JP2010185098A - Iron-based material and surface treatment method for iron-based material - Google Patents

Iron-based material and surface treatment method for iron-based material Download PDF

Info

Publication number
JP2010185098A
JP2010185098A JP2009028675A JP2009028675A JP2010185098A JP 2010185098 A JP2010185098 A JP 2010185098A JP 2009028675 A JP2009028675 A JP 2009028675A JP 2009028675 A JP2009028675 A JP 2009028675A JP 2010185098 A JP2010185098 A JP 2010185098A
Authority
JP
Japan
Prior art keywords
iron
based material
improving
hardness
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009028675A
Other languages
Japanese (ja)
Other versions
JP5258611B2 (en
Inventor
Takeshi Monotane
武士 物種
Yoshimizu Takeno
祥瑞 竹野
Masahiro Hanai
正博 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009028675A priority Critical patent/JP5258611B2/en
Publication of JP2010185098A publication Critical patent/JP2010185098A/en
Application granted granted Critical
Publication of JP5258611B2 publication Critical patent/JP5258611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method for obtaining an alloy layer which has such a thin thickness as several hundreds μm or less from the surface, has a fine structure, and has the composition with improved uniformity. <P>SOLUTION: This surface treatment method includes: employing a steel sheet 5 formed from a Fe-C steel as an example of an iron-based material 5; forming a layer 4 on the surface, which is formed from a material for enhancing hardness and a material for enhancing a surface tension; and irradiating the layer 4 with an electron beam 3 which is emitted toward the layer 4 from an electron beam irradiation device provided on the upper part of the layer 4 so that the energy density on the surface of the layer 4 is approximately 1.0×10<SP>4</SP>W/m<SP>2</SP>to 1.5×10<SP>5</SP>W/m<SP>2</SP>and particularly 5×10<SP>4</SP>W/m<SP>2</SP>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄系材料および鉄系材料の表面処理法に関するものである。   The present invention relates to an iron-based material and a surface treatment method for the iron-based material.

各種の金型や金属部品は、熱的あるいは機械的な負荷がかかるので、従来から耐久性、耐摩耗性、硬度等の機械的特性の向上のためにそれらの表面を改質することが行われている。かかる表面改質の一手法として、改質対象となる材料の表面に適当な改質用材料を皮膜し、アーク、電子ビーム、あるいはレーザなどの高エネルギービームを照射することにより改質対象材料と改質用材料とを溶融凝固させ、改質対象材料よりも優れた機械的特性を持つ合金層を形成する技術が提案されている。   Since various molds and metal parts are subjected to thermal or mechanical loads, their surfaces have conventionally been modified to improve mechanical properties such as durability, wear resistance, and hardness. It has been broken. As a method for such surface modification, a material for modification is coated on the surface of the material to be modified and irradiated with a high energy beam such as an arc, an electron beam, or a laser. A technique for melting and solidifying a reforming material to form an alloy layer having mechanical properties superior to those of the material to be reformed has been proposed.

例えば特許文献1には、高合金化用元素を含有する金属または合金の粉末と後述の予備加熱処理でタールピッチ状物質となるアクリル系粘着性結合材などを混練、成形して作成したシートを、非酸化性雰囲気下、150〜380℃で5分間以上保持する予備加熱処理を施した後、金属部材表面の高合金化すべき部位に接着し、その後、前記高合金化すべき部位を、高エネルギー密度の加熱手段で局部加熱溶融して高合金化することを特徴とする金属表面の高合金化法、が提案されている。   For example, Patent Document 1 discloses a sheet prepared by kneading and molding a metal or alloy powder containing a high alloying element and an acrylic adhesive binder that becomes a tar pitch-like substance by a preheating treatment described later. Then, after preheating treatment that is held at 150 to 380 ° C. for 5 minutes or more in a non-oxidizing atmosphere, the metal member surface is bonded to a portion to be highly alloyed, and then the portion to be highly alloyed is treated with high energy. There has been proposed a high alloying method for a metal surface, which is characterized by locally heating and melting with a density heating means to form a high alloy.

特許文献2には、金属母材表面の被合金化部位に目立て加工を施し、この目立ての凹部に金属または合金の粉末を供給し、レーザ光を照射して、目立ての凸部と目立ての凹部に供給した金属または合金の粉末とを共に溶融して合金化することを特徴とするレーザによる金属表面合金化法が提案されている。   Japanese Patent Laid-Open No. 2003-228867 provides a sharpening process for a part to be alloyed on the surface of a metal base material, supplies a metal or alloy powder to the concave part of the sharpening, and irradiates a laser beam so that the sharpening convex part and the sharpening concave part There has been proposed a metal surface alloying method using a laser characterized in that a metal or alloy powder supplied to the metal is melted and alloyed together.

また、合金層の形成技術ではないが、特許文献3には上記特許文献1、2と類似の技術として、金属板を互いに突合わせ、該突合わせ部を加熱し、溶融池を形成して下向き溶接する金属材料の溶接方法において、前記金属板の突合わせ面間に、表面張力の温度依存性が正の表面活性元素、即ち所定値以上含むと温度上昇に連れて溶融池の表面張力が増加する表面活性元素を含有する物質からなるフィルムを配置し、前記突合わせ部と共に溶融させ、溶融池中の表面活性元素の濃度を前記所定値以上にして溶融池表面部の対流の方向を最高温度となる点へ向かう様にすることを特徴とする金属材料の溶接方法が提案されている。   Further, although it is not a technique for forming an alloy layer, Patent Document 3 discloses a technique similar to Patent Documents 1 and 2 described above. In the welding method of the metal material to be welded, the surface tension of the molten pool increases as the temperature rises when the temperature dependence of the surface tension is a positive surface active element between the butt surfaces of the metal plates, that is, when it exceeds a predetermined value. A film made of a substance containing a surface active element is disposed and melted together with the butt portion, and the concentration of the surface active element in the molten pool is set to the predetermined value or more, and the convection direction on the surface of the molten pool is the highest temperature. There has been proposed a welding method of a metal material characterized by being directed to the point.

特開平2−045705号公報JP-A-2-045705 特公昭61−139682号公報Japanese Patent Publication No. 61-139682 特開平9−192831号公報JP-A-9-192831

解決しようとする課題は、特許文献1に記載されているような熱源にアークを用いた処理法では、表面から深く溶融させることができ、厚い合金層を得ることができるが、熱源の性質上、表面から数百μm以下の薄い合金層を得ることは難しく、また冷却速度が遅いために微細な組織を持つ合金層を得ることができない点である。   The problem to be solved is that a treatment method using an arc as a heat source as described in Patent Document 1 can be melted deeply from the surface and a thick alloy layer can be obtained. It is difficult to obtain a thin alloy layer of several hundred μm or less from the surface, and an alloy layer having a fine structure cannot be obtained due to a slow cooling rate.

