JP2010177116A - Sealed square battery and assembly method of sealed square battery - Google Patents

Sealed square battery and assembly method of sealed square battery Download PDF

Info

Publication number
JP2010177116A
JP2010177116A JP2009020177A JP2009020177A JP2010177116A JP 2010177116 A JP2010177116 A JP 2010177116A JP 2009020177 A JP2009020177 A JP 2009020177A JP 2009020177 A JP2009020177 A JP 2009020177A JP 2010177116 A JP2010177116 A JP 2010177116A
Authority
JP
Japan
Prior art keywords
terminal plate
electrode terminal
battery
positive electrode
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009020177A
Other languages
Japanese (ja)
Other versions
JP5393181B2 (en
Inventor
Takahiro Morimoto
高広 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2009020177A priority Critical patent/JP5393181B2/en
Publication of JP2010177116A publication Critical patent/JP2010177116A/en
Application granted granted Critical
Publication of JP5393181B2 publication Critical patent/JP5393181B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed square battery having a structure for easing assembly of a battery module, and for reducing a volume and weight of a battery module by removing a member for sealing securement or a member for external short circuit prevention. <P>SOLUTION: A casing of the sealed square battery includes a cathode terminal plate consisting of a conductive plate, an anode terminal plate formed by a conductive plate and arranged in opposition in parallel to the cathode terminal plate, and a rectangular frame member fixed to the cathode terminal plate and the anode terminal plate, forming an outer peripheral part of the casing and made of an insulation material. In a longitudinal direction and a lateral direction of the battery crossing the facing direction, the cathode terminal plate and the anode terminal plate are located at an inner side of the frame member, and each outer edge part of the cathode terminal plate and the anode terminal plate is formed as an insertion mold product jointed in liquid density to the frame member, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、密閉式の角形電池、特に、複数接続されて電池モジュールとして使用される密閉式角形電池に関する。   The present invention relates to a sealed prismatic battery, and more particularly, to a sealed prismatic battery that is used as a battery module by being connected in plural.

従来、密閉式電池の形状として、円筒形が一般的に採用されてきた。円筒形電池においては、電極体として、正極体と負極体とをセパレータを介して円筒形に巻き取った簡易な構造のものを使用することができると同時に、電池の内部圧力に対する耐圧性に優れるという利点がある。   Conventionally, a cylindrical shape has generally been adopted as the shape of a sealed battery. In a cylindrical battery, a simple structure in which a positive electrode body and a negative electrode body are wound into a cylindrical shape via a separator can be used as an electrode body, and at the same time, the pressure resistance against the internal pressure of the battery is excellent. There is an advantage.

ところで、近年、省エネルギーやCO削減への配慮から、自動車や電車などの車両に搭載する、充放電可能な二次電池が開発されている。車両に二次電池を搭載した場合には、ブレーキ時の回生電力をこの搭載電池に蓄えておき、車両の動力源として使用することができるので、車両運行のエネルギー効率を高め、COの排出量を削減することができる。 Recently, in consideration of energy saving and CO 2 reduction, a chargeable / dischargeable secondary battery mounted on a vehicle such as an automobile or a train has been developed. When a secondary battery is mounted on a vehicle, the regenerative power during braking can be stored in this mounted battery and used as a power source for the vehicle, increasing the energy efficiency of vehicle operation and reducing CO 2 emissions. The amount can be reduced.

車両用の電池には、設置スペースが制限される都合上、従来の携帯機器等に用いられるものに比べて、高電圧および高エネルギー容量が要求されるため、大型の電池を複数組み合わせて構成した電池モジュールを使用することが一般的である。大型電池を使用する場合には、電池性能や生産性の観点から、円筒形電池に用いられる巻取り式の電極体よりも、正極体と負極体を交互に積層した電極体の方が適していること、および、電池が設置されるスペースを効率的に利用する必要性が大きいことから、円筒形よりも角形の電池とすることが望ましい(特許文献1)。   Due to the limited installation space, vehicle batteries require a higher voltage and higher energy capacity than those used in conventional portable devices. It is common to use a battery module. When using a large battery, from the viewpoint of battery performance and productivity, an electrode body in which positive and negative electrode bodies are alternately laminated is more suitable than a wound electrode body used in a cylindrical battery. Therefore, it is desirable to use a square battery rather than a cylindrical battery (Patent Document 1).

このように、複数の角形電池を組み合わせて電池モジュールとして用いるための単位電池の構造として、例えば、対向配置された正・負極それぞれの端子板を兼ねる2つの蓋状の部材間に、絶縁素材からなる矩形の枠形部材を介在させて電池のケーシングを形成し、このケーシング内に、プリーツ状のセパレータを介して交互に積層された正極体および負極体からなる電極体を収納するものが提案されている(特許文献2)。このような構造を有する角形電池では、隣接する電池の一方の正極端子板と他方の負極端子板とが互いに接触するように複数の電池を積層させるだけで、複数の角形電池を直列に接続することができるので、電池モジュールの構造を簡単にすることができる。   Thus, as a structure of a unit battery for combining a plurality of prismatic batteries to be used as a battery module, for example, an insulating material is used between two lid-shaped members that serve as terminal plates for both positive and negative electrodes arranged opposite to each other. A battery casing is formed by interposing a rectangular frame-shaped member, and an electrode body composed of a positive electrode body and a negative electrode body alternately stacked via a pleated separator is accommodated in the casing. (Patent Document 2). In a prismatic battery having such a structure, a plurality of prismatic batteries are connected in series by simply stacking a plurality of batteries so that one positive electrode terminal plate and the other negative electrode terminal plate of adjacent batteries are in contact with each other. Therefore, the structure of the battery module can be simplified.

特開2001−110381号公報JP 2001-110381 A 特願2008−103901号明細書Japanese Patent Application No. 2008-103901

しかしながら、上記電池の密閉は、主として、複数個の電池を積層した電池モジュール全体を積層方向に締め付けるための、板状部材や固定用部材によって確保されている。また、2つの蓋状部材の側部が対向方向に折り曲げられて、枠形部材の外周部の一部を覆っているので、蓋状部材間で外部短絡が起こるのを防止するために、電池の積層体を絶縁用部材で覆う必要がある。電池のケーシング構造を改良することにより、これらの密閉確保用部材および外部短絡防止用部材を省くことができれば、電池モジュールの体積および重量を大幅に低減することが可能となる。その結果、電池モジュールのエネルギー密度向上が期待できるとともに、電池モジュールを狭い設置スペースに収納することも可能となる。   However, the sealing of the battery is ensured mainly by a plate-like member or a fixing member for fastening the entire battery module in which a plurality of batteries are stacked in the stacking direction. In addition, since the side portions of the two lid-like members are bent in the opposite direction to cover a part of the outer peripheral portion of the frame-shaped member, the battery is prevented in order to prevent an external short circuit between the lid-like members. It is necessary to cover the laminated body with an insulating member. By improving the casing structure of the battery, if the sealing member and the external short-circuit preventing member can be omitted, the volume and weight of the battery module can be significantly reduced. As a result, an improvement in the energy density of the battery module can be expected, and the battery module can be stored in a narrow installation space.

本発明の目的は、上記の課題を解決するために、電池モジュールの組立てを容易にする構造を有しながら、従来の電池モジュール構造に必要とされた密閉確保用部材や外部短絡防止用部材を省いて電池モジュールの体積および重量を低減することが可能な密閉式角形電池、およびこのような密閉式角形電池の組立方法を提供することである。   In order to solve the above problems, the object of the present invention is to provide a sealing member and an external short-circuit prevention member required for a conventional battery module structure while having a structure that facilitates assembly of the battery module. To provide a sealed prismatic battery that can be omitted and reduce the volume and weight of the battery module, and a method for assembling such a sealed prismatic battery.

前記した目的を達成するために、本発明に係る密閉式角形電池は、正極体および負極体を含む電極体と、該電極体を電解液とともに収納する角形のケーシングとを備える密閉式の角形電池であって、前記ケーシングが、以下のような構成を有している。すなわち、前記ケーシングは、導電性の板材から形成され、電池の外部に露出する面が正極端子面として機能し、電池の内部に向く面が正極集電面として機能する正極端子板と、導電性の板材から形成され、前記正極端子板に平行に対向配置されて、電池の外部に露出する面が負極端子面として機能し、電池の内部に向く面が負極集電面として機能する負極端子板と、前記正極端子板および負極端子板に接合されて前記ケーシングの外周部を形成する、絶縁材料からなる矩形の枠形部材とを有している。さらに、前記ケーシングは、その前記対向方向に直交する縦方向および横方向において、前記正極端子板および前記負極端子板が、前記枠形部材の内側に位置しており、前記正極端子板および前記負極端子板の各外縁部が、前記枠形部材に固定されて、前記枠形部材にそれぞれ液密に接合されたインサート成形品である。ここで、「縦方向」とは、矩形の枠形部材の互いに対向する2組の辺の一方の対向方向を指し、「横方向」とは、縦方向に直行する他方の対向方向を指す。   In order to achieve the above-described object, a sealed prismatic battery according to the present invention includes a sealed prismatic battery including an electrode body including a positive electrode body and a negative electrode body, and a rectangular casing that houses the electrode body together with an electrolytic solution. And the said casing has the following structures. That is, the casing is formed of a conductive plate material, a surface exposed to the outside of the battery functions as a positive electrode terminal surface, and a surface facing the inside of the battery functions as a positive electrode current collecting surface; The negative electrode terminal plate is formed from the plate material, and is disposed opposite to and parallel to the positive electrode terminal plate, the surface exposed to the outside of the battery functions as a negative electrode terminal surface, and the surface facing the inside of the battery functions as a negative electrode current collecting surface And a rectangular frame-shaped member made of an insulating material that is joined to the positive electrode terminal plate and the negative electrode terminal plate to form the outer peripheral portion of the casing. Further, the casing has the positive terminal plate and the negative terminal plate located inside the frame-shaped member in the vertical direction and the horizontal direction orthogonal to the facing direction, and the positive terminal plate and the negative electrode Each outer edge portion of the terminal plate is an insert-molded product fixed to the frame-shaped member and liquid-tightly joined to the frame-shaped member. Here, “vertical direction” refers to one opposing direction of two sets of opposite sides of a rectangular frame-shaped member, and “lateral direction” refers to the other opposing direction orthogonal to the vertical direction.

