JP2010179665A - Steering device - Google Patents

Steering device Download PDF

Info

Publication number
JP2010179665A
JP2010179665A JP2009022134A JP2009022134A JP2010179665A JP 2010179665 A JP2010179665 A JP 2010179665A JP 2009022134 A JP2009022134 A JP 2009022134A JP 2009022134 A JP2009022134 A JP 2009022134A JP 2010179665 A JP2010179665 A JP 2010179665A
Authority
JP
Japan
Prior art keywords
steering
steered
wheel
circular gear
toe angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009022134A
Other languages
Japanese (ja)
Other versions
JP5428360B2 (en
Inventor
Koji Kumagai
幸司 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009022134A priority Critical patent/JP5428360B2/en
Publication of JP2010179665A publication Critical patent/JP2010179665A/en
Application granted granted Critical
Publication of JP5428360B2 publication Critical patent/JP5428360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-circular gear assembling steering device capable of adjusting a phase and toe angle in a four-wheel car. <P>SOLUTION: A steering force reaches a reduction gear 8 from an input shaft 8a, and reaches a wheel support member 2 through a non-circular gear at a turning shaft setting member side 7 and a non-circular gear at a wheel support member side 6 after deceleration thereof. Accordingly, a turning wheel 1 is turned around a turning shaft center 01. When the toe angle is adjusted after assembling the car body of the steering device, a rotating system including a steering wheel and a rotating phase of a decelerator input shaft 8a are adjusted and integrally connected. A deviance of the turning wheel support member 2 and the turning wheel 1 from a non-turning neutral position (deviance of the toe angle) accompanying rotation of a pair of the non-circular gears 6, 7 during phase adjustment is made zero by expansion of an expanding member 11 by rotation of a nut 12 through rotation in a correspondence direction of a turing shaft setting member 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両の操舵系に用いるのに有用なステアリング装置に関し、特に、非円形歯車組を介して車輪を転舵するようにしたステアリング装置の改良提案に関するものである。   The present invention relates to a steering device useful for use in a steering system of a vehicle, and more particularly to an improvement proposal of a steering device that steers wheels via a non-circular gear set.

この種ステアリング装置としては従来、例えば特許文献1に記載のようなものが知られている。
この特許文献1に記載のステアリング装置は、ステアリングホイール等からの操舵入力を非円形歯車組により車輪の転舵角に変換して、車輪の転舵を行うものである。
As this type of steering device, for example, the one described in Patent Document 1 is known.
The steering device described in Patent Document 1 performs steering of a wheel by converting a steering input from a steering wheel or the like into a turning angle of a wheel using a non-circular gear set.

なお非円形歯車組は、仮想二輪車を想定し、この仮想二輪車の後輪を原点(0,0)、後輪の車軸に沿った座標軸をξ軸、後輪の前進方向に沿った座標軸をη軸とする直交座標(ξ,η)を用いて、
仮想二輪車の操舵車輪Soの座標を(0,1)とし、実在する操舵車輪Sjの座標を(ξj,ηj)とし、仮想操舵車輪Soの操舵角をθo、実操舵車輪Sjの操舵角をθjで表すとき、
両非円形歯車のピッチ曲線が、contθo-ηj・contθj=ξjを満たしつつ、互いに噛合うよう定められたものである。
The non-circular gear set is assumed to be a virtual two-wheeled vehicle, the rear wheel of this virtual two-wheeled vehicle is the origin (0,0), the coordinate axis along the rear wheel axle is the ξ axis, and the coordinate axis along the forward direction of the rear wheel is η Using Cartesian coordinates (ξ, η) as axes,
The coordinate of the steering wheel So of the virtual motorcycle is (0, 1), the coordinate of the existing steering wheel Sj is (ξj, ηj), the steering angle of the virtual steering wheel So is θo, and the steering angle of the actual steering wheel Sj is θj When expressed by
The pitch curves of both non-circular gears are determined so as to mesh with each other while satisfying contθo−ηj · contθj = ξj.

かかる非円形歯車組を用いて車輪を転舵するようにしたステアリング装置によれば、車両の旋回中心を任意の点に設定できるため、例えば車両の小回り性能を大幅に向上させることができる利点がある。   According to the steering device that uses such a non-circular gear set to steer the wheels, the turning center of the vehicle can be set at an arbitrary point, and therefore, for example, there is an advantage that the turning performance of the vehicle can be greatly improved. is there.

特許第3237872号明細書Japanese Patent No. 3,237,872 specification

ところで、上記のステアリング装置を四輪車両に用いる場合は、このステアリング装置により転舵される左右転舵輪の直進方向に対する角度、いわゆるトー角を調整する必要があるため、以下の問題を生ずる。   By the way, when the above-described steering device is used for a four-wheel vehicle, it is necessary to adjust the angle of the left and right steered wheels steered by the steering device with respect to the straight traveling direction, that is, the so-called toe angle, which causes the following problems.

つまり上記のステアリング装置にあっては、ステアリングホイールの操舵(回転)力を、ステアリングホイールから転舵輪まで全系統に亘って回転運動のまま伝達する必要があり、このため、ステアリングホイール回転位置と転舵輪の転舵角との間で回転方向の位相を合わせる位相調整(トー角調整)が不可欠である。   In other words, in the above steering device, it is necessary to transmit the steering (rotation) force of the steering wheel in a rotational motion throughout the entire system from the steering wheel to the steered wheel. Phase adjustment (toe angle adjustment) that matches the phase in the rotational direction with the steered wheel turning angle is essential.

そのためのトー角調整機構がない場合、ステアリング装置を車両に組み付けたとき、左右転舵輪のトー角をステアリングホイールの回転位置に対し設定範囲内に合わせることが困難である。
しかし、上記した従来のステアリング装置においては、転舵輪のトー角調整について何らの提案もしておらず、四輪車両に用いるときに必要な転舵輪のトー角調整を行うことがきないという問題を生ずる。
If there is no toe angle adjusting mechanism for that purpose, when the steering device is assembled to the vehicle, it is difficult to adjust the toe angle of the left and right steered wheels within the set range with respect to the rotational position of the steering wheel.
However, in the conventional steering device described above, no proposal has been made regarding the adjustment of the toe angle of the steered wheels, and there is a problem in that the toe angle adjustment of the steered wheels necessary for use in a four-wheel vehicle cannot be performed. .

本発明は、非円形歯車組を用いたステアリング装置を、転舵輪のトー角調整が可能となるよう改良して、四輪車両の操舵系にも用い得るようになし、これにより上述の問題を解消した非円形歯車式ステアリング装置を提案することを目的とする。   The present invention improves the steering device using the non-circular gear set so that the toe angle of the steered wheels can be adjusted, and can be used for a steering system of a four-wheel vehicle, thereby solving the above-mentioned problems. An object of the present invention is to propose a non-circular gear type steering device which has been eliminated.

この目的のため、本発明によるステアリング装置は、請求項1に記載のごとく、
転舵輪を回転自在に支持した車輪支持部材と、
該車輪支持部材を介し転舵輪を転舵可能に支持して車体に懸架された転舵軸設定部材と、
前記車輪支持部材を前記転舵軸周りに回転させる車輪支持部材側非円形歯車と、
この車輪支持部材側非円形歯車に操舵力を伝達すべく該車輪支持部材側非円形歯車に噛合させて前記転舵軸設定部材に回転自在に設けた転舵軸設定部材側非円形歯車と、
前記転舵輪のトー角を調整可能なトー角調整手段とを設けて構成したものである。
For this purpose, the steering device according to the invention is as described in claim 1,
A wheel support member that rotatably supports the steered wheel;
A steered shaft setting member suspended on the vehicle body so as to be steerable via the wheel support member;
A wheel support member-side non-circular gear that rotates the wheel support member around the steering shaft;
A steered shaft setting member side non-circular gear meshed with the wheel support member side non-circular gear so as to transmit a steering force to the wheel support member-side non-circular gear, and rotatably provided on the steered shaft setting member;
And a toe angle adjusting means capable of adjusting a toe angle of the steered wheel.