一方、特許文献2に記載されているような、熱源にレーザを用いた処理法や電子ビームを用いた処理法では、表面から数百μm以下の浅い領域のみを溶融させることができ、急冷することができるので、微細な組織を持つ合金層を得ることができる。しかし、急冷のために添加元素が十分に母材に攪拌されずに凝固し、合金層の組成に偏りが生じる問題がある。特許文献3は、上記の通り、金属材料の溶接方法に関する技術である。   On the other hand, in a processing method using a laser as a heat source or a processing method using an electron beam as described in Patent Document 2, only a shallow region of several hundred μm or less from the surface can be melted and rapidly cooled. Therefore, an alloy layer having a fine structure can be obtained. However, there is a problem that the additive element is solidified without being sufficiently stirred by the base material due to rapid cooling, and the composition of the alloy layer is biased. Patent Document 3 is a technique related to a method for welding a metal material as described above.

本発明は、上記の諸問題を解決するためになされたもので、表面から数百μm以下の浅く、その組織は微細でかつ組成の均一性が改善された合金層を有する鉄系材料および表面処理方法を提案することにある。   The present invention has been made in order to solve the above-mentioned problems. An iron-based material having an alloy layer having a shallow structure of several hundred μm or less from the surface, a fine structure, and improved composition uniformity, and the surface It is to propose a processing method.

本発明の鉄系材料は、鉄を主成分とし、厚みが0.1μm〜500μmで硫黄含有量が0.015質量%以下の合金層を有することを特徴とするものである。   The iron-based material of the present invention is characterized by having an alloy layer containing iron as a main component and having a thickness of 0.1 μm to 500 μm and a sulfur content of 0.015 mass% or less.

本発明の表面処理方法は、鉄系材料の表面に上記鉄系材料の表面硬度を向上させる硬度向上材料と上記鉄系材料の溶融状態での表面張力を向上させる表面張力向上材料とが存在する状態下で、上記表面にエネルギー密度が5×10W/mm〜5×10W/mmのエネルギーを付与して上記硬度向上材料と表面張力向上材料と共に上記表面を加熱して上記表面を溶融し、鉄を主成分とする合金層を形成することを特徴とするものである。 In the surface treatment method of the present invention, a hardness improving material for improving the surface hardness of the iron-based material and a surface tension improving material for improving the surface tension in the molten state of the iron-based material exist on the surface of the iron-based material. Under the condition, the surface is heated with the hardness improving material and the surface tension improving material by applying an energy density of 5 × 10 3 W / mm 2 to 5 × 10 5 W / mm 2 to the surface. The surface is melted to form an alloy layer mainly composed of iron.

本発明の他の表面処理方法は、鉄系材料の表面に上記鉄系材料の表面硬度を向上させる機能と上記鉄系材料の溶融状態での表面張力を向上させる表面張力向上機能とを有する両機能材料が存在する状態下で、上記表面にエネルギー密度が5×10W/mm〜5×10W/mmのエネルギーを付与して上記両機能材料と共に上記表面を加熱して上記表面を溶融し、鉄を主成分とする合金層を形成することを特徴とするものである。 Another surface treatment method of the present invention has both a function of improving the surface hardness of the iron-based material on the surface of the iron-based material and a surface tension improving function of improving the surface tension in the molten state of the iron-based material. In the state where the functional material is present, the surface is heated with the both functional materials by applying energy having an energy density of 5 × 10 3 W / mm 2 to 5 × 10 5 W / mm 2 to the surface. The surface is melted to form an alloy layer mainly composed of iron.

図5は、従来技術における金属の溶融池2内での対流1の様子を示すのもであって、マランゴニ対流が知られている。これは、溶融池2内の表面張力の勾配によって発生する。表面張力は、一般の鋼材では温度依存性が負、つまり温度の上昇とともに表面張力が小さくなる。このため、従来技術における溶融池2内では図5に示すように表面では溶融池中心から周辺への対流1が生じる。   FIG. 5 shows the state of the convection 1 in the metal molten pool 2 in the prior art, and Marangoni convection is known. This is caused by the surface tension gradient in the weld pool 2. The surface tension of a general steel material has a negative temperature dependency, that is, the surface tension decreases as the temperature increases. For this reason, in the molten pool 2 in the prior art, as shown in FIG. 5, convection 1 from the molten pool center to the periphery is generated on the surface.

これに対して、本発明においては硫黄などの表面張力向上材料を使用するので、図4に基づいて後記するように、図5とは逆方向の対流1が生じて組成に偏りのない均一な合金層が鉄系材料の表面に形成され、かくして当該鉄系材料の機械的特性が改善される。   In contrast, in the present invention, since a surface tension improving material such as sulfur is used, convection 1 in the direction opposite to that in FIG. An alloy layer is formed on the surface of the iron-based material, thus improving the mechanical properties of the iron-based material.

なお、通常の金属精製過程での脱硫行程において、金属内に0.05質量%程度以上の硫黄が固溶すると、硫黄の偏析や硫黄化合物などが生じて金属の信頼性が低下する。このため、従来から溶融処理法の過程に硫黄を混入させることは避けられてきた。しかし、本発明では熱原にレーザや電子ビーム等の高密度エネルギービームを適切な条件、即ちエネルギー密度が5×10W/mm〜5×10W/mmの条件下で用いることにより溶融時に硫黄が多少存在しても、硫黄の沸点は450℃付近と一般の金属の融点に比べ大幅に低いので、大部分は気化し凝固後の改質層にはほとんど含まれない。 In addition, in the desulfurization process in a normal metal refining process, when about 0.05 mass% or more of sulfur is dissolved in the metal, sulfur segregation, sulfur compounds, and the like are generated, and the reliability of the metal is lowered. For this reason, it has conventionally been avoided to incorporate sulfur into the process of the melt treatment method. However, in the present invention, a high-density energy beam such as a laser or an electron beam is used as a heat source under an appropriate condition, that is, an energy density of 5 × 10 3 W / mm 2 to 5 × 10 5 W / mm 2. Thus, even if some sulfur is present at the time of melting, the boiling point of sulfur is around 450 ° C., which is much lower than the melting point of general metals.

