JP2010168304A - Method for producing antibacterial agent - Google Patents

Method for producing antibacterial agent Download PDF

Info

Publication number
JP2010168304A
JP2010168304A JP2009011943A JP2009011943A JP2010168304A JP 2010168304 A JP2010168304 A JP 2010168304A JP 2009011943 A JP2009011943 A JP 2009011943A JP 2009011943 A JP2009011943 A JP 2009011943A JP 2010168304 A JP2010168304 A JP 2010168304A
Authority
JP
Japan
Prior art keywords
antibacterial
group
polymer
compound
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009011943A
Other languages
Japanese (ja)
Inventor
Norio Tsubokawa
紀夫 坪川
Masato Minagawa
真人 皆川
Hisao Ogawa
久朗 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUTABA TECHNICA CO Ltd
NAFUTAC CO Ltd
Niigata University NUC
Original Assignee
FUTABA TECHNICA CO Ltd
NAFUTAC CO Ltd
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUTABA TECHNICA CO Ltd, NAFUTAC CO Ltd, Niigata University NUC filed Critical FUTABA TECHNICA CO Ltd
Priority to JP2009011943A priority Critical patent/JP2010168304A/en
Publication of JP2010168304A publication Critical patent/JP2010168304A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an antibacterial agent that exhibits excellent heat resistance and excellent dispersibility in a resin, ceramics, a metal, a solvent and the like and does not suffer from elution of an antibacterial component. <P>SOLUTION: An inorganic particle is subjected to a dry reaction with a compound bearing a group capable of initiating polymerization to introduce the group capable of initiating polymerization into the inorganic particle. A monomer bearing a functional group bondable to an antibacterial compound is subjected to dry graft polymerization in the presence of the inorganic particle having introduced thereinto the group capable of initiating polymerization to cause the polymer having the functional group bondable to an antibacterial compound to bond to the inorganic particle. Then, the polymer having the functional group bondable to an antibacterial compound is caused to react with an antibacterial compound to be converted into an antibacterial polymer thereby to give the antibacterial agent. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、抗菌剤の製造方法に関する。さらに詳細には、本発明は、耐熱性に優れ、樹脂、セラミックス、金属、溶媒などへの分散性に優れ、且つ抗菌成分が溶出しない抗菌剤を製造する方法に関する。   The present invention relates to a method for producing an antibacterial agent. More specifically, the present invention relates to a method for producing an antibacterial agent having excellent heat resistance, excellent dispersibility in resins, ceramics, metals, solvents and the like, and in which antibacterial components are not eluted.

壁紙などの内装材やカーテン、絨毯などのインテリア材、コートや背広、下着などの衣類などは、カビや細菌などの微生物の繁殖により悪臭を放ったり、変色の発生原因になることから、最近ではこれらの製品にカビや細菌などの微生物の繁殖を抑制するため、抗菌性を付与することが行われている。また、病院や診療所においては、保菌者あるいは感染者によって院内へ持ち込まれた抗生物質耐性菌(MRSA)や抗生剤投与によってメチシリン感受性黄色ブドウ球菌から抗生物質耐性菌へと変異した株が、患者から直接あるいは医療従事者または、白衣やパジャマ、シーツなどの使用物品、壁やエアコンなどの設備を含む環境を介して、患者・医療従事者に接触感染を生じる院内感染が社会的にも大きな問題になってきており、院内感染を防止するためには、病院内における使用物品(医療器具用の容器、トレー、ケース)や設備に抗菌性を付与することが求められてきている。さらに、鮮魚や食肉などが直接に触れる部材(例えば、発泡樹脂製容器、発泡樹脂製シートなど)に抗菌剤を混入或いは表面に塗工するなどして、上記部材の表面における細菌の増殖を抑制することが行われている。   Interior materials such as wallpaper, interior materials such as curtains and carpets, clothing such as coats, suits, and underwear may cause odors and discoloration due to the growth of microorganisms such as mold and bacteria. In order to suppress the growth of microorganisms such as mold and bacteria, antibacterial properties are imparted to these products. In hospitals and clinics, antibiotic-resistant bacteria (MRSA) brought into the hospital by carriers or infected individuals, and strains that have been mutated from methicillin-sensitive Staphylococcus aureus to antibiotic-resistant bacteria by administration of antibiotics Nosocomial infections that cause contact infections to patients and healthcare workers directly or directly from healthcare professionals or through environments that include equipment such as lab coats, pajamas and sheets, walls and air conditioners are a major social issue In order to prevent nosocomial infections, it has been required to impart antibacterial properties to articles used in hospitals (containers, trays, cases for medical instruments) and equipment. In addition, antibacterial agents are mixed in or coated on the surface of members (eg, foamed resin containers, foamed resin sheets, etc.) that are in direct contact with fresh fish, meat, etc. To be done.

抗菌性を付与するために使用される抗菌剤として、例えば、酸化チタンなどの無機微粒子に銀や銅などの酸化物を担持させたもの(特許文献1)や、多孔性のシリカゲルに銀錯塩等の抗菌成分を担持させたもの(特許文献2)が知られている。無機微粒子への抗菌成分の担持法としては、含浸法、沈殿法、イオン交換法、メカノケミカル法、蒸着法などが一般に用いられている(特許文献1または2参照)。
また、特許文献3には、カテキンやサポニンなどのポリフェノール化合物系抗菌成分を添加したケイ酸塩水溶液をゲル化反応させて該抗菌成分をシリカゲル中に含有させたものが記載されている。
しかし、無機粒子に抗菌成分を担持または含有させただけの抗菌剤では、抗菌成分が溶出して、抗菌性能が経時的に低下し、持続的な抗菌効果が期待できない。溶出した抗菌成分が食品や医薬品等を汚染して、食用や医療用に適さなくなるということがある。また、抗菌剤のマトリックス中での分散性が悪く、抗菌剤入りの樹脂成形品は強度等が不足するなどの問題があった。
As an antibacterial agent used for imparting antibacterial properties, for example, an inorganic fine particle such as titanium oxide carrying an oxide such as silver or copper (Patent Document 1), a silver complex salt on porous silica gel, etc. The thing (patent document 2) which carry | supported the antibacterial component of this is known. As a method for supporting the antibacterial component on the inorganic fine particles, an impregnation method, a precipitation method, an ion exchange method, a mechanochemical method, a vapor deposition method and the like are generally used (see Patent Document 1 or 2).
Patent Document 3 describes a gelation reaction of an aqueous silicate solution to which a polyphenol compound-based antibacterial component such as catechin or saponin is added to contain the antibacterial component in silica gel.
However, with an antibacterial agent in which inorganic particles are simply loaded with or contain an antibacterial component, the antibacterial component elutes and the antibacterial performance decreases over time, and a continuous antibacterial effect cannot be expected. The eluted antibacterial component may contaminate foods and medicines and become unfit for food or medical use. Further, the dispersibility of the antibacterial agent in the matrix is poor, and the resin molded product containing the antibacterial agent has problems such as insufficient strength.

特許文献4には、抗菌性金属成分と該抗菌性金属成分以外の無機酸化物とからなるコロイド微粒子の表面が高分子化合物で修飾された抗菌性無機酸化物コロイド粒子からなる抗菌剤が記載されている。この抗菌剤は分散性の改善を試みたものであるが、高分子化合物で表面を被覆してしまうので抗菌性能が十分でなくなる。   Patent Document 4 describes an antibacterial agent comprising antibacterial inorganic oxide colloidal particles in which the surface of colloidal fine particles comprising an antibacterial metal component and an inorganic oxide other than the antibacterial metal component is modified with a polymer compound. ing. Although this antibacterial agent is an attempt to improve dispersibility, the antibacterial performance becomes insufficient because the surface is coated with a polymer compound.

無機微粒子の表面に抗菌成分としての重合体を共有結合させる方法が、非特許文献1〜4において提案されている。非特許文献1〜4に開示される方法では、無機微粒子の表面へのグラフト重合が行われている。このグラフト重合は、モノマーの溶液に無機微粒子を分散させ、その溶液中で行われる。そして、グラフト化された無機微粒子を溶液から取り出し、乾燥させることによって、抗菌剤を得ることができる。しかしながら、この製法による抗菌剤の大量生産は、無機微粒子を溶液から分離するのに多大の労力が必要であることから、製造コストの点で難点がある。また、分離された廃溶媒の処理が必要である。   Non-Patent Documents 1 to 4 propose methods for covalently bonding a polymer as an antibacterial component to the surface of inorganic fine particles. In the methods disclosed in Non-Patent Documents 1 to 4, graft polymerization onto the surface of inorganic fine particles is performed. This graft polymerization is performed in a solution of inorganic fine particles dispersed in a monomer solution. Then, the antibacterial agent can be obtained by taking out the grafted inorganic fine particles from the solution and drying them. However, mass production of the antibacterial agent by this production method is difficult in terms of production cost because it requires a great deal of labor to separate the inorganic fine particles from the solution. In addition, it is necessary to treat the separated waste solvent.

