JP2010166009A - Exposure apparatus, and method of manufacturing device - Google Patents

Exposure apparatus, and method of manufacturing device Download PDF

Info

Publication number
JP2010166009A
JP2010166009A JP2009009403A JP2009009403A JP2010166009A JP 2010166009 A JP2010166009 A JP 2010166009A JP 2009009403 A JP2009009403 A JP 2009009403A JP 2009009403 A JP2009009403 A JP 2009009403A JP 2010166009 A JP2010166009 A JP 2010166009A
Authority
JP
Japan
Prior art keywords
light intensity
intensity distribution
exposure apparatus
substrate
irradiated surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009009403A
Other languages
Japanese (ja)
Inventor
Takamitsu Komaki
貴光 古巻
Takanaga Shiozawa
崇永 塩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009009403A priority Critical patent/JP2010166009A/en
Publication of JP2010166009A publication Critical patent/JP2010166009A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exposure apparatus capable of restraining ununiformities of a line width difference, a contrast difference or a shift amount difference of an image in image performance between X-image heights, and capable of expanding a depth of focus, when a substrate stage is inclined to be exposed. <P>SOLUTION: This scanning type exposure device includes an illumination optical device for guiding a light from a light source to a face to be irradiated of an original plate or a face to be irradiated of a substrate, and a substrate stage moving while holding the substrate, the substrate stage is provided to allow an inclination of a scanning direction with respect to an optical axis, and the illumination optical device includes a light intensity distribution forming means for illuminating the face to be irradiated at a prescribed light intensity distribution, a convergence optical system for converging the lights emitted from the light intensity distribution forming means, and a light intensity distribution correcting means provided opposedly with at least two filters having a transmittance distribution, and for rotating at least one of the filters, to correct the prescribed light intensity distribution on the face to be irradiated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原版のパターンを基板に露光する露光装置に関する。   The present invention relates to an exposure apparatus that exposes a pattern of an original on a substrate.

シリコンウエハやガラスプレートなどの基板に微細な回路パターンを描画する工程では、フォトリソグラフィー技術は欠くことができない技術となっている。   In a process of drawing a fine circuit pattern on a substrate such as a silicon wafer or a glass plate, a photolithography technique is an indispensable technique.

このリソグラフィー工程では、所定のパターンが予めパターニングされた原版であるレチクルを照明し、投影光学系を通してその像を基板上に転写する。ここでは原版として「レチクル」という言葉を用いたが、一般的に投影光学系が縮小光学系である場合に「レチクル」、等倍光学系である場合に原版として「マスク」という言葉が用いられる。本発明は投影光学系の倍率によって限定されるものではないが、簡単化するため以下では原版として「レチクル」という言葉を用いる。   In this lithography process, a reticle, which is an original having a predetermined pattern preliminarily patterned, is illuminated, and the image is transferred onto a substrate through a projection optical system. Here, the term “reticle” is used as the original, but in general, the term “reticle” is used when the projection optical system is a reduction optical system, and the term “mask” is used as the original when the projection optical system is an equal magnification optical system. . The present invention is not limited by the magnification of the projection optical system, but for the sake of simplicity, the term “reticle” is used as the original in the following.

露光装置は、主にステップ型露光装置とスキャン型露光装置の2種類に分けることができる。ステップ型露光装置はスキャン型露光装置に比べて、構造が比較的簡単でコストが抑えられるという利点がある。しかし、広い領域を露光するためには投影光学系の露光フィールドを大きくとる必要があり、収差補正の観点からは不利である。   The exposure apparatus can be mainly divided into two types: a step type exposure apparatus and a scan type exposure apparatus. The step type exposure apparatus has an advantage that the structure is relatively simple and the cost can be reduced compared to the scanning type exposure apparatus. However, in order to expose a wide area, it is necessary to increase the exposure field of the projection optical system, which is disadvantageous from the viewpoint of aberration correction.

スキャン型露光装置では、レチクルと基板を同期して走査しながら露光が行われる。走査することによって投影光学系の露光フィールドよりも大きな領域を露光することができるため、投影光学系の露光フィールドを小さくすることが可能である。従って、投影光学系の収差補正の観点でスキャン型露光装置はステップ型露光装置よりも優れている。   In the scanning exposure apparatus, exposure is performed while scanning the reticle and the substrate synchronously. By scanning, an area larger than the exposure field of the projection optical system can be exposed, so that the exposure field of the projection optical system can be reduced. Therefore, the scan type exposure apparatus is superior to the step type exposure apparatus from the viewpoint of correcting the aberration of the projection optical system.

露光装置の光源には、波長が約248nmのKrFエキシマレーザーや波長が約193nmのArFエキシマレーザーなどパルス光源が用いられることが多い。スキャン型露光装置でパルス光源を用いる場合、基板上において、パルスの不連続性に起因する走査方向の露光量のムラが発生する。   As the light source of the exposure apparatus, a pulsed light source such as a KrF excimer laser having a wavelength of about 248 nm or an ArF excimer laser having a wavelength of about 193 nm is often used. When a pulse light source is used in a scanning exposure apparatus, unevenness in the exposure amount in the scanning direction due to pulse discontinuity occurs on the substrate.

上述の問題を解決する従来例として特許文献1により、遮光部材を被照射面またはその共役面に対してデフォーカスして配置する方法が開示されている。以下では被照射面またはその共役面を単に「被照射面」と呼ぶ場合があるが、その場合に共役面が含まれるかどうかは当業者にとっては自明である。   As a conventional example for solving the above-described problem, Patent Document 1 discloses a method of arranging a light shielding member in a defocused manner with respect to an irradiated surface or a conjugate surface thereof. Hereinafter, the irradiated surface or its conjugate surface may be simply referred to as “irradiated surface”, but it is obvious to those skilled in the art whether or not the conjugate surface is included in this case.

遮光部材によって切り出された直後において、光強度分布のエッジはシャープな立ち上がりとなるが、特許文献1に開示されているように、遮光部材が被照射面からデフォーカスした位置に配置されていれば、被照射面には台形状の光強度分布が形成される。このように光強度分布が走査方向に台形状の分布であることで、継ぎ目において積算露光量が、ばらつくという不都合を回避することができる。
ところで、露光装置の解像度Rは、一般にRaYleighの式と呼ばれる以下の式で表される。
Immediately after being cut out by the light shielding member, the edge of the light intensity distribution has a sharp rise, but as disclosed in Patent Document 1, if the light shielding member is arranged at a position defocused from the irradiated surface. A trapezoidal light intensity distribution is formed on the irradiated surface. As described above, since the light intensity distribution is a trapezoidal distribution in the scanning direction, it is possible to avoid the disadvantage that the integrated exposure amount varies at the joint.
By the way, the resolution R of the exposure apparatus is generally expressed by the following equation called RaYleight equation.