また、熱源にレーザや電子ビームを上記表面に上記のエネルギー密度範囲で付与して用いるために溶融層を浅くすることができ、大きな冷却速度が得られるため、微細な合金層が得られる。また、レーザや電子ビーム等の高密度エネルギービームを上記の適切な条件にて用いることにより、硫黄などの表面張力向上材料の働きを損なうことなく溶融池内に硬度向上材料を攪拌させる対流を生じ、組成に偏りのない、均一で含有する硫黄などの表面張力向上材料が0.015質量%以下である合金層が形成される。   Further, since a laser or electron beam is applied to the surface in the above-mentioned energy density range for use as a heat source, the molten layer can be made shallow and a large cooling rate can be obtained, so that a fine alloy layer can be obtained. In addition, by using a high-density energy beam such as a laser or an electron beam under the above-described appropriate conditions, convection is caused to stir the hardness improving material in the molten pool without impairing the function of the surface tension improving material such as sulfur, An alloy layer in which the composition is uniform and the surface tension improving material such as sulfur is uniformly contained in an amount of 0.015% by mass or less is formed.

本発明の実施例1〜7の説明図である。It is explanatory drawing of Examples 1-7 of this invention. 本発明の実施例8の説明図であるIt is explanatory drawing of Example 8 of this invention. 本発明の実施例10の説明図である。It is explanatory drawing of Example 10 of this invention. 本発明における溶融池内での対流の様子の説明図である。It is explanatory drawing of the mode of the convection in the molten pool in this invention. 従来技術における溶融池内での対流の様子の説明図である。It is explanatory drawing of the mode of the convection in the molten pool in a prior art.

図1〜図4は、本発明の表面処理法を説明するものであって、それらの図において、鉄系材料の例として厚さ1mm〜5mm程度の各種の鋼からなる鋼板5が用いられ、当該鋼板5の表面に、前記した硬度向上材料と表面張力向上材料とからなる層4(図1)または層6(図2および図3)が形成され、層4または層6の上方に設置された電子ビーム照射装置(図示せず)から電子ビーム3が層4または層6に向かって照射される。層4は、硬度向上材料と表面張力向上材料との単なる物理的混合物からなり、層6は当該両材料を予め通常の融解・凝固方法にて固溶体または金属間化合物などとして合金化し、薄膜状に加工したものであって鋼板5の被加工面上に密着される。当該薄膜の厚みは、溶融池が鋼板5に至るように薄膜であることが好ましく、例えば300μm程度またはそれ以下であることが好ましい。   1 to 4 illustrate the surface treatment method of the present invention. In these drawings, steel plates 5 made of various steels having a thickness of about 1 mm to 5 mm are used as examples of iron-based materials. A layer 4 (FIG. 1) or 6 (FIGS. 2 and 3) made of the above-described hardness improving material and surface tension improving material is formed on the surface of the steel plate 5, and is placed above the layer 4 or 6. The electron beam 3 is irradiated toward the layer 4 or the layer 6 from an electron beam irradiation apparatus (not shown). The layer 4 consists of a mere physical mixture of a hardness improving material and a surface tension improving material, and the layer 6 is alloyed as a solid solution or an intermetallic compound by a conventional melting / solidification method in advance to form a thin film. It is processed and is in close contact with the processed surface of the steel plate 5. The thickness of the thin film is preferably a thin film so that the molten pool reaches the steel plate 5, and is preferably about 300 μm or less, for example.

図4は、本発明における溶融池内での溶融物の対流の状態を示す断面図である。本発明においては硫黄などの表面張力向上材料を使用するので、表面張力の温度依存性が正、つまり温度の上昇とともに表面張力が大きくなる。このため、図4に示すように溶融池内では、表面では周辺から溶融池中心に向かう対流が生じる。この結果、照射前に表面に施与した硬度向上材料や表面張力向上材料が対流により溶融池内へと巻き込まれ、溶融した鉄系材料と良好に攪拌されて凝固し、組成に偏りのない均一な合金層が鉄系材料の表面に形成され、かくして当該鉄系材料の機械的特性が改善される。   FIG. 4 is a cross-sectional view showing a convection state of the melt in the molten pool in the present invention. In the present invention, since a surface tension improving material such as sulfur is used, the temperature dependence of the surface tension is positive, that is, the surface tension increases as the temperature rises. For this reason, as shown in FIG. 4, in the molten pool, convection flows from the periphery toward the molten pool center on the surface. As a result, the hardness improving material and surface tension improving material applied to the surface before irradiation are entrained in the molten pool by convection, and are agitated and solidified well with the molten iron-based material, so that there is no bias in the composition. An alloy layer is formed on the surface of the iron-based material, thus improving the mechanical properties of the iron-based material.

本発明における上記鉄系材料としては、各種の鉄鉱石を還元して得られる各種の鉄および当該鉄から得られる鋼、例えばフェライト系ステンレス、マルテンサイト系ステンレス、オーステナイト系ステンレスなどである。当該鉄系材料の上記硬度、耐錆性向上材料としては、Cr、B、N、Ni、Si、Ti、Mo、Wなど、またはそれらの各化合物であって、本発明ではそれらから選ばれた少なくとも一種または二種以上が用いられる。上記各化合物としては、Cr、B、N、Ni、Si、Ti、Mo、W の各窒化物、あるいは各硫酸塩、各塩酸塩、各硝酸塩、各酢酸塩などの酸塩類などである。またBとNとは、窒化硼素(BN)として、就中50nm以下の微粉末として用いると、その場合には硼素と窒素とが合金層に均一に分散し、当該両者が上記鉄系材料の靭性や硬度をさらに増加させる効果がある。上記硬度向上材料として特に好ましいものは、B、N、Mo、Wなど、またはそれらの各化合物である。   Examples of the iron-based material in the present invention include various irons obtained by reducing various iron ores and steels obtained from the iron, such as ferritic stainless steel, martensitic stainless steel, and austenitic stainless steel. As the material for improving the hardness and rust resistance of the iron-based material, Cr, B, N, Ni, Si, Ti, Mo, W, etc., or their respective compounds, which are selected from them in the present invention. At least one or two or more are used. Examples of the above compounds include nitrides of Cr, B, N, Ni, Si, Ti, Mo, and W 3, or acid salts such as sulfates, hydrochlorides, nitrates, and acetates. B and N are boron nitride (BN), especially when used as fine powder of 50 nm or less. In that case, boron and nitrogen are uniformly dispersed in the alloy layer, and both of them are made of the iron-based material. It has the effect of further increasing toughness and hardness. Particularly preferred as the material for improving hardness is B, N, Mo, W, etc., or their respective compounds.