特開平3−84066号公報JP-A-3-84066 特開平5−155725号公報JP-A-5-155725 特開平11−313876号公報JP-A-11-313876 特開2002−80303号公報JP 2002-80303 A

坪川紀夫ら「グラフト化によるシリカナノ粒子表面への抗菌性の付与」高分子学会予稿集Vol54,No.2(2005)Norio Tsubokawa et al. “Granting antibacterial properties to the surface of silica nanoparticles by grafting” Proceedings of the Society of Polymer Science, Vol. 54, No. 2 (2005) 坪川紀夫ら「抗菌性ポリマーのシリカナノ粒子表面へのグラフト化とその抗菌特性」高分子学会予稿集Vol.55,No.2(2006)Nobuo Tsubokawa et al. “Grafting of antibacterial polymer onto silica nanoparticle surface and its antibacterial properties” Proceedings of the Society of Polymer Science, Vol.55, No.2 (2006) 坪川紀夫ら「シリカナノ粒子表面への抗菌性ポリマーのグラフト反応」高分子学会予稿集Vol.54,No.1(2005)Norio Tsubokawa et al. “Grafting reaction of antibacterial polymer onto silica nanoparticle surface”, Proceedings of the Society of Polymer Science, Vol.54, No.1 (2005) TSUBOKAWA et al. "Preparation of Antibacterial Polymer-grafted Nano-sized Silica and Surface Properties of Silicone Rubber Filled with the Silica" Polymer Journal, Vol.38, No.8 p844-851 (2006)TSUBOKAWA et al. "Preparation of Antibacterial Polymer-grafted Nano-sized Silica and Surface Properties of Silicone Rubber Filled with the Silica" Polymer Journal, Vol.38, No.8 p844-851 (2006)

本発明は、耐熱性に優れ、樹脂、セラミックス、金属、溶媒などへの分散性に優れ、且つ抗菌成分が溶出しない抗菌剤を低コストで大量に製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a large amount of an antibacterial agent having excellent heat resistance, excellent dispersibility in resins, ceramics, metals, solvents and the like and in which an antibacterial component does not elute at a low cost.

本発明者らは、上記目的を達成するために鋭意検討した結果、重合開始能を有する基を持つ化合物と無機粒子とを乾式反応させることによって無機粒子に重合開始能を有する基を導入し、重合開始能を有する基が導入された無機粒子の存在下に抗菌性化合物に結合可能な官能基を持つ単量体を乾式グラフト重合させることによって抗菌性化合物に結合可能な官能基を持つ重合体を無機粒子に結合させ、次いで、前記の抗菌性化合物に結合可能な官能基を持つ重合体を、抗菌性化合物と反応させることによって抗菌性重合体に変成する方法を採用すると、耐熱性に優れ、樹脂、セラミックス、金属、溶媒などへの分散性に優れ、且つ抗菌成分が溶出しない抗菌剤を低コストで大量に製造できることを見出した。本発明は、これらの知見に基づいて、さらに検討し完成したものである。   As a result of intensive studies to achieve the above object, the present inventors introduced a group having a polymerization initiating ability into inorganic particles by dry-reacting a compound having a group having a polymerization initiating ability with inorganic particles, Polymer having a functional group capable of binding to an antibacterial compound by dry graft polymerization of a monomer having a functional group capable of binding to the antibacterial compound in the presence of inorganic particles having a group capable of initiating polymerization It is excellent in heat resistance by adopting a method in which a polymer having a functional group capable of binding to the antibacterial compound is converted to an antibacterial polymer by reacting with the antibacterial compound. The present inventors have found that an antibacterial agent that is excellent in dispersibility in resins, ceramics, metals, solvents and the like and does not elute antibacterial components can be produced in large quantities at low cost. The present invention has been further studied and completed based on these findings.

すなわち、本発明は、以下のものである。
(1)重合開始能を有する基を持つ化合物と無機粒子とを乾式反応させて、無機粒子に重合開始能を有する基を導入し、
重合開始能を有する基が導入された無機粒子の存在下に抗菌性化合物に結合可能な官能基を持つ単量体を乾式グラフト重合して、抗菌性化合物に結合可能な官能基を持つ重合体を無機粒子に結合させ、
次いで、前記の抗菌性化合物に結合可能な官能基を持つ重合体を、抗菌性化合物と反応させて、抗菌性重合体に変成することを含む、抗菌剤の製造方法。
That is, the present invention is as follows.
(1) A compound having a group having a polymerization initiating ability and an inorganic particle are subjected to a dry reaction to introduce a group having a polymerization initiating ability into the inorganic particle,
A polymer having a functional group capable of binding to an antibacterial compound by dry graft polymerization of a monomer having a functional group capable of binding to the antibacterial compound in the presence of inorganic particles having a group capable of initiating polymerization. To the inorganic particles,
Next, a method for producing an antibacterial agent, comprising reacting a polymer having a functional group capable of binding to the antibacterial compound with an antibacterial compound to convert it into an antibacterial polymer.

(2)重合開始能を有する基を持つ化合物と無機粒子とを乾式反応させて、無機粒子に重合開始能を有する基を導入し、
重合開始能を有する基が導入された無機粒子の存在下に抗菌性官能基を持つ単量体を乾式グラフト重合して、抗菌性重合体を無機粒子に結合させることを含む、抗菌剤の製造方法。
(2) a compound having a group having a polymerization initiating ability and inorganic particles are dry-reacted to introduce a group having a polymerization initiating ability into the inorganic particles;
Production of an antibacterial agent comprising dry graft polymerization of a monomer having an antibacterial functional group in the presence of inorganic particles into which a group capable of initiating polymerization is introduced, and binding the antibacterial polymer to the inorganic particles Method.

(3)無機粒子がシリカ粒子である前記(1)または(2)に記載の抗菌剤の製造方法。
(4)抗菌性重合体がホスホニウム基を持つ重合体である前記(1)〜(3)のいずれか1項に記載の抗菌剤の製造方法。
(5)重合開始能を有する基が、ハロメチル基、ハロアルキルフェニル基、α−ハロエステル基、α−ハロカルボニル基、α−ハロニトリル基、ハロアセチル基またはハロスルホニル基である前記(1)〜(4)のいずれか1項に記載の抗菌剤の製造方法。
(3) The method for producing an antibacterial agent according to (1) or (2), wherein the inorganic particles are silica particles.
(4) The method for producing an antibacterial agent according to any one of (1) to (3), wherein the antibacterial polymer is a polymer having a phosphonium group.
(5) The above (1) to (4), wherein the group having a polymerization initiating ability is a halomethyl group, a haloalkylphenyl group, an α-haloester group, an α-halocarbonyl group, an α-halonitrile group, a haloacetyl group or a halosulfonyl group. The manufacturing method of the antibacterial agent of any one of (1).

本発明の抗菌剤の製造方法では、溶媒を全く若しくは極微量にしか用いないので、過大な労力を要する無機粒子と溶媒との分離工程を省くことができる。そのため、抗菌剤を低コストで大量に製造することができる。
本発明の抗菌剤の製造方法によって、抗菌性重合体が無機粒子表面に強固に結合された抗菌剤を得ることができる。この無機粒子表面に結合した抗菌性重合体は溶出し難いので、例えば、食品や医療品等に係る部材へ適用することができる。本発明の製造方法で得られる抗菌剤は、耐熱性に優れているので、高温の溶融樹脂に添加しても抗菌性の劣化がなく、樹脂マトリックス中に均一に分散できるので、高い抗菌性能を有する樹脂成形品を得ることができる。また、本発明の製造方法で得られる抗菌剤は、溶媒等への分散性に優れているので、抗菌性塗料などの用途に展開することができる。
In the method for producing an antibacterial agent of the present invention, since the solvent is not used at all or only in a very small amount, the separation step of the inorganic particles and the solvent that require excessive labor can be omitted. Therefore, a large amount of antibacterial agents can be produced at low cost.
By the method for producing an antibacterial agent of the present invention, an antibacterial agent in which an antibacterial polymer is firmly bonded to the surface of inorganic particles can be obtained. Since the antibacterial polymer bonded to the surface of the inorganic particles is difficult to elute, the antibacterial polymer can be applied to, for example, a member related to food or medical products. Since the antibacterial agent obtained by the production method of the present invention is excellent in heat resistance, even if it is added to a high-temperature molten resin, it does not deteriorate in antibacterial properties and can be uniformly dispersed in the resin matrix. A resin molded product having the same can be obtained. Moreover, since the antibacterial agent obtained by the production method of the present invention is excellent in dispersibility in a solvent or the like, it can be developed for uses such as antibacterial paints.

未処理のシリカ粒子のFT−IRスペクトルと、実施例で得られたクロロスルホニル基が結合されたシリカ粒子のFT−IRスペクトルとを示す図。The figure which shows the FT-IR spectrum of an untreated silica particle, and the FT-IR spectrum of the silica particle to which the chlorosulfonyl group obtained in the Example was couple | bonded.

本発明の抗菌剤の製造方法では、まず、重合開始能を有する基を持つ化合物と無機粒子とを乾式反応させて、無機粒子に重合開始能を有する基を導入する。
本発明に用いられる無機粒子は、無機材料からなる粒子である。例えば、シリカ、アルミナ、チタニア、ジルコニア、フェライト、マグネシア、シリカチタニア、炭化ケイ素、窒化ケイ素、活性炭、カーボンブラック、カーボンナノファイバ、カーボンナノチューブ、炭酸カルシウム、酸化カルシウム、硫酸バリウム、珪藻土、ベントナイト、パーライトなどが挙げられる。これらのうち、シリカが好ましい。
In the method for producing an antibacterial agent of the present invention, first, a compound having a group having a polymerization initiating ability and an inorganic particle are dry-reacted to introduce a group having a polymerization initiating ability into the inorganic particle.
The inorganic particles used in the present invention are particles made of an inorganic material. For example, silica, alumina, titania, zirconia, ferrite, magnesia, silica titania, silicon carbide, silicon nitride, activated carbon, carbon black, carbon nanofiber, carbon nanotube, calcium carbonate, calcium oxide, barium sulfate, diatomaceous earth, bentonite, pearlite, etc. Is mentioned. Of these, silica is preferred.