この構成によれば、対向配置された正極端子板と負極端子板とがケーシングの一部を構成することで、電池モジュールの組み立てを容易にする構造を有しながらも、インサート成形によって、導電性材料からなる両端子板と絶縁材料からなる枠形部材とが液密に接合されていることにより、電池単独で十分な密閉性が確保できる。また、前記対向方向に直交する縦方向および横方向において、正極端子板および負極端子板が、前記枠形部材の内側に位置しているので、外部短絡が起こりにくい。したがって、電池の組立作業や、電池完成後の取扱いが容易になる。さらには、この電池を使用する電池モジュールにおいて、密閉確保用部材や外部短絡防止用部材を省いて構造を簡素化し、かつ重量および体積を大幅に低減することができる。その結果、当該密閉式角形電池を用いて構成する電池モジュールのエネルギー密度が向上するとともに、電池モジュールを狭い設置スペースに収納することが可能になる。   According to this configuration, the positive electrode terminal plate and the negative electrode terminal plate arranged opposite to each other constitute a part of the casing, thereby having a structure that facilitates assembly of the battery module. Since the both terminal plates made of the material and the frame-shaped member made of the insulating material are joined in a liquid-tight manner, sufficient sealing performance can be secured by the battery alone. Further, since the positive electrode terminal plate and the negative electrode terminal plate are located inside the frame-shaped member in the vertical direction and the horizontal direction orthogonal to the facing direction, an external short circuit hardly occurs. Therefore, battery assembly work and handling after battery completion are facilitated. Furthermore, in the battery module using this battery, the structure can be simplified and the weight and volume can be greatly reduced by omitting the sealing ensuring member and the external short-circuit preventing member. As a result, the energy density of the battery module configured using the sealed rectangular battery is improved, and the battery module can be stored in a narrow installation space.

上記の密閉式角形電池は、前記電極体の、前記縦方向および横方向の外周を覆い、かつ、前記ケーシング内に収納される、絶縁材料からなる内部枠体を備えていることが好ましい。このように構成することにより、インサート成形を行う際に、樹脂が電極体に向けて射出されて、電極体に付着するのを防止することができる。また、電極体が内部枠体によって保持されるので、組み立ての過程で、電極体や、電極体と両端子板とを仮組みしたものの取扱いが容易になる。   The sealed prismatic battery preferably includes an inner frame made of an insulating material that covers the outer periphery in the vertical direction and the horizontal direction of the electrode body and is housed in the casing. By comprising in this way, when performing insert molding, it can prevent that resin is inject | emitted toward an electrode body and adheres to an electrode body. Further, since the electrode body is held by the inner frame body, it becomes easy to handle the electrode body or a temporary assembly of the electrode body and both terminal plates during the assembly process.

また、本発明に係る密閉式角形電池において、前記枠形部材の対向方向寸法が、前記両端子面間寸法よりも小さく設定されていてもよい。このように構成することにより、当該電池を積層して電池モジュールを構成した際に、各端子板が内側に押し付けられるので、各端子板と電極体との接触状態が良好となり、電池の内部抵抗を低減させることができる。これにより、電池性能が向上する。   Further, in the sealed prismatic battery according to the present invention, a dimension in a facing direction of the frame-shaped member may be set smaller than a dimension between both the terminal surfaces. By configuring in this way, when the battery is stacked to form a battery module, each terminal plate is pressed inward, so that the contact state between each terminal plate and the electrode body becomes good, and the internal resistance of the battery Can be reduced. Thereby, battery performance improves.

また、本発明に係る密閉式角形電池において、前記正極端子板および負極端子板の前記各外縁部が、前記対向方向に突出する側壁部として形成されており、該側壁部が、前記枠形部材と前記内部枠体との間に介在していてもよい。このように構成することにより、組み立ての過程で、電極体や、電極体と両端子板とを仮組みしたものの取扱いが一層容易になり、両端子板と電極体の位置決めが正確にできるようになるので、電池の組み立てが容易になるとともに、電池の信頼性が向上する。   Further, in the sealed rectangular battery according to the present invention, each of the outer edge portions of the positive electrode terminal plate and the negative electrode terminal plate is formed as a side wall portion protruding in the facing direction, and the side wall portion is the frame-shaped member. And the inner frame. By configuring in this way, it becomes easier to handle the electrode body or the temporary assembly of the electrode body and both terminal plates in the process of assembly, so that the positioning of both terminal plates and the electrode body can be performed accurately. Therefore, the battery can be easily assembled and the reliability of the battery is improved.

上記のように、本発明に係る密閉式角形電池において側壁部を設ける場合、前記正極端子板および負極端子板が、前記側壁部からさらに前記縦方向および横方向の外方に突出して互いに対向する鍔部を有していてもよい。このように構成することにより、電池内圧による両端子板の対向方向、縦方向および横方向の変形が抑えられるので、電池の耐圧性が向上する。   As described above, when the side wall portion is provided in the sealed prismatic battery according to the present invention, the positive electrode terminal plate and the negative electrode terminal plate further protrude outward from the side wall portion in the vertical and horizontal directions and face each other. You may have a collar part. By configuring in this way, the deformation in the facing direction, the vertical direction and the horizontal direction of both terminal plates due to the internal pressure of the battery can be suppressed, so that the pressure resistance of the battery is improved.

上記のように、両端子板に側壁部および鍔部を設ける場合、前記側壁部および鍔部を含む外縁部に、前記枠形部材に埋入する凹凸状の段部を形成してもよい。電池の充放電時には、反応熱やジュール熱によって電池の温度が上昇する。これにより、樹脂製の枠形部材および金属製の正極および負極端子板は熱膨張するが、枠形部材と両端子板とでは素材の熱膨張係数が異なるので、枠形部材と両端子との接合部分に内部応力が発生し、密閉性の確保が困難になる場合がある。しかし、両端子板の矩形の各辺に沿った方向に伸縮可能な形状の段部を設けて、熱膨張係数の相違によって生じる内部応力を、この段部に吸収させることにより、長期に渡ってケーシングの密閉性を確保し、電池寿命の低下を防ぐことができる。   As described above, when the side wall portion and the flange portion are provided on both terminal plates, an uneven stepped portion embedded in the frame-shaped member may be formed on the outer edge portion including the side wall portion and the flange portion. At the time of charging / discharging the battery, the temperature of the battery rises due to reaction heat or Joule heat. As a result, the resin-made frame-shaped member and the metal positive and negative terminal plates thermally expand. However, since the thermal expansion coefficient of the material differs between the frame-shaped member and both terminal plates, the frame-shaped member and both terminals Internal stress may be generated at the joint, and it may be difficult to ensure sealing. However, by providing a stepped portion that can be expanded and contracted in the direction along each side of the rectangular shape of both terminal plates, and by absorbing the internal stress caused by the difference in thermal expansion coefficient to this stepped portion over a long period of time The sealing property of the casing can be secured, and the battery life can be prevented from decreasing.

また、上記のように、両端子板に側壁部および鍔部を設ける場合、前記内部枠体が、該内部枠体の外周全体に渡って延びる、前記縦方向および横方向に突設された外周突起を有しており、該外周突起が、前記正極端子板と負極端子板の各鍔部の間に介在していてもよい。このように構成することにより、内部枠体の剛性が高まるので、射出成形時の樹脂による圧力や、電池使用時における内圧上昇による変形を抑制することができる。   Further, as described above, in the case where both the terminal plates are provided with the side wall portion and the flange portion, the inner frame extends over the entire outer periphery of the inner frame, and the outer periphery protrudes in the vertical direction and the horizontal direction. It has a protrusion, and the outer peripheral protrusion may be interposed between the flanges of the positive terminal plate and the negative terminal plate. By configuring in this way, the rigidity of the inner frame body is increased, so that it is possible to suppress deformation due to the pressure caused by the resin during injection molding and the increase in internal pressure during battery use.

上記のように、前記内部枠体に外周突起を設ける場合、前記枠形部材の対向方向寸法が、前記両端子面間寸法よりも小さく設定されており、かつ、前記内部枠体の対向方向寸法が、前記両集電面間寸法よりも小さく設定されて、前記正極集電面および前記負極集電面が、それぞれ、前記正極体および前記負極体に圧接していてもよい。内部枠体に、鍔部間に介在する外周突起を設けることによって、射出成形時に樹脂がケーシングの内部に侵入することが防止され、樹脂が内部枠体の内側に回りこんで電極体に付着するおそれがないので、内部枠体の対向方向寸法を、両集電面間寸法よりも小さく設定することが可能になる。この場合、枠形部材の成形型による型締めによって、正極端子板の集電面および負極端子板の集電面を、それぞれ、正極体および負極体に圧接させて、電池の内部抵抗を大幅に低減させることができるので、電池性能が向上する。   As described above, when the outer peripheral projection is provided on the inner frame, the opposing dimension of the frame-shaped member is set to be smaller than the dimension between the two terminal surfaces, and the opposing dimension of the inner frame. However, it may be set smaller than the dimension between the two current collecting surfaces, and the positive electrode current collecting surface and the negative electrode current collecting surface may be in pressure contact with the positive electrode body and the negative electrode body, respectively. By providing the inner frame with outer peripheral protrusions interposed between the flanges, the resin is prevented from entering the casing during injection molding, and the resin wraps around the inner frame and adheres to the electrode body. Since there is no fear, it is possible to set the opposing direction dimension of the inner frame to be smaller than the dimension between the current collecting surfaces. In this case, the internal resistance of the battery is greatly increased by pressing the current collecting surface of the positive electrode terminal plate and the current collecting surface of the negative electrode terminal plate to the positive electrode body and the negative electrode body, respectively, by clamping with the mold of the frame-shaped member. Since it can reduce, battery performance improves.