かかる本発明のステアリング装置によれば、操舵力伝達系が、転舵輪を回転自在に支持した車輪支持部材を転舵軸周りに回転させる車輪支持部材側非円形歯車と、車輪支持部材を介し転舵輪を転舵可能に支持する転舵軸設定部材に回転自在に設けられて上記車輪支持部材側非円形歯車に噛合する転舵軸設定部材側非円形歯車とを有するため、
これら非円形歯車の設定次第で車両の旋回中心を任意の点に設定でき、例えば車両の小回り性能を大幅に向上させることができる。
According to the steering apparatus of the present invention, the steering force transmission system rotates the wheel support member-side non-circular gear that rotates the wheel support member that rotatably supports the steered wheel around the steered shaft, and the wheel support member. Because it has a steered shaft setting member side non-circular gear that is rotatably provided on a steered shaft setting member that supports the steerable wheel so as to be steered, and meshes with the wheel support member side non-circular gear,
Depending on the setting of these non-circular gears, the turning center of the vehicle can be set to an arbitrary point, and for example, the turning performance of the vehicle can be greatly improved.

しかも本発明のステアリング装置は、転舵輪のトー角を調整可能にするトー角調整手段を具えるため、
非円形歯車組を用いたステアリング装置を四輪車両に組み付けたときに必要な調整、つまり転舵輪のトー角をステアリングホイールの回転位置に対し設定範囲内に合わせる位相調整が可能であり、四輪車両の操舵系にも用いることができる。
Moreover, since the steering device of the present invention includes toe angle adjusting means for adjusting the toe angle of the steered wheels,
Adjustment required when a steering device using a non-circular gear set is assembled to a four-wheeled vehicle, that is, phase adjustment to adjust the toe angle of the steered wheel within the set range with respect to the rotational position of the steering wheel is possible. It can also be used for a vehicle steering system.

本発明の第1実施例になるステアリング装置を、車両の前方から見て示す正面図である。1 is a front view showing a steering device according to a first embodiment of the present invention as viewed from the front of a vehicle. 図1におけるステアリング装置を車両上方から見て示す平面図である。FIG. 2 is a plan view showing the steering device in FIG. 1 as viewed from above the vehicle. 図1,2におけるステアリング装置のトー角調整用伸縮部材を例示する断面図である。FIG. 3 is a cross-sectional view illustrating a toe angle adjusting telescopic member of the steering device in FIGS. 図1,2におけるステアリング装置を、位相調整中の状態で示す、図2と同様な平面図である。FIG. 3 is a plan view similar to FIG. 2, showing the steering device in FIGS. 1 and 2 during phase adjustment. 図4に示す位相調整による転舵輪のトー角変化状況を説明するための、図2と同様な平面図である。FIG. 5 is a plan view similar to FIG. 2 for explaining a toe angle change state of steered wheels by phase adjustment shown in FIG. 図5のトー角変化を調整している時における状況を説明するための、図2と同様な平面図である。FIG. 6 is a plan view similar to FIG. 2 for explaining a situation when the toe angle change in FIG. 5 is adjusted. 図1,2のステアリング装置における非円形歯車組の設計上の非転舵中立噛み合い位置を示す歯車組噛合状態説明図である。FIG. 3 is an explanatory diagram of a gear set meshing state showing a non-steering neutral meshing position in the design of the non-circular gear set in the steering device of FIGS. 図1,2のステアリング装置における非円形歯車組のギヤ比変化特性を示す特性線図である。FIG. 3 is a characteristic diagram showing a gear ratio change characteristic of a non-circular gear set in the steering device of FIGS. 図1,2におけるステアリング装置の位相調整およびトー角調整後における非円形歯車組の非転舵中立噛み合い位置を示す歯車組噛合状態説明図である。FIG. 3 is an explanatory diagram of a gear set meshing state showing a non-steering neutral meshing position of a non-circular gear set after phase adjustment and toe angle adjustment of the steering device in FIGS. 図9のように非円形歯車組の非転舵中立噛み合い位置がずれた場合における非円形歯車組のギヤ比変化特性を示す特性線図である。FIG. 10 is a characteristic diagram showing a gear ratio change characteristic of the non-circular gear set when the non-steering neutral meshing position of the non-circular gear set is shifted as shown in FIG. 図1,2に示す第1実施例における非円形歯車組の非転舵中立噛み合い位置を示す歯車組噛合状態説明図で、 (a)は、位相調整およびトー角調整前における非円形歯車組の非転舵中立噛み合い位置を示す歯車組噛合状態説明図、 (b)は、位相調整後における非円形歯車組の非転舵中立噛み合い位置を示す歯車組噛合状態説明図、 (c)は、位相調整およびトー角調整後における非円形歯車組の非転舵中立噛み合い位置を示す歯車組噛合状態説明図である。FIG. 1 is an explanatory diagram of a gear group meshing state showing a non-steering neutral meshing position of a non-circular gear group in the first embodiment shown in FIGS. 1 and 2, wherein (a) is a diagram of a non-circular gear group before phase adjustment and toe angle adjustment; Gear assembly meshing state explanatory diagram showing the non-steering neutral mesh position, (b) is a gear group meshing state explanatory diagram showing the non-steering neutral meshing position of the non-circular gear group after phase adjustment, (c) is the phase It is a gear group meshing state explanatory drawing which shows the non-steering neutral meshing position of the non-circular gear group after adjustment and toe angle adjustment. 図11のように位相調整およびトー角調整を行ったときにおける非円形歯車組のギヤ比変化特性を示す特性線図である。FIG. 12 is a characteristic diagram showing a gear ratio change characteristic of a non-circular gear set when phase adjustment and toe angle adjustment are performed as shown in FIG. 大舵角時に操舵に対する転舵輪の切れ角が大きくなるように設定した場合の非円形歯車組のギヤ比変化特性を示す特性線図である。It is a characteristic diagram which shows the gear ratio change characteristic of a non-circular gear set when it sets so that the turning angle of the steered wheel with respect to steering may become large at the time of a large steering angle. 図13のように非円形歯車組のギヤ比変化特性を設定する場合において好適な中立近辺のギヤ比変化特性を示す特性線図である。FIG. 14 is a characteristic diagram showing a gear ratio change characteristic in the vicinity of a neutral position suitable for setting the gear ratio change characteristic of a non-circular gear set as shown in FIG. 図14のように非円形歯車組のギヤ比変化特性を設定する場合において好適な内輪側噛み合い領域のギヤ比変化特性を示す特性線図である。FIG. 15 is a characteristic diagram showing the gear ratio change characteristic of the inner ring side meshing region suitable for setting the gear ratio change characteristic of the non-circular gear set as shown in FIG. 図14のように非円形歯車組のギヤ比変化特性を設定する場合において好適な外輪側噛み合い領域のギヤ比変化特性を示す特性線図である。FIG. 15 is a characteristic diagram showing a gear ratio change characteristic of a suitable outer ring side meshing region when setting a gear ratio change characteristic of a non-circular gear set as shown in FIG. 図15,16のように非円形歯車組のギヤ比変化特性を設定する場合における内輪側噛み合い領域の転舵角と、外輪側噛み合い領域の転舵角との相関関係を示す、内外輪側転舵角比較線図である。15 and 16 show the correlation between the turning angle of the inner ring side meshing area and the turning angle of the outer ring side meshing area when setting the gear ratio change characteristics of the non-circular gear set. It is a rudder angle comparison diagram. 本発明の第2実施例になるステアリング装置を車両上方から見て示す、図2と同様な平面図である。FIG. 3 is a plan view similar to FIG. 2, showing a steering device according to a second embodiment of the present invention as viewed from above the vehicle. 本発明の第3実施例になるステアリング装置を車両上方から見て示す、図2と同様な平面図である。FIG. 5 is a plan view similar to FIG. 2, showing a steering device according to a third embodiment of the present invention as viewed from above the vehicle. 図19に示す第3実施例のステアリング装置における非円形歯車組の非転舵中立噛み合い位置を示す歯車組噛合状態説明図で、 (a)は、位相調整およびトー角調整により非転舵中立噛み合い位置がずれた状態を示す歯車組噛合状態説明図、 (b)は、かかる非転舵中立噛み合い位置のずれを転舵軸設定部材の並進および回転によりなくした状態を示す歯車組噛合状態説明図である。FIG. 20 is an explanatory diagram of a gear group meshing state showing a non-steering neutral meshing position of a non-circular gear group in the steering device of the third embodiment shown in FIG. 19, wherein (a) is a non-steering neutral meshing by phase adjustment and toe angle adjustment. FIG. 4B is an explanatory diagram of a gear set meshing state showing a state in which the position is shifted; FIG. 4B is a gear set meshing state explanatory diagram showing a state in which the shift of the non-steering neutral meshing position is eliminated by translation and rotation of the steered shaft setting member; It is.