本発明における上記表面張力向上材料としては、S、Te、Se、O、Sn、Yなど、またはそれらの各化合物であって、本発明ではそれらから選ばれた少なくとも一種または二種以上が用いられる。SおよびOは、Sガス、酸素ガス、あるいは亜硫酸ガスとして使用してもよい。前記の両機能材料としては、Cr、B、N、Ni、Si、P、Ti、Mo、Wの各硫化物や酸化物が例示される。またTe、Se、Sn、Yは、各硫化物、各酸化物、各硫酸塩、各塩酸塩、各硝酸塩、各酢酸塩などとして使用してよい。   As the surface tension improving material in the present invention, S, Te, Se, O, Sn, Y, etc., or their respective compounds, and in the present invention, at least one or two or more selected from them are used. . S and O may be used as S gas, oxygen gas, or sulfurous acid gas. Examples of both functional materials include Cr, B, N, Ni, Si, P, Ti, Mo, and W sulfides and oxides. Te, Se, Sn, and Y may be used as sulfides, oxides, sulfates, hydrochlorides, nitrates, acetates, and the like.

上記硬度向上材料、上記表面張力向上材料および上記両機能材料のうち、後記するエネルギー付与の際に固体のもの、特に上記硬度向上材料は、その平均粒径が10μm以下のもの、特に0.5μm〜2μmの径範囲内のものが好ましい。なお本発明における各種粒子の平均粒径は、何れもレーザ回折式粒度分布測定から得たものであって、測定した粒度分布において、粒径の小さい方からの積算体積が50%に達した際の粒子径(D50)とする。また、粒子分布は測定した粒度分布において、粒径の小さい方からの積算体積が10%に達した際の粒子径(D10)が、D50の1/10以上で、粒径の小さい方からの積算体積が90%に達した際の粒子径(D90)がD50の10倍以下であればよいとする。   Of the above-mentioned hardness improving material, the above surface tension improving material, and the above both functional materials, those that are solid when energy is applied, particularly the above hardness improving material, have an average particle size of 10 μm or less, particularly 0.5 μm. Those within a diameter range of ˜2 μm are preferable. The average particle diameters of the various particles in the present invention are all obtained from laser diffraction particle size distribution measurement. In the measured particle size distribution, the cumulative volume from the smaller particle diameter reaches 50%. Particle diameter (D50). In addition, the particle size distribution is the measured particle size distribution, when the cumulative volume from the smaller particle size reaches 10%, the particle size (D10) is 1/10 or more of D50. Assume that the particle diameter (D90) when the integrated volume reaches 90% may be 10 times or less of D50.

後記するエネルギー付与の際に上記鉄系材料の表面の改質に寄与する限り、粉体あるいは粒体の状態で使用しても良いが、水や有機液体に分散させてペースト状として用いると、上記諸材料の鉄系材料の表面への施与が容易で且つ確実となり、その結果、鉄系材料の改質効果が安定するので好ましい。上記の有機液体としては、リグロイン、石油ベンジン、ガソリンなどの石油系類、アセトン、メチルエチルケトンなどのケトン類、イソプロピルアルコール、ノルマルヘキサンなどのその他の有機液体類などである。なお上記ペースト状物の代えてスプレーにて塗布してもよい。なおSおよびOの供給は、気体状態で後記するエネルギー付与室内に存在せしめることでもよい。   As long as it contributes to the modification of the surface of the iron-based material at the time of energy application described later, it may be used in a powder or granular state, but when dispersed in water or an organic liquid and used as a paste, Application of the above materials to the surface of the iron-based material is easy and reliable, and as a result, the modification effect of the iron-based material is stabilized, which is preferable. Examples of the organic liquid include petroleum-based products such as ligroin, petroleum benzine, and gasoline, ketones such as acetone and methyl ethyl ketone, and other organic liquids such as isopropyl alcohol and normal hexane. In addition, you may apply | coat with a spray instead of the said paste-form thing. The supply of S and O may be present in an energy application chamber described later in a gaseous state.

上記のペースト状のもの、もしくは上記スプレーに塗布する際の塗布する厚みは、大きすぎると溶融池が鋼板5に至らないので300μm以下、例えば10μm〜200μm程度が望ましい。かかる塗布後、室温または鋼板5に変態がおきない程度の温度にて乾燥させ、有機溶剤を蒸発させる。当該温度は、鋼板5の組成によって多少変化するが、一般的には450℃〜600℃程度であって、例えばフェライト系ステンレスでは500℃〜550℃、マルテンサイト系ステンレスでは450℃〜500℃、オーステナイト系ステンレスでは500℃〜600℃である。   If the paste is applied to the paste or the spray is too thick, the molten pool will not reach the steel plate 5 if it is too large, so it is preferably 300 μm or less, for example, about 10 μm to 200 μm. After such application, the organic solvent is evaporated by drying at room temperature or a temperature at which the steel plate 5 does not undergo transformation. The temperature varies somewhat depending on the composition of the steel plate 5, but is generally about 450 ° C. to 600 ° C., for example, 500 ° C. to 550 ° C. for ferritic stainless steel, 450 ° C. to 500 ° C. for martensitic stainless steel, In austenitic stainless steel, the temperature is 500 ° C to 600 ° C.

その後、電子ビームを照射し、添加元素と母材を溶融させる。ビームの照射は大きな冷却速度を得るため、表層から500μm以下の溶融層が望ましく、硫黄の気化による除去のことを考えると、電子ビームの照射条件は加速電圧20〜40keVであり、鋼板5の表面におけるエネルギー密度が5×10W/mm〜5×10W/mmであることが望ましい。なお、合金層に固溶する元素の成分比率は塗布量とビームエネルギーを調節することで変えることができる。 Thereafter, the electron beam is irradiated to melt the additive element and the base material. In order to obtain a large cooling rate, irradiation with the beam requires a molten layer of 500 μm or less from the surface layer. Considering removal by sulfur vaporization, the irradiation condition of the electron beam is an acceleration voltage of 20 to 40 keV, and the surface of the steel plate 5 It is desirable that the energy density in is 5 × 10 3 W / mm 2 to 5 × 10 5 W / mm 2 . The component ratio of the element dissolved in the alloy layer can be changed by adjusting the coating amount and the beam energy.