上記のように、両端子板に側壁部および鍔部を設ける場合、前記鍔部に、該鍔部と枠形部材との間をシールするシール剤が塗布されていることが好ましい。このように構成することにより、電池ケーシングの密閉性が長期にわたって確保され、電池の信頼性が向上する。   As described above, when the side wall portion and the flange portion are provided on both terminal plates, it is preferable that a sealing agent that seals between the flange portion and the frame-shaped member is applied to the flange portion. By comprising in this way, the sealing property of a battery casing is ensured over a long period of time, and the reliability of a battery improves.

本発明に係る密閉式角形電池において、前記正極端子板および前記負極端子板の各外縁部の、前記枠形部材と接合する接合面に、微細な凹凸が形成されているのが好ましい。このように構成することにより、両端子板と枠形部材との接触面積が増加し、十分な接合強度を確保することができる。   In the sealed prismatic battery according to the present invention, it is preferable that fine irregularities are formed on the joining surfaces of the outer edge portions of the positive electrode terminal plate and the negative electrode terminal plate to be joined to the frame member. By comprising in this way, the contact area of both a terminal board and a frame-shaped member increases, and sufficient joint strength can be ensured.

また、本発明に係る密閉式角形電池において、前記枠形部材を形成する材料が、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリプロピレンおよびポリエチレンからなる群から選択される少なくとも1種類の樹脂を含んでいることが好ましい。このように、インサート成形に適し、かつ耐アルカリ水溶液性を有する樹脂で枠形部材を形成することにより、電池の組み立て作業が容易になり、かつ、十分な長期充放電性能を確保することができる。   Further, in the sealed prismatic battery according to the present invention, the material forming the frame-shaped member includes at least one resin selected from the group consisting of polyphenylene sulfide, polybutylene terephthalate, polyphenylene oxide, polypropylene, and polyethylene. Preferably it is. Thus, by forming the frame-shaped member with a resin that is suitable for insert molding and has resistance to an aqueous alkali solution, the battery assembly operation can be facilitated, and sufficient long-term charge / discharge performance can be ensured. .

本発明に係る密閉式角形電池の組立方法は、上記の密閉式角形電池を組み立てる方法であって、前記正極端子板および負極端子板の外縁部表面の、前記枠形部材と接合させる部分に微細な凹凸を形成する工程と、前記正極端子板および負極端子板の間に前記電極体を介在させた状態に仮組みして、仮組体を形成する工程と、前記仮組体を、前記枠形部材を形成する、前記正極端子板および負極端子板よりも大きい前記縦方向および横方向の内部寸法を有する成形型内に設置する工程と、前記成形型内に所定の材料からなる樹脂を射出してインサート成形により前記枠形部材を形成する工程とを含む。   A method for assembling a sealed prismatic battery according to the present invention is a method for assembling the sealed prismatic battery described above, and a fine portion is formed on a portion of the outer peripheral surface of the positive electrode terminal plate and the negative electrode terminal plate to be joined to the frame member. Forming a temporary assembly by temporarily assembling the electrode body between the positive electrode terminal plate and the negative electrode terminal plate, and forming the temporary assembly; Forming in the mold having the vertical and horizontal internal dimensions larger than the positive electrode terminal plate and the negative electrode terminal plate, and injecting a resin made of a predetermined material into the mold Forming the frame-shaped member by insert molding.

このように構成することにより、対向配置された正極端子板と負極端子板とがケーシングの一部を構成することで、電池モジュールの組み立てを容易にする構造を有しながらも、インサート成形を用いることにより、導電性材料からなる両端子板と絶縁材料からなる枠形部材とが液密に接合されるので、電池単独で十分な密閉性を確保できる。また、枠形部材の縦方向および横方向の寸法が、両端子板の縦方向および横方向の寸法よりも大きいので、外部短絡が起こりにくい。したがって、電池の組立作業や、電池完成後の取扱いが容易になる。さらには、この電池を使用する電池モジュールにおいて、締め付け用部材や絶縁用部材を省いて構造を簡素化し、かつ重量および体積を大幅に低減することができる。   By configuring in this way, the positive electrode terminal plate and the negative electrode terminal plate arranged opposite to each other constitute a part of the casing, so that insert molding is used while having a structure that facilitates assembly of the battery module. As a result, both the terminal plates made of the conductive material and the frame-shaped member made of the insulating material are joined in a liquid-tight manner, so that a sufficient airtightness can be secured by the battery alone. In addition, since the vertical and horizontal dimensions of the frame-shaped member are larger than the vertical and horizontal dimensions of both terminal boards, an external short circuit is unlikely to occur. Therefore, battery assembly work and handling after battery completion are facilitated. Furthermore, in the battery module using this battery, the structure can be simplified by omitting the fastening member and the insulating member, and the weight and volume can be greatly reduced.

上記の組立方法において、前記仮組み体に、前記電極体の外周を覆い、前記正極端子板および負極端子板よりも小さい前記縦方向および横方向の寸法を有する、絶縁部材からなる内部枠体を設けることを含んでいることが好ましい。このように構成することにより、組み立ての過程において、電極体や、電極体と両端子板とを仮組みしたものの取扱いが容易になるとともに、インサート成形を行う際に、樹脂が電極体に向けて射出されて電極体に付着するのを防止することができる。   In the above assembling method, an inner frame made of an insulating member is provided on the temporary assembly so as to cover the outer periphery of the electrode body and have dimensions in the vertical and horizontal directions smaller than those of the positive electrode terminal plate and the negative electrode terminal plate. It is preferable to include providing. By configuring in this way, it becomes easy to handle the electrode body or the temporary assembly of the electrode body and both terminal plates during the assembly process, and the resin is directed to the electrode body when performing insert molding. It can be prevented from being ejected and adhering to the electrode body.

上記のように、前記仮組み体に内部枠体を設ける場合において、前記内部枠体の対向方向高さを、前記成形型の前記仮組み体が配置される部分における内部高さ寸法と、前記正極端子板の厚さおよび前記負極端子板の厚さの和との差よりも大きく設定し、前記仮組体を対向方向に型締めすることによって、前記内部枠体の両端面を前記正極集電面および負極集電面にそれぞれ圧接させることを含んでいてもよい。このように構成することにより、電池の内部抵抗が低減されて、電池性能が向上する。   As described above, in the case where an internal frame is provided in the temporary assembly, the height in the opposing direction of the internal frame is determined by the internal height dimension in the portion of the mold where the temporary assembly is disposed, By setting the difference between the thickness of the positive electrode terminal plate and the sum of the thicknesses of the negative electrode terminal plate and clamping the temporary assembly in the opposite direction, the both end surfaces of the inner frame are fixed to the positive electrode assembly. It may include contacting each of the electric surface and the negative electrode current collecting surface. By comprising in this way, the internal resistance of a battery is reduced and battery performance improves.

上記の組立方法において、前記成形型の前記正極端子板に接する面および前記負極端子板に接する面の少なくとも一方に、前記正極端子板または前記負極端子板を受け入れて、前記仮組み体の前記縦方向および横方向の位置を規制する位置決め凹部を設けることを含んでいることが好ましい。このように構成することにより、成形型内での仮組み体の位置が安定するので、電池の製造が容易となり、かつ、電池間の寸法ばらつきが抑制される。   In the assembling method, the positive terminal plate or the negative terminal plate is received on at least one of a surface in contact with the positive electrode terminal plate and a surface in contact with the negative electrode terminal plate of the molding die, and the vertical assembly of the temporary assembly is received. It is preferable to include providing a positioning recess for regulating the position in the direction and the lateral direction. With this configuration, the position of the temporary assembly in the mold is stabilized, so that the battery can be easily manufactured and the dimensional variation between the batteries is suppressed.

以上のように、本発明に係る密閉式角形電池によれば、電池単独で十分な密閉性を確保でき、かつ、外部短絡の発生しにくいケーシング構造とすることにより、従来の電池モジュール構造に必要とされた密閉確保用部材や外部短絡防止用部材を省いて電池モジュールの体積および重量を低減することが可能であるので、当該密閉式角形電池を用いて構成する電池モジュールのエネルギー密度が向上するとともに、電池モジュールを狭い設置スペースに収納することが可能になる。   As described above, according to the sealed prismatic battery according to the present invention, it is necessary for the conventional battery module structure by providing a casing structure that can secure a sufficient sealing property with the battery alone and hardly generates an external short circuit. It is possible to reduce the volume and weight of the battery module by omitting the sealing member and the external short-circuit prevention member, and the energy density of the battery module configured using the sealed rectangular battery is improved. At the same time, the battery module can be stored in a narrow installation space.

本発明の一実施形態に係る角形電池を示す斜視図である。It is a perspective view which shows the square battery which concerns on one Embodiment of this invention. 本発明の第1実施形態に係る角形電池を示す断面図である。It is sectional drawing which shows the square battery which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る角形電池を示す断面図である。It is sectional drawing which shows the square battery which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る角形電池を示す断面図である。It is sectional drawing which shows the square battery which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る角形電池を示す断面図である。It is sectional drawing which shows the square battery which concerns on 4th Embodiment of this invention. 図5の角形電池の要部を示す断面図である。It is sectional drawing which shows the principal part of the square battery of FIG. 本発明の第5実施形態に係る角形電池を示す断面図である。It is sectional drawing which shows the square battery which concerns on 5th Embodiment of this invention. 第5実施形態の変形例に係る角形電池を示す断面図である。It is sectional drawing which shows the prismatic battery which concerns on the modification of 5th Embodiment. 本発明に係る角形電池の組立方法の一工程を示す断面図である。It is sectional drawing which shows 1 process of the assembly method of the square battery which concerns on this invention. 本発明に係る角形電池の組立方法の一工程を示す断面図である。It is sectional drawing which shows 1 process of the assembly method of the square battery which concerns on this invention.