以下、本発明の実施の形態を、図示の第1実施例〜第3実施例に基づき詳細に説明する。
<第1実施例の構成>
図1,2は、本発明の第1実施例になるステアリング装置を示し、図1は、車両前方から右前輪(右転舵輪)の転舵部を見て示す正面図、図2は、同転舵部の平面図である。
Hereinafter, embodiments of the present invention will be described in detail based on illustrated first to third embodiments.
<Configuration of the first embodiment>
1 and 2 show a steering device according to a first embodiment of the present invention. FIG. 1 is a front view showing a turning portion of a right front wheel (right turning wheel) from the front of the vehicle. FIG. It is a top view of a steering part.

本実施例においては、右前輪(右転舵輪)1を車輪支持部材(ナックル)2に回転自在に支持する。
この車輪支持部材(ナックル)2を図1に明示するごとく、転舵軸中心O1の周りで揺動可能となるよう転舵軸設定部材(アップライト)3に支持する。
In this embodiment, a right front wheel (right steered wheel) 1 is rotatably supported by a wheel support member (knuckle) 2.
As clearly shown in FIG. 1, the wheel support member (knuckle) 2 is supported on the turning shaft setting member (upright) 3 so as to be swingable around the turning shaft center O1.

転舵軸設定部材(アップライト)3は、ストラットを含むアッパーリンク4およびロアリンク5により車体に上下方向へストローク可能に懸架する。
この懸架に当たっては、上記の転舵軸中心O1が路面L(図1参照)に対し所定の角度で傾斜するよう当該転舵軸設定部材(アップライト)3の懸架を行う。
従って右前輪(右転舵輪)1は、車輪支持部材(ナックル)2および転舵軸設定部材(アップライト)3を介し、車体に転舵可能に懸架する。
The steered shaft setting member (upright) 3 is suspended on the vehicle body by an upper link 4 and a lower link 5 including struts so as to allow a vertical stroke.
In this suspension, the turning shaft setting member (upright) 3 is suspended so that the turning shaft center O1 is inclined at a predetermined angle with respect to the road surface L (see FIG. 1).
Accordingly, the right front wheel (right steered wheel) 1 is suspended so as to be steerable on the vehicle body via the wheel support member (knuckle) 2 and the steered shaft setting member (upright) 3.

車輪支持部材(ナックル)2には、これと共に転舵軸中心O1の周りに回転する車輪支持部材側非円形歯車6を設ける。
転舵軸設定部材(アップライト)3には、転舵軸設定部材側非円形歯車7を設け、この転舵軸設定部材側非円形歯車7を、転舵軸中心O1に平行な軸線O2の周りで自由に回転し得るようにして、また車輪支持部材側非円形歯車6に噛合させて転舵軸設定部材(アップライト)3に支持する。
The wheel support member (knuckle) 2 is provided with a wheel support member-side non-circular gear 6 that rotates around the turning shaft center O1 together with the wheel support member (knuckle) 2.
The steered shaft setting member (upright) 3 is provided with a non-circular gear 7 on the steered shaft setting member side, and this non-circular gear 7 on the steered shaft setting member side is connected to the axis O2 parallel to the steered shaft center O1. The wheel is supported by the turning shaft setting member (upright) 3 so as to be freely rotatable around and meshed with the non-circular gear 6 on the wheel support member side.

ここで車輪支持部材側非円形歯車6および転舵軸設定部材側非円形歯車7は、両者間噛合領域の変化につれてギヤ比が変化する仕様とし、
これによりステアリングホイール操舵角が左右方向同じであっても、転舵輪1が内輪となる方向へ転舵される場合の内輪転舵角と、転舵輪1が外輪となる方向へ転舵される場合の外輪転舵角との間に、所定の転舵角度差を設定する。
Here, the wheel support member-side non-circular gear 6 and the steered shaft setting member-side non-circular gear 7 have specifications in which the gear ratio changes as the meshing region between the two changes,
As a result, even when the steering wheel steering angle is the same in the left-right direction, the inner wheel turning angle when the steered wheel 1 is steered in the direction of the inner wheel and the steered wheel 1 steered in the direction of the outer wheel A predetermined turning angle difference is set between the outer wheel turning angle.

転舵軸設定部材(アップライト)3には更に、転舵軸設定部材側非円形歯車7に駆動結合した交差軸式減速機8を固設し、
その入力軸8aは図2に示すごとく、カップリング9を介してステアリングシャフト10にスプライン結合させる。
なおステアリングシャフト10は、図示せざるステアリングホイールからの操舵力を回転力として入力されるものとする。
The turning shaft setting member (upright) 3 is further provided with a cross shaft type speed reducer 8 that is drivingly coupled to the non-circular gear 7 on the turning shaft setting member side,
The input shaft 8a is splined to the steering shaft 10 via a coupling 9 as shown in FIG.
It is assumed that the steering shaft 10 receives a steering force from a steering wheel (not shown) as a rotational force.

図1,2に示すごとく、転舵軸設定部材3およびロアリンク5間に、本発明のトー角調整手段を構成する伸縮部材11を架設する。
この伸縮部材11は図3に明示するごとく、一対のロッド11a,1bを同軸に突き合わせ、これらロッド11a,1bの突き合わせ部外周に形成した相互逆向きの雄ねじに調整ナット12を螺合させて構成する。
As shown in FIGS. 1 and 2, a telescopic member 11 constituting the toe angle adjusting means of the present invention is installed between the steered shaft setting member 3 and the lower link 5.
As clearly shown in FIG. 3, the expansion / contraction member 11 has a pair of rods 11a and 1b that are coaxially abutted, and an adjustment nut 12 is screwed onto a male screw that is opposite to each other formed on the outer periphery of the abutting portion of the rods 11a and 1b. To do.

よって伸縮部材11は、ナット12の一方向回転によりロッド11a,1bを相互に離反させることで伸張し、ナット12の他方向回転によりロッド11a,1bを相互に接近させることで収縮する。
かようにして伸縮部材11が全長を変化されるとき、転舵軸設定部材3を介して転舵輪1をトー角変化させ得るよう、伸縮部材11は車両上方から見て図2の平面図に示すごとくに傾斜させる。
Therefore, the expansion / contraction member 11 expands when the rods 11a and 1b are separated from each other by one-way rotation of the nut 12, and contracts when the rods 11a and 1b approach each other by rotation of the nut 12 in the other direction.
Thus, when the telescopic member 11 is changed in total length, the telescopic member 11 is shown in the plan view of FIG. 2 when viewed from above the vehicle so that the steered wheel 1 can change the toe angle via the steered shaft setting member 3. Tilt as shown.

<第1実施例の作用>
ステアリングホイールによる操舵でステアリングシャフト10(図2参照)が回転されると、この回転が入力軸8aから減速機8に至り、これによる減速後に転舵軸設定部材側非円形歯車7に達して、この転舵軸設定部材側非円形歯車7を軸線O2の周りで対応方向へ回転させる。
<Operation of the first embodiment>
When the steering shaft 10 (see FIG. 2) is rotated by steering by the steering wheel, this rotation reaches the speed reducer 8 from the input shaft 8a, reaches the steered shaft setting member side non-circular gear 7 after deceleration by this, The steered shaft setting member side non-circular gear 7 is rotated in the corresponding direction around the axis O2.