Figure 2010166009
ここで、k1はプロセス係数、λは露光装置の光源波長、NAは投影光学系の開口数である。RaYleighの式から、解像度Rを小さくして微細な回路パターンを描画するためには、プロセス係数k1か波長λを小さくするか、投影光学系のNAを大きくすればよいことが分かる。このため、半導体デバイスの微細化に伴い、露光装置の光源は短波長化が進み、投影光学系のNAは拡大してきている。また、実際のリソグラフィー工程では基板の湾曲やプロセスによる基板の段差等の影響、フォトレジスト自体の厚さのために、ある程度の焦点深度が必要となる。焦点深度は一般的に以下の式で表される。
Figure 2010166009
Here, k1 is a process coefficient, λ is a light source wavelength of the exposure apparatus, and NA is a numerical aperture of the projection optical system. From the RaYleight equation, it can be seen that in order to reduce the resolution R and draw a fine circuit pattern, it is only necessary to decrease the process coefficient k1 or the wavelength λ or increase the NA of the projection optical system. For this reason, with the miniaturization of semiconductor devices, the light source of the exposure apparatus has been shortened, and the NA of the projection optical system has been expanded. In an actual lithography process, a certain depth of focus is required due to the influence of the curvature of the substrate, the level difference of the substrate due to the process, and the thickness of the photoresist itself. The depth of focus is generally expressed by the following equation.

Figure 2010166009
この式から明らかなように、焦点深度は光源の短波長化、投影光学系のNAの増加とともに小さくなる。微細なパターンのデバイス製造においては焦点深度の値が小さくなるため、歩留まりの悪化を招く。
Figure 2010166009
As is clear from this equation, the depth of focus becomes smaller as the wavelength of the light source becomes shorter and the NA of the projection optical system increases. In the manufacture of a device with a fine pattern, the depth of focus value is small, which leads to a deterioration in yield.

波長や投影光学系のNAを変えることなく焦点深度を拡大する従来例として、非特許文献1に開示されているように、光軸に対してステージの走査方向を傾けて露光する方法がある。この従来例の方法によれば、走査露光される際に基板は多数の焦平面上で露光されることになるので、焦点深度が拡大される。
特許第3377053号明細書 米国特許第6404499号明細書 特許第2787133号明細書 特開2006−140393号公報 Proc.ofSPIE Vol.6154 61541K−1
As a conventional example of expanding the depth of focus without changing the wavelength or the NA of the projection optical system, as disclosed in Non-Patent Document 1, there is an exposure method in which the scanning direction of the stage is inclined with respect to the optical axis. According to this conventional method, the substrate is exposed on a number of focal planes during scanning exposure, so that the depth of focus is expanded.
Japanese Patent No. 3377053 US Pat. No. 6,404,499 Japanese Patent No. 2787133 JP 2006-140393 A Proc. of SPIE Vol. 6154 61541K-1

従来の露光装置では、光源のパルス特性に起因する走査方向の照度ムラを避けるために、光強度分布のエッジがシャープな位置からデフォーカスした位置に被照射面が配置される構成となっていた。この場合、非特許文献1に開示されているように、光軸に対してステージの走査方向を傾けて露光すると、像がシフトする。   In the conventional exposure apparatus, the surface to be irradiated is arranged at a position where the edge of the light intensity distribution is defocused from a position where the edge of the light intensity distribution is defocused in order to avoid uneven illumination in the scanning direction due to the pulse characteristics of the light source. . In this case, as disclosed in Non-Patent Document 1, when exposure is performed with the scanning direction of the stage inclined with respect to the optical axis, the image shifts.

ここで、図6を参照して、像がシフトする原因を説明する。光軸方向をZ軸、光軸に対する基板ステージの傾きがゼロの時の走査方向を、Y軸、Y軸とZ軸が直交する方向をX軸と定義し、以下でも特に指定しない限りこの座標系を用いる。図6では台形状光強度分布の形成方法として例示的に、被照射面またはその共役面からデフォーカスした位置に遮光部材を配置する方法を示している。しかし、例えば、ロッドインテグレータの射出面を被照射面からデフォーカスした位置に配置した構成についても以下の説明は同様に適用される。図6(a)に示されるように、被照射面からデフォーカスした位置に遮光部材12aを配置することにより、被照射面には台形状の光強度分布12bが形成される。光強度分布12bを台形状に形成することで、パルスの不連続性に起因する走査方向の積算露光量のムラを避けることができる。   Here, the cause of the image shift will be described with reference to FIG. The optical axis direction is defined as the Z axis, the scanning direction when the tilt of the substrate stage with respect to the optical axis is zero, the Y axis, and the direction perpendicular to the Y axis and the Z axis is defined as the X axis. Use the system. FIG. 6 exemplarily shows a method of arranging the light shielding member at a position defocused from the irradiated surface or its conjugate surface as a method of forming the trapezoidal light intensity distribution. However, for example, the following description is similarly applied to a configuration in which the exit surface of the rod integrator is disposed at a position defocused from the irradiated surface. As shown in FIG. 6A, by arranging the light shielding member 12a at a position defocused from the irradiated surface, a trapezoidal light intensity distribution 12b is formed on the irradiated surface. By forming the light intensity distribution 12b in a trapezoidal shape, it is possible to avoid unevenness in the accumulated exposure amount in the scanning direction due to pulse discontinuity.