以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments.

図1は、本発明の第1実施形態に係る密閉式角形電池(以下単に「電池」という)Cを示す斜視図である。この電池Cは、水酸化ニッケルを主要な正極活物質とし、水素吸蔵合金を主要な負極活物質とし、アルカリ系水溶液を電解液とするニッケル水素二次電池として構成されており、互いに平行に対向配置された正極端子板3および負極端子板5と、両端子板3,5に固定された絶縁素材からなる矩形の枠形部材7とによって、電池Cの角形のケーシング9が構成されている。なお、以下の説明において、両端子板3,5の対向方向を単に対向方向Xと呼ぶ。さらに、矩形の枠形部材7の互いに対向する2組の辺の一方の対向方向を縦方向Yと呼び、これに直行する他方の対向方向を横方向Zと呼ぶが、ケーシング9は、縦方向Yと横方向Zにおいてほぼ同様の構造を有しているので、以下の各実施形態の説明においては、特に必要な場合を除き、代表として縦方向Yについてのみ説明する。   FIG. 1 is a perspective view showing a sealed prismatic battery (hereinafter simply referred to as “battery”) C according to a first embodiment of the present invention. This battery C is constituted as a nickel-hydrogen secondary battery using nickel hydroxide as a main positive electrode active material, a hydrogen storage alloy as a main negative electrode active material, and an alkaline aqueous solution as an electrolyte, and facing each other in parallel. A rectangular casing 9 of the battery C is constituted by the positive electrode terminal plate 3 and the negative electrode terminal plate 5 that are arranged and a rectangular frame-shaped member 7 made of an insulating material fixed to both the terminal plates 3 and 5. In the following description, the facing direction of both terminal plates 3 and 5 is simply referred to as the facing direction X. Furthermore, one opposing direction of the two sets of opposite sides of the rectangular frame-shaped member 7 is referred to as a vertical direction Y, and the other opposing direction perpendicular thereto is referred to as a lateral direction Z. Since it has substantially the same structure in Y and the horizontal direction Z, in the following description of each embodiment, only the vertical direction Y will be described as a representative unless otherwise required.

図2は、図1の電池Cの構造を示す断面図である。ケーシング9の内方には、セパレータ11、正極を構成する正極体13および負極を構成する負極体15を含む電極体17が、電解液とともに収納されている。電極体17は、プリーツ状に折り曲げられたセパレータ11を介して、平板状の正極体13および負極体15が交互に積層されて対向するプリーツ構造を有している。本実施形態において、電極体17は、正極端子板3と負極端子板5の対向方向Xに直交する、縦方向Yに積層されている。   FIG. 2 is a cross-sectional view showing the structure of the battery C of FIG. Inside the casing 9, an electrode body 17 including a separator 11, a positive electrode body 13 constituting a positive electrode, and a negative electrode body 15 constituting a negative electrode is housed together with an electrolytic solution. The electrode body 17 has a pleated structure in which flat plate-like positive electrode bodies 13 and negative electrode bodies 15 are alternately laminated via a separator 11 bent into a pleat shape. In the present embodiment, the electrode body 17 is laminated in the longitudinal direction Y, which is orthogonal to the facing direction X of the positive electrode terminal plate 3 and the negative electrode terminal plate 5.

したがって、正極体13は、正極端子板3に垂直な方向に配置されており、各正極体13の端面13aが、正極端子板3の電池内部に向く面に接触している。つまり、正極端子板3の電池内部に向く面は、正極側の集電面3aとして機能する。これにより、正極端子板3の電池外部に露出する面が、電池Cから電流を取り出す際の正極側の端子面3bとして機能する。同様に、負極端子板5の電池内部に向く面は、負極側の端子面5aとして機能し、電池外部に露出する面は、負極側の端子面5bとして機能する。   Therefore, the positive electrode body 13 is arranged in a direction perpendicular to the positive electrode terminal plate 3, and the end surface 13 a of each positive electrode body 13 is in contact with the surface of the positive electrode terminal plate 3 facing the inside of the battery. In other words, the surface of the positive electrode terminal plate 3 facing the inside of the battery functions as a positive current collecting surface 3a. As a result, the surface of the positive electrode terminal plate 3 exposed to the outside of the battery functions as the terminal surface 3b on the positive electrode side when taking out current from the battery C. Similarly, the surface of the negative electrode terminal plate 5 facing the inside of the battery functions as a negative electrode side terminal surface 5a, and the surface exposed to the outside of the battery functions as a negative electrode side terminal surface 5b.

ケーシング9は、後に詳述するように、正極端子板3および負極端子板5の各外縁部が、枠形部材7に液密に接合されたインサート成形品として形成されている。さらに、正極端子板3および負極端子板5は、縦方向Yにおいて、枠形部材7の内側に位置している。換言すれば、枠形部材7の、縦方向Yの寸法Dfは、正極端子板3および負極端子板5の縦方向Yの寸法Dtよりも大きく設定されており、枠形部材7がケーシング9の外周部9aを形成している。   As will be described in detail later, the casing 9 is formed as an insert-molded product in which the outer edge portions of the positive electrode terminal plate 3 and the negative electrode terminal plate 5 are joined to the frame member 7 in a liquid-tight manner. Further, the positive electrode terminal plate 3 and the negative electrode terminal plate 5 are located inside the frame-shaped member 7 in the longitudinal direction Y. In other words, the dimension Df in the longitudinal direction Y of the frame-shaped member 7 is set larger than the dimension Dt in the longitudinal direction Y of the positive electrode terminal plate 3 and the negative electrode terminal plate 5, and the frame-shaped member 7 is An outer peripheral portion 9a is formed.

また、本実施形態においては、電極体17の縦方向Yを向く外周が、絶縁材料からなる矩形の内部枠体19で覆われている。内部枠体19は、正極端子板3および負極端子板5よりも小さい縦方向寸法Diを有しており、ケーシング9内に収納されている。枠形部材7は、両端子面3b,5b間寸法Htにほぼ等しい対向方向寸法Hfoを有する外周部7aと、この外周部7aから内周側に突出する内周凸部7bとを有しており、外周部7aが両端子板3,5の各端面3c、5cを覆っている。また、枠形部材7の内周凸部7bが、両端子板3,5の各外縁部3d,5dの集電面側に形成される接合面21に接合されるとともに、内部枠体19の外周面19aを覆っている。この接合面21は短いハッチングで示されている。   Moreover, in this embodiment, the outer periphery which faces the vertical direction Y of the electrode body 17 is covered with the rectangular internal frame 19 which consists of insulating materials. The inner frame 19 has a smaller vertical dimension Di than the positive electrode terminal plate 3 and the negative electrode terminal plate 5 and is housed in the casing 9. The frame-shaped member 7 has an outer peripheral portion 7a having a facing direction dimension Hfo substantially equal to the dimension Ht between both terminal surfaces 3b and 5b, and an inner peripheral convex portion 7b protruding from the outer peripheral portion 7a to the inner peripheral side. The outer peripheral portion 7a covers the end faces 3c, 5c of the both terminal plates 3, 5. Further, the inner peripheral convex portion 7 b of the frame-shaped member 7 is joined to the joint surface 21 formed on the current collecting surface side of each of the outer edge portions 3 d and 5 d of the both terminal plates 3 and 5, and the outer peripheral surface of the inner frame body 19. 19a is covered. This joint surface 21 is indicated by short hatching.

なお、内部枠体19は、省略することも可能であるが、上記のように内部枠体19を設けた場合には、後に詳述するインサート成形を行う際に、樹脂が電極体17に向けて射出されて電極体17に付着するのを防止することができる。また、電極体17が内部枠体19によって保持されるので、組み立ての過程で、電極体や、電極体と両端子板とを仮組みしたものの取扱いが容易になる。   The inner frame body 19 can be omitted. However, when the inner frame body 19 is provided as described above, the resin is directed toward the electrode body 17 when insert molding described in detail later is performed. Can be prevented from being ejected and attached to the electrode body 17. In addition, since the electrode body 17 is held by the inner frame body 19, handling of the electrode body or a temporary assembly of the electrode body and both terminal plates is facilitated during the assembly process.

枠形部材7は、インサート成形に適し、かつ耐アルカリ水溶液性を有する樹脂、例えば、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリプロピレンおよびポリエチレンのいずれか1種類またはこれらの混合物によって形成されている。正極端子板3および負極端子板5は、本実施形態では、ニッケルめっきを施した鋼板によって形成されている。両端子板3,5の、枠形部材7に接合される上述の接合面21には、エッチングのような表面処理を施すことにより、微細な凹凸が形成されている。好ましくは、接合面21は、0.5〜10μmRSmかつ0.2〜5μmRz程度の微細な凹凸を有し、かつ凹凸の高低差が10〜300nm程度である。また、微細な凹凸を形成する方法としては、例えば、ケミカルエッチングやショットピーニングがあるが、表面粗し加工であれば、他の方法であってもよい。また、表面粗し加工は、鋼板にニッケルめっきを施す前に行ってもよく、ニッケルめっきを施した後に行ってもよい。   The frame-shaped member 7 is made of a resin that is suitable for insert molding and has an aqueous alkali resistance, such as polyphenylene sulfide, polybutylene terephthalate, polyphenylene oxide, polypropylene, and polyethylene, or a mixture thereof. In the present embodiment, the positive electrode terminal plate 3 and the negative electrode terminal plate 5 are formed of steel plates plated with nickel. Fine irregularities are formed on the joint surface 21 of the both terminal plates 3 and 5 to be joined to the frame member 7 by performing a surface treatment such as etching. Preferably, the bonding surface 21 has fine unevenness of about 0.5 to 10 μm RSm and about 0.2 to 5 μmRz, and the height difference of the unevenness is about 10 to 300 nm. Moreover, as a method of forming fine irregularities, for example, there are chemical etching and shot peening, but other methods may be used as long as the surface is roughened. Further, the surface roughening may be performed before the nickel plating is applied to the steel sheet, or may be performed after the nickel plating is performed.