転舵軸設定部材側非円形歯車7の回転は、これと噛合している車輪支持部材側非円形歯車6に達し、かかる車輪支持部材側非円形歯車6の回転により車輪支持部材2を介し転舵輪1を転舵軸中心O1の周りで対応方向へ、ステアリングホイール操舵角および非円形歯車組6,7のギヤ比に応じた角度だけ転舵することができる。   The rotation of the non-circular gear 7 on the turning shaft setting member side reaches the wheel support member-side non-circular gear 6 meshed therewith, and the wheel support member-side non-circular gear 6 rotates through the wheel support member 2 by the rotation of the wheel support member-side non-circular gear 6. The steered wheel 1 can be steered in the corresponding direction around the steered shaft center O1 by an angle corresponding to the steering wheel steering angle and the gear ratio of the non-circular gear sets 6,7.

<第1実施例のトー角調整>
転舵輪1、車輪支持部材2、転舵軸設定部材3、非円形歯車組6,7、および減速機8を図4に示すごとく車体に組み付けた後は、先ず同図に示すように、ステアリングホイールを中立位置にしてステアリングシャフト10をこれに対応した回転位置となした状態で、転舵輪1を非転舵中立位置近辺にして減速機8の入力軸8aを矢印で示すように回転させる。
このとき、入力軸8aの外周スプライン歯がカップリング9の内周スプライン溝と整列するよう入力軸8aの回転位置をステアリングシャフト10(カップリング9)に対し位相調整する。
<Toe angle adjustment in the first embodiment>
After assembling the steered wheel 1, the wheel support member 2, the steered shaft setting member 3, the non-circular gear set 6, 7 and the speed reducer 8 to the vehicle body as shown in FIG. 4, first, as shown in FIG. With the wheel in the neutral position and the steering shaft 10 in the rotational position corresponding thereto, the steered wheel 1 is set near the non-steered neutral position and the input shaft 8a of the speed reducer 8 is rotated as indicated by the arrow.
At this time, the rotational position of the input shaft 8a is adjusted in phase with respect to the steering shaft 10 (coupling 9) so that the outer peripheral spline teeth of the input shaft 8a are aligned with the inner peripheral spline groove of the coupling 9.

かかる位相調整後、図5に示すようにカップリング9を軸線方向へスライドさせて入力軸8a上にスプライン嵌合し、これによりステアリングシャフト10と減速機8の入力軸8aとの一体結合を行う。
上記した減速機入力軸8aの回転位置調整中、非円形歯車組6,7も対応方向へ回転し、それにともなって転舵輪支持部材2および転舵輪1も非転舵中立位置から、例えば図5に矢印で示す方向へ回転変位することがある。
After such phase adjustment, as shown in FIG. 5, the coupling 9 is slid in the axial direction and is spline-fitted onto the input shaft 8a, whereby the steering shaft 10 and the input shaft 8a of the speed reducer 8 are integrally coupled. .
During the rotational position adjustment of the speed reducer input shaft 8a described above, the non-circular gear sets 6, 7 also rotate in the corresponding direction, and accordingly, the steered wheel support member 2 and the steered wheel 1 are also moved from the non-steer neutral position, for example, FIG. May be rotationally displaced in the direction indicated by the arrow.

この場合、図6に示すように調整ナット12を伸縮部材11が伸張される方向へ回転させ、これにより転舵軸設定部材3を対応方向へ回転させる。
かかる転舵軸設定部材3の回転により転舵輪1は、そのトー角を非転舵中立位置相当の0となるよう調整され得る。
よって本実施例においては、非円形歯車組6,7を用いたステアリング装置を四輪車両に組み付けたときに必要な転舵輪1のトー角をステアリングホイールの回転位置に対し設定範囲内に合わせる位相調整が可能であり、四輪車両の操舵系にも用いることができる。
In this case, as shown in FIG. 6, the adjustment nut 12 is rotated in the direction in which the telescopic member 11 is extended, thereby rotating the steered shaft setting member 3 in the corresponding direction.
The steered wheel 1 can be adjusted so that its toe angle becomes 0 corresponding to the non-steered neutral position by the rotation of the steered shaft setting member 3.
Therefore, in the present embodiment, the phase for adjusting the toe angle of the steered wheels 1 required when the steering device using the non-circular gear sets 6 and 7 is assembled to a four-wheel vehicle within the set range with respect to the rotational position of the steering wheel. Adjustment is possible and it can also be used in the steering system of a four-wheel vehicle.

なお完成車のメインテナンスで、転舵輪1のトー角調整を行いたい場合は、図6につき上述したと同様に、調整ナット12の回転により伸縮部材11を伸張、または伸縮させるのみで、転舵輪1のトー角調整を簡単に行うことができる。   If the toe angle of the steered wheel 1 is to be adjusted during maintenance of the completed vehicle, as described above with reference to FIG. 6, only the telescopic member 11 is expanded or contracted by rotating the adjusting nut 12, and the steered wheel 1 is adjusted. The toe angle can be easily adjusted.

<非円形歯車組の噛合位置ずれ対策について>
前記したような位相調整やトー角調整を行うと、非円形歯車組6,7の非転舵中立噛み合い位置が図7に示す設計上の非転舵中立噛み合い位置からずれる場合がある。
ステアリングホイール操舵角が0の中立位置のとき非円形歯車組6,7の相互噛合位置が図7に示すように設計上の非転舵中立噛み合い位置であって、非円形歯車組6,7のギヤ比が図8のように設計されている場合につき、非円形歯車組6,7の噛合位置ずれを以下に説明する。
<Measures for meshing misalignment of non-circular gear set>
When the phase adjustment and the toe angle adjustment as described above are performed, the non-steering neutral meshing position of the non-circular gear sets 6, 7 may deviate from the designed non-steering neutral meshing position shown in FIG.
When the steering wheel steering angle is 0 in the neutral position, the mutual meshing position of the non-circular gear sets 6 and 7 is a designed non-steering neutral meshing position as shown in FIG. In the case where the gear ratio is designed as shown in FIG. 8, the meshing position deviation of the non-circular gear sets 6, 7 will be described below.

なお図7,8における(+)は、非円形歯車組6,7を転舵輪(左前輪)1が外輪となるよう(右転舵されるよう)回転させるときにおける非円形歯車組6,7の外輪側噛み合い領域(図7の実線矢印側の噛み合い領域)を示し、また(−)は、非円形歯車組6,7を転舵輪(左前輪)1が内輪となるよう(左転舵されるよう)回転させるときにおける非円形歯車組6,7の内輪側噛み合い領域(図7の破線矢印側の噛み合い領域)を示す。   In FIGS. 7 and 8, (+) indicates the non-circular gear sets 6 and 7 when the non-circular gear sets 6 and 7 are rotated so that the steered wheel (front left wheel) 1 becomes an outer wheel (turned to the right). The outer wheel side meshing region (meshing region on the solid line arrow side in FIG. 7) is shown, and (−) indicates that the non-circular gear sets 6 and 7 are turned so that the steered wheel (left front wheel) 1 becomes the inner wheel (left steered). The inner ring side meshing region (meshing region on the broken line arrow side in FIG. 7) of the non-circular gear sets 6 and 7 when rotated.

前記した位相調整やトー角調整により非円形歯車組6,7の非転舵中立噛み合い位置が図7に示す設計上の非転舵中立噛み合い位置から、図9に示すごとく内輪側噛み合い領域の噛み合い位置にずれた場合、
図8と同じ図10のギヤ比特性上において、ステアリングホイール操舵角=0の時における非転舵中立噛み合い位置が、破線位置で示す設計上の非転舵中立位置から内輪側噛み合い領域における実線位置へとずれる。
By the above-mentioned phase adjustment and toe angle adjustment, the non-steering neutral meshing position of the non-circular gear sets 6, 7 is engaged from the designed non-steering neutral meshing position shown in FIG. 7 to the meshing of the inner ring side meshing area as shown in FIG. If it ’s out of position,
In the gear ratio characteristics of FIG. 10 which is the same as FIG. 8, the non-steering neutral meshing position when the steering wheel steering angle is 0 is the solid line position in the inner wheel meshing area from the designed non-steering neutral position indicated by the broken line position. Sway.