このとき、光強度分布12bが台形の斜辺部分12c,12dの領域を照射する光の角度分布は、図6(a)に示されるように、その一部がスリット12eで遮光される。このため、光の角度分布の概略形状は、光強度分布12bが台形の平坦部分である中心部分12fの領域を照射する光とは異なる。また、図6(a)に示される光強度分布12bが台形の上側斜辺部分12cの領域と、下側斜辺部分12dの領域では、光の角度分布は鏡像関係にある。なお、被照射面およびその共役面上の光の角度分布は一般に「有効光源」と呼ばれることがある。従って、本出願においても今後「光の角度分布」という言葉の代わりに「有効光源」という言葉を用いる場合がある。   At this time, as shown in FIG. 6A, a part of the angular distribution of light with which the light intensity distribution 12b irradiates the regions of the trapezoidal oblique sides 12c and 12d is shielded by the slit 12e. For this reason, the schematic shape of the angular distribution of light is different from the light that irradiates the region of the central portion 12f where the light intensity distribution 12b is a trapezoidal flat portion. Further, in the region of the trapezoidal upper hypotenuse portion 12c and the region of the lower hypotenuse portion 12d, the light intensity distribution 12b shown in FIG. Note that the angular distribution of light on the irradiated surface and its conjugate surface is generally called an “effective light source”. Therefore, in the present application, the term “effective light source” may be used instead of the term “angle distribution of light” in the future.

光軸に対して基板ステージの走査方向を傾けない通常の露光方法では、台形の光強度分布12bの上側と下側で鏡像関係にある有効光源が走査することで足し合わされる。このため、全体としての有効光源は、光強度分布12bが台形分布の平坦部分である中心部分12fの領域を照射する有効光源とほぼ同じであり、像のシフトは生じない。   In a normal exposure method in which the scanning direction of the substrate stage is not tilted with respect to the optical axis, the effective light sources having a mirror image relationship are scanned on the upper side and the lower side of the trapezoidal light intensity distribution 12b. For this reason, the effective light source as a whole is substantially the same as the effective light source that irradiates the region of the central portion 12f where the light intensity distribution 12b is a flat portion of the trapezoidal distribution, and no image shift occurs.

これに対して、光軸に対して基板ステージの走査方向を傾けた場合に、像ズレが生じる理由について図6(b)を用いて説明する。図6(b)ではZ軸方向に対して、上側でデフォーカスがマイナス、下側でデフォーカスがプラスとなるように基板ステージ、つまり、基板20aを傾けた場合について示す。図6(a)に示されるように被照射面のある一点を照射する光の全体的な方向を表す重心光線12gは、上側の台形斜辺部12cで上向き、下側の台形斜辺部12dで下向きの方向となる。   On the other hand, the reason why the image shift occurs when the scanning direction of the substrate stage is tilted with respect to the optical axis will be described with reference to FIG. FIG. 6B shows a case where the substrate stage, that is, the substrate 20a is tilted so that the defocus is negative on the upper side and the defocus is positive on the lower side with respect to the Z-axis direction. As shown in FIG. 6A, the center of gravity ray 12g representing the overall direction of light that irradiates one point on the irradiated surface is upward at the upper trapezoid hypotenuse 12c and downward at the lower trapezoid hypotenuse 12d. Direction.

図6(b)の上側の領域では、この重心光線12gと基板20aの交点は、デフォーカスがマイナスであるために、基板ステージの傾きがない場合と比べてY軸のマイナス方向にずれる。同様に図6(b)の下側の領域では、デフォーカスがプラスであるために、基板ステージの傾きがない場合と比べてY軸のマイナス方向にずれる。このように図6に示される光強度分布12bが台形の上側斜辺部分12cと下側斜辺部分12dの領域で、重心光線12gと基板20aの交点が、共にY軸のマイナス方向にずれるために、像のシフトが発生する。   In the upper region of FIG. 6B, the intersection of the barycentric ray 12g and the substrate 20a deviates in the negative direction of the Y axis compared to the case where the substrate stage is not inclined because the defocus is negative. Similarly, in the lower area of FIG. 6B, since the defocus is positive, it is shifted in the negative direction of the Y axis compared to the case where there is no tilt of the substrate stage. In this way, the light intensity distribution 12b shown in FIG. 6 is an area of the trapezoidal upper hypotenuse portion 12c and lower hypotenuse portion 12d, and the intersection of the centroid ray 12g and the substrate 20a is shifted in the negative direction of the Y axis. An image shift occurs.

また、光軸に対して基板ステージの走査方向を傾けて露光する際に、被照射面における台形状光強度分布12bの走査方向への長さに違いがあると、基板20a上で露光に用いられる焦平面距離範囲に違いが出ることになり線幅やコントラスト等に違いが出てしまう。さらに、光軸に対して基板ステージの走査方向を傾けて露光する際に、被照射面における台形状光強度分布12bの走査方向への長さや光強度分布12b自体に違いがあると像のシフト距離に違いが出る。   Further, when exposure is performed with the scanning direction of the substrate stage tilted with respect to the optical axis, if there is a difference in the length of the trapezoidal light intensity distribution 12b on the irradiated surface in the scanning direction, it is used for exposure on the substrate 20a. A difference will occur in the focal plane distance range to be produced, resulting in a difference in line width and contrast. Further, when exposure is performed while tilting the scanning direction of the substrate stage with respect to the optical axis, if there is a difference in the length of the trapezoidal light intensity distribution 12b on the irradiated surface in the scanning direction or the light intensity distribution 12b itself, the image shifts. There is a difference in distance.

以下、簡単化するために基板ステージの走査方向の位置をY像高、基板ステージの走査方向と直交する位置をX像高、各X像高においてY像高方向に積算した光強度を積算露光量、X像高の中心部分を軸上、X像高方向の端の部分を軸外と表現する。露光装置においては、積算露光量の不均一性がX像高間にあるとX像高間で線幅の不均一性等の原因となる。この積算露光量を補正する手段については、従来、特許文献2、特許文献3あるいは特許文献4に示される手段が知られている。しかし、これらの従来方法ではY像高の光強度分布形状をX像高間で同形状に保つことやY方向に1回の回転対称な形状に保ちつつも積算露光量をX像高間で連続に調整することが困難である。
そこで、本発明は、基板ステージを傾けて露光する際に、X像高間の像性能における線幅差、コントラスト差あるいは像のシフト量差の不均一性を抑え、焦点深度を拡大する露光装置を提供することを目的とする。
Hereinafter, for the sake of simplification, the position of the substrate stage in the scanning direction is the Y image height, the position orthogonal to the scanning direction of the substrate stage is the X image height, and the integrated light intensity is integrated in the Y image height direction at each X image height. The central portion of the X image height is expressed on the axis, and the end portion in the X image height direction is expressed as off-axis. In the exposure apparatus, if the non-uniformity of the integrated exposure amount is between the X image heights, it causes the non-uniformity of the line width between the X image heights. As means for correcting the integrated exposure amount, means shown in Patent Document 2, Patent Document 3, or Patent Document 4 are conventionally known. However, in these conventional methods, the light intensity distribution shape of the Y image height is kept the same between the X image heights, or the accumulated exposure amount is changed between the X image heights while keeping the rotationally symmetrical shape once in the Y direction. It is difficult to adjust continuously.
Therefore, the present invention provides an exposure apparatus that suppresses non-uniformity in the line width difference, contrast difference, or image shift amount difference in image performance between X image heights and expands the depth of focus when the substrate stage is tilted for exposure. The purpose is to provide.