図3は、本発明の第2実施形態に係る電池Cの構造を示す断面図である。この電池Cでは、正極端子板3および負極端子板5の外縁部3d、5dが、対向方向Xに突出する側壁部23,25として形成されており、これら側壁部23,25が、枠形部材7と内部枠体19との間に介在している。   FIG. 3 is a cross-sectional view showing the structure of a battery C according to the second embodiment of the present invention. In this battery C, the outer edge portions 3d and 5d of the positive electrode terminal plate 3 and the negative electrode terminal plate 5 are formed as side wall portions 23 and 25 protruding in the facing direction X, and these side wall portions 23 and 25 are frame-shaped members. 7 and the inner frame 19.

内部枠体19の外周面19aは、側壁部23,25、および互いに対向する側壁部の端面23a,25a間に介在する枠形部材の内周凸部7bによって覆われている。また、本実施形態では、各側壁部23,25の外周面が、枠形部材7に接合される接合面21として形成されている。そのほかの構成は、図2に示す第1実施形態と同様である。   The outer peripheral surface 19a of the inner frame 19 is covered with the side wall portions 23 and 25 and the inner peripheral convex portion 7b of the frame-shaped member interposed between the end surfaces 23a and 25a of the side wall portions facing each other. In the present embodiment, the outer peripheral surfaces of the side wall portions 23 and 25 are formed as the joint surfaces 21 to be joined to the frame member 7. Other configurations are the same as those of the first embodiment shown in FIG.

このように側壁部23,25を設けることにより、組立ての過程で、両電極板3,5間に電極体17を保持できるから、電極体17や、電極体17と両端子板3,5とを仮組みしたものの取扱いが一層容易になり、両端子板3,5と電極体17の位置決めが正確にできるので、電池Cの組立てが容易になるとともに、電池Cの信頼性が向上する。   By providing the side wall portions 23 and 25 in this way, the electrode body 17 can be held between the electrode plates 3 and 5 in the process of assembly, so that the electrode body 17 and the electrode body 17 and both the terminal plates 3 and 5 As a result of the temporary assembly, the terminal plates 3, 5 and the electrode body 17 can be accurately positioned, so that the assembly of the battery C is facilitated and the reliability of the battery C is improved.

図4は、本発明の第3実施形態に係る電池Cの構造を示す断面図である。この電池Cでは、正極端子板3および負極端子板5の外縁部3d、5dに、各側壁部23,25からさらに縦方向Yの外方に突出して互いに対向する鍔部33,35が設けられている。このように鍔部33,35を設けることにより、電池内圧による両端子板3,5の対向方向Xおよび縦方向Yの変形が抑えられるので、電池Cの耐圧性が向上する。   FIG. 4 is a cross-sectional view showing a structure of a battery C according to the third embodiment of the present invention. In the battery C, the outer edge portions 3d and 5d of the positive electrode terminal plate 3 and the negative electrode terminal plate 5 are provided with flange portions 33 and 35 that protrude further outward in the vertical direction Y from the side wall portions 23 and 25 and face each other. ing. By providing the flange portions 33 and 35 in this manner, the deformation in the facing direction X and the longitudinal direction Y of the both terminal plates 3 and 5 due to the battery internal pressure is suppressed, so that the pressure resistance of the battery C is improved.

本実施形態では、側壁部23,25の各外周面に加えて、鍔部33,35の各表面および裏面が、微細な凹凸を有する接合面21として形成されている。枠形部材7の内周凸部7bは、鍔部33,35間に進入して、側壁部23,25とともに、内部枠体19の外周面19aを覆っている。両鍔部33,35には、鍔部33,35と枠形部材7との間をシールするシール剤を塗布することが好ましい。このシール剤としては、例えば、アスファルトピッチやタールピッチなどのピッチ剤が適している。そのほかの構成は、図3に示す第2実施形態と同様である。   In the present embodiment, in addition to the outer peripheral surfaces of the side wall portions 23 and 25, the front and back surfaces of the flange portions 33 and 35 are formed as the bonding surfaces 21 having fine irregularities. The inner peripheral convex portion 7 b of the frame-shaped member 7 enters between the flange portions 33 and 35 and covers the outer peripheral surface 19 a of the inner frame body 19 together with the side wall portions 23 and 25. It is preferable to apply a sealant that seals between the flange portions 33, 35 and the frame-shaped member 7 to the both flange portions 33, 35. As this sealing agent, for example, pitch agents such as asphalt pitch and tar pitch are suitable. Other configurations are the same as those of the second embodiment shown in FIG.

このように、両端子板3,5に、側壁部23,25に加えて鍔部33,35を設けることにより、両端子板3,5の剛性が増し、電池内圧による両端子板3,5の対向方向Xの変形が抑えられるので、電池Cの耐圧性が向上する。   Thus, by providing the terminal portions 3 and 5 with the flange portions 33 and 35 in addition to the side wall portions 23 and 25, the rigidity of the terminal plates 3 and 5 is increased, and both the terminal plates 3 and 5 due to the internal pressure of the battery. Therefore, the pressure resistance of the battery C is improved.

なお、第3実施形態における、側壁部23,25および鍔部33,35を含む外縁部3d、5dには、図5に示す第4実施形態のように、枠形部材7(図4)に埋入する凹凸状の段部37が設けられていることが好ましい。段部37の形状は、具体的には、例えば、鍔部33の断面を模式的に示す図6(a)に示すようなステップ状、(b)のV字状、または(c)の円弧状とすることができるが、これらに限られない。なお、図5および図6には、代表として、正極端子板3側の段部37のみを示しているが、負極端子板5側にも同様な段部が形成される。   In the third embodiment, the outer edge portions 3d and 5d including the side wall portions 23 and 25 and the flange portions 33 and 35 are formed on the frame-shaped member 7 (FIG. 4) as in the fourth embodiment shown in FIG. It is preferable that an uneven step 37 to be embedded is provided. Specifically, the shape of the stepped portion 37 is, for example, a step shape as shown in FIG. 6A schematically showing a cross section of the flange portion 33, a V shape of (b), or a circle of (c). It can be arcuate, but is not limited to these. 5 and 6 show only the stepped portion 37 on the positive electrode terminal plate 3 side as a representative, but a similar stepped portion is also formed on the negative electrode terminal plate 5 side.

電池Cの充放電時には、反応熱やジュール熱によって電池Cの温度が上昇する。これにより、樹脂製の枠形部材7および金属製の正極および負極端子板3,5は熱膨張するが、枠形部材7と両端子板3,5とでは素材の熱膨張係数が異なるので、枠形部材7と両端子3,5との接合部分に内部応力が発生する。しかし、両端子板3,5の矩形の各辺に沿った方向Sに伸縮可能な形状の段部37を設けて、熱膨張係数の相違によって生じる内部応力を、この段部37に吸収させることにより、電池Cの密閉性を維持し、電池寿命の低下を防ぐことができる。なお、図5には、段部37を側壁部23および鍔部33のいずれにも設けた例を示したが、段部37は少なくとも鍔部35に設けられていればよい。   During charging / discharging of the battery C, the temperature of the battery C rises due to reaction heat or Joule heat. Thereby, although the resin-made frame-shaped member 7 and the metal positive and negative electrode terminal plates 3, 5 are thermally expanded, the thermal expansion coefficient of the material is different between the frame-shaped member 7 and the both terminal plates 3, 5, Internal stress is generated at the joint between the frame-shaped member 7 and the terminals 3 and 5. However, a step 37 having a shape that can be expanded and contracted in the direction S along each side of the rectangular shape of both terminal plates 3 and 5 is provided, and this step 37 absorbs internal stress caused by a difference in thermal expansion coefficient. Thus, the sealing property of the battery C can be maintained and the battery life can be prevented from being lowered. FIG. 5 shows an example in which the step portion 37 is provided on both the side wall portion 23 and the flange portion 33, but the step portion 37 only needs to be provided at least on the flange portion 35.

図7は、本発明の第5実施形態に係る電池Cの構造を示す断面図である。この電池Cでは、内部枠体19の外周面19aに、縦方向Yに突出する外周突起19bが外周全体に渡って設けられている。外周突起19bは、内部枠体19の外周面19aの対向方向Xにおけるほぼ中央部に設けられており、両端子板3,5の鍔部33,35間に、縦方向Yの途中の位置まで進入している。   FIG. 7 is a cross-sectional view showing a structure of a battery C according to the fifth embodiment of the present invention. In the battery C, an outer peripheral projection 19b protruding in the vertical direction Y is provided on the outer peripheral surface 19a of the inner frame 19 over the entire outer periphery. The outer peripheral projection 19b is provided at a substantially central portion in the facing direction X of the outer peripheral surface 19a of the inner frame body 19, and between the flange portions 33 and 35 of both terminal plates 3 and 5, up to a position in the middle of the vertical direction Y. I have entered.

本実施形態では、側壁部23,25の各外周面、鍔部33,35の各表面、および鍔部33,35の裏面の、外周突起19bの端面19baの位置から外方側の部分が、微細な凹凸を有する接合面21として形成されている。枠形部材7の内周凸部7bは、鍔部33,35間に進入して、側壁部23,25とともに内部枠体19の外周突起19bの端面19baを覆っている。そのほかの構成は、図4に示す第3実施形態と同様である。   In the present embodiment, the outer peripheral portions of the outer peripheral surfaces of the side wall portions 23 and 25, the front surfaces of the flange portions 33 and 35, and the back surfaces of the flange portions 33 and 35 are located outward from the position of the end surface 19ba of the outer peripheral protrusion 19b. It is formed as a bonding surface 21 having fine irregularities. The inner peripheral convex portion 7 b of the frame-shaped member 7 enters between the flange portions 33 and 35 and covers the end surface 19 ba of the outer peripheral projection 19 b of the inner frame body 19 together with the side wall portions 23 and 25. Other configurations are the same as those of the third embodiment shown in FIG.