このように、本発明では急冷により微細な組織を持ち、硫黄などの働きにより溶融池内に添加元素を攪拌させる対流を生じ、組成に偏りのない、均一な合金層を形成することができる。また、有機溶剤によってペースト状にし、塗布するため、複雑な形状であっても合金層を得ることができる。   Thus, in the present invention, a uniform alloy layer having a fine structure by rapid cooling and causing convection to stir the additive element in the molten pool by the action of sulfur or the like and having no composition bias can be formed. Moreover, since it is made into a paste form with an organic solvent and applied, an alloy layer can be obtained even in a complicated shape.

上記した各材料の施与量は、施与後の上記鉄系材料の質量%が、硬度向上材料では一般的に0.01〜20質量%好ましくは、Cr、Niであれば5〜20質量%、N、Si、Ti、Mo、Wであれば0.1〜5質量%、Bであれば0.01〜2質量%であり、上記表面張力向上材料のうちで施与時における温度において液体または固体のもので一般的に0.005〜1質量%好ましくは0.01〜0.5質量%であり、上記両機能材料は上記硬度向上材料と上記表面張力向上材料の各施与量に対応する量である。なお上記表面張力向上材料がSおよびOのようなエネルギー付与時の高温度では気体の場合は、それらはエネルギー付与室内の気層中に存在せしめられるが、その際の存在せしめられる量は、後記するエネルギー付与強度と付与時間の条件に基づいて気層中から上記鉄系材料の表面に形成される層4中または層6中に移行可能な量であって、例えば亜硫酸ガスを使用する場合は、亜硫酸ガスを1〜2容量%程度含有する大気や窒素などを用い、それらを図3に示すようにガスノズル7から層6に向けて供給するとよい。   The application amount of each of the materials described above is generally 0.01 to 20% by mass in the case of a material for improving the hardness of the iron-based material after application, and preferably 5 to 20% in the case of Cr or Ni. %, N, Si, Ti, Mo, W, 0.1 to 5% by mass, and B, 0.01 to 2% by mass. The liquid or solid material is generally 0.005 to 1% by mass, preferably 0.01 to 0.5% by mass, and both functional materials are each applied amount of the hardness improving material and the surface tension improving material. Is the amount corresponding to. When the surface tension improving material is a gas at a high temperature during energy application such as S and O, they are present in the gas layer in the energy application chamber, but the amount to be present at that time is described later. Is an amount that can be transferred from the gas layer to the layer 4 or the layer 6 formed on the surface of the iron-based material based on the conditions of the energy application strength and the application time to be used, for example, when using sulfurous acid gas In addition, air or nitrogen containing about 1 to 2% by volume of sulfurous acid gas may be used and supplied from the gas nozzle 7 toward the layer 6 as shown in FIG.

上記各材料が施与された後、上記表面にエネルギーを付与する。その際の施与エネルギーが過大であると上記硬度向上材料の完全蒸散の問題があり、当該エネルギーが過少であると上記鉄系材料の不溶融の問題がある。よって本発明では、エネルギー密度にして5×10W/mm〜5×10W/mm程度、好ましくは1×10W/mm〜5×10W/mm程度、特に1×10W/mm〜8×10W/mm程度のエネルギーを付与し、上記硬度向上材料と表面張力向上材料を溶融させて合金層を形成する。上記のエネルギー付与方法としては特に制限はなく、例えばアーク、レーザ、電子ビームなどによる照射が例示される。以下、実施例により本発明を一層詳細に説明する After each material is applied, energy is applied to the surface. If the application energy at that time is excessive, there is a problem of complete transpiration of the hardness improving material, and if the energy is excessive, there is a problem of non-melting of the iron-based material. Therefore, in the present invention, the energy density is about 5 × 10 3 W / mm 2 to 5 × 10 5 W / mm 2 , preferably about 1 × 10 4 W / mm 2 to 5 × 10 5 W / mm 2 , especially Energy of about 1 × 10 4 W / mm 2 to 8 × 10 4 W / mm 2 is applied, and the hardness improving material and the surface tension improving material are melted to form an alloy layer. There is no restriction | limiting in particular as said energy provision method, For example, irradiation by an arc, a laser, an electron beam etc. is illustrated. Hereinafter, the present invention will be described in more detail with reference to examples.

図1は、本発明の実施例1における表面処理法を説明するものである。図1において、鉄系材料5例として厚さ3mmのFe−C鋼からなる鋼板5が用いられた。当該鋼板5の表面に、前記した硬度向上材料と表面張力向上材料との混合物からなる層4が形成され、層4の上方に設置された電子ビーム照射装置(図示せず)から電子ビーム3が層4に向かって照射された。硬度向上材料および表面張力向上材料として、平均粒径0.5μmの二硫化モリブデンが用いられ、ノルマルヘキサンと均一に混合してペースト状とされ、得られたペースト状物を用いて厚さ約20μmの層4が形成され、電子ビーム3が層4に向かって層4の表面におけるエネルギー密度が5×10W/mmであるように、且つ1分にわたり照射された。 FIG. 1 illustrates a surface treatment method in Example 1 of the present invention. In FIG. 1, a steel plate 5 made of Fe-C steel having a thickness of 3 mm was used as an example of five iron-based materials. A layer 4 made of a mixture of the above-described hardness improving material and surface tension improving material is formed on the surface of the steel plate 5, and an electron beam 3 is emitted from an electron beam irradiation device (not shown) installed above the layer 4. Irradiation towards layer 4. Molybdenum disulfide having an average particle diameter of 0.5 μm is used as the hardness improving material and the surface tension improving material, and is uniformly mixed with normal hexane to form a paste. Layer 4 was formed, and the electron beam 3 was irradiated toward the layer 4 so that the energy density at the surface of the layer 4 was 5 × 10 4 W / mm 2 and for 1 minute.

上記の電子ビーム照射により、鋼板5の表面に上記層4の材料と鋼板5からの鉄とから形成された平均厚さが50μmの合金層が形成された。また、当該合金層についてEPMAの方法で測定した硫黄含有量は0.01質量%以下であって、実施例1から得られた上記合金層を有する鋼板5は、微小ビッカース硬さ試験の方法(以下同様)で評価した表面硬度は380HVであって、改質前のそれと比較して120%の程度に改善されていた。   By the electron beam irradiation, an alloy layer having an average thickness of 50 μm formed from the material of the layer 4 and iron from the steel plate 5 was formed on the surface of the steel plate 5. Moreover, the sulfur content measured by the method of EPMA about the said alloy layer is 0.01 mass% or less, Comprising: The steel plate 5 which has the said alloy layer obtained from Example 1 is the method of a micro Vickers hardness test ( The surface hardness evaluated in the following) was 380 HV, which was improved to about 120% compared with that before the modification.