無機粒子の大きさは、特に制限されないが、樹脂等への配合、塗料等への分散を考慮すると、好ましくは1nm〜2000μm、より好ましくは3nm〜1000μmである。無機粒子の形状は、不定形であってもよいし、球状、板状、棒状などであってもよいが、分散性等を考慮すると球状が好ましい。また粒子の芯に空洞を有するもの(中空粒子)であってもよいし、多孔質のものであってもよい。   The size of the inorganic particles is not particularly limited, but is preferably 1 nm to 2000 μm, more preferably 3 nm to 1000 μm in consideration of blending into a resin or the like and dispersion into a paint or the like. The shape of the inorganic particles may be indefinite, spherical, plate-like, or rod-like, but spherical is preferable in consideration of dispersibility and the like. Moreover, what has a cavity in the particle | grain core (hollow particle | grains) may be sufficient, and a porous thing may be sufficient.

無機粒子では、後述する重合開始能を有する基を持つ化合物の導入率を高めるために、無機粒子表面を処理して水酸基の量を増やすことができる。また、水酸基以外の官能基、例えばカルボキシル基、アミノ基、エポキシ基、ウレイド基、スルフィド基、メタクリロキシ基、アクリロキシ基、ビニル基、メルカプト基、ケチミノ基、イソシアネート基などを無機粒子に結合させることもできる。無機粒子表面の水酸基の量を増やしたり、水酸基以外の官能基を結合させたりするために、例えば、プラズマ放電処理、シランカップリング剤処理などの方法が採られる。   In the inorganic particles, the surface of the inorganic particles can be treated to increase the amount of hydroxyl groups in order to increase the introduction rate of a compound having a group having a polymerization initiating ability described later. In addition, functional groups other than hydroxyl groups, such as carboxyl groups, amino groups, epoxy groups, ureido groups, sulfide groups, methacryloxy groups, acryloxy groups, vinyl groups, mercapto groups, ketimino groups, and isocyanate groups may be bonded to inorganic particles. it can. In order to increase the amount of hydroxyl groups on the surface of the inorganic particles or to bond functional groups other than hydroxyl groups, for example, methods such as plasma discharge treatment and silane coupling agent treatment are employed.

本発明に用いられる重合開始能を有する基を持つ化合物は、重合開始能を有する基を無機粒子に結合させることができる化合物であれば、特に制限されない。例えば、重合開始能を有する基を持つアルコキシメタル化合物等が好適なものとして挙げられる。該アルコキシメタル化合物等としては、アルコキシシラン化合物などのシランカップリング剤、アルコキシチタン化合物などのチタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤等が挙げられる。これらのうちシランカップリング剤が好ましい。   The compound having a group having a polymerization initiating ability used in the present invention is not particularly limited as long as it is a compound capable of binding a group having a polymerization initiating ability to inorganic particles. For example, an alkoxy metal compound having a group having a polymerization initiating ability is preferable. Examples of the alkoxy metal compound include a silane coupling agent such as an alkoxysilane compound, a titanium coupling agent such as an alkoxytitanium compound, an aluminum coupling agent, and a zirconium coupling agent. Of these, silane coupling agents are preferred.

重合開始能を有する基は、通常の重合反応で用いられる重合開始剤の部分構造を有するものであることが好ましい。重合開始能を有する基は、重合開始能を有する官能基を導入した後に行われるグラフト重合法に対応した開始能を発現する必要がある。該グラフト重合法としては、ラジカル重合法、イオン重合法などが挙げられる。これらのうち、ラジカル重合法が好ましく、リビングラジカル重合法がより好ましい。   The group having a polymerization initiating ability is preferably a group having a partial structure of a polymerization initiator used in a normal polymerization reaction. The group having the polymerization initiating ability needs to express the initiating ability corresponding to the graft polymerization method performed after the introduction of the functional group having the polymerization initiating ability. Examples of the graft polymerization method include a radical polymerization method and an ionic polymerization method. Of these, the radical polymerization method is preferable, and the living radical polymerization method is more preferable.

好ましい重合方法であるラジカル重合法の場合において採用される重合開始能を有する基としては、ハロメチル基、ハロアルキルフェニル基、α−ハロエステル基、α−ハロカルボニル基、ハロアセチル基、α−ハロニトリル基、ハロスルホニル基が好ましい。これらのうち、リビング重合性に優れるので、ハロスルホニル基が好ましい。ハロスルホニル基としては、クロロスルホニル基、ブロモスルホニル基などが挙げられる。これらのうち、クロロスルホニル基が好ましい。   As a group having a polymerization initiating ability employed in the case of radical polymerization which is a preferred polymerization method, a halomethyl group, a haloalkylphenyl group, an α-haloester group, an α-halocarbonyl group, a haloacetyl group, an α-halonitrile group, A halosulfonyl group is preferred. Of these, a halosulfonyl group is preferred because of excellent living polymerizability. Examples of the halosulfonyl group include a chlorosulfonyl group and a bromosulfonyl group. Of these, a chlorosulfonyl group is preferred.

重合開始能を有する基を持つ化合物の具体例としては、(3−(2−ブロモイソブチリル)プロピル)ジメチルエトキシシラン;1−トリクロロシリル−2−(m,p−クロロメチルフェニル)エタン;2−(4−クロロスルホニルフェニル)エチルトリメトキシシラン、2−(4−クロロスルホニルフェニル)エチルトリクロロシラン;アミノ基含有シランカップリング剤とイソシアン酸トリクロロアセチルとの組み合わせなどが挙げられる。これらの中でも重合開始能を有する基が芳香環に結合したものが好ましく、2−(4−クロロスルホニルフェニル)エチルトリメトキシシランや2−(4−クロロスルホニルフェニル)エチルトリクロロシランが特に好ましい。   Specific examples of the compound having a group having a polymerization initiating ability include (3- (2-bromoisobutyryl) propyl) dimethylethoxysilane; 1-trichlorosilyl-2- (m, p-chloromethylphenyl) ethane; Examples include 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane, 2- (4-chlorosulfonylphenyl) ethyltrichlorosilane; a combination of an amino group-containing silane coupling agent and trichloroacetyl isocyanate. Among these, those in which a group having a polymerization initiating ability is bonded to an aromatic ring are preferable, and 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane and 2- (4-chlorosulfonylphenyl) ethyltrichlorosilane are particularly preferable.

本発明において乾式反応とは、溶媒などの液体を全く使用しないか若しくは僅かな量だけを使用して反応させる方法である。例えば、無機粒子に、重合開始能を有する基を持つ化合物が含まれる液を滴下または噴霧し、反応させる方法が挙げられる。該化合物が含まれる液の滴下または噴霧によって、無機粒子の表面に液膜が形成されると考えられる。乾式反応では、その液膜内において反応が進むと考えられる。
重合開始能を有する基を持つ化合物が含まれる液の滴下または噴霧は、例えば、次のようにして行うことができる。滴下ノズルまたは噴霧ノズルおよび撹拌機を備えた反応器に乾燥した無機粒子を入れ、反応器内を乾燥した窒素等で置換し、無機粒子を掻き混ぜているところへ、ノズルから、重合開始能を有する基を持つ化合物が含まれる液を滴下または噴霧する。
重合開始能を有する基を持つ化合物が含まれる液の滴下量または噴霧量は、無機粒子の表面に液膜が形成されるのに必要十分な量であれば、特に制限されない。なお、液膜は無機粒子の全表面に形成されていてもよいし、無機粒子表面の一部に形成されていてもよい。無機粒子が多孔質のものである場合は、細孔内壁面にも液膜が形成されていてもよい。ただ、滴下または噴霧する量が増えてくると液膜の厚さが厚くなり、さらに滴下または噴霧する量が増えてくると液膜どうしがつながって無機粒子が凝集しはじめるので好ましくない。滴下または噴霧は、無機粒子の凝集状態に応じて、複数回に分けて行ってもよい。
In the present invention, the dry reaction is a method in which a liquid such as a solvent is not used at all or only a small amount is used. For example, a method may be mentioned in which a liquid containing a compound having a group having a polymerization initiating ability is dropped or sprayed on the inorganic particles to cause a reaction. It is considered that a liquid film is formed on the surface of the inorganic particles by dropping or spraying the liquid containing the compound. In the dry reaction, it is considered that the reaction proceeds in the liquid film.
The dropping or spraying of a liquid containing a compound having a group having a polymerization initiating ability can be performed, for example, as follows. Put the dried inorganic particles into a reactor equipped with a dripping nozzle or spray nozzle and a stirrer, and replace the inside of the reactor with dried nitrogen, etc. A liquid containing a compound having a group having is dropped or sprayed.
The dripping amount or spraying amount of the liquid containing the compound having a group having a polymerization initiating ability is not particularly limited as long as it is an amount necessary and sufficient for forming a liquid film on the surface of the inorganic particles. The liquid film may be formed on the entire surface of the inorganic particles, or may be formed on a part of the surface of the inorganic particles. When the inorganic particles are porous, a liquid film may also be formed on the inner wall surfaces of the pores. However, when the amount of dripping or spraying increases, the thickness of the liquid film increases, and when the amount of dripping or spraying further increases, the liquid films are connected to each other and inorganic particles begin to aggregate, which is not preferable. The dropping or spraying may be performed in a plurality of times depending on the aggregation state of the inorganic particles.