特に、図7の第5実施形態のように、内部枠体19の外周面19aに外周突起19bを設けて両鍔部33,35間に介在させた場合には、図8に示す変形例のように、内部枠体19の対向方向寸法Hfiを、両集電面間寸法Hcよりも小さく設定してもよい。   In particular, as in the fifth embodiment of FIG. 7, when the outer peripheral projection 19 b is provided on the outer peripheral surface 19 a of the inner frame 19 and is interposed between the flange portions 33 and 35, the modification shown in FIG. As described above, the facing direction dimension Hfi of the inner frame 19 may be set smaller than the dimension Hc between both current collecting surfaces.

内部枠体19に、鍔部33,35間に介在する外周突起19bを設けることによって、射出成形時に樹脂がケーシング9の内部に侵入することが防止される。その結果、樹脂が内部枠体19の端面と正極端子板3または負極端子板5との隙間40を通って、内部枠体19の内側に回りこんで電極体17に付着するおそれがないので、内部枠体19の対向方向寸法Hfiを、両集電面間寸法Hcよりも小さく設定することが可能になる。このように構成することで、枠形部材7の成形型による型締めによって、正極端子板3の集電面3aおよび負極端子板5の集電面5aを、それぞれ、正極体13および負極体15に圧接させることができる。その結果、電池Cの内部抵抗が大幅に低減され、電池性能が向上する。   By providing the inner frame 19 with the outer peripheral projection 19b interposed between the flange portions 33 and 35, the resin is prevented from entering the casing 9 during injection molding. As a result, there is no possibility that the resin passes through the gap 40 between the end face of the inner frame body 19 and the positive electrode terminal plate 3 or the negative electrode terminal plate 5 and wraps around the inner frame body 19 and adheres to the electrode body 17. The facing direction dimension Hfi of the inner frame 19 can be set smaller than the dimension Hc between the current collecting surfaces. With this configuration, the current collecting surface 3a of the positive electrode terminal plate 3 and the current collecting surface 5a of the negative electrode terminal plate 5 are respectively clamped by the mold of the frame-shaped member 7 to the positive electrode body 13 and the negative electrode body 15 respectively. Can be pressed against. As a result, the internal resistance of the battery C is greatly reduced, and the battery performance is improved.

また、本変形例では、枠形部材7の対向方向寸法Hfoを両端子面間寸法Htよりも小さく設定している。このように設定すれば、電池Cを積層して電池モジュールを構成した際に、各端子板3,5が内側に押し付けられるので、各端子板3,5と電極体17との接触状態が良好となり、電池Cの内部抵抗が低減されて電池性能が向上する。なお、本変形例において、枠形部材7の対向方向寸法Hfoを両端子面間寸法Htと同一に設定してもよい。また、枠形部材7の対向方向寸法Hfoを両端子面間寸法Htよりも小さくする設定は、本変形例に限らず、上記で説明したいずれの実施形態に適用してもよい。   In this modification, the opposing dimension Hfo of the frame-shaped member 7 is set smaller than the dimension Ht between both terminal surfaces. If set in this way, when the battery module C is laminated to form the battery module, the terminal plates 3 and 5 are pressed inward, so that the contact state between the terminal plates 3 and 5 and the electrode body 17 is good. Thus, the internal resistance of the battery C is reduced and the battery performance is improved. In this modification, the opposing dimension Hfo of the frame-shaped member 7 may be set to be the same as the dimension Ht between both terminal surfaces. Moreover, the setting which makes the opposing direction dimension Hfo of the frame-shaped member 7 smaller than the dimension Ht between both terminal surfaces is applicable not only to this modification but to any embodiment described above.

次に、本発明の一実施形態に係る、電池Cの組立方法を説明する。本実施形態に係る電池Cの組立方法は、主要な工程として、以下の工程I〜IVを含んでいる。なお、本実施形態に係る組立方法は、図1〜図8に示したいずれの電池Cについても適用することができるが、以下の説明においては、代表として、図2の第1実施形態を例として説明する。   Next, a method for assembling the battery C according to an embodiment of the present invention will be described. The assembling method of the battery C according to the present embodiment includes the following steps I to IV as main steps. The assembling method according to this embodiment can be applied to any of the batteries C shown in FIGS. 1 to 8, but in the following description, the first embodiment of FIG. Will be described.

工程Iでは、ニッケルめっき鋼板で形成されている正極端子板3および負極端子板5の外縁部表面の、枠形部材7と接合させる部分である接合面21に、エッチングのような表面処理を施して微細な凹凸を形成する。上述のように、微細な凹凸を形成する方法としては、例えば、ケミカルエッチングやショットピーニングがあるが、表面粗し加工であれば、他の方法であってもよい。また、表面粗し加工は、鋼板にニッケルめっきを施す前に行ってもよく、ニッケルめっきを施した後に行ってもよい。このように、ニッケルめっき鋼板の表面粗度を増大させることにより、枠形部材7を形成する樹脂と両端子板3,5との接触面積が増し、接合面21において十分な接合強度を確保することが可能になる。   In step I, surface treatment such as etching is performed on the joint surface 21 which is a portion to be joined to the frame-shaped member 7 on the outer edge surface of the positive electrode terminal plate 3 and the negative electrode terminal plate 5 formed of nickel plated steel plates. To form fine irregularities. As described above, examples of the method for forming fine irregularities include chemical etching and shot peening, but other methods may be used as long as the surface is roughened. Further, the surface roughening may be performed before the nickel plating is applied to the steel sheet, or may be performed after the nickel plating is performed. Thus, by increasing the surface roughness of the nickel-plated steel sheet, the contact area between the resin forming the frame-shaped member 7 and the terminal plates 3 and 5 is increased, and sufficient bonding strength is secured at the bonding surface 21. It becomes possible.

次に、工程IIでは、例えば、プリーツ状の積層構造を有する電極体17を、図9に示すように、対向配置した正極端子板3と負極端子板5との間に介在させた状態に仮組みして、仮組み体51を形成する。この仮組み体51は、両端子板3,5および電極体17のみによって構成しても良いが、同図に示すように、電極体17の外周に内部枠体19を設けることが好ましい。この場合、電極体17を内部枠体19の内方に挿入した後に、これら電極体17および内部枠体19を両端子板3,5の間に介在させる。この内部枠体19によって電極体17が保持されることにより、仮組み体51の構造が安定するので、仮組み体51の組立作業およびこの後の工程における仮組み体51の取扱いが容易になる。さらには、内部枠体19によって、射出成形する際に樹脂が電極体17に付着することが防止される。   Next, in step II, for example, the electrode body 17 having a pleated laminated structure is temporarily placed between the positive electrode terminal plate 3 and the negative electrode terminal plate 5 which are arranged to face each other as shown in FIG. The temporary assembly 51 is formed by assembling. The temporary assembly 51 may be constituted by only both the terminal plates 3 and 5 and the electrode body 17, but it is preferable to provide the inner frame body 19 on the outer periphery of the electrode body 17 as shown in FIG. In this case, after the electrode body 17 is inserted inward of the internal frame body 19, the electrode body 17 and the internal frame body 19 are interposed between the terminal plates 3 and 5. Since the electrode assembly 17 is held by the internal frame body 19, the structure of the temporary assembly 51 is stabilized, so that the assembly operation of the temporary assembly 51 and the handling of the temporary assembly 51 in the subsequent steps are facilitated. . Further, the inner frame body 19 prevents the resin from adhering to the electrode body 17 during injection molding.

工程IIIでは、図10に示すように、仮組み体51を、枠形部材7を形成するための成形型53内に設置する。成形型53は、成形型53内に設置される両端子板3,5の対向方向Xにほぼ均等に分割された2つの分割型53aおよび53bで形成されている。つまり、成形型53は、仮組み体51の両端子面3b、5bにほぼ平行な分割面によって分割型53aと53bとに分割されており、分割面に沿って樹脂の注入孔55が設けられている。   In step III, as shown in FIG. 10, the temporary assembly 51 is installed in a molding die 53 for forming the frame-shaped member 7. The molding die 53 is formed of two split dies 53 a and 53 b that are substantially equally divided in the facing direction X of both terminal plates 3 and 5 installed in the molding die 53. That is, the molding die 53 is divided into divided dies 53a and 53b by a dividing surface substantially parallel to both terminal surfaces 3b and 5b of the temporary assembly 51, and a resin injection hole 55 is provided along the dividing surface. ing.

上述のように、仮組み体51に内部枠体19を設ける場合、仮組み時の内部枠体19の対向方向寸法Hfi(図9)を、工程IIIにおける成形型53の仮組み体51が配置される部分における内部高さ寸法Hmと、正極端子板3の厚さおよび負極端子板5の厚さの和との差Hdよりも若干大きく設定し、仮組み体51を対向方向Xに型締めすることにより、内部枠体19の両端面を正極集電面3aおよび負極集電面5aにそれぞれ圧接させてもよい。これにより、内部枠体19と両端子板3,5との密閉が確実となり、射出成形する際に樹脂が電極体17に付着することを一層効果的に防止することができる。   As described above, when the inner frame body 19 is provided in the temporary assembly 51, the opposing assembly dimension Hfi (FIG. 9) of the inner frame 19 at the time of temporary assembly is arranged by the temporary assembly body 51 of the molding die 53 in the step III. Is set slightly larger than the difference Hd between the internal height dimension Hm of the portion to be formed and the sum of the thickness of the positive electrode terminal plate 3 and the thickness of the negative electrode terminal plate 5, and the temporary assembly 51 is clamped in the facing direction X By doing so, you may press-contact the both end surfaces of the internal frame 19 to the positive electrode current collection surface 3a and the negative electrode current collection surface 5a, respectively. Thereby, the internal frame body 19 and the terminal plates 3 and 5 are securely sealed, and the resin can be more effectively prevented from adhering to the electrode body 17 during injection molding.