平均粒径0.5μmの二硫化モリブデンに代えて、平均粒径0.05μmの二硫化モリブデンを用いた以外は実施例1と同様の方法、条件にて表面が改質された鋼板5を得た。当該鋼板5の表面硬度は、400HVであった。   A steel plate 5 whose surface was modified by the same method and conditions as in Example 1 except that molybdenum disulfide having an average particle diameter of 0.05 μm was used instead of molybdenum disulfide having an average particle diameter of 0.5 μm. It was. The surface hardness of the steel plate 5 was 400 HV.

硬度向上材料として、平均粒径0.5μmの二硫化モリブデン50質量%と平均粒径0.4μmの窒化硼素50質量%との混合物であり、当該混合物の平均粒径が45nmであるものを用いた以外は上記実施例3と同様にして鋼板5を得た。得られた鋼板5は、耐磨耗性、硬度がそれぞれ200%向上、400HVであった。かかる性能向上は、硼素と窒素とが合金層に均一に分散し、当該両者が鋼板5の靭性、硬度をさらに増加させたことに基づく。   As a material for improving hardness, a mixture of 50% by mass of molybdenum disulfide having an average particle size of 0.5 μm and 50% by mass of boron nitride having an average particle size of 0.4 μm, the average particle size of which is 45 nm is used. A steel plate 5 was obtained in the same manner as in Example 3 except that. The obtained steel plate 5 was improved in wear resistance and hardness by 200% and 400 HV, respectively. Such performance improvement is based on the fact that boron and nitrogen are uniformly dispersed in the alloy layer, both of which further increase the toughness and hardness of the steel sheet 5.

硬度向上材料として、平均粒径0.5μmの二硫化モリブデン50質量%と平均粒径1.5μmの窒化硼素50質量%との混合物であり、当該混合物の平均粒径が1μmであるものを用いた以外は上記実施例4と同様にして鋼板5を得た。得られた鋼板5は、耐磨耗性、硬度がそれぞれ200%向上、430HVであった。かかる性能向上は、実施例3の場合と同様である。   As a material for improving hardness, a mixture of 50% by mass of molybdenum disulfide having an average particle size of 0.5 μm and 50% by mass of boron nitride having an average particle size of 1.5 μm, and the mixture having an average particle size of 1 μm is used. A steel plate 5 was obtained in the same manner as in Example 4 except that. The obtained steel plate 5 was 200% improved in wear resistance and hardness by 430 HV, respectively. Such performance improvement is the same as that in the third embodiment.

実施例5では、前記実施例1〜4における硬度向上材料と表面張力向上材料との単なる物理的混合物を塗布する代わりに、図2に示すように、硬度向上材料と表面張力向上材料との両機能材料6を用意し、それを100μm〜200μm程度に薄膜化し、層5の表面に密着させた。その際、表面張力向上材として硫黄を採用した場合には合金材中における硫黄濃度は0.01質量%以上、即ち0.01質量%〜0.1質量%となるようにした。その状態で電子ビームを照射し、合金薄膜と層5を溶融させた。実施例5では、急冷により微細な組織を持ち、硫黄などの作用により、図4に示す対流1が生じて合金薄膜と層5の表面部分が攪拌され、かくして組成に偏りのない、均一な合金層を形成することができた。また、合金薄膜を用いるために実施例1などにおけるような乾燥時間を必要としない利点もある。   In Example 5, instead of simply applying a physical mixture of the hardness improving material and the surface tension improving material in Examples 1 to 4, both the hardness improving material and the surface tension improving material are applied as shown in FIG. The functional material 6 was prepared, thinned to about 100 μm to 200 μm, and adhered to the surface of the layer 5. At that time, when sulfur was adopted as the surface tension improving material, the sulfur concentration in the alloy material was 0.01% by mass or more, that is, 0.01% by mass to 0.1% by mass. In this state, an electron beam was irradiated to melt the alloy thin film and the layer 5. In Example 5, a uniform alloy having a fine structure due to rapid cooling, the convection 1 shown in FIG. 4 is generated by the action of sulfur, etc., and the alloy thin film and the surface portion of the layer 5 are agitated, and thus the composition is not biased. A layer could be formed. In addition, since an alloy thin film is used, there is an advantage that a drying time as in Example 1 is not required.

実施例5とは、熱源として電子ビームに代えてレーザを用いた点においてのみ異なる合金層の形成を行った。   The alloy layer different from Example 5 was formed only in that a laser was used instead of an electron beam as a heat source.

実施例7では、実施例5とは、図3に示すように表面張力向上材料として亜硫酸ガス8をガスノズル7から層6に向けて供給したことにおいて異なり、この実施の形態7では、急冷により、微細な組織を持ち、硫黄の働きにより、図4に示す対流1が生じ、合金薄膜と母材が攪拌され、組成に偏りのない、均一な合金層を形成することができる。なお、合金薄膜には硫黄を含んでいる必要がなく、既成の材料を利用可能である。   Example 7 is different from Example 5 in that sulfurous acid gas 8 is supplied from the gas nozzle 7 toward the layer 6 as the surface tension improving material as shown in FIG. The convection 1 shown in FIG. 4 is generated by the action of sulfur, having a fine structure, and the alloy thin film and the base material are agitated, so that a uniform alloy layer having no composition bias can be formed. The alloy thin film does not need to contain sulfur, and a ready-made material can be used.

本発明は、機械的強度の改善された鋼材などの鉄系材料の製造に利用される可能性がある。   The present invention may be used to manufacture ferrous materials such as steel materials with improved mechanical strength.