上記課題を解決する本発明の露光装置は、光源からの光を原版の被照射面または基板の被照射面に導く照明光学装置と、前記基板を保持して移動する基板ステージと、を有するスキャン型の露光装置において、前記基板ステージは光軸に対して走査方向を傾けることが可能に設けられ、前記照明光学装置は、前記被照射面を所定の光強度分布で照明する光強度分布形成手段と、前記光強度分布形成手段から射出される前記光を集光する集光光学系と、透過率分布を有する少なくとも2枚のフィルターを対向させて設け、少なくとも1枚の前記フィルターを回転させて、前記被照射面上で前記所定の光強度分布を補正する光強度分布補正手段と、を有することを特徴とする。   An exposure apparatus of the present invention that solves the above-described problem is a scan having an illumination optical device that guides light from a light source to an irradiation surface of an original plate or an irradiation surface of a substrate, and a substrate stage that holds and moves the substrate. In the exposure apparatus of the type, the substrate stage is provided so that the scanning direction can be inclined with respect to the optical axis, and the illumination optical apparatus is a light intensity distribution forming means for illuminating the irradiated surface with a predetermined light intensity distribution A condensing optical system for condensing the light emitted from the light intensity distribution forming means, and at least two filters having a transmittance distribution are provided facing each other, and at least one of the filters is rotated. And light intensity distribution correcting means for correcting the predetermined light intensity distribution on the irradiated surface.

本発明によれば、基板ステージを傾けて露光する際に、X像高間の像性能における線幅差、コントラスト差あるいは像のシフト量差の不均一性を抑え、焦点深度を拡大する露光装置を提供する。   According to the present invention, when exposure is performed with the substrate stage tilted, an exposure apparatus that suppresses non-uniformity in line width difference, contrast difference or image shift amount difference in image performance between X image heights and expands the depth of focus. I will provide a.

以下、図1から図5を参照して、本発明の実施形態について説明する。
図1は、本発明の実施形態1のスキャン型の露光装置の概略構成図である。
照明光学装置30は、光源1からの光1aをレチクル18(原版)の被照射面または基板20aの被照射面に導く装置である。光源1は、例えば、波長が約193nmのArFエキシマレーザーや約248nmのKrFエキシマレーザーから成るが、レーザーの種類、波長、個数は限定されない。引き回し光学系2は光源1からの光1aを回折光学素子3に導く光学系である。回折光学素子3は複数のスロットを有するターレットに搭載されており、アクチュエーター4によって、任意の素子を光軸1b上に移動する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5.
FIG. 1 is a schematic block diagram of a scanning exposure apparatus according to the first embodiment of the present invention.
The illumination optical device 30 is a device that guides the light 1a from the light source 1 to the irradiated surface of the reticle 18 (original) or the irradiated surface of the substrate 20a. The light source 1 includes, for example, an ArF excimer laser having a wavelength of about 193 nm or a KrF excimer laser having a wavelength of about 248 nm, but the type, wavelength, and number of lasers are not limited. The routing optical system 2 is an optical system that guides the light 1 a from the light source 1 to the diffractive optical element 3. The diffractive optical element 3 is mounted on a turret having a plurality of slots, and an actuator 4 moves an arbitrary element on the optical axis 1b.

回折光学素子3の射出光3aは、コンデンサーレンズ5によって集光され、回折パターン面6に回折パターンを形成する。アクチュエーター4により光軸1b上に位置する回折光学素子を交換すれば、回折パターンの形状を変えることができる。回折パターン面6に形成された回折パターンは、プリズム7a,7b、ズームレンズ8によって輪帯率やσ値などのパラメータが調整された後、ミラー9に光束6aとして入射する。ミラー9は入射光束6aに対して有限の傾きを有している。   The exit light 3 a of the diffractive optical element 3 is collected by the condenser lens 5 and forms a diffraction pattern on the diffraction pattern surface 6. If the diffractive optical element located on the optical axis 1b is exchanged by the actuator 4, the shape of the diffraction pattern can be changed. The diffraction pattern formed on the diffraction pattern surface 6 is incident on the mirror 9 as a light beam 6a after parameters such as the zone ratio and the σ value are adjusted by the prisms 7a and 7b and the zoom lens 8. The mirror 9 has a finite inclination with respect to the incident light beam 6a.

照明光学装置30は、さらに、光強度分布形成手段10と、コンデンサーレンズ11(集光光学系)と、フィルター14a,14b(光強度分布補正手段)とを有する。光強度分布形成手段10は、所定の光強度分布で照明し、コンデンサーレンズ11は、光強度分布形成手段10から射出される光を集光する光学系である。透過率分布を有する2枚のフィルター14a,14bを対向させて設け、少なくとも1枚のフィルター14aまたは14bを回転させて、被照射面上で所定の光強度分布を補正する手段である。
実施態様1においては、2枚のフィルター14a,14bを有するが、少なくとも2枚のフィルター14a,14bを有すればよく、さらに、1枚以上フィルターを有する場合もある。
The illumination optical device 30 further includes a light intensity distribution forming unit 10, a condenser lens 11 (condensing optical system), and filters 14a and 14b (light intensity distribution correcting unit). The light intensity distribution forming unit 10 illuminates with a predetermined light intensity distribution, and the condenser lens 11 is an optical system that collects light emitted from the light intensity distribution forming unit 10. This is means for correcting a predetermined light intensity distribution on the irradiated surface by providing two filters 14a and 14b having a transmittance distribution so as to face each other and rotating at least one filter 14a or 14b.
In the first embodiment, the two filters 14a and 14b are provided. However, it is only necessary to have at least two filters 14a and 14b, and there may be one or more filters.