ところで、非円形歯車組6,7の歯車回転角に対するギヤ比の変化特性は図8,10に示すように、歯車回転角=0の中立位置近辺を境に内輪側噛み合い領域に向かうにつれギヤ比を小さくするのが常套で、そのため、内輪側噛み合い領域では外輪側噛み合い領域よりも、設計上の非転舵中立噛み合い位置付近におけるギヤ比の変化割合が大きい。   By the way, the change characteristic of the gear ratio with respect to the gear rotation angle of the non-circular gear sets 6 and 7 is shown in FIGS. 8 and 10, as the gear rotation angle = 0 toward the inner ring side meshing region from the vicinity of the neutral position. Therefore, the change ratio of the gear ratio in the vicinity of the designed non-steering neutral meshing position is larger in the inner ring-side meshing region than in the outer ring-side meshing region.

このため、ステアリングホイール操舵角=0の時における非転舵中立噛み合い位置が、図10に示すように破線位置で示す設計上の非転舵中立位置から内輪側噛み合い領域における実線位置へとずれたのでは、
ステアリングホイール操舵角の変化に対する転舵輪1の転舵角変化が大きくなってしまい、ステアリングホイール操舵角を0にした直進走行中において転舵応答性が敏感になってしまい、直進走行安定性が悪くなるという問題を生ずる。
Therefore, the non-steering neutral meshing position when the steering wheel steering angle = 0 is shifted from the designed non-steering neutral meshing position indicated by the broken line position to the solid line position in the inner wheel meshing area as shown in FIG. So,
The change in the turning angle of the steered wheel 1 with respect to the change in the steering wheel steering angle becomes large, the steering response becomes sensitive during straight running with the steering wheel steering angle set to 0, and the straight running stability is poor. The problem that becomes.

そこで本実施例においては、図11(a)に示すごとく前記位相調整およびトー角調整を行う前において、非円形歯車組6,7の非転舵中立噛み合い位置が、設計上の非転舵中立噛み合い位置よりも所定量だけ外輪側噛み合い領域(+領域)寄りにずれるよう非円形歯車組6,7を構成配置する。   Therefore, in this embodiment, as shown in FIG. 11 (a), before performing the phase adjustment and toe angle adjustment, the non-steering neutral meshing position of the non-circular gear sets 6, 7 The non-circular gear sets 6 and 7 are configured and arranged so as to be shifted toward the outer ring side meshing region (+ region) by a predetermined amount from the meshing position.

ここで所定量は以下のように定める。
前記した位相調整およびトー角調整により非円形歯車組6,7の非転舵中立噛み合い位置が設計上の非転舵中立噛み合い位置からずれる最大量はカップリング9(図2参照)のスプライン歯ピッチで決まり、例えば図12にαで示すごとくに予め判る。
そこで上記の所定量は、図9につき前述した非転舵中立噛み合い位置のずれによっても、この非転舵中立噛み合い位置が決して内輪側噛み合い領域に入ることのないようなものとする。
Here, the predetermined amount is determined as follows.
The maximum amount by which the non-steering neutral meshing position of the non-circular gear groups 6 and 7 is shifted from the designed non-steering neutral meshing position by the above-described phase adjustment and toe angle adjustment is the spline tooth pitch of the coupling 9 (see FIG. 2). For example, as shown in FIG.
Therefore, the predetermined amount is set such that the non-steering neutral meshing position never enters the inner ring-side meshing area even if the non-steering neutral meshing position is shifted as described above with reference to FIG.

かかる本実施例の構成によれば、前記した位相調整により非円形歯車組6,7の非転舵中立噛み合い位置が内輪側噛み合い領域方向へずれても、この非転舵中立噛み合い位置は図11(b)に示すごとく依然として外輪側噛み合い領域にあり、
その後の前記したトー角調整により非円形歯車組6,7の非転舵中立噛み合い位置が更に内輪側噛み合い領域方向へずれても、この非転舵中立噛み合い位置は図11(c)に示すごとく依然として外輪側噛み合い領域に保たれ、決して内輪側噛み合い領域に入ることがない。
According to the configuration of the present embodiment, even if the non-steering neutral meshing position of the non-circular gear groups 6 and 7 is shifted in the direction of the inner wheel meshing region by the above-described phase adjustment, the non-steering neutral meshing position is as shown in FIG. As shown in (b), it is still in the outer ring side meshing region,
Even if the non-steering neutral meshing position of the non-circular gear groups 6 and 7 is further shifted toward the inner ring side meshing region by the above-described toe angle adjustment, the non-steering neutral meshing position is as shown in FIG. 11 (c). It is still kept in the outer ring meshing area and never enters the inner ring meshing area.

このため本実施例では、図8と同じ図12のギヤ比特性上において、ステアリングホイール操舵角=0の時における非円形歯車組6,7の非転舵中立噛み合い位置が、前記の位相調整およびトー角調整によっても、白抜き丸印で示す位相調整およびトー角調整前の位置から黒丸印で示す位置へとずれるだけで、破線位置で示す設計上の非転舵中立位置よりも内輪側噛み合い領域にずれることはない。
よって、位相調整およびトー角調整後もステアリングホイール操舵角の変化に対する転舵輪1の転舵角変化が大きくなることがなく、ステアリングホイール操舵角を0にした直進走行中に転舵応答性が敏感になってしまい、直進走行安定性が悪くなるという問題を解消することができる。
Therefore, in this embodiment, on the gear ratio characteristic of FIG. 12 which is the same as FIG. 8, the non-steering neutral meshing position of the non-circular gear sets 6 and 7 when the steering wheel steering angle = 0 is the phase adjustment and Even when the toe angle is adjusted, only the phase adjustment indicated by the white circle and the position before the toe angle adjustment are shifted from the position indicated by the black circle to the position indicated by the broken line, and the meshing on the inner ring side is greater than the designed non-steering neutral position indicated by the broken line. There is no shift to the area.
Therefore, even after phase adjustment and toe angle adjustment, the change in the turning angle of the steered wheel 1 with respect to the change in the steering wheel steering angle does not increase, and the steering response is sensitive during straight running with the steering wheel steering angle set to 0 Therefore, the problem that the straight running stability is deteriorated can be solved.

なお、大舵角時にステアリングホイール操舵角に対する転舵輪の転舵角を大きくして、少ないステアリングホイール操舵量で転舵輪を大きく転舵したい要求に対しては、非円形歯車組6,7のギヤ比を図13に示すごとく、歯車回転角が大きくなるにつれ小さくすることで上記の要求を満足させることができる。   Note that the gears of the non-circular gear sets 6 and 7 are used for a request to increase the turning angle of the steered wheel with respect to the steering wheel steering angle at a large steered angle and to steer the steered wheel with a small steering wheel steering amount. As shown in FIG. 13, the above requirement can be satisfied by reducing the ratio as the gear rotation angle increases.

しかしかかるギヤ比特性にもかかわらず、図11につき上述した要領で、位相調整およびトー角調整後における非円形歯車組6,7の非転舵中立噛み合い位置が図13の丸印で示す位置となるようにした場合、
外輪側噛み合い領域のギヤ比変化割合が内輪側噛み合い領域のギヤ比変化割合よりも大きくなり、ステアリングホイール操舵角を0にした直進走行中に転舵応答性が敏感になって、直進走行安定性が悪くなるという問題を生ずる。
However, in spite of such gear ratio characteristics, the non-steering neutral meshing position of the non-circular gear sets 6, 7 after the phase adjustment and toe angle adjustment is the position indicated by the circle in FIG. If you do
The gear ratio change rate in the outer wheel meshing area is larger than the gear ratio change ratio in the inner wheel meshing area, and the steering response becomes more sensitive during straight running with the steering wheel steering angle set to 0, and straight running stability Causes the problem of worsening.