1:溶融池の対流
2:溶融池
3:ビーム
4:硬度向上材料と表面張力向上材料との物理的混合物層
5:鋼板
6:硬度向上材料と表面張力向上材料と合金化物層
7:ガスノズル
8:亜硫酸ガス
1: Convection of molten pool 2: Molten pool 3: Beam 4: Physical mixture layer of hardness improving material and surface tension improving material 5: Steel plate 6: Hardness improving material, surface tension improving material and alloyed layer 7: Gas nozzle 8 : Sulfurous acid gas

Claims (11)

少なくとも片面上に、鉄を主成分とし厚みが0.1μm〜500μmで硫黄含有量が0.015質量%以下の合金層を有することを特徴とする鉄系材料。   An iron-based material comprising an alloy layer containing iron as a main component and having a thickness of 0.1 μm to 500 μm and a sulfur content of 0.015% by mass or less on at least one surface. 上記合金層は、Cr、B、N、Ni、Si、Ti、Mo、Wからなる群から選ばれた少なくとも1種を少なくとも0.1質量%、ただしBの場合は少なくとも0.001質量%含むことを特徴とする請求項1に記載の鉄系材料。   The alloy layer contains at least 0.1% by mass of at least one selected from the group consisting of Cr, B, N, Ni, Si, Ti, Mo, and W, provided that at least 0.001% by mass in the case of B. The iron-based material according to claim 1. 鉄系材料の表面に上記鉄系材料の表面硬度を向上させる硬度向上材料または防錆性を向上させる耐錆性向上材と上記鉄系材料の溶融状態での表面張力を向上させる表面張力向上材料とが存在する状態下で、上記表面にエネルギー密度が5×10W/mm〜5×10W/mmのエネルギーを付与して上記硬度向上材料と表面張力向上材料と共に上記表面を加熱して上記表面を溶融し、鉄を主成分とする合金層を形成することを特徴とする鉄系材料の表面処理方法。 Hardness-improving material that improves the surface hardness of the iron-based material on the surface of the iron-based material, or a rust-resistance improving material that improves rust prevention, and a surface tension-improving material that improves the surface tension in the molten state of the iron-based material In the state where the energy density of 5 × 10 3 W / mm 2 to 5 × 10 5 W / mm 2 is applied to the surface, the surface together with the hardness improving material and the surface tension improving material is applied to the surface. A method for treating a surface of an iron-based material, comprising heating and melting the surface to form an alloy layer mainly composed of iron. 上記硬度向上材料は、Cr、B、N、Ni、Si、Ti、Mo、Wからなる群から選ばれた少なくとも1種またはその化合物であり、上記表面張力向上材料はS、Te、Se、O、Sn、Yからなる群から選ばれた少なくとも1種またはその化合物であることを特徴とする請求項3に記載の鉄系材料の表面処理方法。   The hardness improving material is at least one selected from the group consisting of Cr, B, N, Ni, Si, Ti, Mo, and W or a compound thereof, and the surface tension improving material is S, Te, Se, O, or the like. The surface treatment method for an iron-based material according to claim 3, wherein the surface treatment method is at least one selected from the group consisting of Sn, Y, and a compound thereof. 上記硬度向上材料は、窒化硼素、二硫化モリブデン、二硫化タングステンからなる群から選ばれた少なくとも1種であることを特徴とする請求項3または4に記載の鉄系材料の表面処理方法。   5. The surface treatment method for an iron-based material according to claim 3, wherein the hardness improving material is at least one selected from the group consisting of boron nitride, molybdenum disulfide, and tungsten disulfide. 上記硬度向上材料は、Cr、B、N、Ni、Si、Ti、Mo、Wからなる群から選ばれた少なくとも1種またはその化合物と窒化硼素とを含むことを特徴とする請求項3または4に記載の鉄系材料の表面処理方法。   5. The hardness improving material includes at least one selected from the group consisting of Cr, B, N, Ni, Si, Ti, Mo, and W, or a compound thereof, and boron nitride. The surface treatment method of the iron-type material as described in 2. 上記表面張力向上材料として気体のSまたは気体のS化合物を用い、上記気体のSまたは気体のS化合物中で上記のエネルギー付与を行うことを特徴とする請求項3〜6の何れか一項に記載の鉄系材料の表面処理方法。   7. The method according to claim 3, wherein gaseous S or a gaseous S compound is used as the surface tension improving material, and the energy application is performed in the gaseous S or gaseous S compound. The surface treatment method of the iron-type material of description. 鉄系材料の表面に上記鉄系材料の表面硬度を向上させる機能と上記鉄系材料の溶融状態での表面張力を向上させる表面張力向上機能とを有する両機能材料が存在する状態下で、上記表面にエネルギー密度が5×10W/mm〜5×10W/mmのエネルギーを付与して上記両機能材料と共に上記表面を加熱して上記表面を溶融し、鉄を主成分とする合金層を形成することを特徴とする鉄系材料の表面処理方法。 In a state where both functional materials having a function of improving the surface hardness of the iron-based material and a surface tension improving function of improving the surface tension in the molten state of the iron-based material exist on the surface of the iron-based material, An energy density of 5 × 10 3 W / mm 2 to 5 × 10 5 W / mm 2 is applied to the surface, the surface is heated together with the functional materials to melt the surface, and iron is the main component. A surface treatment method for an iron-based material, characterized in that an alloy layer is formed. 上記表面張力向上材料と上記表面張力向上材料との混合物、または上記両機能材料は、予め合金化および膜状とされて上記鉄系材料の表面に供給されることを特徴とする請求項8に記載の鉄系材料の表面処理方法。   The mixture of the surface tension improving material and the surface tension improving material, or the both functional materials are alloyed and formed into a film in advance and supplied to the surface of the iron-based material. The surface treatment method of the iron-type material of description. 上記両機能材料は、Cr、B、N、Ni、Si、Ti、Mo、Wからなる群から選ばれた少なくとも1種の硫化物あるいは酸化物であることを特徴とする請求項9に記載の鉄系材料の表面処理方法。   The both functional materials are at least one sulfide or oxide selected from the group consisting of Cr, B, N, Ni, Si, Ti, Mo, and W. A method for surface treatment of ferrous materials. 上記エネルギーは、電子ビームまたはレーザであることを特徴とする請求項3〜請求項10の何れか一項に記載の鉄系材料の表面処理方法。   The surface treatment method for an iron-based material according to any one of claims 3 to 10, wherein the energy is an electron beam or a laser.
JP2009028675A 2009-02-10 2009-02-10 Iron-based material Active JP5258611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028675A JP5258611B2 (en) 2009-02-10 2009-02-10 Iron-based material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028675A JP5258611B2 (en) 2009-02-10 2009-02-10 Iron-based material

Publications (2)

Publication Number Publication Date
JP2010185098A true JP2010185098A (en) 2010-08-26
JP5258611B2 JP5258611B2 (en) 2013-08-07