ミラー9によって反射した光束9aは被照射面を所定の光強度分布で照明する光強度分布形成手段10に入射する。光強度分布形成手段10は、所定の回折分布が得られるように計算機で設計したパターンを基板上に描画したCGH(Computer Generated Hologram)と呼ばれる回折光学素子から構成されている。   The light beam 9a reflected by the mirror 9 enters the light intensity distribution forming means 10 that illuminates the irradiated surface with a predetermined light intensity distribution. The light intensity distribution forming means 10 is composed of a diffractive optical element called CGH (Computer Generated Hologram) in which a pattern designed by a computer is drawn on a substrate so as to obtain a predetermined diffraction distribution.

プリズム7a,7bはズーミングすることが可能であり、プリズム7aとプリズム7bとの距離が十分に小さい場合、プリズム7aとプリズム7bとは一体化した一枚の平行ガラス平板とみなすことができる。このとき、回折パターン面6に形成された回折パターンは、ほぼ相似形状を保ちながらズームレンズ8の拡大縮小によりσ値が調整され、ハエの目の入射面に結像される。プリズム7aとプリズム7bとの位置を離すことによって、回折パターン面6に形成された回折パターンは、輪帯率や開口角も調整される。   The prisms 7a and 7b can be zoomed, and when the distance between the prism 7a and the prism 7b is sufficiently small, the prism 7a and the prism 7b can be regarded as one integrated parallel glass plate. At this time, the diffraction pattern formed on the diffraction pattern surface 6 is adjusted to the σ value by the enlargement / reduction of the zoom lens 8 while maintaining a substantially similar shape, and is imaged on the fly's eye entrance surface. By separating the positions of the prism 7a and the prism 7b, the annular ratio and the aperture angle of the diffraction pattern formed on the diffraction pattern surface 6 are adjusted.

光強度分布形成手段10の射出光束10aはコンデンサーレンズ11で集光されて、遮光部材13が位置する平面は所定の光強度分布で照明される。遮光部材13はレチクル18の照明範囲を特定するために配置され、レチクル18および基板ステージ20に保持される基板20aと共に同期して走査される。遮光部材12は被照射面からデフォーカスされた位置に配置され、遮光部材13が位置する被照射面には台形状の光強度分布が形成される。光強度分布を台形状にすることで、パルスの不連続性に起因する走査方向の積算露光量のムラを避けることができる。遮光部材12は走査方向にその開口12aの大きさを変えることにより、台形光強度分布の形状を変化させることができ、これによりX方向の像高毎の積算露光量差を避けることができる。   The emitted light beam 10a of the light intensity distribution forming means 10 is condensed by the condenser lens 11, and the plane on which the light blocking member 13 is located is illuminated with a predetermined light intensity distribution. The light shielding member 13 is arranged to specify the illumination range of the reticle 18, and is scanned in synchronization with the reticle 18 and the substrate 20 a held on the substrate stage 20. The light blocking member 12 is disposed at a position defocused from the irradiated surface, and a trapezoidal light intensity distribution is formed on the irradiated surface on which the light blocking member 13 is positioned. By making the light intensity distribution trapezoidal, unevenness in the accumulated exposure amount in the scanning direction due to pulse discontinuity can be avoided. The light shielding member 12 can change the shape of the trapezoidal light intensity distribution by changing the size of the opening 12a in the scanning direction, thereby avoiding an accumulated exposure amount difference for each image height in the X direction.

透過率分布を有するフィルター14a,14bは、レチクル18の被照射面の共役面付近に配置され、互いに反対方向に同じ角度を回転させ、この角度を変化させ、X像高間の積算光露光量差を連続的に補正する。ここで、図5に示される本発明の実施態様2においては、フィルター14a,14bは、基板20aの被照射面の共役面に配置される点が図1の実施態様1と異なる。   Filters 14a and 14b having a transmittance distribution are arranged in the vicinity of the conjugate plane of the irradiated surface of the reticle 18, rotate the same angle in opposite directions, change this angle, and the integrated light exposure amount between the X image heights. Correct the difference continuously. Here, in the second embodiment of the present invention shown in FIG. 5, the filters 14a and 14b are different from the first embodiment in FIG. 1 in that the filters 14a and 14b are arranged on the conjugate plane of the irradiated surface of the substrate 20a.

光束15aに対して有限の傾きを有するミラー16で反射した光16aはコリメータレンズ17を介してレチクル18を照明する。レチクル18のパターンは投影光学系19によって基板ステージ20に保持され移動される基板20aに転写される。基板ステージ20は、光軸に対して走査方向を傾けることが可能に設けられる。基板ステージ20を傾けて露光することによって、焦点深度を拡大する。センサ21(計測手段)は光量を検知し、基板ステージ20の走査方向の積算露光量や基板ステージ20上に照射される光量の強度分布を測定する。   The light 16 a reflected by the mirror 16 having a finite inclination with respect to the light beam 15 a illuminates the reticle 18 via the collimator lens 17. The pattern of the reticle 18 is transferred by the projection optical system 19 to the substrate 20a which is held on the substrate stage 20 and moved. The substrate stage 20 is provided so that the scanning direction can be inclined with respect to the optical axis. By inclining and exposing the substrate stage 20, the depth of focus is expanded. The sensor 21 (measuring means) detects the light amount, and measures the integrated exposure amount in the scanning direction of the substrate stage 20 and the intensity distribution of the light amount irradiated onto the substrate stage 20.

図2、図3、図4を参照して、本発明の実施形態1のフィルター14a,14bを説明する。
実施形態1では、2枚組みフィルター14a,14bを、光軸中心として互いに反対方向に回転させ、各X像高間においてY像高方向の光強度分布形状を保ったまま積算露光量を連続的に調整する。フィルター14a,14bは、所定方向に透過率分布を有し、所定方向に垂直な方向には一定の透過率を有する。さらに、フィルター14a,14bは、中心からの距離を関数として、透過率分布は、中心より所定方向に単調に減少、又は単調に増加する分布を有する。
The filters 14a and 14b according to the first embodiment of the present invention will be described with reference to FIGS.
In the first embodiment, the double filter 14a and 14b are rotated in opposite directions with respect to the optical axis center, and the integrated exposure amount is continuously maintained while maintaining the light intensity distribution shape in the Y image height direction between the X image heights. Adjust to. The filters 14a and 14b have a transmittance distribution in a predetermined direction, and have a constant transmittance in a direction perpendicular to the predetermined direction. Further, the filters 14a and 14b have a distribution in which the transmittance distribution monotonously decreases or monotonously increases in a predetermined direction from the center as a function of the distance from the center.