この問題を解決するために本実施例では、図13に例示するごとくステアリングホイール操舵角に対する転舵輪1の切れ角が大転舵ほど大きくなるよう非円形歯車組6,7のギヤ比を設定する場合、
図14に示すように、設計上の非転舵中立噛み合い位置を基準とし、前記位相調整およびトー角調整に伴う非円形歯車組6,7の非転舵中立噛み合い位置ずれ範囲αと、この非転舵中立噛み合い位置ずれ範囲αから外輪側噛み合い領域寄りへ該非転舵中立噛み合い位置ずれ範囲αと同程度だけ拡大した角度範囲との合計範囲2αにおいて、非円形歯車6,7のギヤ比を一定にする。
In order to solve this problem, in this embodiment, as illustrated in FIG. 13, the gear ratio of the non-circular gear sets 6 and 7 is set so that the turning angle of the steered wheel 1 with respect to the steering wheel steering angle becomes larger as the steered wheel becomes larger. If
As shown in FIG. 14, the non-steering neutral meshing position shift range α of the non-circular gear sets 6 and 7 accompanying the phase adjustment and toe angle adjustment with the designed non-steering neutral meshing position as a reference, The gear ratio of the non-circular gears 6 and 7 is constant in the total range 2α of the non-steering neutral meshing position deviation range α and the angle range expanded from the turning neutral meshing position deviation range α to the outer wheel side meshing area. To.

かようにすれば、図14に例示するごとくステアリングホイール操舵角に対する転舵輪1の切れ角が大転舵ほど大きくなるよう非円形歯車組6,7のギヤ比を設定した場合においても、
図11につき上述した要領により、位相調整およびトー角調整後における非円形歯車組6,7の非転舵中立噛み合い位置が外輪側噛み合い領域に位置するようにすることで、
ステアリングホイール操舵角を0にした直進走行中の走行安定性が悪くなるのを防止するという前記の作用効果を同様に達成することができ、
同時に、転舵輪1の転舵時におけるフリクション増加を抑制することができ、これにより、転舵輪1のタイヤ偏摩耗を防ぎ得ると共に、その転舵性を良好に確保することができる。
Thus, as illustrated in FIG. 14, even when the gear ratio of the non-circular gear sets 6 and 7 is set so that the turning angle of the steered wheel 1 with respect to the steering wheel steering angle becomes larger as the steered wheel becomes larger, as illustrated in FIG.
In the manner described above with reference to FIG. 11, the non-steering neutral meshing position of the non-circular gear sets 6, 7 after phase adjustment and toe angle adjustment is positioned in the outer wheel meshing area,
The above-mentioned effect of preventing deterioration of running stability during straight running with the steering wheel steering angle set to 0 can be similarly achieved,
At the same time, an increase in friction during turning of the steered wheels 1 can be suppressed, whereby uneven wear of the tires of the steered wheels 1 can be prevented and the steerability can be ensured satisfactorily.

なお図11のような構成にしたり、図14のように非円形歯車組6,7のギヤ比を設定する場合、トー角調整に伴う両歯車の非転舵中立噛み合い位置のずれにより、
大舵角時に内輪側噛み合い領域の転舵角と、外輪側噛み合い領域の転舵角との関係がずれ、従来の設定値より相対的に外輪側噛み合い領域の転舵角が内輪側噛み合い領域の転舵角よりも大きくなる。
In addition, when it is configured as shown in FIG. 11 or when setting the gear ratio of the non-circular gear sets 6 and 7 as shown in FIG. 14, due to the deviation of the non-steering neutral meshing position of both gears accompanying toe angle adjustment,
When the steering angle is large, the relationship between the turning angle of the inner ring side meshing area and the steering angle of the outer ring side meshing area deviates, and the turning angle of the outer ring side meshing area is relatively higher than the conventional setting value of the inner ring side meshing area. It becomes larger than the turning angle.

この問題を解決するためには、図15のように内輪側噛み合い領域のギヤ比を破線で示す修正前設定値よりも実線で示すごとく小さくするか、または、図16のように外輪側噛み合い領域のギヤ比を破線で示す修正前設定値よりも実線で示すごとく大きくする。
これらによれば、図17のように大転舵時においても、内輪側噛み合い領域の転舵角と、外輪側噛み合い領域の転舵角との関係を、破線で示す目標とすべき転舵角比近辺に保つことができる。
In order to solve this problem, the gear ratio of the inner ring side meshing area is made smaller as shown by the solid line than the set value before correction shown by the broken line as shown in FIG. 15, or the outer ring side meshing area as shown in FIG. The gear ratio is made larger as shown by the solid line than the setting value before correction shown by the broken line.
According to these, even during large turning as shown in FIG. 17, the turning angle that should be the target indicated by the broken line is the relationship between the turning angle of the inner wheel side meshing area and the turning angle of the outer wheel meshing area. It can be kept in the vicinity.

<第2実施例>
図18は、本発明の第2実施例を示し、本実施例では、トー角調整手段を第1実施例と異ならせる。
つまり、図1〜6に示した第1実施例における伸縮部材11に代えて、図18に示すごとく減速機8を転舵軸設定部材3に対し車両前後方向変位可能に支持すると共に、これら減速機8および転舵軸設定部材3間にねじ機構13,14を設ける。
<Second embodiment>
FIG. 18 shows a second embodiment of the present invention. In this embodiment, the toe angle adjusting means is different from that of the first embodiment.
That is, instead of the telescopic member 11 in the first embodiment shown in FIGS. 1 to 6, as shown in FIG. 18, the reduction gear 8 is supported so as to be displaceable in the vehicle longitudinal direction with respect to the steered shaft setting member 3, and these decelerations are supported. Screw mechanisms 13 and 14 are provided between the machine 8 and the turning shaft setting member 3.

これらねじ機構13,14は、減速機8を、これにより駆動される転舵軸設定部材側非円形歯車7(図1参照)を伴って、転舵軸設定部材3に対し相対的に車両前後方向へ並進させることで、転舵輪1のトー角調整を行うものとする。
従ってねじ機構13,14は、転舵軸設定部材側非円形歯車並進機構を構成し、これをトー角調整手段として用いる。
These screw mechanisms 13 and 14 are arranged so that the speed reducer 8 is moved forward and backward relative to the steered shaft setting member 3 with the steered shaft setting member-side non-circular gear 7 (see FIG. 1) driven thereby. The toe angle of the steered wheel 1 is adjusted by translating in the direction.
Accordingly, the screw mechanisms 13 and 14 constitute a turning shaft setting member side non-circular gear translation mechanism, which is used as a toe angle adjusting means.

それ以外は、前記した第1実施例と同様に構成するため、前記した諸々の作用効果を同様に達成することができる。
なお、トー角調整手段を第1実施例のように伸縮部材11で構成する場合、構成が簡単で低廉化に寄与すると共に、トー角調整作業が簡単であるが、設置スペースの点で不利である。
この点、トー角調整手段を第2実施例のようにねじ機構13,14で構成する場合、設置スペースの点で有利であるが、構成が複雑でコスト高になる。
Other than that, the configuration is the same as that of the first embodiment described above, so that the various functions and effects described above can be achieved in the same manner.
When the toe angle adjusting means is configured by the expansion / contraction member 11 as in the first embodiment, the configuration is simple and contributes to cost reduction, and the toe angle adjusting operation is simple, but it is disadvantageous in terms of installation space. is there.
In this regard, when the toe angle adjusting means is configured by the screw mechanisms 13 and 14 as in the second embodiment, it is advantageous in terms of installation space, but the configuration is complicated and the cost is increased.

<第3実施例>
図19は、本発明の第3実施例を示し、本実施例では、トー角調整手段を第1実施例および第2実施例と異ならせる。
つまり、減速機8を転舵軸設定部材3に対し車両前後方向変位可能、且つ回転可能に支持すると共に、これら減速機8および転舵軸設定部材3間にねじ機構15,16,17,18を設ける。
<Third embodiment>
FIG. 19 shows a third embodiment of the present invention. In this embodiment, the toe angle adjusting means is different from those of the first and second embodiments.
That is, the speed reducer 8 is supported so as to be displaceable and rotatable in the vehicle longitudinal direction with respect to the steered shaft setting member 3, and between the speed reducer 8 and the steered shaft setting member 3, a screw mechanism 15, 16, 17, 18 Is provided.

