JP2010169636A - Shape measuring apparatus - Google Patents

Shape measuring apparatus Download PDF

Info

Publication number
JP2010169636A
JP2010169636A JP2009014503A JP2009014503A JP2010169636A JP 2010169636 A JP2010169636 A JP 2010169636A JP 2009014503 A JP2009014503 A JP 2009014503A JP 2009014503 A JP2009014503 A JP 2009014503A JP 2010169636 A JP2010169636 A JP 2010169636A
Authority
JP
Japan
Prior art keywords
shape
measured
transmission image
unit
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009014503A
Other languages
Japanese (ja)
Inventor
Norio Tsuburaya
寛夫 圓谷
Fusao Shimizu
房生 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009014503A priority Critical patent/JP2010169636A/en
Publication of JP2010169636A publication Critical patent/JP2010169636A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring apparatus highly precisely measuring a three-dimensional shape of a measured object in a short time. <P>SOLUTION: The shape measuring apparatus 1 comprises a transmission image detection part 4 which irradiates the measured object S with illumination light to detect the light transmitting through the measured object S and outputs the transmission image of the measured object S; a surface shape measuring part 5 which measures the shape of the surface including at least the area where the illumination light transmits through among the surface of the measured object S; and a control part 7 which corrects the shape data taken from the transmitting image of the measured object S output from the transmission image detection part 4 by a value measured at the surface shape measuring part 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、形状測定装置に関する。   The present invention relates to a shape measuring apparatus.

被測定物体の三次元形状を測定する装置として、コンピュータ断層撮影(Computed Tomography)を用いた装置が開発されている。具体的には、被測定物体に、この被測定物体を透過する照明光(例えば、放射線等)を照射し、その透過光を撮像素子で検出してコンピュータを用いて処理することにより、被測定物体の表面形状及び内部の画像を出力することができる(例えば、特許文献1参照)。   As an apparatus for measuring a three-dimensional shape of an object to be measured, an apparatus using computed tomography has been developed. Specifically, the object to be measured is irradiated with illumination light (for example, radiation) that passes through the object to be measured, and the transmitted light is detected by an image sensor and processed using a computer. The surface shape of the object and the internal image can be output (for example, see Patent Document 1).

特開2008−188279号公報JP 2008-188279 A

このような形状測定装置においては、光源から放射される照明光は、この光源を頂点に円錐状に広がるため、被測定物体の後側に配置された撮像素子で得られる画像は、被測定物体の光源に近い部位が高倍で投影された画像になり、光源に遠い部位が低倍で投影された画像になる。このような、光源からの距離の違いによる倍率の変化を補正して、正確な三次元形状を出力するために、タッチ式センサを用いて、同一部位の寸法を比較して、倍率の補正を行う方法があるが、タッチ式センサによる測定は時間を要し、そのため測定効率等を考慮すると、測定ポイントを限定して特徴部位に特化した補正とせざるを得ず、補正を行った後の画像精度が低くなるという課題があった。   In such a shape measuring apparatus, the illumination light emitted from the light source spreads in a conical shape with the light source at the apex, so that the image obtained with the imaging device arranged behind the object to be measured is the object to be measured. A portion near the light source is projected at a high magnification, and a portion far from the light source is projected at a low magnification. In order to correct the change in magnification due to the difference in distance from the light source and output an accurate three-dimensional shape, the touch sensor is used to compare the dimensions of the same part and correct the magnification. Although there is a method to perform, measurement with a touch sensor takes time, so when considering the measurement efficiency etc., it is unavoidable to limit the measurement point and make corrections specialized for the characteristic part. There was a problem that the image accuracy was lowered.

本発明はこのような課題に鑑みてなされたものであり、被測定物体の三次元形状を短時間で高精度に測定可能な形状測定装置を提供することを目的とする。   The present invention has been made in view of such a problem, and an object thereof is to provide a shape measuring apparatus capable of measuring a three-dimensional shape of an object to be measured with high accuracy in a short time.

前記課題を解決するために、第1の本発明に係る形状測定装置は、被測定物体に照明光を照射してこの被測定物体を透過した光を検出し、被測定物体の透過画像を出力する透過画像検出部と、被測定物体の表面のうち、少なくとも照明光が透過する領域を含む表面の形状を測定する表面形状測定部と、透過画像検出部から出力された被測定物体の透過画像から取得される形状データを、表面形状測定部で測定された測定値で補正する制御部と、を有する。   In order to solve the above-described problem, a shape measuring apparatus according to a first aspect of the present invention irradiates a measurement object with illumination light, detects light transmitted through the measurement object, and outputs a transmission image of the measurement object. A transmission image detection unit, a surface shape measurement unit for measuring a shape of a surface including at least a region through which illumination light is transmitted, and a transmission image of the measurement object output from the transmission image detection unit And a control unit that corrects the shape data acquired from the measurement value measured by the surface shape measurement unit.

このような形状測定装置において、表面形状測定部は、被測定物体の照明光が照射される側の面の形状を測定するように配置されることが好ましい。   In such a shape measuring apparatus, the surface shape measuring unit is preferably arranged so as to measure the shape of the surface of the object to be measured that is irradiated with the illumination light.

また、このような形状測定装置において、表面形状測定部は、被測定物体の輪郭形状に関する形状データを取得し、制御部は、透過画像から得られた形状データのうち、被測定物体の断面形状を含む形状データを、表面形状測定部で得られた輪郭形状のに関する形状データにより補正することが好ましい。   Further, in such a shape measuring apparatus, the surface shape measuring unit acquires shape data related to the contour shape of the object to be measured, and the control unit is a cross-sectional shape of the object to be measured among the shape data obtained from the transmission image. It is preferable to correct the shape data including the shape data related to the contour shape obtained by the surface shape measurement unit.

また、このような形状測定装置において、制御部は、被測定物体に対して異なる方向から照明光を照射して透過画像検出部から得られた透過画像から、被測定物体の三次元形状データを生成し、当該三次元形状データを表面形状測定部で測定された測定値で補正するように構成されることが好ましい。   Further, in such a shape measuring apparatus, the control unit irradiates the measurement object with illumination light from different directions, and obtains the three-dimensional shape data of the measurement object from the transmission image obtained from the transmission image detection unit. It is preferable that the three-dimensional shape data is generated and corrected with the measurement value measured by the surface shape measurement unit.

このとき、表面形状測定部は、被測定物体の表面の三次元形状を測定するように構成されることが好ましい。   At this time, the surface shape measuring unit is preferably configured to measure the three-dimensional shape of the surface of the object to be measured.

また、第2の本発明に係る形状測定装置は、被測定物体に照明光を照射してこの被測定物体を透過した光を検出し、被測定物体の透過画像を出力する透過画像検出部と、被測定物体の表面の画像を取得する表面画像取得部と、透過画像検出部から出力された被測定物体の透過画像のうち、表面画像取得部で画像が取得された部位の透過画像を、表面形状測定部で取得された画像に基づいて補正する制御部と、から構成される。   A shape measuring apparatus according to a second aspect of the present invention includes a transmission image detection unit that irradiates an object to be measured with illumination light, detects light transmitted through the object to be measured, and outputs a transmission image of the object to be measured. The surface image acquisition unit that acquires the image of the surface of the object to be measured, and the transmission image of the part of the transmission image of the object to be measured output from the transmission image detection unit, the image of which was acquired by the surface image acquisition unit, And a control unit that performs correction based on the image acquired by the surface shape measurement unit.

また、第3の本発明に係る形状測定装置は、被測定物体に照明光を照射してこの被測定物体を透過した光を検出し、被測定物体の透過画像を出力する透過画像検出部と、照明光を放射する光源から被測定物体の表面上の各位置までの距離を測定する距離測定部と、出力された被測定物体の透過画像又は透過画像から得られた形状データを、距離測定部で測定された距離データに基づき補正する制御部と、から構成される。   Further, a shape measuring apparatus according to a third aspect of the present invention includes a transmission image detection unit that irradiates a measurement object with illumination light, detects light transmitted through the measurement object, and outputs a transmission image of the measurement object. A distance measurement unit that measures the distance from the light source that emits illumination light to each position on the surface of the object to be measured, and the distance data obtained from the transmitted image of the object to be measured or the shape data obtained from the transmission image And a control unit that performs correction based on the distance data measured by the unit.

本発明に係る形状測定装置を以上のように構成すると、被測定物体の三次元形状を、短時間で高精度に取得することができる。   When the shape measuring apparatus according to the present invention is configured as described above, the three-dimensional shape of the object to be measured can be acquired with high accuracy in a short time.

第1の実施形態における形状測定装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the shape measuring apparatus in 1st Embodiment. 第1の実施形態における透過画像の補正方法を示す説明図である。It is explanatory drawing which shows the correction method of the transparent image in 1st Embodiment. 第2の実施形態における形状測定装置の透過画像の補正方法を示す説明図である。It is explanatory drawing which shows the correction method of the transmitted image of the shape measuring apparatus in 2nd Embodiment.

(第1の実施形態)
以下、本発明の第1の実施形態における形状測定装置について図面を参照して説明する。まず、図1を用いて、本実施の形態に係る形状測定装置1の構成について説明する。この形状測定装置1は、光源2及び撮像素子としての透過画像センサ3を有し、光源2と透過画像センサ3との間に載置された被測定物体Sの透過光を透過画像センサ3で検出して、この被測定物体Sの透過画像を出力する透過画像検出部4と、被測定物体Sの表面形状を非接触センサにより測定する表面形状測定部5と、被測定物体Sが載置されるステージ6と、透過画像検出部4及び表面形状測定部5の作動を制御する制御部7と、を有して構成される。
(First embodiment)
Hereinafter, a shape measuring apparatus according to a first embodiment of the present invention will be described with reference to the drawings. First, the configuration of the shape measuring apparatus 1 according to the present embodiment will be described with reference to FIG. The shape measuring apparatus 1 includes a light source 2 and a transmission image sensor 3 as an image sensor, and transmits the transmitted light of the measurement object S placed between the light source 2 and the transmission image sensor 3 with the transmission image sensor 3. A transmission image detection unit 4 that detects and outputs a transmission image of the measurement object S, a surface shape measurement unit 5 that measures the surface shape of the measurement object S with a non-contact sensor, and the measurement object S are mounted. And a control unit 7 that controls the operation of the transmission image detection unit 4 and the surface shape measurement unit 5.

この形状測定装置1において、透過画像検出部4、表面形状測定部5及びステージ6は、基台8上に配置されており、光源2は、この基台8上に取り付けられた光源支持部9に取り付けられ、透過画像センサ3は、基台8上に取り付けられた受光部支持部10に取り付けられている。また、ステージ6は、光源2と透過画像センサ3とを結ぶ方向(以下、「X軸方向」と呼ぶ)に延び、基台8上に取り付けられた固定レール11と、固定レール11上をX軸方向に移動可能に取り付けられた可動レール12と、この可動レール12上を、基台8の上面に平行で、且つ、X軸方向と直交する方向(以下、「Y軸方向」と呼ぶ)に移動可能に取り付けられた可動ステージ13と、この可動ステージ13に対して、基台8に垂直方向(以下、「Z軸方向」と呼ぶ)に延びる回転軸を中心に回転可能に取り付けられ、上面に被測定物体Sが載置される回転ステージ14と、を有して構成される。   In the shape measuring apparatus 1, the transmission image detecting unit 4, the surface shape measuring unit 5, and the stage 6 are arranged on a base 8, and the light source 2 is a light source support 9 attached on the base 8. The transmission image sensor 3 is attached to the light receiving part support 10 attached on the base 8. The stage 6 extends in a direction connecting the light source 2 and the transmission image sensor 3 (hereinafter referred to as “X-axis direction”), a fixed rail 11 mounted on the base 8, and the fixed rail 11 on the fixed rail 11. A movable rail 12 movably mounted in the axial direction, and a direction on the movable rail 12 parallel to the upper surface of the base 8 and perpendicular to the X-axis direction (hereinafter referred to as “Y-axis direction”) A movable stage 13 movably attached to the movable stage 13, and attached to the movable stage 13 so as to be rotatable around a rotation axis extending in a direction perpendicular to the base 8 (hereinafter referred to as “Z-axis direction”), And a rotary stage 14 on which an object S to be measured is placed.

また、この形状測定装置1は、可動レール12を固定レール11に沿って相対移動させるために第1のアクチュエータ15を有し、可動ステージ13を可動レール12に沿って相対移動させるために第2のアクチュエータ16を有し、回転ステージ14を可動ステージ13に対して相対回転させるために第3のアクチュエータ17を有しており、これらの作動は制御部7により制御される。すなわち、固定レール11に沿って可動レール12を移動させることにより、基台8上の被測定物体SのX軸方向の位置を調整し、可動レール12に沿って可動ステージ13を移動させることにより、基台8上の被測定物体SのY軸方向の位置を調整し、回転ステージ14を回転させることにより、光源2からの照明光が照射される被測定物体Sの面(向き)を調整することができる。なお、回転ステージ14をZ軸方向に移動させて基台8上での被測定物体SのZ軸方向の位置を調整するように構成しても良いし、また、透過画像センサ3をX軸方向に移動可能に構成しても良い。   In addition, the shape measuring apparatus 1 includes a first actuator 15 for relatively moving the movable rail 12 along the fixed rail 11, and a second for moving the movable stage 13 along the movable rail 12. And a third actuator 17 for rotating the rotary stage 14 relative to the movable stage 13. These operations are controlled by the controller 7. That is, by moving the movable rail 12 along the fixed rail 11, the position of the measured object S on the base 8 is adjusted in the X-axis direction, and the movable stage 13 is moved along the movable rail 12. The surface (orientation) of the measurement object S irradiated with the illumination light from the light source 2 is adjusted by adjusting the position of the measurement object S on the base 8 in the Y-axis direction and rotating the rotary stage 14. can do. The rotary stage 14 may be moved in the Z-axis direction to adjust the position of the object S to be measured on the base 8 in the Z-axis direction, and the transmission image sensor 3 may be adjusted in the X-axis direction. You may comprise so that a movement to a direction is possible.

光源2は、回転ステージ14上に載置された被測定物体Sを透過することができる照明光(例えば、X線)を放射するものであり、被測定物体Sを透過した透過光は、この被測定物体S中の伝搬距離と材質の透過率に応じて、その強さが変わってゆき、この被測定物体Sを挟んで光源2と対向するように配置された透過画像センサ3(透過光の強度を検出するセンサがエリア上に配置されたセンサ)によりその強度が二次元的に検出される。なお、光源2に対する被測定物体Sの位置は、制御部7により可動レール12及び可動ステージ13を移動させて調整し、また、制御部7により回転ステージ14を所定の角度ずつ回転させてそれぞれの回転位置における透過光の強度を透過画像センサ3により検出する(少なくとも被測定物体Sを一周以上回転させてそれぞれの回転位置における透過光の強度を検出する)。この透過画像センサ3で検出された透過光の強度分布は、制御部7により回転位置毎に、透過画像としてメモリやハードディスクで構成される記憶部18に記憶される。   The light source 2 emits illumination light (for example, X-rays) that can pass through the measurement object S placed on the rotary stage 14, and transmitted light that has passed through the measurement object S is Depending on the propagation distance in the object to be measured S and the transmittance of the material, its intensity changes, and the transmission image sensor 3 (transmitted light) arranged to face the light source 2 with the object to be measured S in between. The intensity is detected two-dimensionally by a sensor in which a sensor for detecting the intensity is arranged on the area). Note that the position of the object S to be measured with respect to the light source 2 is adjusted by moving the movable rail 12 and the movable stage 13 by the control unit 7, and the rotation stage 14 is rotated by a predetermined angle by the control unit 7. The transmitted image sensor 3 detects the intensity of transmitted light at the rotation position (at least the object to be measured S is rotated one or more times to detect the intensity of transmitted light at each rotation position). The transmitted light intensity distribution detected by the transmission image sensor 3 is stored as a transmission image in the storage unit 18 including a memory and a hard disk for each rotation position by the control unit 7.

制御部7は、記憶部18に記憶されたそれぞれの回転位置における透過光の強度分布をフーリエ変換で再構成して被測定物体Sの表面や断面の二次元画像、若しくは、ボリュームレンダリングによる三次元画像を生成することができ、これらの画像は制御部7に接続された表示部19に出力される。   The control unit 7 reconstructs the intensity distribution of transmitted light at each rotational position stored in the storage unit 18 by Fourier transform, and generates a two-dimensional image of the surface or cross section of the object S to be measured, or three-dimensional by volume rendering. Images can be generated, and these images are output to the display unit 19 connected to the control unit 7.

このように、制御部7におけるコンピュータ処理により、各回転角度における透過光の二次元の強度分布(透過画像)から被測定物体Sの表面や断面の二次元形状データや三次元形状データを取得することができるが、光源2から放射される照明光は、円錐状に広がるため、被測定物体Sの光源2に近い部位と光源2から遠い部位では、透過画像センサ3の受光面に投影される像の倍率が異なり、出力される透過画像に歪みが生じてしまう。すなわち、測定された形状データの精度が悪くなってしまう。そのため、この形状測定装置1においては、被測定物体Sを透過した透過光を検出するのと同時に、表面形状測定部5を用いて被測定物体Sの表面形状を測定して、この測定値を用いて透過画像検出部4で取得された透過画像を基に算出された形状データを補正するように構成されている。この表面形状測定部5は、被測定物体Sの表面のうち、少なくとも光源2から放射された照明光が透過する領域を含む表面の形状を測定することができるように配置される。なお、本実施の形態では、被測定物体Sの光源2側の面の表面形状を測定可能なように、表面形状測定部5を、光源2の近傍に配置している。   As described above, the two-dimensional shape data and the three-dimensional shape data of the surface or cross section of the measured object S are acquired from the two-dimensional intensity distribution (transmission image) of the transmitted light at each rotation angle by the computer processing in the control unit 7. However, since the illumination light emitted from the light source 2 spreads in a conical shape, it is projected onto the light receiving surface of the transmission image sensor 3 at a portion near the light source 2 and a portion far from the light source 2 of the measured object S. The magnification of the image is different, and the output transmitted image is distorted. That is, the accuracy of the measured shape data is deteriorated. Therefore, in the shape measuring apparatus 1, the surface shape of the measurement object S is measured using the surface shape measurement unit 5 at the same time when the transmitted light transmitted through the measurement object S is detected, and this measurement value is obtained. The shape data calculated based on the transmission image acquired by the transmission image detection unit 4 is corrected. The surface shape measuring unit 5 is arranged so as to be able to measure the shape of the surface of the object S to be measured including at least a region through which the illumination light emitted from the light source 2 is transmitted. In the present embodiment, the surface shape measuring unit 5 is arranged in the vicinity of the light source 2 so that the surface shape of the surface of the object S to be measured on the light source 2 side can be measured.

上述のように、この形状測定装置1においては、回転ステージ14を所定の角度ずつ回転させながら透過画像を取得するが、このとき、被測定物体Sの光源2に対向している面の表面画像を表面形状測定部5で取得する。すなわち、透過画像検出部4で取得される被測定物体Sの光源2側の面と、表面形状測定部5で測定される被測定物体Sの面とは略一致するように構成されている。なお、この表面形状測定部5は、明視野画像を取得してコンピュータ解析により形状を測定する方法や、光切断・縞投影位相シフト・ステレオ画像等による三角測量方法、若しくは、干渉法等を用いることにより、表面画像を取得するものである。上述のように、回転ステージ14の回転角度毎に、取得された透過画像(二次元画像)及び表面画像(二次元画像)は、いずれも記憶部18に記憶される。   As described above, in the shape measuring apparatus 1, a transmission image is acquired while rotating the rotary stage 14 by a predetermined angle. At this time, a surface image of the surface of the object S to be measured facing the light source 2 is obtained. Is acquired by the surface shape measuring unit 5. That is, the surface on the light source 2 side of the measured object S acquired by the transmission image detecting unit 4 and the surface of the measured object S measured by the surface shape measuring unit 5 are configured to substantially coincide. The surface shape measuring unit 5 uses a method of acquiring a bright field image and measuring the shape by computer analysis, a triangulation method using light cutting, fringe projection phase shift, a stereo image, or an interference method. Thus, a surface image is acquired. As described above, both the acquired transmission image (two-dimensional image) and surface image (two-dimensional image) are stored in the storage unit 18 for each rotation angle of the rotary stage 14.

制御部7は、図2に示すように、ユーザから指定された回転角度の透過画像と表面画像の二次元画像を記憶部18から読み出して、二次元形状データ比較部7aによりそれぞれの二次元画像から二次元形状データを算出し、それぞれの二次元形状データの比較を行う。例えば、被測定物体Sのある予め決められた部位のエッジ間隔、被測定物体Sに形成された穴の直径、穴ピッチの寸法などの特徴点を透過画像と表面画像の両方から抽出して、同じ箇所の特徴点の像を抽出する。次に、抽出した同じ特徴点の形状データを比較して両者の特徴点の形状データの偏差を得る。透過画像から得られる二次元形状データをその偏差量に基づき補正する。表面画像は被測定物体Sの光源2側の面の形状であるため、距離による倍率の違いはほとんど無く、この表面画像から得られる形状データにより透過画像から得られる形状データを補正することにより、透過画像(二次元画像)に内在する歪みを補正して、正確な透過画像による形状データを取得することができる。   As shown in FIG. 2, the control unit 7 reads out a transmission image and a two-dimensional image of the surface image specified by the user from the storage unit 18, and each two-dimensional image is compared by the two-dimensional shape data comparison unit 7a. Two-dimensional shape data is calculated from the two-dimensional shape data, and the respective two-dimensional shape data are compared. For example, feature points such as the edge interval of a predetermined part of the measured object S, the diameter of the hole formed in the measured object S, and the size of the hole pitch are extracted from both the transmission image and the surface image, Extract an image of feature points at the same location. Next, the extracted shape data of the same feature points are compared to obtain a deviation of the shape data of both feature points. Two-dimensional shape data obtained from the transmission image is corrected based on the deviation amount. Since the surface image is the shape of the surface of the object S to be measured on the light source 2 side, there is almost no difference in magnification depending on the distance, and by correcting the shape data obtained from the transmission image by the shape data obtained from this surface image, It is possible to correct distortion inherent in the transmission image (two-dimensional image) and acquire shape data based on an accurate transmission image.

また、制御部7は、ユーザから被測定物体Sの三次元形状データの取得が指定されたときは、記憶部18から透過画像のすべての回転角度における画像を読み出して、三次元形状データ形成部7bにより三次元形状データを生成する。また、制御部7は、記憶部18から表面画像のすべての回転角度における画像を読み出して、三次元形状データ形成部7cにより被測定物体Sの表面の三次元形状データを生成する。そして、三次元形状データ比較部7dによりこれらの三次元形状データを比較し、透過画像から得られた三次元形状データを表面画像から得られた三次元形状データにより補正する。   Further, when acquisition of the three-dimensional shape data of the measured object S is designated by the user, the control unit 7 reads out the images at all the rotation angles of the transmission image from the storage unit 18, and the three-dimensional shape data forming unit Three-dimensional shape data is generated by 7b. Further, the control unit 7 reads out images at all rotation angles of the surface image from the storage unit 18, and generates 3D shape data of the surface of the object S to be measured by the 3D shape data forming unit 7 c. Then, the three-dimensional shape data comparison unit 7d compares these three-dimensional shape data and corrects the three-dimensional shape data obtained from the transmission image with the three-dimensional shape data obtained from the surface image.

また、透過画像の三次元形状データと表面画像から得られた三次元形状データの比較により得られた補正値は、透過画像に映し出された内部構造の形状データの補正にも利用される。例えば、被測定物体Sの表面の各位置で得られた補正量を内挿して、内部構造の形状データの補正値とする。これにより、透過画像(三次元画像)に内在する歪みを補正して、正確な三次元形状データを取得することができる。   The correction value obtained by comparing the three-dimensional shape data of the transmission image with the three-dimensional shape data obtained from the surface image is also used for correction of the shape data of the internal structure displayed in the transmission image. For example, the correction amount obtained at each position on the surface of the measured object S is interpolated to obtain the correction value of the shape data of the internal structure. Thereby, distortion inherent in the transmission image (three-dimensional image) can be corrected, and accurate three-dimensional shape data can be acquired.

形状測定装置1を以上のように構成すると、透過光から取得された二次元画像及び三次元画像に内在する歪みを補正して正確な値を取得できる。特に、透過光による画像は、被測定物体Sの内部構造(断面画像)も取得することができるが、表面画像によりこの透過画像による三次元画像を補正することにより、内部の構造の歪みも補正され、精度の高い形状(測定値)を容易に取得することができる。また、表面形状測定部5により、被測定物体Sの光源2に対向している面の表面形状を取得することにより、透過画像(所定の回転角度における二次元画像や三次元画像)全体の表面の形状を補正することができるため、測定値の精度を向上させることができる。さらに、表面形状測定部5は、非接触センサを用いて、透過画像と同時に取得されるため、表面画像の取得のための特別な工程が発生せず、被測定物体Sの透過画像を、短時間で高精度に取得することができる。   If the shape measuring apparatus 1 is configured as described above, it is possible to correct the distortion inherent in the two-dimensional image and three-dimensional image acquired from the transmitted light and acquire an accurate value. In particular, the internal structure (cross-sectional image) of the object to be measured S can be acquired from the image by the transmitted light, but the internal structure distortion is also corrected by correcting the three-dimensional image from the transmitted image by the surface image. Thus, a highly accurate shape (measured value) can be easily obtained. In addition, the surface shape measuring unit 5 acquires the surface shape of the surface of the object S to be measured facing the light source 2, so that the entire surface of the transmission image (two-dimensional image or three-dimensional image at a predetermined rotation angle) is obtained. Therefore, the accuracy of the measurement value can be improved. Furthermore, since the surface shape measurement unit 5 is acquired simultaneously with the transmission image using the non-contact sensor, a special process for acquiring the surface image does not occur, and the transmission image of the object S to be measured is shortened. It can be acquired with high accuracy in time.

(第2の実施形態)
次に図3を用いて、第2の実施の形態における形状測定装置について説明する。図3は、第2の実施の形態における形状測定装置の機能ブロック図である。この第2の実施の形態における形状測定装置は、先の図2で示した形状測定装置と比較して、透過画像センサ3から取得した透過画像を表面形状測定部5で取得した表面画像で補正する点のみが相違点である。他の点は先の形状測定装置と同じである。それゆえ、第2の実施の形態における形状測定装置の説明は、その相違点のみ説明するものとする。
(Second Embodiment)
Next, the shape measuring apparatus according to the second embodiment will be described with reference to FIG. FIG. 3 is a functional block diagram of the shape measuring apparatus according to the second embodiment. The shape measuring apparatus according to the second embodiment corrects the transmission image acquired from the transmission image sensor 3 with the surface image acquired by the surface shape measuring unit 5 as compared with the shape measuring apparatus shown in FIG. The only difference is the difference. The other points are the same as the previous shape measuring apparatus. Therefore, in the description of the shape measuring apparatus in the second embodiment, only the difference will be described.

透過画像センサ3で取得した透過画像は、被測定物体Sを図1に示すX軸方向に投影した状態の画像である。したがって、透過画像中に写っている形状の輪郭を示す線は、その部位毎にその補正量が異なる。そのため、本実施の形態における形状測定装置では、表面形状測定部5により被測定物体の各部位の表面画像を取得する。この取得した各部位の表面画像は、記憶部18に保存してある。   The transmission image acquired by the transmission image sensor 3 is an image in a state where the measurement object S is projected in the X-axis direction shown in FIG. Therefore, the correction amount of the line indicating the contour of the shape shown in the transmission image is different for each part. Therefore, in the shape measuring apparatus according to the present embodiment, the surface shape measuring unit 5 acquires a surface image of each part of the measured object. The acquired surface image of each part is stored in the storage unit 18.

制御部7は、透過画像を次のように補正する。記憶部18に記憶された透過画像を2次元画像比較部71aに読み出し、2次元画像比較部71aに読み出された透過画像の任意の部位に対して、記憶部18に記憶されている表面形状測定部5で得られた表面画像から、その部位が同じ姿勢で写っている表面画像を抽出する。次に、2次元画像比較部71aは、抽出された表面画像に写っている部位と透過画像に写っている同一箇所の部位の像をフィッティングして、偏差量を取得する。フィッティングする箇所としては、先の実施の形態における形状測定装置のように、所定の部位のエッジ間隔、被測定物体Sに形成された穴の直径、穴ピッチの寸法など特徴が掴みやすい箇所を選択する。そして、2次元画像比較部71aはこの偏差量を基に、透過画像の選択された任意の部位を伸縮して、透過画像を補正する。これを透過画像に写っている全ての部位に繰り返し行い、2次元補正画像を出力する。   The control unit 7 corrects the transmission image as follows. The transmission image stored in the storage unit 18 is read out to the two-dimensional image comparison unit 71a, and the surface shape stored in the storage unit 18 for any part of the transmission image read out to the two-dimensional image comparison unit 71a. From the surface image obtained by the measurement unit 5, a surface image in which the part is reflected in the same posture is extracted. Next, the two-dimensional image comparison unit 71a obtains a deviation amount by fitting the images of the part shown in the extracted surface image and the part of the same part shown in the transmission image. As the fitting location, select the location where the features such as the edge interval of the predetermined part, the diameter of the hole formed in the measured object S, the size of the hole pitch, etc. are easy to grasp like the shape measuring device in the previous embodiment To do. Then, based on the deviation amount, the two-dimensional image comparison unit 71a expands / contracts the selected arbitrary part of the transmission image to correct the transmission image. This is repeated for all the parts shown in the transmission image, and a two-dimensional corrected image is output.

なお、上述のように被測定物体Sを回転しながら各回転位置での透過画像を取得することで、3次元画像を形成することができる。一方、被測定物体Sの表面画像も幾つかの異なる姿勢で取得しておき、SFFを用いて3次元画像を形成することができる。そこで、3次元画像形成部71bにより透過画像による3次元画像を形成し、3次元画像形成部71cにより表面画像による3次元画像を形成する。次に、3次元画像比較部71dでは、透過画像による3次元画像と表面画像による3次元画像を比較して、両者の3次元画像の偏差量を取得する。その偏差量に基づいて、透過画像による3次元画像を補正することも可能としている。このように、形状データの補正をするのではなく、画像データそのものを補正している。   In addition, a three-dimensional image can be formed by acquiring the transmission image in each rotation position, rotating the to-be-measured object S as mentioned above. On the other hand, the surface image of the object S to be measured can be acquired in several different postures, and a three-dimensional image can be formed using the SFF. Therefore, the three-dimensional image forming unit 71b forms a three-dimensional image based on the transmission image, and the three-dimensional image forming unit 71c forms a three-dimensional image based on the surface image. Next, the three-dimensional image comparison unit 71d compares the three-dimensional image based on the transmission image and the three-dimensional image based on the surface image, and acquires the deviation amount between the two three-dimensional images. Based on the deviation amount, it is also possible to correct the three-dimensional image based on the transmission image. In this way, the shape data is not corrected, but the image data itself is corrected.

(第3の実施形態)
次に、第3の実施形態における形状測定装置について説明する。この形状測定装置は、透過画像に写っている各部位の輪郭の長さを補正するために、各部位と光源2までの距離を図示していない光源2近傍に配置されたレーザ測距装置により、計測する。そして、光源2から被測定物体Sまでの距離を基に、各部位の寸法を補正するものである。透過画像は被測定物体Sを図1のX軸方向に射影された像が写っている。したがって、光源2から被測定物体Sの各部位の距離に応じて、透過画像センサ3に投影される像はその投影倍率が変わっている。そこで、光源2から被測定物体Sの表面上の各位置までの距離をレーザ測距装置により測定し、その距離を基に、各部位の倍率を算出する。そして、透過画像の画像データや透過画像から得られた形状データを算出された倍率によって補正するものである。このようにして、透過画像に生じている像のゆがみによる形状データの誤差を低減することが可能となる。
(Third embodiment)
Next, a shape measuring apparatus according to the third embodiment will be described. In order to correct the length of the contour of each part shown in the transmission image, this shape measuring apparatus uses a laser distance measuring device arranged near the light source 2 (not shown) to determine the distance between each part and the light source 2. ,measure. Then, based on the distance from the light source 2 to the measured object S, the dimensions of each part are corrected. In the transmission image, an image obtained by projecting the measurement object S in the X-axis direction in FIG. 1 is shown. Therefore, the projection magnification of the image projected on the transmission image sensor 3 changes according to the distance from the light source 2 to each part of the measured object S. Therefore, the distance from the light source 2 to each position on the surface of the measured object S is measured by the laser distance measuring device, and the magnification of each part is calculated based on the distance. Then, the image data of the transparent image and the shape data obtained from the transparent image are corrected by the calculated magnification. In this way, it is possible to reduce an error in shape data due to image distortion occurring in the transmission image.

なお、以上の説明では、表面形状測定部5により取得された測定値(二次元及び三次元の表面画像)は、透過画像の補整のために用いられていたが、この表面画像も、被測定物体Sの測定値として用いることができる。   In the above description, the measurement values (two-dimensional and three-dimensional surface images) acquired by the surface shape measuring unit 5 are used for the correction of the transmission image, but this surface image is also measured. The measured value of the object S can be used.

1 形状測定装置 4 透過画像検出部 5 表面形状測定部
7 制御部 S 被測定物体
DESCRIPTION OF SYMBOLS 1 Shape measuring device 4 Transmission image detection part 5 Surface shape measurement part 7 Control part S Object to be measured

Claims (7)

被測定物体に照明光を照射して前記被測定物体を透過した光を検出し、前記被測定物体の透過画像を出力する透過画像検出部と、
前記被測定物体の表面のうち、少なくとも前記照明光が透過する領域を含む表面の形状を測定する表面形状測定部と、
前記透過画像検出部から出力された前記被測定物体の透過画像から得られた形状データを、前記表面形状測定部で測定された測定値で補正する制御部と、を有する形状測定装置。
A transmission image detection unit that irradiates the measurement object with illumination light, detects light transmitted through the measurement object, and outputs a transmission image of the measurement object;
A surface shape measuring unit for measuring a shape of a surface including at least a region through which the illumination light is transmitted among the surface of the object to be measured;
A shape measurement apparatus comprising: a control unit that corrects shape data obtained from a transmission image of the object to be measured output from the transmission image detection unit with a measurement value measured by the surface shape measurement unit.
前記表面形状測定部は、前記被測定物体の前記照明光が照射される側の面の形状を測定するように配置された請求項1に記載の形状測定装置。   The shape measuring apparatus according to claim 1, wherein the surface shape measuring unit is arranged to measure a shape of a surface of the object to be measured that is irradiated with the illumination light. 前記表面形状測定部は、前記被測定物体の輪郭形状に関する形状データを取得し、
前記制御部は、前記透過画像から得られた前記形状データのうち、前記被測定物体の断面形状を含む形状データを、前記表面形状測定部で得られた前記輪郭形状のに関する形状データにより補正することを特徴とする請求項1または2に記載の形状測定装置。
The surface shape measurement unit acquires shape data related to the contour shape of the object to be measured,
The control unit corrects shape data including a cross-sectional shape of the object to be measured, among the shape data obtained from the transmission image, by shape data relating to the contour shape obtained by the surface shape measurement unit. The shape measuring apparatus according to claim 1 or 2, wherein
前記制御部は、前記被測定物体に対して異なる方向から前記照明光を照射して前記透過画像検出部から得られた前記透過画像から、前記被測定物体の三次元形状データを生成し、当該三次元形状データを前記表面形状測定部で測定された測定値で補正するように構成された請求項1〜3いずれか一項に記載の形状測定装置。   The control unit generates three-dimensional shape data of the object to be measured from the transmission image obtained from the transmission image detection unit by irradiating the illumination light from different directions with respect to the object to be measured. The shape measuring apparatus according to claim 1, wherein the shape measuring apparatus is configured to correct three-dimensional shape data with a measured value measured by the surface shape measuring unit. 前記表面形状測定部は、前記被測定物体の表面の三次元形状を測定するように構成された請求項4に記載の形状測定装置。   The shape measuring apparatus according to claim 4, wherein the surface shape measuring unit is configured to measure a three-dimensional shape of a surface of the object to be measured. 被測定物体に照明光を照射して前記被測定物体を透過した光を検出し、前記被測定物体の透過画像を出力する透過画像検出部と、
前記被測定物体の表面の画像を取得する表面画像取得部と、
前記透過画像検出部から出力された前記被測定物体の透過画像のうち、前記表面画像取得部で画像が取得された部位の透過画像を、前記表面形状測定部で取得された画像に基づいて補正する制御部と、を有する形状測定装置。
A transmission image detection unit that irradiates the measurement object with illumination light, detects light transmitted through the measurement object, and outputs a transmission image of the measurement object;
A surface image acquisition unit for acquiring an image of the surface of the object to be measured;
Of the transmission image of the object to be measured output from the transmission image detection unit, the transmission image of the part where the image is acquired by the surface image acquisition unit is corrected based on the image acquired by the surface shape measurement unit A shape measuring device.
被測定物体に照明光を照射して前記被測定物体を透過した光を検出し、前記被測定物体の透過画像を出力する透過画像検出部と、
前記照明光を放射する光源から前記被測定物体の表面上の各位置までの距離を測定する距離測定部と、
出力された前記被測定物体の透過画像又は前記透過画像から得られた形状データを、前記距離測定部で測定された距離データに基づき補正する制御部と、を有する形状測定装置。
A transmission image detection unit that irradiates the measurement object with illumination light, detects light transmitted through the measurement object, and outputs a transmission image of the measurement object;
A distance measuring unit that measures a distance from the light source that emits the illumination light to each position on the surface of the object to be measured;
A shape measuring apparatus comprising: a control unit that corrects the transmitted transmission image of the measured object or the shape data obtained from the transmission image based on the distance data measured by the distance measuring unit.
JP2009014503A 2009-01-26 2009-01-26 Shape measuring apparatus Pending JP2010169636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014503A JP2010169636A (en) 2009-01-26 2009-01-26 Shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014503A JP2010169636A (en) 2009-01-26 2009-01-26 Shape measuring apparatus

Publications (1)

Publication Number Publication Date
JP2010169636A true JP2010169636A (en) 2010-08-05

Family

ID=42701915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014503A Pending JP2010169636A (en) 2009-01-26 2009-01-26 Shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP2010169636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078957A (en) * 2013-10-18 2015-04-23 リコーエレメックス株式会社 Appearance inspection device and appearance inspection method
JP2015169655A (en) * 2014-03-04 2015-09-28 ゼネラル・エレクトリック・カンパニイ Method and system for dimensional analysis of object
JP2018105773A (en) * 2016-12-27 2018-07-05 コニカミノルタ株式会社 X-ray imaging system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250779A (en) * 1988-05-16 1990-02-20 General Electric Co (Ge) Non-destructive evaluation imaging
JPH0288951A (en) * 1988-08-01 1990-03-29 General Electric Co (Ge) Method of regenerating computer type tomographic imge
JP2003240736A (en) * 2002-02-21 2003-08-27 Shimadzu Corp X-ray section testing method and apparatus thereof
JP2003240527A (en) * 2002-02-15 2003-08-27 Hitachi Ltd Apparatus and method for measurement of three- dimensional dimensions
JP2005106824A (en) * 2003-09-30 2005-04-21 General Electric Co <Ge> Method and system for reconstructing internal feature
JP2005148076A (en) * 2003-11-17 2005-06-09 General Electric Co <Ge> Iterative ct reconstruction method using multi-modal edge information
JP2006017714A (en) * 2004-06-30 2006-01-19 General Electric Co <Ge> System and method for estimating boundary using ct measurement
JP2008053457A (en) * 2006-08-24 2008-03-06 Sharp Corp Inspection device of substrate, inspection method of substrate, and program for functioning computer as inspection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250779A (en) * 1988-05-16 1990-02-20 General Electric Co (Ge) Non-destructive evaluation imaging
JPH0288951A (en) * 1988-08-01 1990-03-29 General Electric Co (Ge) Method of regenerating computer type tomographic imge
JP2003240527A (en) * 2002-02-15 2003-08-27 Hitachi Ltd Apparatus and method for measurement of three- dimensional dimensions
JP2003240736A (en) * 2002-02-21 2003-08-27 Shimadzu Corp X-ray section testing method and apparatus thereof
JP2005106824A (en) * 2003-09-30 2005-04-21 General Electric Co <Ge> Method and system for reconstructing internal feature
JP2005148076A (en) * 2003-11-17 2005-06-09 General Electric Co <Ge> Iterative ct reconstruction method using multi-modal edge information
JP2006017714A (en) * 2004-06-30 2006-01-19 General Electric Co <Ge> System and method for estimating boundary using ct measurement
JP2008053457A (en) * 2006-08-24 2008-03-06 Sharp Corp Inspection device of substrate, inspection method of substrate, and program for functioning computer as inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078957A (en) * 2013-10-18 2015-04-23 リコーエレメックス株式会社 Appearance inspection device and appearance inspection method
JP2015169655A (en) * 2014-03-04 2015-09-28 ゼネラル・エレクトリック・カンパニイ Method and system for dimensional analysis of object
JP2018105773A (en) * 2016-12-27 2018-07-05 コニカミノルタ株式会社 X-ray imaging system

Similar Documents

Publication Publication Date Title
JP5408873B2 (en) Calibration method of X-ray sensing device in coordinate measuring device
US10492755B2 (en) Calibration phantom comprising a reflectance calibration target and a plurality of radio-opaque markers
EP2132523B1 (en) Method and device for exact measurement of objects
EP3074761B1 (en) Calibration apparatus and method for computed tomography
JP7164524B2 (en) X-ray CT device
US20150260859A1 (en) Method and device for correcting computed tomographiy measurements, comprising a coordinate measuring machine
JP2009505083A (en) Measuring apparatus and method for computed tomography
JP2011504586A (en) Method for optically measuring the three-dimensional shape of an object
CN110621957A (en) Method for referencing a plurality of sensor units and associated measuring device
JP2013064644A (en) Shape-measuring device, shape-measuring method, system for manufacturing structures, and method for manufacturing structures
JP5776282B2 (en) Shape measuring apparatus, shape measuring method, and program thereof
JP2008292296A (en) Method for measuring film thickness of transparency film and its apparatus
JP5060862B2 (en) Tomography equipment
JP2012112790A (en) X-ray ct apparatus
JP2010169636A (en) Shape measuring apparatus
CN112535490A (en) X-ray CT apparatus, method and apparatus for correcting X-ray CT apparatus, and method and apparatus for measuring X-ray CT apparatus
JP7251602B2 (en) X-ray CT device
JP2016138761A (en) Three-dimensional measurement method by optical cutting method and three-dimensional measuring instrument
JP5483554B2 (en) Tool coordinate system calibration apparatus and calibration method
JP2010169647A (en) Ct system
JP2008032496A (en) Optical measuring device
JP6252178B2 (en) Shape measuring device, posture control device, structure manufacturing system, and shape measuring method
JP2012013593A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine
JP2018099175A (en) Radiographic apparatus, radiographic system, radiographic method, and program
WO2015093248A1 (en) X-ray tomography device employing c-arm and method for controlling same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131023