図2(a)は、回転角度0°状態のフィルター14a一枚の透過率分布及び各X像高における積算露光量変化量、軸上軸外のY像高方向の光強度分布を示す。回転角度0°の状態においてはX像高間の積算露光量とY像高方向の光強度分布の軸上軸外差はない。
図2(b)は、回転角度30°状態のフィルター14a一枚の透過率分布及び各X像高における積算露光量変化量、軸上軸外のY像高方向の光強度分布を示す。回転角度30°の状態においてはX像高間の積算露光量を変化させている。またY像高方向の光強度分布の軸上、軸外の差も出ている。
FIG. 2A shows the transmittance distribution of one filter 14a in a state where the rotation angle is 0 °, the integrated exposure amount change amount at each X image height, and the light intensity distribution in the Y image height direction off-axis. In the state where the rotation angle is 0 °, there is no off-axis difference between the integrated exposure amount between the X image heights and the light intensity distribution in the Y image height direction.
FIG. 2B shows the transmittance distribution of one filter 14a at a rotation angle of 30 °, the amount of change in accumulated exposure amount at each X image height, and the light intensity distribution in the Y image height direction off-axis. In the state where the rotation angle is 30 °, the integrated exposure amount between the X image heights is changed. Also, there is a difference between the off-axis and on-axis of the light intensity distribution in the Y image height direction.

図3(a)は回転角度-30°状態のフィルター14a一枚の透過率分布及び各X像高における積算露光量変化量、軸上軸外のY像高方向の光強度分布を示している。回転角度30°の状態においてはX像高間の積算露光量を変化させている。またY像高方向の光強度分布の軸上、軸外の差も出ている。
図3(b)は、図2(a)及び(b)の2枚のフィルター14a,14bによって得られるフィルター合計の透過率分布及び各X像高における積算露光量変化量、軸上、軸外のY像高方向の光強度分布を示す。各X像高にわたって積算露光量を変化させながらもY像高方向の光強度分布を維持している。
図2(b)、図3(b)ではフィルター14aの回転角度を30°としたが、任意の角度に回転することにより、X像高間の積算露光量をY像高の光強度分布を同じに維持したまま連続的に変化することができる。
FIG. 3A shows the transmittance distribution of one filter 14a in a state where the rotation angle is −30 °, the integrated exposure amount change amount at each X image height, and the light intensity distribution in the Y image height direction off-axis. . In the state where the rotation angle is 30 °, the integrated exposure amount between the X image heights is changed. Also, there is a difference between the off-axis and on-axis of the light intensity distribution in the Y image height direction.
FIG. 3 (b) shows the transmittance distribution of the total filter obtained by the two filters 14a and 14b of FIGS. 2 (a) and 2 (b), the integrated exposure amount change amount at each X image height, on-axis and off-axis. 2 shows the light intensity distribution in the Y image height direction. The light intensity distribution in the Y image height direction is maintained while changing the integrated exposure amount over each X image height.
2B and 3B, the rotation angle of the filter 14a is set to 30 °. However, by rotating the filter 14a to an arbitrary angle, the integrated exposure amount between the X image heights can be converted into the light intensity distribution of the Y image heights. It can change continuously while keeping the same.

図4(a)(b)は2枚組みのフィルター14a,14bを2組(A)(B)有する実施形態1の変形例を示している。
2組(A)(B)以上のフィルター14a,14bを使用することでX像高方向の積算露光量の調整を2次〜高次まで行うことができる。図4(b)は1組(A)のフィルター14a,14bによる積算露光量変化(実線)と、他の1組(B)のフィルター14a,14bによる積算露光量変化(点線)及び2組(A)(B)合計の4次の積算露光量変化を示している。
図2(a)のように1枚のフィルター14aを使用してX像高方向の積算露光量を調整した場合、光軸に対して基板ステージ20の走査方向を傾けて露光する際に被照射面における台形状光強度分布の走査方向への光強度分布に違いが生じ、X像高間で像の線幅差やシフト距離に違いが出てしまう。
FIGS. 4A and 4B show a modification of the first embodiment having two sets of filters 14a and 14b (A) and (B).
By using two sets (A) and (B) of the filters 14a and 14b, it is possible to adjust the integrated exposure amount in the X image height direction from the second order to the higher order. FIG. 4B shows the integrated exposure amount change (solid line) by one set (A) of the filters 14a and 14b, the integrated exposure amount change (dotted line) by the other one set (B) of the filters 14a and 14b, and two sets ( A) and (B) show the total 4th order integrated exposure amount change.
When the integrated exposure amount in the X image height direction is adjusted using one filter 14a as shown in FIG. 2A, irradiation is performed when the scanning direction of the substrate stage 20 is inclined with respect to the optical axis. A difference occurs in the light intensity distribution in the scanning direction of the trapezoidal light intensity distribution on the surface, resulting in a difference in the line width difference or shift distance of the image between the X image heights.

図3(b)の2枚のフィルター14a,14bを使用してX像高方向の積算露光量を調整した場合、光軸に対して基板ステージ20の走査方向を傾けて露光する際においても被照射面における台形状光強度分布の走査方向への光強度分布に違いが生じず、X像高間で像の線幅差やシフト距離に違いが出ない。
実施形態1においては2枚のフィルター14a,14bを遮光部材13付近に配置したが、被照射面と共役面であれば同様の効果が得られる。また、1枚ずつ離した場所に配置することも可能である。
When the integrated exposure amount in the X image height direction is adjusted using the two filters 14a and 14b in FIG. 3B, the exposure is also performed when the scanning direction of the substrate stage 20 is inclined with respect to the optical axis. There is no difference in the light intensity distribution in the scanning direction of the trapezoidal light intensity distribution on the irradiation surface, and there is no difference in the line width or shift distance of the image between the X image heights.
In the first embodiment, the two filters 14a and 14b are disposed in the vicinity of the light shielding member 13. However, the same effect can be obtained if the irradiated surface and the conjugate surface are used. It is also possible to arrange them one by one at a distance.