これらねじ機構15,16,17,18は、減速機8を、これにより駆動される転舵軸設定部材側非円形歯車7(図1参照)を伴って、転舵軸設定部材3に対し相対的に車両前後方向へ並進および回転させることで、転舵輪1のトー角調整を行うものとする。
従ってねじ機構15,16,17,18は、転舵軸設定部材側非円形歯車並進兼回転機構を構成し、これをトー角調整手段として用いる。
These screw mechanisms 15, 16, 17, 18 are relative to the steered shaft setting member 3, with the speed reducer 8, with the non-circular gear 7 (see FIG. 1) driven by the steered shaft setting member. It is assumed that the toe angle of the steered wheels 1 is adjusted by translating and rotating in the vehicle longitudinal direction.
Accordingly, the screw mechanisms 15, 16, 17, 18 constitute a non-circular gear translation / rotation mechanism on the steered shaft setting member side, and this is used as a toe angle adjusting means.

それ以外は、前記した第1実施例および第2実施例と同様に構成するため、これらと同様な作用効果を同様に達成することができる。
ところで第3実施例においては特に、減速機8および転舵軸設定部材側非円形歯車7(図1参照)を伴って、転舵軸設定部材3に対し相対的に車両前後方向へ並進および回転させることで、転舵輪1のトー角調整を行うようにしたため、
減速機8および転舵軸設定部材側非円形歯車7(図1参照)の並進による転舵輪1のトー角調整のみならず、減速機8および転舵軸設定部材側非円形歯車7(図1参照)の回転により、図20(a)に示すような非円形歯車組6,7の非転舵中立噛み合い位置のずれを、同図(b)に示すごとくキャンセルまたは低減させることができる。
Otherwise, the configuration is the same as in the first embodiment and the second embodiment described above, and the same operational effects as these can be achieved in the same manner.
By the way, in the third embodiment, in particular, with the reduction gear 8 and the turning shaft setting member side non-circular gear 7 (see FIG. 1), translation and rotation in the vehicle longitudinal direction relative to the turning shaft setting member 3 are performed. By adjusting the toe angle of the steered wheel 1,
Not only the toe angle adjustment of the steered wheel 1 by translation of the reduction gear 8 and the turning shaft setting member side non-circular gear 7 (see FIG. 1), but also the reduction gear 8 and the turning shaft setting member side non-circular gear 7 (FIG. 1). 20), the deviation of the non-steering neutral meshing position of the non-circular gear sets 6, 7 as shown in FIG. 20 (a) can be canceled or reduced as shown in FIG. 20 (b).

ちなみに、第2実施例のごとく減速機8および転舵軸設定部材側非円形歯車7(図1参照)を並進させるだけでは、これにより転舵輪1のトー角調整を行うことができても、当該並進により転舵軸設定部材側非円形歯車7(図1参照)が回転してしまうため、非円形歯車組6,7の非転舵中立噛み合い位置のずれを、第3実施例のようにキャンセルまたは低減させることができない。   Incidentally, even if the reduction gear 8 and the turning shaft setting member side non-circular gear 7 (see FIG. 1) are translated as in the second embodiment, the toe angle of the steered wheel 1 can be adjusted by this, Due to the translation, the non-circular gear 7 (see FIG. 1) of the steered shaft setting member side rotates, so that the deviation of the non-steering neutral meshing position of the non-circular gear groups 6 and 7 is as in the third embodiment. It cannot be canceled or reduced.

<その他の実施例>
なお、前記した何れの実施例の構成を採用するにしても、大転舵時に前記トー角調整による噛み合い位置ずれ範囲の中央値がアッカーマンの関係式となるよう、非円形歯車組6,7のギヤ比を設定するのがよい。
かかる非円形歯車組6,7のギヤ比設定によれば、大舵角時にアッカーマンの関係に近づくため、車両の小回り性能を向上させることができる。
<Other examples>
Regardless of the configuration of any of the above-described embodiments, the non-circular gear sets 6 and 7 of the non-circular gear sets 6 and 7 are set so that the median value of the meshing position deviation range by the toe angle adjustment becomes the Ackermann relational expression during large turning. It is better to set the gear ratio.
According to the gear ratio setting of the non-circular gear sets 6 and 7, since the Ackermann relationship is approached at the time of a large steering angle, the small turning performance of the vehicle can be improved.

1 右前輪(右転舵輪)
2 車輪支持部材(ナックル)
3 転舵軸設定部材(アップライト)
4 アッパーリンク
5 ロアリンク
6 車輪支持部材側非円形歯車
7 転舵軸設定部材側非円形歯車
8 交差軸式減速機
9 スプライン嵌合式カップリング
10 ステアリングシャフト
11 伸縮部材(トー角調整手段)
12 調整ナット
13,14 ねじ機構(転舵軸設定部材側非円形歯車並進機構)
15〜18 ねじ機構(転舵軸設定部材側非円形歯車並進兼回転機構)
1 Right front wheel (right steered wheel)
2 Wheel support member (knuckle)
3 Steering shaft setting member (upright)
4 Upper link
5 Lower link
6 Wheel support member side non-circular gear
7 Steering shaft setting member side non-circular gear
8 Cross-axis reducer
9 Spline mating type coupling
10 Steering shaft
11 Telescopic member (Toe angle adjustment means)
12 Adjustment nut
13,14 Screw mechanism (steering shaft setting member side non-circular gear translation mechanism)
15-18 screw mechanism (steering shaft setting member side non-circular gear translation and rotation mechanism)

Claims (7)