Family

ID=42765929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028675A Active JP5258611B2 (en) 2009-02-10 2009-02-10 Iron-based material

Country Status (1)

Country Link
JP (1) JP5258611B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157143A (en) * 2018-03-07 2019-09-19 トヨタ紡織株式会社 Manufacturing method of locally strengthened component, and locally strengthened component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163173B2 (en) 2018-12-26 2022-10-31 日本製紙株式会社 Thermal recording medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242786A (en) * 1988-03-23 1989-09-27 Mitsubishi Heavy Ind Ltd Sliding member and production thereof
JPH0261055A (en) * 1988-08-26 1990-03-01 Agency Of Ind Science & Technol Method for coating iron base material with metal
JPH0275471A (en) * 1988-09-07 1990-03-15 Nippon Sanso Kk Nonconsumable electrode arc welding method for stainless steels
JPH04187752A (en) * 1990-11-21 1992-07-06 Honda Motor Co Ltd Composite surface treatment
JPH08144066A (en) * 1994-11-15 1996-06-04 Natl Sci Council Method of forming nitrided stainless steel layer and steel
JPH11323511A (en) * 1998-05-18 1999-11-26 Kawasaki Steel Corp Silicon steel sheet low in residual magnetic flux density and excellent in high frequency core loss characteristic
JP2001527601A (en) * 1996-01-15 2001-12-25 ザ・ユニバーシティ・オブ・テネシー・リサーチ・コーポレイション Surface modification by laser
JP2003073858A (en) * 2001-08-28 2003-03-12 National Institute For Materials Science Coating method for reducing friction by controlling surface energy
JP2004136329A (en) * 2002-10-17 2004-05-13 Kobe Steel Ltd Ferrous filler metal for laser beam welding
JP2007308736A (en) * 2006-05-16 2007-11-29 Yanmar Co Ltd Surface hardening method for metal member, piston, cylinder head and cylinder block produced by using the surface hardening method, and method for producing the same
WO2008090662A1 (en) * 2007-01-26 2008-07-31 Ltt Bio-Pharma Co., Ltd. Metal surface treatment method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242786A (en) * 1988-03-23 1989-09-27 Mitsubishi Heavy Ind Ltd Sliding member and production thereof
JPH0261055A (en) * 1988-08-26 1990-03-01 Agency Of Ind Science & Technol Method for coating iron base material with metal
JPH0275471A (en) * 1988-09-07 1990-03-15 Nippon Sanso Kk Nonconsumable electrode arc welding method for stainless steels
JPH04187752A (en) * 1990-11-21 1992-07-06 Honda Motor Co Ltd Composite surface treatment
JPH08144066A (en) * 1994-11-15 1996-06-04 Natl Sci Council Method of forming nitrided stainless steel layer and steel
JP2001527601A (en) * 1996-01-15 2001-12-25 ザ・ユニバーシティ・オブ・テネシー・リサーチ・コーポレイション Surface modification by laser
JPH11323511A (en) * 1998-05-18 1999-11-26 Kawasaki Steel Corp Silicon steel sheet low in residual magnetic flux density and excellent in high frequency core loss characteristic
JP2003073858A (en) * 2001-08-28 2003-03-12 National Institute For Materials Science Coating method for reducing friction by controlling surface energy
JP2004136329A (en) * 2002-10-17 2004-05-13 Kobe Steel Ltd Ferrous filler metal for laser beam welding
JP2007308736A (en) * 2006-05-16 2007-11-29 Yanmar Co Ltd Surface hardening method for metal member, piston, cylinder head and cylinder block produced by using the surface hardening method, and method for producing the same
WO2008090662A1 (en) * 2007-01-26 2008-07-31 Ltt Bio-Pharma Co., Ltd. Metal surface treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157143A (en) * 2018-03-07 2019-09-19 トヨタ紡織株式会社 Manufacturing method of locally strengthened component, and locally strengthened component

Also Published As

Publication number Publication date
JP5258611B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
Liu et al. High temperature wear performance of laser cladding Co06 coating on high-speed train brake disc
Chen et al. Effect of heat treatment on microstructure and mechanical properties of laser additively manufactured AISI H13 tool steel
Abboud et al. Laser surface treatments of iron-based substrates for automotive application
Jeyaprakash et al. Microstructure and tribological evolution during laser alloying WC-12% Co and Cr3C2− 25% NiCr powders on nodular iron surface
Aghasibeig et al. Laser cladding of a featureless iron-based alloy
Rahman et al. Development and characterization of multilayer laser cladded high speed steels
Norhafzan et al. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder
Li et al. Improving wear resistance of pure copper by laser surface modification
Oh et al. Improvement of hardness and wear resistance in SiC/Ti–6Al–4V surface composites fabricated by high-energy electron beam irradiation
Chiang et al. Microstructural characterization and microscopy analysis of laser cladding Stellite12 and tungsten carbide
JP6735497B2 (en) Method for producing intermetallic compound alloy, metal member and clad layer
JP5258611B2 (en) Iron-based material
Hu et al. Friction and sliding wear behavior of induction melted FeCrB metamorphic alloy coating
Bourithis et al. Synthesizing a class “M” high speed steel on the surface of a plain steel using the plasma transferred arc (PTA) alloying technique: microstructure and wear properties
Rymer et al. Enhanced high-temperature wear behavior of high-speed laser metal deposited Al0. 3CrFeCoNi coatings alloyed with Nb and Mo
Euh et al. Effect of tempering on hardness improvement in a VC/steel surface-alloyed material fabricated by high-energy electron-beam irradiation
Teixeira et al. Laser composite surfacing of A681 steel with WC+ Cr+ Co for improved wear resistance
Heider et al. Influence of carbon diffusion on microstructure and wear behaviour of duplex stainless steel surface layers on lamellar grey cast iron
Lee et al. Hardness and wear resistance of steel-based surface composites fabricated with Fe-based metamorphic alloy powders by high-energy electron beam irradiation
JPH0941125A (en) Method for hardening metallic surface
Lee et al. Effects of tempering on microstructure, hardness, and fracture toughness of VC/steel surface composite fabricated by high-energy electron beam irradiation
Rodziňák et al. Effect of laser hardening on the properties of PM steels
JP2010209388A (en) Surface treatment method of tool steel and tool steel subjected to surface treatment by the method
Lyalyakin et al. Properties of wear-resistant composite coatings produced by high-speed boronizing
Brytan The erosion resistance and microstructure evaluation of laser surface alloyed sintered stainless steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5258611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250