なお、内部枠体19を形成する絶縁材料としては、樹脂の射出圧に耐え得る剛性と、耐熱性とを有しているものを使用することができる。   In addition, as an insulating material which forms the internal frame 19, the thing which has the rigidity which can endure the injection pressure of resin, and heat resistance can be used.

工程IVでは、成形型53内に、上述の材料、すなわち、インサート成形に適し、かつ耐アルカリ水溶液性を有する樹脂、例えば、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリプロピレンおよびポリエチレンのいずれか1種類またはこれらの混合物からなる樹脂を、注入孔55から射出注入して、インサート成形により図2の枠形部材7を形成する。樹脂が固まるまで冷却した後、成形型53を開いて電池Cを取り出す。   In Step IV, the above-described material, that is, a resin suitable for insert molding and having resistance to an aqueous alkali solution, for example, any one of polyphenylene sulfide, polybutylene terephthalate, polyphenylene oxide, polypropylene, and polyethylene is contained in the mold 53. Or the resin which consists of these mixtures is inject-injected from the injection hole 55, and the frame-shaped member 7 of FIG. 2 is formed by insert molding. After cooling until the resin hardens, the mold 53 is opened and the battery C is taken out.

また、図10に示すように、成形型53の正極端子板3に接する面および負極端子板5に接する面には、それぞれ、正極端子板3および負極端子板5を受け入れて、仮組み体51の縦方向Yおよび横方向Zの位置を規制する位置決め凹部61,63を設けることが好ましい。位置決め凹部61,63の両方または一方を省略してもよいが、このように成形型53に位置決め凹部61,63を設けた場合には、成形型53内での仮組み体51の位置が安定するので、電池Cの製造が容易となり、かつ、電池間の寸法ばらつきを抑制することができる。   Also, as shown in FIG. 10, the positive electrode terminal plate 3 and the negative electrode terminal plate 5 are received on the surface of the mold 53 that contacts the positive electrode terminal plate 3 and the surface that contacts the negative electrode terminal plate 5, respectively, and the temporary assembly 51. It is preferable to provide positioning recesses 61 and 63 for regulating the positions in the vertical direction Y and the horizontal direction Z. Although both or one of the positioning recesses 61 and 63 may be omitted, when the positioning recesses 61 and 63 are provided in the molding die 53 in this way, the position of the temporary assembly 51 in the molding die 53 is stable. Therefore, the battery C can be easily manufactured, and the dimensional variation between the batteries can be suppressed.

上記で説明した各実施形態に係る電池Cによれば、対向配置された正極端子板3と負極端子板5とがケーシング9の一部を構成しているので、隣接する電池Cの一方の正極端子板3と他方の負極端子板5とが互いに接触するように積層させるだけで複数の電池Cを直列に接続することができる。しかも、このような電池モジュールの組み立てを容易にする構造を有しながらも、インサート成形を用いた樹脂−金属間の接合によって、金属製の両端子板3,5と樹脂製の枠形部材7とが液密に接合されているので、電池C単独で十分な密閉性を有している。また、枠形部材7の、縦方向Yの寸法Dfoが、両端子板3,5の縦方向Yの寸法Dtよりも大きく、両端子板3,5が枠形部材7の内側に位置しているので、外部短絡が起こりにくい。したがって、電池Cの組立作業や、電池C完成後の取扱いが容易になる。さらには、この電池Cを使用する電池モジュールにおいて、電池Cの密閉性確保のための締め付け用部材や、外部短絡を防止するための絶縁用部材を省くことにより、構造を簡素化し、かつ重量および体積を大幅に低減することができる。その結果、当該密閉式角形電池を用いて構成する電池モジュールのエネルギー密度が向上するとともに、電池モジュールを狭い設置スペースに収納することが可能になる。   According to the battery C according to each of the embodiments described above, the positive electrode terminal plate 3 and the negative electrode terminal plate 5 which are disposed to face each other constitute a part of the casing 9, so that one positive electrode of the adjacent battery C is provided. A plurality of batteries C can be connected in series by simply laminating the terminal plate 3 and the other negative electrode terminal plate 5 so as to contact each other. In addition, while having such a structure that facilitates the assembly of the battery module, both the metal terminal plates 3 and 5 and the resin frame-shaped member 7 are formed by resin-metal bonding using insert molding. Are joined in a liquid-tight manner, the battery C alone has a sufficient sealing property. Further, the dimension Dfo in the longitudinal direction Y of the frame-shaped member 7 is larger than the dimension Dt in the longitudinal direction Y of the both terminal plates 3, 5, and both the terminal plates 3, 5 are located inside the frame-shaped member 7. As a result, external short circuit is unlikely to occur. Therefore, the assembling work of the battery C and the handling after the completion of the battery C are facilitated. Furthermore, in the battery module using the battery C, the structure is simplified by omitting the fastening member for securing the sealing property of the battery C and the insulating member for preventing the external short circuit, and the weight and The volume can be greatly reduced. As a result, the energy density of the battery module configured using the sealed rectangular battery is improved, and the battery module can be stored in a narrow installation space.

以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention. Therefore, such a thing is also included in the scope of the present invention.

3 正極端子板
3a 正極集電面
3b 正極端子面
5 負極端子板
5a 負極集電面
5b 負極端子面
7 枠形部材
9 ケーシング
13 正極体
15 負極体
17 電極体
21 接合面
C 電池
X 正極板と負極板の対向方向
Y 電池の縦方向
Z 電池の横方向
3 positive electrode terminal plate 3a positive electrode current collecting surface 3b positive electrode terminal surface 5 negative electrode terminal plate 5a negative electrode current collecting surface 5b negative electrode terminal surface 7 frame member 9 casing 13 positive electrode body 15 negative electrode body 17 electrode body 21 bonding surface C battery X positive electrode plate Opposite direction of negative electrode plate Y Vertical direction of battery Z Horizontal direction of battery

Claims (15)