転舵輪を回転自在に支持した車輪支持部材と、
該車輪支持部材を介し転舵輪を転舵可能に支持して車体に懸架された転舵軸設定部材と、
前記車輪支持部材を前記転舵軸周りに回転させる車輪支持部材側非円形歯車と、
この車輪支持部材側非円形歯車に操舵力を伝達すべく該車輪支持部材側非円形歯車に噛合させて前記転舵軸設定部材に回転自在に設けた転舵軸設定部材側非円形歯車と、
前記転舵輪のトー角を調整可能なトー角調整手段とを具備してなることを特徴とするステアリング装置。
A wheel support member that rotatably supports the steered wheel;
A steered shaft setting member suspended on the vehicle body so as to be steerable via the wheel support member;
A wheel support member-side non-circular gear that rotates the wheel support member around the steering shaft;
A steered shaft setting member side non-circular gear meshed with the wheel support member side non-circular gear so as to transmit a steering force to the wheel support member-side non-circular gear, and rotatably provided on the steered shaft setting member;
A steering device comprising: a toe angle adjusting means capable of adjusting a toe angle of the steered wheel.
前記転舵軸設定部材がサスペンションメンバを介し車体側に懸架されたものである、請求項1に記載のステアリング装置において、
前記トー角調整手段は、前記転舵軸設定部材およびサスペンションメンバ間に長さ調整可能に架設された伸縮部材で構成し、該部材の長さ調整により前記転舵輪のトー角調整を行うものであることを特徴とするステアリング装置。
The steering device according to claim 1, wherein the steered shaft setting member is suspended on a vehicle body side via a suspension member.
The toe angle adjusting means is composed of an expansion / contraction member erected between the steered shaft setting member and the suspension member so as to be adjustable in length, and adjusts the toe angle of the steered wheels by adjusting the length of the member. There is a steering device.
請求項1に記載のステアリング装置において、
前記トー角調整手段は、前記転舵軸設定部材側非円形歯車を前記転舵軸設定部材に対し相対的に車両前後方向へ並進させる転舵軸設定部材側非円形歯車並進機構で構成し、該機構による転舵軸設定部材側非円形歯車の並進により前記転舵輪のトー角調整を行うものであることを特徴とするステアリング装置。
The steering apparatus according to claim 1, wherein
The toe angle adjusting means comprises a turning shaft setting member side non-circular gear translation mechanism that translates the turning shaft setting member side non-circular gear in the vehicle longitudinal direction relative to the turning shaft setting member. A steering device characterized in that the toe angle of the steered wheels is adjusted by translation of a non-circular gear on the steered shaft setting member side by the mechanism.
請求項1に記載のステアリング装置において、
前記トー角調整手段は、前記転舵軸設定部材側非円形歯車を前記転舵軸設定部材に対し相対的に車両前後方向へ並進させると共に転舵軸設定部材側非円形歯車の回転軸線周りに回転させる転舵軸設定部材側非円形歯車並進兼回転機構で構成し、該機構による転舵軸設定部材側非円形歯車の並進および回転により前記転舵輪のトー角調整を行うものであることを特徴とするステアリング装置。
The steering apparatus according to claim 1, wherein
The toe angle adjusting means translates the steered shaft setting member side non-circular gear in the vehicle longitudinal direction relative to the steered shaft setting member and around the rotation axis of the steered shaft setting member side non-circular gear. The turning shaft setting member side non-circular gear translation and rotation mechanism to be rotated is configured to adjust the toe angle of the steered wheels by translation and rotation of the turning shaft setting member side non-circular gear by the mechanism. Steering device characterized.
前記転舵輪が外輪となる前記両非円形歯車の外輪側噛み合い領域では、前記転舵輪が内輪となる前記両非円形歯車の内輪側噛み合い領域よりも、設計上の非転舵中立噛み合い位置付近における非円形歯車間ギヤ比の変化割合を小さくした、請求項1〜4のいずれか1項に記載のステアリング装置において、
前記転舵輪のトー角調整後において、前記転舵輪が非転舵中立位置であるときにおける前記両非円形歯車の非転舵中立噛み合い位置が前記設計上の非転舵中立噛み合い位置となるよう、若しくはこの非転舵中立噛み合い位置よりも外輪側噛み合い領域となるよう構成したことを特徴とするステアリング装置。
In the outer ring side meshing region of the non-circular gears in which the steered wheels are outer wheels, in the vicinity of the designed non-steering neutral meshing position, compared to the inner ring side meshing region of the non-circular gears in which the steered wheels are inner wheels. In the steering device according to any one of claims 1 to 4, wherein the change ratio of the gear ratio between non-circular gears is reduced.
After the toe angle adjustment of the steered wheels, the non-steered neutral meshing position of the non-circular gears when the steered wheel is in the non-steered neutral position is the designed non-steered neutral meshing position. Alternatively, a steering device characterized in that the outer wheel side meshing region is located beyond the non-steering neutral meshing position.
ステアリングホイール操舵角に対する転舵輪の切れ角が大転舵ほど大きくなるよう前記両非円形歯車のギヤ比を設定した、請求項5に記載のステアリング装置において、
前記設計上の非転舵中立噛み合い位置を基準とし、前記トー角調整による非円形歯車の非転舵中立噛み合い位置ずれ範囲と、この非転舵中立噛み合い位置ずれ範囲から前記外輪側噛み合い領域寄りへ該非転舵中立噛み合い位置ずれ範囲と同程度だけ拡大した角度範囲とにおいて、非円形歯車のギヤ比を一定にしたことを特徴とするステアリング装置。
In the steering apparatus according to claim 5, wherein the gear ratio of the non-circular gears is set so that the turning angle of the steered wheel with respect to the steering wheel steering angle becomes larger as the steered wheel becomes larger.
Based on the designed non-steering neutral meshing position as a reference, the non-steering neutral meshing position deviation range of the non-circular gear by the toe angle adjustment, and from the non-steering neutral meshing position deviation range to the outer wheel side meshing area side A steering apparatus characterized in that a gear ratio of a non-circular gear is made constant in an angular range that is expanded to the same extent as the non-steering neutral meshing position shift range.
請求項5または6に記載のステアリング装置において、
大転舵時に前記トー角調整による噛み合い位置ずれ範囲の中央値が、アッカーマンの関係式となるよう非円形歯車のギヤ比を決定したことを特徴とするステアリング装置。
In the steering device according to claim 5 or 6,
A steering apparatus characterized in that the gear ratio of the non-circular gear is determined so that the median value of the meshing position deviation range by adjusting the toe angle at the time of large turning is an Ackermann relational expression.
JP2009022134A 2009-02-03 2009-02-03 Steering device Expired - Fee Related JP5428360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022134A JP5428360B2 (en) 2009-02-03 2009-02-03 Steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022134A JP5428360B2 (en) 2009-02-03 2009-02-03 Steering device

Publications (2)

Publication Number Publication Date
JP2010179665A true JP2010179665A (en) 2010-08-19
JP5428360B2 JP5428360B2 (en) 2014-02-26

Family

ID=42761552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022134A Expired - Fee Related JP5428360B2 (en) 2009-02-03 2009-02-03 Steering device

Country Status (1)

Country Link
JP (1) JP5428360B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110134A1 (en) * 2013-09-13 2015-04-02 Blickle Räder + Rollen GmbH & Co. KG Steering device and vehicle with such

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193778A (en) * 1984-03-14 1985-10-02 Nippon Yusoki Co Ltd Direction switching mechanism for all-direction transfer dolly
JPH0524544A (en) * 1991-07-24 1993-02-02 Res Dev Corp Of Japan Steering mechanism using noncircular gear
JP2004122932A (en) * 2002-10-02 2004-04-22 Nissan Motor Co Ltd Suspension device for vehicle
JP2007022158A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Steering device
JP2007022159A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Steering device
JP2007331625A (en) * 2006-06-16 2007-12-27 Nissan Motor Co Ltd Steering mechanism using noncircular gear pair
JP2008184147A (en) * 2007-01-31 2008-08-14 Aisin Seiki Co Ltd Alignment control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60193778A (en) * 1984-03-14 1985-10-02 Nippon Yusoki Co Ltd Direction switching mechanism for all-direction transfer dolly
JPH0524544A (en) * 1991-07-24 1993-02-02 Res Dev Corp Of Japan Steering mechanism using noncircular gear
JP2004122932A (en) * 2002-10-02 2004-04-22 Nissan Motor Co Ltd Suspension device for vehicle
JP2007022158A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Steering device
JP2007022159A (en) * 2005-07-12 2007-02-01 Nissan Motor Co Ltd Steering device
JP2007331625A (en) * 2006-06-16 2007-12-27 Nissan Motor Co Ltd Steering mechanism using noncircular gear pair
JP2008184147A (en) * 2007-01-31 2008-08-14 Aisin Seiki Co Ltd Alignment control device

Also Published As

Publication number Publication date
JP5428360B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
US7866434B2 (en) Steering apparatus
EP3162664B1 (en) Vehicle
US20140311263A1 (en) Worm and wheel power steering gearbox
JP6909071B2 (en) Hub unit with auxiliary steering function and vehicle
JP5738234B2 (en) Rear wheel toe angle variable vehicle
CN109353406B (en) Vehicle turning and rolling device and rolling control method
JP7224110B2 (en) Steering system and vehicle equipped with same
JP2010052584A (en) Rear suspension device
WO2018235892A1 (en) Supplemental turning function-equipped hub unit and vehicle
JP5481022B2 (en) Vehicle steering device
WO2014181561A1 (en) Steering wheel suspension device
JP6982416B2 (en) Hub unit with auxiliary steering function and vehicle
CN102152808A (en) Front and rear axle steering system for numerical control mechanical transmission
JP5428360B2 (en) Steering device
JP6246010B2 (en) Switching method of vehicle and running mode
CN107054461A (en) Front ladder intersects a few font steering mechanism and kart
JP2010214986A (en) Suspension structure and toe angle variation adjustment method
JP7118682B2 (en) Steering system and vehicle equipped with same
JP5050419B2 (en) Steering mechanism using non-circular gear pairs
KR20120048248A (en) Structure of steering gearbox for vehicle
RU143217U1 (en) UNIVERSAL HINGE FOR STEERING COLUMN
JP6982417B2 (en) Hub unit with auxiliary steering function and vehicle
JP2022108179A (en) Hub unit with steering function, steering system, and vehicle including steering system
JP4114560B2 (en) Electric power steering device
JP2019171909A (en) Hub unit with steering function and vehicle equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees