weight (trade name “SC-100”, manufactured by Sakai Chemical Co., Ltd.) and 1 part by weight of stearic acid (trade name “G-20”, manufactured by Henkel Hakusui Co., Ltd.) is extruded. Then, a synthetic resin pipe P made of a polyvinyl chloride resin composition having an inner diameter of 125 mm and an outer diameter of 140 mm was prepared, and the obtained synthetic resin pipe was cut into six equal parts as shown in FIG. As shown, strip-shaped pieces (diameter r of the virtual circle including the inner arc surface r = 125 mm) were produced.
And the both ends of this strip-shaped piece were cut and the blade | wing body with the dimension of the longitudinal direction in which the fitting protrusion was protrudingly provided at both ends and 1200 mm was obtained.
Next, 22 fitting holes are formed at equal pitches on the opposing surfaces of the two rotating plates obtained by processing a 5-mm thick general-purpose polyvinyl chloride plate (manufactured by Sekisui Molding Co., Ltd.) into a disk shape having an outer diameter of 400 mm. After the formation, the 22 blades obtained as described above are fitted and fixed by fitting the fitting protrusions into the fitting holes, so that the outermost edges of the 22 blades are the ends of the rotating plate. It was erected between the rotating plates in a state where it coincided with the edge. That is, the blades were erected between the rotating plates in a state where the diameter R of the virtual circle passing through the outermost edge of all blades was R = 400 mm.
Further, a wind turbine body was manufactured by attaching a stainless steel rotating shaft to the upper and lower rotating plates.
And inside the guide vane section having a fixed plate made of a stainless steel plate having a thickness of 1 mm and an outer diameter of 880 m and six guide vanes made of a stainless steel plate having a height of 1248 mm and a width of 315 mm and made of 1 mm thick. The wind turbine main body was housed rotatably around its rotational axis to obtain a crossflow wind turbine (R = 400 mm, r = 125 mm, r / R = 3/8).
The fixed plate and the guide vane were fixed by welding.

(実施例2)
合成樹脂管Pを、ポリ塩化ビニル樹脂(徳山積水工業社製、品番「TS−1000R」)に対して、MBS(メチルメタクリレート−ブタジエン−スチレン共重合体)ゴム(三菱レーヨン社製、商品名「C−150S」)10重量部と、有機錫系安定剤(三共有機合成社製、商品名「SNT−461K」)3重量部と、ステアリン酸カルシウム(堺化学社製、商品名「SC−100」)1重量部、ステアリン酸(ヘンケル白水社製、商品名「G−20」)1重量部とを含むポリ塩化ビニル系樹脂組成物を押出成形して得た以外は、実施例1と同様にしてクロスフロー風車を得た(R=400mm、r=125mm、r/R=3/8)。
(Example 2)
The synthetic resin tube P is made of polyvinyl chloride resin (manufactured by Tokuyama Sekisui Kogyo Co., Ltd., product number “TS-1000R”), MBS (methyl methacrylate-butadiene-styrene copolymer) rubber (manufactured by Mitsubishi Rayon Co., Ltd., trade name “ C-150S ") 10 parts by weight, organotin stabilizer (trade name" SNT-461K "manufactured by Sansha Co., Ltd.), and calcium stearate (product name" SC-100 "manufactured by Sakai Chemical Co., Ltd.). And 1 part by weight of stearic acid (manufactured by Henkel Hakusui Co., Ltd., trade name “G-20”), except that the polyvinyl chloride resin composition was extruded and obtained. Thus, a crossflow wind turbine was obtained (R = 400 mm, r = 125 mm, r / R = 3/8).

(実施例3)
合成樹脂管Pとして、内径60mm、外径70mmのものを作製し、得られた合成樹脂管Pを図5の方法に準じて6等分にカットして得た短冊状片を用いた以外は、上記実施例1と同様にしてクロスフロー風車を得た(R=400mm、r=60mm、r/R=3/20)。
(Example 3)
A synthetic resin tube P having an inner diameter of 60 mm and an outer diameter of 70 mm was prepared, and the obtained synthetic resin tube P was cut into six equal parts according to the method of FIG. In the same manner as in Example 1, a crossflow wind turbine was obtained (R = 400 mm, r = 60 mm, r / R = 3/20).

(実施例4)
合成樹脂管Pとして、内径380mm、外径400mmのものを作製し、得られた合成樹脂管Pを図5の方法に準じて16等分にカットして得た短冊状片を用いた以外は、上記実施例1と同様にしてクロスフロー風車を得た(R=400mm、r=380mm、r/R=19/20)。
Example 4
A synthetic resin tube P having an inner diameter of 380 mm and an outer diameter of 400 mm was prepared, and the obtained synthetic resin tube P was cut into 16 equal parts according to the method of FIG. A crossflow wind turbine was obtained in the same manner as in Example 1 (R = 400 mm, r = 380 mm, r / R = 19/20).

(実施例5)
合成樹脂管Pを図5の方法に準じて20等分にカットして得た短冊状片を用いた以外は、上記実施例1と同様にしてクロスフロー風車を得た(R=400mm、r=125mm、r/R=3/8)。
(Example 5)
A cross-flow wind turbine was obtained in the same manner as in Example 1 except that a strip-like piece obtained by cutting the synthetic resin pipe P into 20 equal parts according to the method of FIG. 5 was used (R = 400 mm, r = 125 mm, r / R = 3/8).

(実施例6)
合成樹脂管Pを図5の方法に準じて21等分にカットして得た短冊状片を用いた以外は、上記実施例1と同様にしてクロスフロー風車を得た(R=400mm、r=125mm、r/R=3/8)。
(Example 6)
A cross-flow wind turbine was obtained in the same manner as in Example 1 except that a strip-like piece obtained by cutting the synthetic resin pipe P into 21 equal parts according to the method of FIG. 5 was used (R = 400 mm, r = 125 mm, r / R = 3/8).

(比較例1)
厚さ2mmのステンレス鋼板から外径400mmの回転板を作製するとともに、厚さ2mmのステンレス鋼板を用いて内径125mm外径129mmとなる円孤状で、弧角が実施例1の羽根体と同じで、長手方向寸法が1196mmの羽根体を作製し、この羽根体を回転板に溶接固定して風車本体を得た以外は、実施例1と同様にしてクロスフロー風車を得た(R=400mm、r=125mm、r/R=3/8)。
(Comparative Example 1)
A rotating plate having an outer diameter of 400 mm is manufactured from a stainless steel plate having a thickness of 2 mm, and is an arc shape having an inner diameter of 125 mm and an outer diameter of 129 mm using a stainless steel plate having a thickness of 2 mm. Then, a cross-flow windmill was obtained in the same manner as in Example 1 except that a blade body having a longitudinal dimension of 1196 mm was prepared and the blade body was welded and fixed to a rotating plate to obtain a windmill body (R = 400 mm). R = 125 mm, r / R = 3/8).

(比較例2)
合成樹脂管Pとして、内径20mm、外径26mmのものを作製し、得られた合成樹脂管Pを図5の方法に準じて2等分にカットして得た短冊状片を用いた以外は、上記実施例1と同様にしてクロスフロー風車を得た(R=400mm、r=20mm、r/R=1/20)。
(Comparative Example 2)
A synthetic resin pipe P having an inner diameter of 20 mm and an outer diameter of 26 mm was prepared, and the obtained synthetic resin pipe P was cut into two equal parts according to the method of FIG. A cross-flow wind turbine was obtained in the same manner as in Example 1 (R = 400 mm, r = 20 mm, r / R = 1/20).

(比較例3)
実施例1と同様のポリ塩化ビニル系樹脂組成物からなる偏平な合成樹脂板を幅70mm厚み7.5mmに切削加工した短冊状片を用いて羽根体を形成した以外は、実施例1と同様にしてクロスフロー風車を得た。
(Comparative Example 3)
Same as Example 1 except that a blade was formed using a strip-shaped piece obtained by cutting a flat synthetic resin plate made of the same polyvinyl chloride resin composition as in Example 1 into a width of 70 mm and a thickness of 7.5 mm. A crossflow windmill was obtained.