液膜中における重合開始能を有する基を持つ化合物と無機粒子との反応は、通常、不活性雰囲気下で行うことが好ましい。例えば、反応器内を窒素ガス、アルゴンガスなどの不活性ガスで置きかえる。不活性ガスは、水分が除去されたものが好ましい。反応温度は、通常、100〜250℃、好ましくは150〜180℃である。乾式反応では、溶媒を全く若しくは極微量にしか用いていないので、重合開始能を有する基が結合された無機粒子の回収が容易である。   The reaction between the compound having a group having a polymerization initiating ability in the liquid film and the inorganic particles is usually preferably performed in an inert atmosphere. For example, the inside of the reactor is replaced with an inert gas such as nitrogen gas or argon gas. The inert gas is preferably one from which moisture has been removed. The reaction temperature is usually 100 to 250 ° C, preferably 150 to 180 ° C. In the dry reaction, since the solvent is used at all or only in a very small amount, it is easy to recover inorganic particles to which a group having a polymerization initiating ability is bound.

重合開始能を有する基を持つ化合物と無機粒子との反応後、未反応の重合開始能を有する基を持つ化合物を除去することができる。除去方法は特に限定されないが、蒸発による方法が最も簡便で好ましい。蒸発は、減圧下で行うことが好ましく、減圧下で遮光して行うことが特に好ましい。未反応の重合開始能を有する基を持つ化合物が多量に残留していると遊離の抗菌性重合体が生成しやすい。遊離の抗菌性重合体が多量に生成すると、抗菌剤を樹脂等に添加した後で、樹脂成形体から抗菌成分が溶出しやすくなる。
以上の工程で、重合開始能を有する基が結合された無機粒子が得られる。
After the reaction between the compound having a group having a polymerization initiating ability and the inorganic particles, the compound having a group having an unreacted polymerization initiating ability can be removed. The removal method is not particularly limited, but the evaporation method is the simplest and preferable. Evaporation is preferably performed under reduced pressure, and particularly preferably performed under reduced pressure and protected from light. If a large amount of a compound having a group having unreacted polymerization initiating ability remains, a free antibacterial polymer is likely to be formed. When a large amount of free antibacterial polymer is produced, the antibacterial component is likely to be eluted from the resin molding after the antibacterial agent is added to the resin or the like.
Through the above steps, inorganic particles to which a group having a polymerization initiating ability is bonded are obtained.

次に、重合開始能を有する基が導入された無機粒子の存在下に抗菌性化合物に結合可能な官能基を持つ単量体を乾式グラフト重合して、抗菌性化合物に結合可能な官能基を持つ重合体を無機粒子に結合させる。次いで、前記の抗菌性化合物に結合可能な官能基を持つ重合体を、抗菌性化合物と反応させて、抗菌性重合体に変成する(第一態様の製法)。
または、重合開始能を有する基が導入された無機粒子の存在下に抗菌性官能基を持つ単量体を乾式グラフト重合して、抗菌性重合体を無機粒子に結合させる(第二態様の製法)。
これらの乾式グラフト重合では、重合開始能を有する基が結合された無機粒子が重合開始剤として機能する。
Next, a monomer having a functional group capable of binding to the antibacterial compound is dry-grafted in the presence of inorganic particles having a group capable of initiating polymerization to form a functional group capable of binding to the antibacterial compound. The polymer having is bonded to the inorganic particles. Next, the polymer having a functional group capable of binding to the antibacterial compound is reacted with the antibacterial compound to be transformed into the antibacterial polymer (the production method of the first aspect).
Alternatively, dry graft polymerization of a monomer having an antibacterial functional group in the presence of inorganic particles into which a group capable of initiating polymerization has been introduced, binds the antibacterial polymer to the inorganic particles (production method of the second embodiment) ).
In these dry graft polymerizations, inorganic particles to which a group having a polymerization initiating ability is bonded function as a polymerization initiator.

本発明の第一態様の製法に用いられる単量体は、抗菌性化合物に結合可能な官能基を持つ単量体である。該単量体はラジカル重合可能なものであれば特に限定されない。
抗菌性化合物に結合可能な官能基としては、ハロゲン基、スルホン酸基、スルホン酸ナトリウム塩基、カルボキシル基、水酸基、イソシアネート基、アミノ基などが挙げられる。抗菌性化合物に結合可能な官能基を持つ単量体は、芳香環を含むものが好ましく、特にベンジル基を含むものが好ましい。抗菌性化合物に結合可能な官能基を持つ単量体の好ましい例としては、ビニルベンジルクロライド、トリエチル−3−ビニルベンジルクロライド、トリエチル−4−ビニルベンジルクロライド、トリブチル−3−ビニルベンジルクロライド、トリブチル−4−ビニルベンジルクロライド、トリフェニル−3−ビニルベンジルクロライド、トリフェニル−4−ビニルベンジルクロライド、トリオクチル−3−ビニルベンジルクロライド、トリオクチル−4−ビニルベンジルクロライド、トリエチル−3−ビニルベンジルブロマイド、トリエチル−4−ビニルベンジルブロマイド、トリエチル−3−ビニルベンジルテトラフロロボレート、トリエチル−4−ビニルベンジルテトラフロロボレート、p−スチレンスルホン酸ナトリウムなどが挙げられる。これらのうち、ビニルベンジルクロライドまたはp−スチレンスルホン酸ナトリウムが好ましい。
The monomer used in the production method of the first aspect of the present invention is a monomer having a functional group capable of binding to an antibacterial compound. The monomer is not particularly limited as long as it is capable of radical polymerization.
Examples of the functional group capable of binding to the antibacterial compound include a halogen group, a sulfonic acid group, a sodium sulfonate base, a carboxyl group, a hydroxyl group, an isocyanate group, and an amino group. The monomer having a functional group capable of binding to the antibacterial compound preferably includes an aromatic ring, and particularly preferably includes a benzyl group. Preferred examples of the monomer having a functional group capable of binding to the antibacterial compound include vinyl benzyl chloride, triethyl-3-vinyl benzyl chloride, triethyl-4-vinyl benzyl chloride, tributyl-3-vinyl benzyl chloride, tributyl- 4-vinylbenzyl chloride, triphenyl-3-vinylbenzyl chloride, triphenyl-4-vinylbenzyl chloride, trioctyl-3-vinylbenzyl chloride, trioctyl-4-vinylbenzyl chloride, triethyl-3-vinylbenzyl bromide, triethyl- 4-vinylbenzyl bromide, triethyl-3-vinylbenzyltetrafluoroborate, triethyl-4-vinylbenzyltetrafluoroborate, sodium p-styrenesulfonate, etc. That. Of these, vinylbenzyl chloride or sodium p-styrenesulfonate is preferred.

抗菌性化合物に結合可能な官能基を持つ単量体以外に、他の単量体を共重合させてもよい。共重合させることができる単量体は特に制限されない。例えば、スチレン、(メタ)アクリル酸エステル、エチレン、プロピレンなどが挙げられる。   In addition to the monomer having a functional group capable of binding to the antibacterial compound, another monomer may be copolymerized. The monomer that can be copolymerized is not particularly limited. For example, styrene, (meth) acrylic acid ester, ethylene, propylene and the like can be mentioned.

本発明において乾式グラフト重合とは、溶媒などの液体を全く使用しないか若しくは僅かな量だけを使用して重合する方法である。例えば、重合開始能を有する基が結合された無機粒子に、単量体が含まれる液を滴下または噴霧し、重合反応させる方法が挙げられる。単量体が含まれる液の滴下または噴霧によって、無機粒子の表面に液膜が形成されると考えられる。乾式グラフト重合では、その液膜内において重合反応が進むと考えられる。
単量体が含まれる液の滴下または噴霧は、例えば、次のようにして行う。滴下ノズルまたは噴霧ノズルおよび撹拌機を備えた反応器に重合開始能を有する基が結合された無機粒子を入れ、反応器内を乾燥した窒素等で置換し、無機粒子を掻き混ぜているところへ、ノズルから、単量体が含まれる液を滴下または噴霧する。
単量体が含まれる液の滴下量または噴霧量は、無機粒子の表面に液膜が形成されるのに必要十分な量であれば、特に制限されない。なお、液膜は無機粒子の全表面に形成されていてもよいし、無機粒子表面の一部に形成されていてもよい。無機粒子が多孔質のものである場合は、細孔内壁面にも液膜が形成されていてもよい。ただ、滴下または噴霧する量が増えてくると液膜の厚さが厚くなり、さらに滴下または噴霧する量が増えてくると液膜どうしがつながって無機粒子が凝集しはじめるので好ましくない。滴下または噴霧は、無機粒子の凝集状態に応じて、複数回に分けて行ってもよい。無機粒子に結合された重合開始能基にリビング性がある場合には単量体が含まれる液を複数回に分けて滴下または噴霧することによって、凝集を生じさせずにグラフト率を徐々に上げていくことができる。
In the present invention, dry graft polymerization is a method in which a liquid such as a solvent is not used at all or only a small amount is used for polymerization. For example, there may be mentioned a method in which a liquid containing a monomer is dropped or sprayed onto inorganic particles to which a group having a polymerization initiating ability is bonded to cause a polymerization reaction. It is considered that a liquid film is formed on the surface of the inorganic particles by dripping or spraying the liquid containing the monomer. In dry graft polymerization, the polymerization reaction is considered to proceed in the liquid film.
The dropping or spraying of the liquid containing the monomer is performed, for example, as follows. To a reactor equipped with a dripping nozzle or spray nozzle and a stirrer, put inorganic particles to which a group capable of initiating polymerization is bonded, replace the inside of the reactor with dry nitrogen, etc., and stir the inorganic particles The liquid containing the monomer is dropped or sprayed from the nozzle.
The dripping amount or spraying amount of the liquid containing the monomer is not particularly limited as long as it is an amount necessary and sufficient for forming a liquid film on the surface of the inorganic particles. The liquid film may be formed on the entire surface of the inorganic particles, or may be formed on a part of the surface of the inorganic particles. When the inorganic particles are porous, a liquid film may also be formed on the inner wall surfaces of the pores. However, when the amount of dripping or spraying increases, the thickness of the liquid film increases, and when the amount of dripping or spraying further increases, the liquid films are connected to each other and inorganic particles begin to aggregate, which is not preferable. The dropping or spraying may be performed in a plurality of times depending on the aggregation state of the inorganic particles. When the polymerization initiating group bonded to the inorganic particles has living properties, the graft ratio is gradually increased without causing aggregation by dropping or spraying the liquid containing the monomer in multiple steps. Can continue.

グラフト重合は、臭化銅、塩化銅などのハロゲン化銅などの遷移金属触媒を用いて行うことができる。ハロゲン化銅に対するリガンド錯体も特に限定されない。例えばトリス(2−(ジメチルアミノ)エチル)アミン、N,N,N”,N”−ペンタメチルジエチレントリアミン、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラアミン、1,4,8,11−テトラメチル 1,4,8,11−アザシクロテトラデカン、ビピリジン等が挙げられる。触媒としてのハロゲン化銅の量は、単量体100質量部に対して通常0.1〜1.0質量部である。該触媒は、単量体が含まれる液に混ぜて、無機粒子に滴下または噴霧することができ、また、触媒が含まれる液を別途調製し、単量体が含まれる液の滴下または噴霧と同時にまたは相前後して、該触媒が含まれる液を無機粒子に滴下または噴霧することができる。
グラフト重合反応温度は、通常30〜220℃、好ましくは80〜200℃、より好ましくは120〜180℃である。
本発明の第一態様の製法では、この乾式グラフト重合によって、抗菌性化合物に結合可能な官能基を持つ重合体が無機粒子表面に結合される。
Graft polymerization can be performed using a transition metal catalyst such as copper halides such as copper bromide and copper chloride. The ligand complex for the copper halide is not particularly limited. For example, tris (2- (dimethylamino) ethyl) amine, N, N, N ″, N ″ -pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetraamine, 1,4,4 Examples include 8,11-tetramethyl 1,4,8,11-azacyclotetradecane and bipyridine. The amount of the copper halide as the catalyst is usually 0.1 to 1.0 part by mass with respect to 100 parts by mass of the monomer. The catalyst can be mixed with the liquid containing the monomer and dropped or sprayed onto the inorganic particles. Alternatively, the liquid containing the catalyst can be separately prepared, and the liquid containing the monomer can be dropped or sprayed. The liquid containing the catalyst can be dropped or sprayed onto the inorganic particles simultaneously or before and after.
Graft polymerization reaction temperature is 30-220 degreeC normally, Preferably it is 80-200 degreeC, More preferably, it is 120-180 degreeC.
In the production method of the first aspect of the present invention, a polymer having a functional group capable of binding to an antibacterial compound is bonded to the surface of the inorganic particles by this dry graft polymerization.

グラフト重合後、未反応の単量体等を除去することができる。除去方法は特に制限されない。例えば、減圧乾燥などによって、未反応単量体等を除去することができる。   After the graft polymerization, unreacted monomers and the like can be removed. The removal method is not particularly limited. For example, unreacted monomers can be removed by drying under reduced pressure.

本発明の第一態様の製法では、さらに、無機粒子に結合された前記重合体を、抗菌性化合物と反応させて、抗菌性重合体に変成する。
抗菌性化合物は、抗菌活性な官能基を持つ化合物である。抗菌活性な官能基としては、一級アミノ基、二級アミノ基、三級アミノ基、カチオン性一級アンモニウム基、カチオン性二級アンモニウム基、カチオン性三級アンモニウム基、カチオン性四級アンモニウム基、カチオン性一級ホスホニウム基、カチオン性二級ホスホニウム基、カチオン性三級ホスホニウム基、カチオン性四級ホスホニウム基、カチオン性一級スルホニウム基、カチオン性二級スルホニウム基、カチオン性三級スルホニウム基、カチオン性四級スルホニウム基、ビグアニジン基、抗菌性ペプチド、フェノールラジカル、ポリフェノールラジカル、および/または抗生物質が挙げられる。これらのうち、耐熱性等の観点から、上記各種のホスホニウム基が好ましい。
ホスホニウム基を持つ化合物の好ましい例としては、トリブチルホスフィンまたはその塩、トリヘプチルホスフィンまたはその塩などのトリアルキルホスフィンまたはその塩が挙げられる。トリアルキルホスフィンを構成する3つのアルキル基のうち、少なくとも一つは炭素数8以上のものであることが抗菌性能の観点から好ましい。
In the production method of the first aspect of the present invention, the polymer bonded to the inorganic particles is further reacted with an antibacterial compound to be converted into an antibacterial polymer.
An antibacterial compound is a compound having an antibacterial activity functional group. Antibacterial active functional groups include primary amino group, secondary amino group, tertiary amino group, cationic primary ammonium group, cationic secondary ammonium group, cationic tertiary ammonium group, cationic quaternary ammonium group, cation Primary phosphonium group, cationic secondary phosphonium group, cationic tertiary phosphonium group, cationic quaternary phosphonium group, cationic primary sulfonium group, cationic secondary sulfonium group, cationic tertiary sulfonium group, cationic quaternary Examples include sulfonium groups, biguanidine groups, antimicrobial peptides, phenol radicals, polyphenol radicals, and / or antibiotics. Of these, from the viewpoint of heat resistance and the like, the various phosphonium groups are preferable.
Preferable examples of the compound having a phosphonium group include trialkylphosphine or a salt thereof such as tributylphosphine or a salt thereof, triheptylphosphine or a salt thereof. From the viewpoint of antibacterial performance, at least one of the three alkyl groups constituting the trialkylphosphine is preferably one having 8 or more carbon atoms.

無機粒子に結合された前記重合体と抗菌性化合物との反応は、抗菌性化合物を溶解可能な溶媒中に前記重合体が結合された無機粒子を分散させて行うことができる。また、抗菌性化合物が含まれる液を前記重合体が結合された無機粒子に滴下または噴霧して、前記重合体と抗菌性化合物とを乾式反応させる方法で行うこともできる。
反応温度は、特に制限されず、好ましくは80〜150℃である。温度の上限は溶媒還流温度であることが特に好ましい。
無機粒子に結合された前記重合体に反応させる抗菌性化合物の量は、重合体中の抗菌性化合物に結合可能な官能基100モル部に対して、好ましくは100〜300モル部、より好ましくは150〜200モル部である。
以上の反応によって、無機粒子に結合された重合体が抗菌性重合体に変成される。
The reaction between the polymer bound to the inorganic particles and the antibacterial compound can be performed by dispersing the inorganic particles bound to the polymer in a solvent capable of dissolving the antibacterial compound. Moreover, it can also carry out by the method of dripping or spraying the liquid containing an antibacterial compound on the inorganic particle to which the said polymer was combined, and making the said polymer and an antibacterial compound dry-react.
The reaction temperature is not particularly limited, and is preferably 80 to 150 ° C. The upper limit of the temperature is particularly preferably the solvent reflux temperature.
The amount of the antibacterial compound reacted with the polymer bonded to the inorganic particles is preferably 100 to 300 mol parts, more preferably 100 mol parts of the functional group capable of binding to the antibacterial compounds in the polymer. 150 to 200 mol parts.
By the above reaction, the polymer bonded to the inorganic particles is transformed into an antibacterial polymer.

該反応完了後、未反応の抗菌性化合物や遊離した重合体を除去することができる。除去方法は特に制限されない。例えば、抗菌性化合物等を溶解可能な溶媒を添加して未反応の抗菌性化合物等を溶解する。該液を遠心力または重力によって固液分離して上澄み液を捨てる。これによって、未反応の抗菌性化合物等を取り除くことができる。溶解−固液分離−上澄み除去は必要に応じて繰り返すことができる。次に、減圧乾燥などによって、溶媒等を除去することができる。   After the reaction is completed, unreacted antibacterial compounds and free polymers can be removed. The removal method is not particularly limited. For example, a solvent capable of dissolving the antibacterial compound or the like is added to dissolve the unreacted antibacterial compound or the like. The liquid is separated into solid and liquid by centrifugal force or gravity, and the supernatant is discarded. Thereby, unreacted antibacterial compounds and the like can be removed. Dissolution-solid-liquid separation-supernatant removal can be repeated as necessary. Next, the solvent or the like can be removed by drying under reduced pressure or the like.

一方、本発明の第二態様の製法に用いられる単量体は、抗菌性官能基を持つ単量体である。抗菌性官能基は、抗菌性化合物の説明で挙げたものと同じものである。これらのうち、上記各種のホスホニウム基が好ましい。
ホスホニウム基を持つ単量体としては、ビニルベンジルホスホニウムクロライド、トリエチル−3−ビニルベンジルホスホニウムクロライド、トリエチル−4−ビニルベンジルホスホニウムクロライド、トリブチル−3−ビニルベンジルホスホニウムクロライド、トリブチル−4−ビニルベンジルホスホニウムクロライド、トリフェニル−3−ビニルベンジルホスホニウムクロライド、トリフェニル−4−ビニルベンジルホスホニウムクロライド、トリオクチル−3−ビニルベンジルホスホニウムクロライド、トリオクチル−4−ビニルベンジルホスホニウムクロライド、トリエチル−3−ビニルベンジルホスホニウムブロマイド、トリエチル−4−ビニルベンジルホスホニウムブロマイド、トリエチル−3−ビニルベンジルホスホニウムテトラフロロボレート、トリエチル−4−ビニルベンジルホスホニウムテトラフロロボレート、p−スチレンスルホン酸ホスホニウムなどが挙げられる。これらのうち、ビニルベンジルホスホニウムクロライドが好ましい。
On the other hand, the monomer used in the production method of the second aspect of the present invention is a monomer having an antibacterial functional group. Antibacterial functional groups are the same as those mentioned in the description of the antibacterial compound. Of these, the various phosphonium groups are preferred.
Examples of the monomer having a phosphonium group include vinylbenzyl phosphonium chloride, triethyl-3-vinylbenzylphosphonium chloride, triethyl-4-vinylbenzylphosphonium chloride, tributyl-3-vinylbenzylphosphonium chloride, tributyl-4-vinylbenzylphosphonium chloride. , Triphenyl-3-vinylbenzylphosphonium chloride, triphenyl-4-vinylbenzylphosphonium chloride, trioctyl-3-vinylbenzylphosphonium chloride, trioctyl-4-vinylbenzylphosphonium chloride, triethyl-3-vinylbenzylphosphonium bromide, triethyl- 4-vinylbenzylphosphonium bromide, triethyl-3-vinylbenzylphosphonium tetra Rafuro Robo rate, triethyl-4-vinylbenzyl phosphonium tetrafluoroborate, etc. p- styrenesulfonic acid phosphonium and the like. Of these, vinylbenzylphosphonium chloride is preferred.

抗菌性官能基を持つ単量体以外に、他の単量体を共重合させてもよい。共重合させることができる単量体は特に制限されない。例えば、スチレン、(メタ)アクリル酸エステル、エチレン、プロピレンなどが挙げられる。
第二態様の製法における、抗菌性官能基を持つ単量体の乾式グラフト重合は、第一態様の製法における抗菌性化合物に結合可能な官能基を持つ単量体の乾式グラフト重合と同様の条件によって行うことができる。
本発明の第二態様の製法では、この乾式グラフト重合によって、抗菌性官能基を持つ重合体(抗菌性重合体)が無機粒子表面に結合される。なお、未反応単量体および無機粒子に結合されなかった抗菌性重合体等は、第一態様の製法と同様に除去することができる。
In addition to monomers having antibacterial functional groups, other monomers may be copolymerized. The monomer that can be copolymerized is not particularly limited. For example, styrene, (meth) acrylic acid ester, ethylene, propylene and the like can be mentioned.
The dry graft polymerization of the monomer having an antibacterial functional group in the production method of the second aspect is the same conditions as the dry graft polymerization of the monomer having a functional group capable of binding to the antibacterial compound in the production method of the first aspect. Can be done by.
In the production method of the second aspect of the present invention, a polymer having an antibacterial functional group (an antibacterial polymer) is bonded to the surface of the inorganic particles by this dry graft polymerization. The unreacted monomer and the antibacterial polymer not bonded to the inorganic particles can be removed in the same manner as in the production method of the first aspect.

本発明の抗菌剤に含有される抗菌性重合体の数平均分子量は、1000以上が好ましく、2000以上がより好ましく、5000以上が特に好ましい。数平均分子量が小さいと、抗菌性能が低下傾向になり、また抗菌性重合体が溶出しやすくなる。なお、分子量は、無機粒子を溶解可能な物質(例えば、強酸や強アルカリ)で抗菌剤を処理し、抗菌性重合体を単離し、該重合体をGPCで分析することによって求めることができる。なお、第二態様の製法に比べ第一態様の製法は、分子量の大きい抗菌性重合体を無機粒子に結合させることができる。また、抗菌性重合体は、直鎖のものであってもよいし、分岐したものであってもよい。   The number average molecular weight of the antibacterial polymer contained in the antibacterial agent of the present invention is preferably 1000 or more, more preferably 2000 or more, and particularly preferably 5000 or more. When the number average molecular weight is small, the antibacterial performance tends to be lowered, and the antibacterial polymer is easily eluted. The molecular weight can be determined by treating the antibacterial agent with a substance capable of dissolving inorganic particles (for example, strong acid or strong alkali), isolating the antibacterial polymer, and analyzing the polymer by GPC. In addition, compared with the manufacturing method of a 2nd aspect, the manufacturing method of a 1st aspect can couple | bond an antibacterial polymer with a large molecular weight to an inorganic particle. Further, the antibacterial polymer may be linear or branched.

本発明の抗菌剤は、無機粒子に結合された抗菌性重合体の量が、無機粒子に対して30質量%以上であることが好ましい。結合された重合体の量が少ないと抗菌性能が低下傾向になる。
本発明の抗菌剤は、遊離の抗菌性重合体の量が、無機粒子に対して0〜2質量%であることが好ましく、0〜1質量%であることがより好ましい。遊離の重合体が多くなると、抗菌成分の溶出が増える傾向になる。
In the antibacterial agent of the present invention, the amount of the antibacterial polymer bonded to the inorganic particles is preferably 30% by mass or more based on the inorganic particles. When the amount of the bound polymer is small, the antibacterial performance tends to decrease.
In the antibacterial agent of the present invention, the amount of the free antibacterial polymer is preferably 0 to 2% by mass, more preferably 0 to 1% by mass with respect to the inorganic particles. When the amount of free polymer increases, the elution of antibacterial components tends to increase.

抗菌剤中の無機粒子および抗菌性重合体の質量比は、次のような方法で求めることができる。先ず、無機粒子を溶解可能な物質(例えば、強酸や強アルカリ)で抗菌剤を処理し、抗菌性重合体だけを取り出し、この処理前後の質量変化から、無機粒子と抗菌性重合体の質量比を求めることができる。また、抗菌性重合体を溶解可能な溶媒で抗菌剤を抽出し、抽出される抗菌性重合体が無くなるまで、抽出を繰り返す。この処理前後の重量変化から、遊離の抗菌性重合体と抗菌性重合体が結合された無機粒子との質量比を求めることができる。さらに、上記の測定結果から無機粒子に結合された抗菌性重合体と無機粒子との質量比を求めることができる。   The mass ratio of the inorganic particles and the antibacterial polymer in the antibacterial agent can be determined by the following method. First, the antibacterial agent is treated with a substance capable of dissolving inorganic particles (for example, strong acid or strong alkali), and only the antibacterial polymer is taken out, and the mass ratio between the inorganic particles and the antibacterial polymer is determined from the mass change before and after the treatment. Can be requested. Further, the antibacterial agent is extracted with a solvent capable of dissolving the antibacterial polymer, and the extraction is repeated until there is no extracted antibacterial polymer. From the weight change before and after the treatment, the mass ratio between the free antibacterial polymer and the inorganic particles to which the antibacterial polymer is bonded can be determined. Furthermore, the mass ratio between the antibacterial polymer bonded to the inorganic particles and the inorganic particles can be determined from the above measurement results.

さらに、本発明の抗菌剤の製造方法で得られた抗菌性重合体が結合した無機粒子(抗菌剤)とともに、光触媒機能を有する材料の微粒子や遠赤外線を放射する材料の微粒子、或いはマイナスイオンを放出する材料の微粒子などを混合して用いることができる。上記のように組み合わせることによって、多機能な成形体等を得ることができる。   Furthermore, together with inorganic particles (antibacterial agent) to which the antibacterial polymer obtained by the method for producing an antibacterial agent of the present invention is bonded, fine particles of a material having a photocatalytic function, fine particles of a material emitting far infrared rays, or negative ions. It can be used by mixing fine particles of the material to be released. By combining them as described above, a multifunctional molded body or the like can be obtained.

本発明の抗菌剤は、そのままで使用することもできる。また、本発明の抗菌剤を、樹脂、セラミックス、金属などに分散させて成形体等にして使用することができる。さらに、溶媒に分散させて、塗料やペースト等にして使用することができる。   The antibacterial agent of the present invention can be used as it is. Further, the antibacterial agent of the present invention can be used in the form of a molded body by dispersing it in resin, ceramics, metal or the like. Furthermore, it can be dispersed in a solvent and used as a paint or paste.

以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。   Examples of the present invention will be described below to describe the present invention more specifically. Note that these are merely illustrative examples, and the present invention is not limited thereto.

物性等は以下の方法により測定した。
(溶出性試験)
フィルム状成形体を純水に入れ、24時間煮沸した。煮沸後の水をIPC発光分光分析装置を用いて溶出物の有無を分析した。
Physical properties and the like were measured by the following methods.
(Dissolution test)
The film-like molded body was put into pure water and boiled for 24 hours. The water after boiling was analyzed for the presence or absence of eluate using an IPC emission spectroscopic analyzer.

(抗菌性試験)
JIS Z2801に基づき、フィルム密着法で行った。フィルム成形体に大腸菌を接種し、温度35℃、相対湿度90%以上の環境で4時間培養した。培養後、フィルム成形体から菌を洗い出し、洗い出した液1mlを寒天平板培養法に従って40〜48時間培養して、生菌数を測定した。
(Antimicrobial test)
Based on JIS Z2801, the film adhesion method was used. The film molding was inoculated with E. coli and cultured in an environment of a temperature of 35 ° C. and a relative humidity of 90% or more for 4 hours. After the culture, the bacteria were washed out from the film molding, and 1 ml of the washed liquid was cultured for 40 to 48 hours according to the agar plate culture method, and the viable cell count was measured.

実施例
シリカナノ粒子(Aerosil 200;デグサ社製)20.0gを三口フラスコに入れ、フラスコ内を窒素で置換した。シリカナノ粒子を約50rpmで撹拌しながら、2−(4−クロロスルホニルフェニル)エチルトリクロロシランの50容量%メチレンクロライド溶液20.0mlを、シリカナノ粒子表面が均一に濡れるようにゆくっり滴下した。滴下終了後、約100rpmで撹拌させ、窒素ガスを通気させながら、110℃で24時間乾式反応させた。窒素ガス通気によって副生した塩化水素を除いた。
次いで、フラスコ内を減圧して未反応物を4時間掛けて留去し、クロロスルホニル基(SO2Cl基)が導入されたシリカ粒子を得た。
FT−IRで分析するために、クロロスルホニル基(SO2Cl基)が導入されたシリカ粒子をテトラヒドロフランでの洗浄および遠心分離を3回行った。次いで、遮光された室温環境下で減圧乾燥してFT−IR分析用試料を得た。FT−IR分析結果を図1に示した。本実施例で得られたシリカ粒子(図1の「(b)Silica-SO2Cl」)にはS=O基(1380cm-1)のピークがあることがわかる。
Example 20.0 g of silica nanoparticles (Aerosil 200; manufactured by Degussa) was placed in a three-necked flask, and the inside of the flask was replaced with nitrogen. While stirring the silica nanoparticles at about 50 rpm, 20.0 ml of a 50% by volume methylene chloride solution of 2- (4-chlorosulfonylphenyl) ethyltrichlorosilane was slowly added dropwise so that the surface of the silica nanoparticles was uniformly wetted. After completion of the dropping, the mixture was stirred at about 100 rpm, and a dry reaction was performed at 110 ° C. for 24 hours while supplying nitrogen gas. Hydrogen chloride by-produced by nitrogen gas ventilation was removed.
Next, the pressure in the flask was reduced, and unreacted substances were distilled off over 4 hours to obtain silica particles into which a chlorosulfonyl group (SO 2 Cl group) was introduced.
In order to analyze by FT-IR, the silica particles into which the chlorosulfonyl group (SO 2 Cl group) was introduced were washed with tetrahydrofuran and centrifuged three times. Subsequently, it dried under reduced pressure under the light-shielded room temperature environment, and obtained the sample for FT-IR analysis. The results of FT-IR analysis are shown in FIG. It can be seen that the silica particles obtained in this example (“(b) Silica-SO 2 Cl” in FIG. 1) have a peak of S═O group (1380 cm −1 ).

臭化銅0.86gを乳鉢で磨り潰し、これに(−)−スパルテイン((-)-Sparteine)2.8gを加え、よく掻き混ぜた。これにジエチルエーテル15.0mlを加え、超音波で振動させて、臭化銅を完全に溶解させて、触媒液を得た。   0.86 g of copper bromide was ground in a mortar, and 2.8 g of (−)-Sparteine ((−)-Sparteine) was added to this and stirred well. Diethyl ether (15.0 ml) was added thereto, and the mixture was vibrated with ultrasonic waves to completely dissolve copper bromide, thereby obtaining a catalyst solution.

三口フラスコに、クロロスルホニル基が導入されたシリカ粒子20.0gを入れた。これに、上記で得られた触媒液と4−ビニルベンジルクロライド10.0mlとを混合した液を、シリンジで粒子表面が均一に濡れるようにゆくっり滴下した。
滴下終了後、約100rpmで撹拌させながら、窒素ガスでフラスコ内を置換した。その状態で、120℃で6時間乾式反応させた。
次いで、フラスコ内を減圧して未反応物を留去した。
In a three-necked flask, 20.0 g of silica particles into which a chlorosulfonyl group was introduced were placed. To this, a solution obtained by mixing the catalyst solution obtained above and 10.0 ml of 4-vinylbenzyl chloride was slowly dropped with a syringe so that the particle surface was uniformly wetted.
After completion of dropping, the inside of the flask was replaced with nitrogen gas while stirring at about 100 rpm. In this state, a dry reaction was performed at 120 ° C. for 6 hours.
Next, the pressure in the flask was reduced to remove unreacted substances.

160℃に加温し、4−ビニルベンジルクロライド10.0mlを粒子表面が均一に濡れるようにゆくっり滴下し、滴下終了後、6時間乾式グラフト重合反応させた。この4−ビニルベンジルクロライドの滴下および6時間の乾式グラフト重合反応を上記と併せて合計4回行った。4−ビニルベンジルクロライドの滴下を繰り返すたびに重合反応が進みグラフト率が高くなった。クロロスルホニル基が導入されたシリカ粒子に高いリビング重合性があることが判った。
フラスコから反応生成物を取り出し、テトラヒドロフランで洗浄し、遠心分離機によって固形分を分離し、真空乾燥させて、ポリビニルベンジルクロライドが結合されたシリカ粒子を得た。
The mixture was heated to 160 ° C., and 10.0 ml of 4-vinylbenzyl chloride was slowly added dropwise so that the particle surface was evenly wetted. After completion of the addition, a dry graft polymerization reaction was carried out for 6 hours. The dripping of 4-vinylbenzyl chloride and the dry graft polymerization reaction for 6 hours were carried out a total of 4 times in combination with the above. Each time the dropping of 4-vinylbenzyl chloride was repeated, the polymerization reaction proceeded and the graft ratio increased. It was found that the silica particles having a chlorosulfonyl group introduced have high living polymerizability.
The reaction product was taken out from the flask, washed with tetrahydrofuran, solid content was separated by a centrifuge, and vacuum dried to obtain silica particles to which polyvinylbenzyl chloride was bonded.

ポリビニルベンジルクロライドが結合されたシリカ粒子5gを三口フラスコに入れ、フラスコ内を窒素置換した。前記シリカ粒子を撹拌しながら、トルエン40mlおよびトリブチルホスフィン5mlをフラスコ内に滴下した。滴下後、撹拌しながら、110℃で24時間還流しながら反応させた。
反応生成物にテトラヒドロフランを添加し、遠心分離して、上澄み液を捨てた。固形分を減圧乾燥することによって、抗菌性重合体が結合されたシリカ(抗菌剤)を得た。
なお、シリカナノ粒子にグラフト重合されたことの確認は、13C−NMR、熱分解GC−MS、赤外吸光分析によって行った。
5 g of silica particles bonded with polyvinylbenzyl chloride were placed in a three-necked flask, and the atmosphere in the flask was replaced with nitrogen. While stirring the silica particles, 40 ml of toluene and 5 ml of tributylphosphine were dropped into the flask. After the dropping, the reaction was carried out with stirring at 110 ° C. for 24 hours with stirring.
Tetrahydrofuran was added to the reaction product, centrifuged, and the supernatant was discarded. The solid content was dried under reduced pressure to obtain silica (antibacterial agent) to which an antibacterial polymer was bound.
The confirmation of graft polymerization on silica nanoparticles was performed by 13 C-NMR, pyrolysis GC-MS, and infrared absorption analysis.

得られた抗菌剤は、抗菌性重合体がシリカナノ粒子に対して約50質量%で結合されていた。
なお、結合された抗菌性重合体の量は、以下の方法で求めた。抗菌剤をトルエンに分散させ、遠心分離を行い、上澄み液を除去した。上澄み液に遊離抗菌性重合体が抽出されなくなるまで、トルエンによる抽出を繰り返した。抽出完了後、減圧乾燥して質量を求めた。該質量と、上記反応に使用したシリカナノ粒子の質量と、抽出された抗菌性重合体の質量とから計算された。
In the obtained antibacterial agent, the antibacterial polymer was bound at about 50% by mass with respect to the silica nanoparticles.
The amount of the bound antibacterial polymer was determined by the following method. The antibacterial agent was dispersed in toluene, centrifuged, and the supernatant was removed. Extraction with toluene was repeated until no free antimicrobial polymer was extracted into the supernatant. After completion of extraction, the mass was determined by drying under reduced pressure. It was calculated from the mass, the mass of the silica nanoparticles used in the above reaction, and the mass of the extracted antibacterial polymer.

抗菌剤1質量%をポリスチレンに添加し十分に混合しフィルム状に成形した。
比較のために、グラフト重合していない未処理のシリカナノ粒子1質量%をポリスチレンに添加し十分に混合しフィルム状に成形したものと、抗菌性重合体(ホスホニウムポリマー)1質量%をポリスチレンに添加し十分に混合しフィルム状に成形したものを用意した。
1% by mass of an antibacterial agent was added to polystyrene and mixed thoroughly to form a film.
For comparison, 1% by mass of untreated silica nanoparticles that are not graft-polymerized are added to polystyrene and mixed thoroughly to form a film, and 1% by mass of an antibacterial polymer (phosphonium polymer) is added to polystyrene. Then, it was mixed thoroughly and formed into a film.

本発明の抗菌剤を添加したフィルム成形体は、抗菌性試験において、生菌数が約5×102CFU/ml以下であった。これに対して、未処理のシリカナノ粒子を添加したフィルム成形体は、抗菌性試験において、生菌数が約7×104CFU/mlであった。
また、本発明の抗菌剤を添加したフィルム成形体は、上記溶出性試験において、溶出物を検出できなかった。一方、抗菌性重合体1質量%を添加したフィルム成形体からは、抗菌性重合体が溶出していることが確認された。
The film molded body to which the antibacterial agent of the present invention was added had a viable cell count of about 5 × 10 2 CFU / ml or less in the antibacterial test. On the other hand, the film molded body to which the untreated silica nanoparticles were added had a viable cell count of about 7 × 10 4 CFU / ml in the antibacterial test.
Moreover, the film molding which added the antibacterial agent of this invention was not able to detect an elution thing in the said elution test. On the other hand, it was confirmed that the antibacterial polymer was eluted from the film molded body to which 1% by mass of the antibacterial polymer was added.

Claims (5)

重合開始能を有する基を持つ化合物と無機粒子とを乾式反応させて、無機粒子に重合開始能を有する基を導入し、
重合開始能を有する基が導入された無機粒子の存在下に抗菌性化合物に結合可能な官能基を持つ単量体を乾式グラフト重合して、抗菌性化合物に結合可能な官能基を持つ重合体を無機粒子に結合させ、
次いで、前記の抗菌性化合物に結合可能な官能基を持つ重合体を、抗菌性化合物と反応させて、抗菌性重合体に変成することを含む、抗菌剤の製造方法。
A compound having a group having a polymerization initiating ability and an inorganic particle are subjected to a dry reaction to introduce a group having a polymerization initiating ability into the inorganic particles
A polymer having a functional group capable of binding to an antibacterial compound by dry graft polymerization of a monomer having a functional group capable of binding to the antibacterial compound in the presence of inorganic particles having a group capable of initiating polymerization. To the inorganic particles,
Next, a method for producing an antibacterial agent, comprising reacting a polymer having a functional group capable of binding to the antibacterial compound with an antibacterial compound to convert it into an antibacterial polymer.
重合開始能を有する基を持つ化合物と無機粒子とを乾式反応させて、無機粒子に重合開始能を有する基を導入し、
重合開始能を有する基が導入された無機粒子の存在下に抗菌性官能基を持つ単量体を乾式グラフト重合して、抗菌性重合体を無機粒子に結合させることを含む、抗菌剤の製造方法。
A compound having a group having a polymerization initiating ability and an inorganic particle are subjected to a dry reaction to introduce a group having a polymerization initiating ability into the inorganic particle,
Production of an antibacterial agent comprising dry graft polymerization of a monomer having an antibacterial functional group in the presence of inorganic particles into which a group capable of initiating polymerization is introduced, and binding the antibacterial polymer to the inorganic particles Method.
無機粒子がシリカ粒子である請求項1または2に記載の抗菌剤の製造方法。   The method for producing an antibacterial agent according to claim 1 or 2, wherein the inorganic particles are silica particles. 抗菌性重合体がホスホニウム基を持つ重合体である請求項1〜3のいずれか1項に記載の抗菌剤の製造方法。   The method for producing an antibacterial agent according to any one of claims 1 to 3, wherein the antibacterial polymer is a polymer having a phosphonium group. 重合開始能を有する基が、ハロメチル基、ハロアルキルフェニル基、α−ハロエステル基、α−ハロカルボニル基、α−ハロニトリル基、ハロアセチル基またはハロスルホニル基である請求項1〜4のいずれか1項に記載の抗菌剤の製造方法。   The group having a polymerization initiating ability is a halomethyl group, a haloalkylphenyl group, an α-haloester group, an α-halocarbonyl group, an α-halonitrile group, a haloacetyl group, or a halosulfonyl group. A method for producing the antibacterial agent according to 1.
JP2009011943A 2009-01-22 2009-01-22 Method for producing antibacterial agent Pending JP2010168304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011943A JP2010168304A (en) 2009-01-22 2009-01-22 Method for producing antibacterial agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011943A JP2010168304A (en) 2009-01-22 2009-01-22 Method for producing antibacterial agent

Publications (1)

Publication Number Publication Date
JP2010168304A true JP2010168304A (en) 2010-08-05

Family

ID=42700792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011943A Pending JP2010168304A (en) 2009-01-22 2009-01-22 Method for producing antibacterial agent

Country Status (1)

Country Link
JP (1) JP2010168304A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168468A (en) * 2009-01-22 2010-08-05 Jgc Catalysts & Chemicals Ltd Polymerization initiating group-attached inorganic oxide particle and method for manufacturing the same, as well as polymer-modified inorganic oxide particle obtained by using this inorganic oxide particle and method for manufacturing the same
WO2011077710A1 (en) * 2009-12-22 2011-06-30 国立大学法人新潟大学 Antibacterial agent and production method thereof
JP2012130904A (en) * 2010-12-22 2012-07-12 Ind Technol Res Inst Carbon nanomaterial-supported catalyst and application thereof in cyclic carbonate synthesis
JP2015093968A (en) * 2013-11-14 2015-05-18 日本ゼオン株式会社 Method for producing polymer-modified silica
KR101818649B1 (en) * 2015-10-27 2018-01-17 한국생산기술연구원 High durable nanoparticles having water repellent and antibiotic, and coating composition comprising the same, and preparation method thereof
KR101818650B1 (en) * 2015-10-07 2018-01-17 한국생산기술연구원 Organic-inorganic composite particle material having water repellent and antibiotic, and preparation method thereof
JP2019520453A (en) * 2016-12-14 2019-07-18 エルジー・ケム・リミテッド Method of producing functionalized graphene
CN115975365A (en) * 2022-12-30 2023-04-18 青岛海泰科新材料科技有限公司 Highlight antibacterial spraying-free PC/ASA composite material and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168468A (en) * 2009-01-22 2010-08-05 Jgc Catalysts & Chemicals Ltd Polymerization initiating group-attached inorganic oxide particle and method for manufacturing the same, as well as polymer-modified inorganic oxide particle obtained by using this inorganic oxide particle and method for manufacturing the same
WO2011077710A1 (en) * 2009-12-22 2011-06-30 国立大学法人新潟大学 Antibacterial agent and production method thereof
JP2011132148A (en) * 2009-12-22 2011-07-07 Niigata Univ Antibacterial agent and process for producing the same
JP2012130904A (en) * 2010-12-22 2012-07-12 Ind Technol Res Inst Carbon nanomaterial-supported catalyst and application thereof in cyclic carbonate synthesis
JP2015093968A (en) * 2013-11-14 2015-05-18 日本ゼオン株式会社 Method for producing polymer-modified silica
KR101818650B1 (en) * 2015-10-07 2018-01-17 한국생산기술연구원 Organic-inorganic composite particle material having water repellent and antibiotic, and preparation method thereof
KR101818649B1 (en) * 2015-10-27 2018-01-17 한국생산기술연구원 High durable nanoparticles having water repellent and antibiotic, and coating composition comprising the same, and preparation method thereof
JP2019520453A (en) * 2016-12-14 2019-07-18 エルジー・ケム・リミテッド Method of producing functionalized graphene
US10981790B2 (en) 2016-12-14 2021-04-20 Lg Chem, Ltd. Method for preparing functionalized graphene
CN115975365A (en) * 2022-12-30 2023-04-18 青岛海泰科新材料科技有限公司 Highlight antibacterial spraying-free PC/ASA composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2010168304A (en) Method for producing antibacterial agent
Gao et al. Povidone–iodine-based polymeric nanoparticles for antibacterial applications
Song et al. Silver-incorporated mussel-inspired polydopamine coatings on mesoporous silica as an efficient nanocatalyst and antimicrobial agent
Huang et al. Complexes of polydopamine-modified clay and ferric ions as the framework for pollutant-absorbing supramolecular hydrogels
Zhu et al. A robust graft-to strategy to form multifunctional and stealth zwitterionic polymer-coated mesoporous silica nanoparticles
Hu et al. Functionalized layered double hydroxide nanoparticles conjugated with disulfide-linked polycation brushes for advanced gene delivery
Bressy et al. New insights into the adsorption of 3-(trimethoxysilyl) propylmethacrylate on hydroxylated ZnO nanopowders
Mulik et al. Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization
Dinari et al. Fabrication of poly (methyl methacrylate)/silica KIT-6 nanocomposites via in situ polymerization approach and their application for removal of Cu 2+ from aqueous solution
Applerot et al. Decorating parylene-coated glass with ZnO nanoparticles for antibacterial applications: a comparative study of sonochemical, microwave, and microwave-plasma coating routes
Tan et al. Photoresponsive liquid marbles and dry water
JP2014527963A (en) Antibacterial composite material
Ingrosso et al. UV-curable nanocomposite based on methacrylic-siloxane resin and surface-modified TiO2 nanocrystals
Wu et al. Mesoporous silica nanoparticles-encapsulated agarose and heparin as anticoagulant and resisting bacterial adhesion coating for biomedical silicone
WO2007069596A1 (en) Aqueous organic-inorganic hybrid composition
Hosseini et al. Transparent anti-SARS-CoV-2 and antibacterial silver oxide coatings
Guignard et al. Template-assisted synthesis of Janus silica nanobowls
Wu et al. Advances in antimicrobial polymer coatings in the leather industry: a comprehensive review
Chai et al. Mussel-inspired synthesis of magnetic N-Halamine nanoparticles for antibacterial recycling
Nechikkattu et al. Zwitterionic functionalised mesoporous silica nanoparticles for alendronate release
Lin et al. Engineering the properties of transparent hybrid coating toward high hardness, excellent flexibility, and multifunction
Li et al. Preparation of blackberry-shape cationic copolymer particles for highly effective antibacterial coatings
JP2011523667A (en) Antibacterial nanoparticles
Erol et al. A new methacrylate polymer functionalized with fluoroarylketone prepared by hydrothermal method and its nanocomposites with SiO2: thermal, dielectric, and biocidal properties
JP5282279B2 (en) Antibacterial foam resin