図2、図3、図4により2枚のフィルター14a,14bを反対方向に回転させることにより、X像高間のY方向の光強度分布を同一に保ちつつ、積算露光量を調整する。
以上の補正方法によりX像高間で積算露光量を一定に保つことができるので、遮光部材12による積算露光量の調整は必要とせず、その開口12aの形状を矩形とすることができる。遮光部材12の開口12aを矩形とすることで、基板ステージ20を傾けて露光する際にX像高間の像性能の線幅やコントラスト、像シフトの差の発生を減少することができる。
By rotating the two filters 14a and 14b in the opposite directions according to FIGS. 2, 3, and 4, the integrated exposure amount is adjusted while keeping the light intensity distribution in the Y direction between the X image heights the same.
Since the integrated exposure amount can be kept constant between the X image heights by the correction method described above, adjustment of the integrated exposure amount by the light shielding member 12 is not required, and the shape of the opening 12a can be rectangular. By making the opening 12a of the light shielding member 12 rectangular, it is possible to reduce the occurrence of differences in line width, contrast, and image shift in image performance between X image heights when the substrate stage 20 is tilted for exposure.

積算露光量のX像高間差を減少させたい場合、センサ21による被照射面上におけるX像高間の積算露光量の計測結果より、フィルター14a,14bの回転量を決定し補正することが可能である。回転後、再びセンサ21によりX像高間の積算露光量を測定し規格外であれば再び回転量を補正し、所定内に積算露光量を追い込むことができる。センサ21(計測手段)は、被照射面における光強度分布を計測し、演算部22は、計測された光強度分布に応じて光強度分布の補正量を計算する手段である。駆動部23は、計算された補正量に応じてフィルター14a,14bを回転させる手段である。   When it is desired to reduce the difference between the X image heights of the integrated exposure amounts, the rotation amounts of the filters 14a and 14b can be determined and corrected based on the measurement result of the integrated exposure amounts between the X image heights on the irradiated surface by the sensor 21. Is possible. After the rotation, the integrated exposure amount between the X image heights is again measured by the sensor 21, and if it is out of specification, the rotation amount is corrected again, and the integrated exposure amount can be driven within a predetermined range. The sensor 21 (measurement means) measures the light intensity distribution on the irradiated surface, and the calculation unit 22 is a means for calculating a correction amount of the light intensity distribution according to the measured light intensity distribution. The drive unit 23 is means for rotating the filters 14a and 14b in accordance with the calculated correction amount.

本発明の実施形態によれば、基板ステージを傾けることによって焦点深度の拡大をさせながらも、Y像高方向の光強度分布を対称な形状に保ち、積算露光量の不均一性をX像高間で補正し、X像高間の像性能の線幅差やコントラスト差や像のシフト量差の発生を抑える。   According to the embodiment of the present invention, while the depth of focus is increased by tilting the substrate stage, the light intensity distribution in the Y image height direction is maintained in a symmetric shape, and the nonuniformity of the integrated exposure amount is reduced by the X image height. Between the X image heights to suppress the occurrence of line width differences, contrast differences, and image shift amount differences.

[デバイス製造方法の実施形態]
次に、前述の露光装置を利用したデバイス(半導体IC素子、液晶表示素子等)の製造方法を説明する。デバイスは、前述の露光装置を使用して、感光剤が塗布された基板(ウェハ、ガラス基板等)を露光する工程と、その基板(感光剤)を現像する工程と、他の周知の工程とを経ることにより製造される。他の周知の工程には、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等が含まれる。本デバイス製造方法によれば、従来よりも高品位のデバイスを製造することができる。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
[Embodiment of Device Manufacturing Method]
Next, a method for manufacturing a device (semiconductor IC element, liquid crystal display element, etc.) using the above-described exposure apparatus will be described. The device uses the above-described exposure apparatus to expose a substrate (wafer, glass substrate, etc.) coated with a photosensitive agent, to develop the substrate (photosensitive agent), and other known steps. It is manufactured by going through. Other known processes include etching, resist stripping, dicing, bonding, packaging, and the like. According to this device manufacturing method, it is possible to manufacture a higher quality device than before.
As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

本発明の実施形態1の露光装置の概略構成図である。It is a schematic block diagram of the exposure apparatus of Embodiment 1 of this invention. 本発明の実施形態1のフィルターによるX像高間の積算露光量調整の説明図である。It is explanatory drawing of the integral exposure amount adjustment between X image height by the filter of Embodiment 1 of this invention. 本発明の実施形態1のフィルターによるX像高間の積算露光量調整の説明図である。It is explanatory drawing of the integral exposure amount adjustment between X image height by the filter of Embodiment 1 of this invention. 本発明の実施形態1のフィルターによるX像高間の積算露光量調整の説明図である。It is explanatory drawing of the integral exposure amount adjustment between X image height by the filter of Embodiment 1 of this invention. 本発明の実施形態2の露光装置の概略構成図である。It is a schematic block diagram of the exposure apparatus of Embodiment 2 of this invention. 従来の露光装置で光軸に対して基板ステージを傾けた場合に像シフトが発生する理由の説明図である。It is explanatory drawing of the reason which image shift generate | occur | produces when a substrate stage is inclined with respect to an optical axis with the conventional exposure apparatus.

1: 光源 2: 引き回し光学系
3: 回折光学素子 4: アクチュエーター
5: コンデンサーレンズ 6: フーリエ変換面
7: プリズム 8: ズームレンズ
9: ミラー 10: 光強度分布形成手段
11: コンデンサーレンズ 12、13: 遮光部材
14: フィルター 15: コンデンサーレンズ
16: ミラー 17: コリメータレンズ
18: レチクル 19: 投影光学系
20: 基板ステージ 20a:基板
21:センサ 22:演算部
23:駆動部 30:照明光学装置









DESCRIPTION OF SYMBOLS 1: Light source 2: Leading optical system 3: Diffractive optical element 4: Actuator 5: Condenser lens 6: Fourier transform surface 7: Prism 8: Zoom lens 9: Mirror 10: Light intensity distribution formation means 11: Condenser lens 12, 13: Light shielding member 14: Filter 15: Condenser lens 16: Mirror 17: Collimator lens 18: Reticle 19: Projection optical system 20: Substrate stage 20a: Substrate 21: Sensor 22: Calculation unit 23: Drive unit 30: Illumination optical device









Claims (7)

光源からの光を原版の被照射面または基板の被照射面に導く照明光学装置と、
前記基板を保持して移動する基板ステージと、を有するスキャン型の露光装置において、
前記基板ステージは光軸に対して走査方向を傾けることが可能に設けられ、
前記照明光学装置は、前記被照射面を所定の光強度分布で照明する光強度分布形成手段と、
前記光強度分布形成手段から射出される前記光を集光する集光光学系と、
透過率分布を有する少なくとも2枚のフィルターを対向させて設け、少なくとも1枚の前記フィルターを回転させて、前記被照射面上で前記所定の光強度分布を補正する光強度分布補正手段と、を有することを特徴とする露光装置。
An illumination optical device that guides light from the light source to the irradiated surface of the original plate or the irradiated surface of the substrate;
In a scanning type exposure apparatus having a substrate stage that holds and moves the substrate,
The substrate stage is provided such that the scanning direction can be inclined with respect to the optical axis,
The illumination optical device comprises: a light intensity distribution forming unit that illuminates the irradiated surface with a predetermined light intensity distribution;
A condensing optical system for condensing the light emitted from the light intensity distribution forming means;
A light intensity distribution correction unit that corrects the predetermined light intensity distribution on the irradiated surface by providing at least two filters having a transmittance distribution facing each other and rotating at least one of the filters; An exposure apparatus comprising:
前記2枚のフィルターを互いに反対方向に同じ角度を回転させることを特徴とする請求項1に記載の露光装置。    2. The exposure apparatus according to claim 1, wherein the two filters are rotated at the same angle in opposite directions. 前記フィルターは、前記所定方向に前記透過率分布を有し、前記所定方向に垂直な方向には一定の透過率を有することを特徴とする請求項1または2に記載の露光装置。    3. The exposure apparatus according to claim 1, wherein the filter has the transmittance distribution in the predetermined direction and has a constant transmittance in a direction perpendicular to the predetermined direction. 前記フィルターの前記透過率分布は、中心より前記所定方向に単調に減少、又は単調に増加する分布であることを特徴とする請求項3に記載の露光装置。   4. The exposure apparatus according to claim 3, wherein the transmittance distribution of the filter is a distribution that monotonously decreases or monotonously increases in the predetermined direction from the center. 前記フィルターは、前記原版の前記被照射面の共役面、または前記基板の前記被照射面の共役面に配置されていることを特徴とする請求項1から4のいずれかに記載の露光装置。   The exposure apparatus according to claim 1, wherein the filter is disposed on a conjugate plane of the irradiated surface of the original plate or a conjugate plane of the irradiated surface of the substrate. 前記被照射面における前記光強度分布を計測する計測手段と、
前記計測された前記光強度分布に応じて前記光強度分布の補正量を計算する演算部と、
前記計算された前記補正量に応じて前記フィルターを回転させる駆動部と、を有することを特徴とする請求項1から5のいずれかに記載の露光装置。
Measuring means for measuring the light intensity distribution on the irradiated surface;
An arithmetic unit that calculates a correction amount of the light intensity distribution according to the measured light intensity distribution;
The exposure apparatus according to claim 1, further comprising: a driving unit that rotates the filter in accordance with the calculated correction amount.
請求項1から6のいずれかに記載の露光装置を用いて基板を露光する工程と、
前記工程で露光された基板を現像する工程と、
を有することを特徴とするデバイス製造方法。
A step of exposing the substrate using the exposure apparatus according to claim 1;
Developing the substrate exposed in the step;
A device manufacturing method comprising:
JP2009009403A 2009-01-19 2009-01-19 Exposure apparatus, and method of manufacturing device Pending JP2010166009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009009403A JP2010166009A (en) 2009-01-19 2009-01-19 Exposure apparatus, and method of manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009009403A JP2010166009A (en) 2009-01-19 2009-01-19 Exposure apparatus, and method of manufacturing device

Publications (1)

Publication Number Publication Date
JP2010166009A true JP2010166009A (en) 2010-07-29

Family

ID=42581922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009009403A Pending JP2010166009A (en) 2009-01-19 2009-01-19 Exposure apparatus, and method of manufacturing device

Country Status (1)

Country Link
JP (1) JP2010166009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011326A1 (en) 2010-07-23 2012-01-26 オリンパス株式会社 Image capture device, endoscope, and manufacturing method of image capture device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011326A1 (en) 2010-07-23 2012-01-26 オリンパス株式会社 Image capture device, endoscope, and manufacturing method of image capture device

Similar Documents

Publication Publication Date Title
JP4497968B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
US7073924B2 (en) Projection exposure apparatus with line width calculator controlled diaphragm unit
JP2002100561A (en) Aligning method and aligner and method for fabricating device
JP2008153401A (en) Exposure device and device manufacturing method
JP4497949B2 (en) Exposure equipment
US20040248043A1 (en) Exposure method, exposure apparatus and device manufacturing method
JP2002071514A (en) Inspection apparatus, exposure apparatus provided with the inspection apparatus and production method of micro device
KR101960153B1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JPWO2002025711A1 (en) Measurement method of exposure characteristics and exposure method
JP2010073835A (en) Exposure apparatus, and method for manufacturing device
JP2008292801A (en) Exposure apparatus and method
JP2011108851A (en) Exposure apparatus and device fabrication method
JP2009038152A (en) Optical system, exposure device, and device manufacturing method
JP2010123755A (en) Exposure apparatus, and device manufacturing method
JP2007207822A (en) Measurement method, exposure method, device manufacturing method, measuring mark, and mask
JP2010118403A (en) Scanning aligner and method of manufacturing device
EP1486830A2 (en) Device manufacturing method
JP2010166009A (en) Exposure apparatus, and method of manufacturing device
JP2009164356A (en) Scanning exposure device and device manufacturing method
KR20050092434A (en) Exposure device
JP2006080444A (en) Measurement apparatus, test reticle, aligner, and device manufacturing method
JP2003318095A (en) Flame measuring method and flare measuring device, aligning method and aligner, and method for adjusting aligner
JP2002169083A (en) Objective optical system, aberration measuring device, projection exposing device, manufacture of those, and manufacture of micro device
JP2006080245A (en) Flare measuring method, exposure method, and mask for flare measurement
JP4581727B2 (en) Exposure apparatus and microdevice manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630