(比較例4)
合成樹脂管Pとして、内径50mm、外径60mmのものを作製し、得られた合成樹脂管Pを図5の方法に準じて6等分にカットして得た短冊状片を用いた以外は、上記実施例1と同様にしてクロスフロー風車を得た(R=400mm、r=50mm、r/R=1/8)。
(Comparative Example 4)
A synthetic resin tube P having an inner diameter of 50 mm and an outer diameter of 60 mm was prepared, and the obtained synthetic resin tube P was cut into six equal parts according to the method of FIG. In the same manner as in Example 1, a crossflow wind turbine was obtained (R = 400 mm, r = 50 mm, r / R = 1/8).

(比較例5)
合成樹脂管Pとして、内径400mm、外径420mmのものを作製し、得られた合成樹脂管Pを図5の方法に準じて16等分にカットして得た短冊状片を用いた以外は、上記実施例1と同様にしてクロスフロー風車を得た(R=400mm、r=400mm、r/R=1)。
(Comparative Example 5)
A synthetic resin tube P having an inner diameter of 400 mm and an outer diameter of 420 mm was prepared, and the obtained synthetic resin tube P was cut into 16 equal parts according to the method of FIG. A crossflow wind turbine was obtained in the same manner as in Example 1 (R = 400 mm, r = 400 mm, r / R = 1).

上記実施例1〜6及び比較例1〜5で得られたクロスフロー風車のそれぞれについて、風車本体の総重量、定格発電能力、羽根体の耐衝撃性を調べその結果を表1に示した。また、実施例1及び比較例1のクロスフロー風車については、負荷抵抗を変動させて発電能力(以下、「変動発電能力」と記す)を調べ、その結果を図9に示した。なお、図9中、塩ビロータが実施例1、SUSロータが比較例1を示す。   For each of the crossflow wind turbines obtained in Examples 1 to 6 and Comparative Examples 1 to 5, the total weight of the wind turbine body, the rated power generation capacity, and the impact resistance of the blades were examined, and the results are shown in Table 1. For the crossflow wind turbines of Example 1 and Comparative Example 1, the load resistance was varied to examine the power generation capacity (hereinafter referred to as “variable power generation capacity”), and the results are shown in FIG. In FIG. 9, the polyvinyl rotor shows Example 1, and the SUS rotor shows Comparative Example 1.

また、定格発電能力については、風車から水平方向に280mm離れた位置に置かれた送風機(静岡製機(株)、型番F-300KN)から、風車に向けて最大風力にて送風して、羽根体が回転する回転力を、回転軸に取り付けた発電機(藤井精密回転機製作所、型番SELLZ-1060)を用いて負荷抵抗100Ωで測定した。
羽根体の耐衝撃性については、上記定格発電能力評価で回転している羽根体に直径40mmの鉛塊をガイドべーンに当たらない方向から水平に約10m/sにて投入し羽根体の損傷を確認し、回転を継続し性能維持し続けたものを○、損傷はあるが回転し続けたものを△。破損してしまったものを×と評価した。
変動発電能力については、実施例1及び比較例1の風車について、送風機を風車から280mm離れた位置と、風車から520mm離れた位置の2箇所で負荷抵抗を変動させて測定した。
As for the rated power generation capacity, the fan is blown with the maximum wind force toward the wind turbine from the blower (Shizuoka Seisakusho Co., Ltd., model number F-300KN) placed 280 mm away from the wind turbine in the horizontal direction. The rotational force at which the body rotates was measured with a load resistance of 100Ω using a generator (Fujii Precision Rotating Machine, model SELLZ-1060) attached to the rotating shaft.
With regard to the impact resistance of the blade body, a lead block having a diameter of 40 mm is introduced into the rotating blade body in the above-mentioned rated power generation capacity evaluation horizontally at a rate of about 10 m / s from the direction not hitting the guide vane. Check for damage, ○ for those that continue to rotate and maintain performance, △ for those that continue to rotate with damage. What was damaged was evaluated as x.
The variable power generation capacity was measured for the wind turbines of Example 1 and Comparative Example 1 by varying the load resistance at two locations, a position where the blower was 280 mm away from the wind turbine and a position 520 mm away from the wind turbine.

Figure 2010185389
Figure 2010185389

上記表1から、本発明のクロスフロー風車は、軽量で発電効率に優れていることがよくわかる。また、実施例2のように、ゴム成分を含む合成樹脂管から羽根体を形成するようにすれば、耐衝撃性も向上することがわかる。   From Table 1 above, it can be clearly seen that the crossflow wind turbine of the present invention is lightweight and excellent in power generation efficiency. Further, it can be seen that if the blade body is formed from a synthetic resin tube containing a rubber component as in Example 2, the impact resistance is also improved.

本発明のクロスフロー風車は、特に限定されないが、例えば、小型風力発電装置に使用することができる。   Although the crossflow windmill of this invention is not specifically limited, For example, it can be used for a small wind power generator.

1 クロスフロー風車
2 風車本体
21 回転板
22 羽根体
3 ガイドベーン部
31 固定板
32 ガイドベーン
34 ベアリング
4 動力伝達手段
5 発電機
6 制御機
7 蓄電池
B 風力発電装置
P 合成樹脂管
P1 短冊状片
DESCRIPTION OF SYMBOLS 1 Crossflow windmill 2 Windmill main body 21 Rotating plate 22 Blade body 3 Guide vane part 31 Fixed plate 32 Guide vane 34 Bearing 4 Power transmission means 5 Generator 6 Controller 7 Storage battery B Wind power generator P Synthetic resin pipe P1 Strip-shaped piece

Claims (5)

中心軸周りに回転自在に支持された円盤状の回転板と、この回転板の周方向に等ピッチで回転板に立設された複数の羽根体とを有する風車本体を備えるクロスフロー風車において、
前記羽根体が、最外縁を前記回転板上の直径Rの仮想円に一致させた状態で回転板に立設されているとともに、内弧面を含む仮想円の直径rがR>r>1/8Rの関係を満足する断面円弧状をした合成樹脂製の短冊状片から形成されていることを特徴とするクロスフロー風車。
In a cross-flow wind turbine comprising a wind turbine body having a disk-shaped rotating plate supported rotatably around a central axis and a plurality of blade bodies standing on the rotating plate at an equal pitch in the circumferential direction of the rotating plate,
The blade body is erected on the rotating plate with its outermost edge coinciding with the virtual circle of diameter R on the rotating plate, and the diameter r of the virtual circle including the inner arc surface is R>r> 1 A cross-flow windmill characterized by being formed from a strip-shaped piece made of synthetic resin having a circular arc shape that satisfies the relationship of / 8R.
短冊状片が押出成形加工された合成樹脂管を合成樹脂管の管軸を含む面に沿って2〜20に等分割されて得られることを特徴とする請求項1に記載のクロスフロー風車。   The crossflow wind turbine according to claim 1, wherein the synthetic resin pipe obtained by extrusion-molding the strip-shaped piece is obtained by equally dividing the synthetic resin pipe into 2 to 20 along a surface including the pipe axis of the synthetic resin pipe. 風車本体の周囲を囲むようにガイドベーンを備えている請求項1または2に記載のクロスフロー風車。   The crossflow wind turbine according to claim 1 or 2, further comprising a guide vane so as to surround the periphery of the wind turbine body. 羽根体が、ゴム成分を含んだ耐衝撃性ポリ塩化ビニル系樹脂組成物で形成されている請求項1〜請求項3のいずれかに記載のクロスフロー風車。   The crossflow wind turbine according to any one of claims 1 to 3, wherein the blade body is formed of an impact-resistant polyvinyl chloride resin composition containing a rubber component. 請求項1〜請求項4のいずれかに記載のクロスフロー風車と、前記風車による回転駆動力を受けて発電する発電部とを搭載したことを特徴とする風力発電装置。   A wind turbine generator comprising: the crossflow wind turbine according to any one of claims 1 to 4; and a power generation unit that generates electric power by receiving a rotational driving force of the wind turbine.
JP2009030623A 2009-02-13 2009-02-13 Cross-flow wind mill and wind turbine generator Pending JP2010185389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030623A JP2010185389A (en) 2009-02-13 2009-02-13 Cross-flow wind mill and wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030623A JP2010185389A (en) 2009-02-13 2009-02-13 Cross-flow wind mill and wind turbine generator

Publications (1)

Publication Number Publication Date
JP2010185389A true JP2010185389A (en) 2010-08-26

Family

ID=42766190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030623A Pending JP2010185389A (en) 2009-02-13 2009-02-13 Cross-flow wind mill and wind turbine generator

Country Status (1)

Country Link
JP (1) JP2010185389A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022280A (en) * 2010-11-27 2011-04-20 上海大学 Design method of energy-cohesive and shielding force-lifting type vertical shaft wind or water machine
JP2012241709A (en) * 2011-05-24 2012-12-10 Kuma Juki Service:Kk Crossflow type vertical shaft wind turbine
KR101309438B1 (en) 2012-08-09 2013-09-23 송정한 Apparatus for wind power generator
JP2014020274A (en) * 2012-07-18 2014-02-03 chui-nan Qiu Window motion energy generating device improving wind energy conversion by omnidirectional wind power source
KR101467396B1 (en) * 2013-12-24 2014-12-03 여강현 verticality type wind power generators
KR101559047B1 (en) * 2013-11-26 2015-10-12 허봉락 Wind power generator
KR20180019136A (en) * 2018-02-05 2018-02-23 이세중 Vertical-axis wind power generator that maximizes output by collecting wind

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022280A (en) * 2010-11-27 2011-04-20 上海大学 Design method of energy-cohesive and shielding force-lifting type vertical shaft wind or water machine
JP2012241709A (en) * 2011-05-24 2012-12-10 Kuma Juki Service:Kk Crossflow type vertical shaft wind turbine
JP2014020274A (en) * 2012-07-18 2014-02-03 chui-nan Qiu Window motion energy generating device improving wind energy conversion by omnidirectional wind power source
KR101309438B1 (en) 2012-08-09 2013-09-23 송정한 Apparatus for wind power generator
WO2014025124A1 (en) * 2012-08-09 2014-02-13 Park Byoung Eok Wind power generator
KR101559047B1 (en) * 2013-11-26 2015-10-12 허봉락 Wind power generator
KR101467396B1 (en) * 2013-12-24 2014-12-03 여강현 verticality type wind power generators
KR20180019136A (en) * 2018-02-05 2018-02-23 이세중 Vertical-axis wind power generator that maximizes output by collecting wind

Similar Documents

Publication Publication Date Title
JP2010185389A (en) Cross-flow wind mill and wind turbine generator
Sengupta et al. Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams
US20110027084A1 (en) Novel turbine and blades
JP2011504214A5 (en)
US20120128500A1 (en) Turbines
WO2017115565A1 (en) Vertical wind power generation system, vertical hydropower generation system, and control method therefor
CA2547748A1 (en) Darrieus waterwheel turbine
Wong et al. The design and flow simulation of a power-augmented shroud for urban wind turbine system
Halmy et al. Computational fluid dynamics (cfd) study on the effect of the number of blades on the performance of double-stage savonius rotor
Kamoji et al. Experimental investigations on the effect of overlap ratio and blade edge conditions on the performance of conventional Savonius rotor
CN201433854Y (en) Helical flexible blade turbine
CN105756976A (en) Direct connection mixed flow fan
TW201710597A (en) Vertical axis-type hydroelectric power generating device and vertical axis-type hydroelectric power generating unit
CN105180417A (en) Inner and outer sleeved type stirring damping wind power heating device
JP5757617B2 (en) Darius vertical axis wind turbine, Darius vertical axis wind turbine blades, and Darius vertical axis wind turbine rotor
CN102979764A (en) Axial flow fan blade and fan
CN205605468U (en) Directly ally oneself with mixed flow fan
CN201687657U (en) Solar air power generation device
WO2017042740A1 (en) Hydraulic centrifugal axial horizontal turbine
GB1579493A (en) Axial flow fan for a reversible electric rotating machine
US20210348595A1 (en) Fluid turbine
KR100613130B1 (en) A turbine for generating power by flow of fluid
CN204267228U (en) A kind of torque output device
GB2495285A (en) Axial flow helical water or wind turbine
CN109356787A (en) Low wind speed self-starting vertical axis rises resistance composite type wind power generator wind wheel structure