正極体および負極体を含む電極体と、該電極体を電解液とともに収納する角形のケーシングとを備える密閉式の角形電池であって、
前記ケーシングが、
導電性の板材から形成され、電池の外部に露出する面が正極端子面として機能し、電池の内部に向く面が正極集電面として機能する正極端子板と、
導電性の板材から形成され、前記正極端子板に平行に対向配置されて、電池の外部に露出する面が負極端子面として機能し、電池の内部に向く面が負極集電面として機能する負極端子板と、
前記正極端子板および負極端子板に固定されて前記ケーシングの外周部を形成する、絶縁材料からなる矩形の枠形部材と、
を有しており、
前記対向方向に直交する、当該電池の縦方向および横方向において、前記正極端子板および前記負極端子板が、前記枠形部材の内側に位置しており、
前記正極端子板および前記負極端子板の各外縁部が前記枠形部材にそれぞれ液密に接合されたインサート成形品である、
密閉式角形電池。
A sealed prismatic battery comprising an electrode body including a positive electrode body and a negative electrode body, and a square casing that houses the electrode body together with an electrolyte solution,
The casing is
A positive electrode terminal plate formed of a conductive plate material, the surface exposed to the outside of the battery functions as a positive electrode terminal surface, and the surface facing the inside of the battery functions as a positive electrode current collecting surface;
A negative electrode that is formed from a conductive plate and is disposed opposite to and parallel to the positive electrode terminal plate, the surface exposed to the outside of the battery functions as a negative electrode terminal surface, and the surface facing the inside of the battery functions as a negative electrode current collecting surface A terminal board;
A rectangular frame-shaped member made of an insulating material, which is fixed to the positive electrode terminal plate and the negative electrode terminal plate to form the outer peripheral portion of the casing;
Have
The positive electrode terminal plate and the negative electrode terminal plate are located inside the frame-shaped member in the vertical direction and the horizontal direction of the battery orthogonal to the facing direction,
Each outer edge portion of the positive electrode terminal plate and the negative electrode terminal plate is an insert molded product that is liquid-tightly joined to the frame-shaped member,
Sealed prismatic battery.
請求項1において、さらに、前記電極体の、前記縦方向および横方向の外周を覆い、かつ、前記ケーシング内に収納される、絶縁材料からなる内部枠体を備えている密閉式角形電池。   2. The sealed prismatic battery according to claim 1, further comprising an inner frame made of an insulating material that covers the outer periphery of the electrode body in the vertical direction and the horizontal direction and is housed in the casing. 請求項2において、前記枠形部材の前記対向方向の寸法が、前記両端子面間寸法よりも小さく設定されている密閉式角形電池。   3. The sealed prismatic battery according to claim 2, wherein a dimension of the frame-shaped member in the facing direction is set smaller than a dimension between the two terminal surfaces. 請求項1から3のいずれか一項において、前記正極端子板および負極端子板の前記各外縁部が、前記対向方向に突出する側壁部として形成されており、該側壁部が、前記枠形部材と前記内部枠体との間に介在している密閉式角形電池。   4. The outer edge of each of the positive electrode terminal plate and the negative electrode terminal plate is formed as a side wall portion protruding in the opposing direction according to claim 1, and the side wall portion is the frame-shaped member. And a sealed prismatic battery interposed between the inner frame and the inner frame. 請求項4において、前記正極端子板および負極端子板が、前記側壁部からさらに前記縦方向および横方向の外方に突出して互いに対向する鍔部を有している密閉式角形電池。   5. The sealed prismatic battery according to claim 4, wherein the positive electrode terminal plate and the negative electrode terminal plate further have flanges that protrude outward from the side wall portion in the vertical direction and the horizontal direction and face each other. 請求項5において、前記側壁部および鍔部を含む外縁部に、前記枠形部材に埋入する凹凸状の段部が形成されている密閉式角形電池。   6. The sealed prismatic battery according to claim 5, wherein an uneven step portion embedded in the frame-shaped member is formed on an outer edge portion including the side wall portion and the flange portion. 請求項5または6において、前記内部枠体が、該内部枠体の外周全体に渡って延びる、前記縦方向および横方向に突設された外周突起を有しており、該外周突起が、前記正極端子板と負極端子板の各鍔部の間に介在している前記密閉式角形電池。   7. The inner frame according to claim 5, wherein the inner frame has outer circumferential protrusions that project over the entire outer periphery of the inner frame and project in the longitudinal direction and the lateral direction. The sealed prismatic battery interposed between the flange portions of the positive electrode terminal plate and the negative electrode terminal plate. 請求項7において、前記内部枠体の前記対向方向の寸法が、前記両集電面間寸法よりも小さく設定されて、前記正極集電面および前記負極集電面が、それぞれ、前記正極体および前記負極体に圧接している密閉式角形電池。   In Claim 7, the dimension of the opposing direction of the inner frame is set smaller than the dimension between both current collection surfaces, and the positive electrode current collection surface and the negative electrode current collection surface are respectively the positive electrode body and A sealed prismatic battery in pressure contact with the negative electrode body. 請求項5から8のいずれか一項において、前記鍔部に、該鍔部と枠形部材との間をシールするシール剤が塗布されている密閉式角形電池。   9. The sealed prismatic battery according to claim 5, wherein a sealing agent that seals between the flange portion and the frame-shaped member is applied to the flange portion. 請求項1から9のいずれか一項において、前記正極端子板および前記負極端子板の各外縁部の、前記枠形部材と接合する接合面に、微細な凹凸が形成されている密閉式角形電池。   The sealed rectangular battery according to any one of claims 1 to 9, wherein fine irregularities are formed on a joining surface of each outer edge portion of the positive electrode terminal plate and the negative electrode terminal plate to be joined to the frame-shaped member. . 請求項1から10のいずれか一項において、前記枠形部材を形成する材料が、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリプロピレンおよびポリエチレンからなる群から選択される少なくとも1種類の樹脂を含んでいる密閉式角形電池。   The material forming the frame-shaped member according to any one of claims 1 to 10, comprising at least one resin selected from the group consisting of polyphenylene sulfide, polybutylene terephthalate, polyphenylene oxide, polypropylene, and polyethylene. A sealed square battery. 請求項1から11のいずれか一項に記載された密閉式角形電池を組み立てる方法であって、
前記正極端子板および負極端子板の外縁部表面の、前記枠形部材と接合させる部分に微細な凹凸を形成する工程と、
前記正極端子板および負極端子板の間に前記電極体を介在させた状態に仮組みして、仮組体を形成する工程と、
前記仮組体を、前記枠形部材を形成する、前記正極端子板および負極端子板よりも大きい前記縦方向および横方向の内部寸法を有する成形型内に設置する工程と、
前記成形型内に所定の材料からなる樹脂を射出してインサート成形により前記枠形部材を形成する工程と、
を含む密閉式角形電池の組立方法。
A method for assembling a sealed prismatic battery according to any one of claims 1 to 11,
Forming fine irregularities on a portion to be joined to the frame-shaped member on the outer peripheral surface of the positive electrode terminal plate and the negative electrode terminal plate;
Temporarily assembling the electrode body between the positive electrode terminal plate and the negative electrode terminal plate to form a temporary assembly;
Installing the temporary assembly in a mold that forms the frame-shaped member and has larger longitudinal and lateral internal dimensions than the positive terminal plate and the negative terminal plate;
Injecting a resin made of a predetermined material into the mold and forming the frame member by insert molding;
For assembling a sealed prismatic battery.
請求項12において、前記仮組み体に、前記電極体の外周を覆い、前記正極端子板および負極端子板よりも小さい前記縦方向および横方向の寸法を有する、絶縁部材からなる内部枠体を設けることを含む密閉式角形電池の組立方法。   The inner frame body made of an insulating member according to claim 12, wherein the temporary assembly is provided with an insulating member that covers an outer periphery of the electrode body and has dimensions in the vertical and horizontal directions smaller than those of the positive electrode terminal plate and the negative electrode terminal plate. A method for assembling a sealed rectangular battery. 請求項13において、前記内部枠体の対向方向高さを、前記成形型の前記仮組み体が配置される部分における内部高さ寸法と、前記正極端子板の厚さおよび前記負極端子板の厚さの和との差よりも大きく設定し、前記仮組体を対向方向に型締めすることによって、前記内部枠体の両端面を前記正極集電面および負極集電面にそれぞれ圧接させることを含む密閉式角形電池の組立方法。   The height in the opposing direction of the inner frame body according to claim 13, the internal height dimension of the part of the molding die where the temporary assembly is disposed, the thickness of the positive terminal plate, and the thickness of the negative terminal plate Set to be larger than the difference from the sum of the thicknesses, and clamping the temporary assembly in the opposite direction to press both end surfaces of the inner frame to the positive and negative current collecting surfaces, respectively. A method for assembling a sealed prismatic battery. 請求項12から14のいずれか一項において、前記成形型の前記正極端子板に接する面および前記負極端子板に接する面の少なくとも一方に、前記正極端子板または前記負極端子板を受け入れて、前記仮組み体の前記縦方向および横方向の位置を規制する位置決め凹部を設けることを含む密閉式角形電池の組立方法。   The positive electrode terminal plate or the negative electrode terminal plate is received on at least one of a surface in contact with the positive electrode terminal plate and a surface in contact with the negative electrode terminal plate of the molding die according to any one of claims 12 to 14, A method for assembling a sealed prismatic battery, comprising providing a positioning recess for regulating the vertical and horizontal positions of the temporary assembly.
JP2009020177A 2009-01-30 2009-01-30 Sealed prismatic battery and method for assembling sealed prismatic battery Expired - Fee Related JP5393181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020177A JP5393181B2 (en) 2009-01-30 2009-01-30 Sealed prismatic battery and method for assembling sealed prismatic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020177A JP5393181B2 (en) 2009-01-30 2009-01-30 Sealed prismatic battery and method for assembling sealed prismatic battery

Publications (2)

Publication Number Publication Date
JP2010177116A true JP2010177116A (en) 2010-08-12
JP5393181B2 JP5393181B2 (en) 2014-01-22

Family

ID=42707833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020177A Expired - Fee Related JP5393181B2 (en) 2009-01-30 2009-01-30 Sealed prismatic battery and method for assembling sealed prismatic battery

Country Status (1)

Country Link
JP (1) JP5393181B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114832A (en) * 2011-11-28 2013-06-10 Kawasaki Heavy Ind Ltd Laminated battery module and batteries used therefor
WO2021098495A1 (en) * 2019-11-19 2021-05-27 宁德时代新能源科技股份有限公司 Battery pack and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132348A (en) * 1984-07-23 1986-02-15 Toppan Printing Co Ltd Outer fitting of elementary cell
WO2003028142A1 (en) * 2001-09-19 2003-04-03 Kawasaki Jukogyo Kabushiki Kaisha Three-dimensional cell, its electrode struture, and method for manufacturing electrode material of three-dimensional cell
JP2003317795A (en) * 2002-04-24 2003-11-07 Kawasaki Heavy Ind Ltd Battery provided with pressure absorbing structure
JP2003323869A (en) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd Battery and battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132348A (en) * 1984-07-23 1986-02-15 Toppan Printing Co Ltd Outer fitting of elementary cell
WO2003028142A1 (en) * 2001-09-19 2003-04-03 Kawasaki Jukogyo Kabushiki Kaisha Three-dimensional cell, its electrode struture, and method for manufacturing electrode material of three-dimensional cell
JP2003317795A (en) * 2002-04-24 2003-11-07 Kawasaki Heavy Ind Ltd Battery provided with pressure absorbing structure
JP2003323869A (en) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd Battery and battery module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114832A (en) * 2011-11-28 2013-06-10 Kawasaki Heavy Ind Ltd Laminated battery module and batteries used therefor
WO2021098495A1 (en) * 2019-11-19 2021-05-27 宁德时代新能源科技股份有限公司 Battery pack and vehicle
US11329347B2 (en) 2019-11-19 2022-05-10 Contemporary Amperex Technology Co., Limited Battery pack and vehicle

Also Published As

Publication number Publication date
JP5393181B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5899744B2 (en) Stationary power system and method for manufacturing stationary power device
JP2010212241A (en) Secondary battery
CN111630680B (en) Power storage module and method for manufacturing power storage module
JP2019192584A (en) Power storage module
JP5975854B2 (en) Prismatic secondary battery
CN111201657B (en) Power storage module
WO2019031087A1 (en) Electricity storage module and method for manufacturing electricity storage module
JP6959514B2 (en) Power storage module, manufacturing method of power storage module, and manufacturing method of power storage device
JP5393181B2 (en) Sealed prismatic battery and method for assembling sealed prismatic battery
JP5485724B2 (en) Square battery
JP2020024827A (en) Bipolar battery and manufacturing method of bipolar battery
JP2020030985A (en) Power storage module
JP2019149341A (en) Power storage module
JP7137703B2 (en) power storage device
JP7056167B2 (en) Power storage module and manufacturing method of power storage module
JP2020030983A (en) Power storage module
JP2020053160A (en) Power storage module
JP2020030982A (en) Power storage module
JP2020030962A (en) Power storage module
JP2020030984A (en) Power storage module
JP2020030951A (en) Power storage module
JP7491776B2 (en) Power storage device
JP2019129035A (en) Power storage module and manufacturing method of power storage module
JP7056357B2 (en) Manufacturing method of power storage module, manufacturing method of power storage device, and power storage device
JP5662776B2 (en) Storage cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees