JP2010164473A - Instrument calibration flight test method utilizing kinematic gps - Google Patents

Instrument calibration flight test method utilizing kinematic gps Download PDF

Info

Publication number
JP2010164473A
JP2010164473A JP2009007758A JP2009007758A JP2010164473A JP 2010164473 A JP2010164473 A JP 2010164473A JP 2009007758 A JP2009007758 A JP 2009007758A JP 2009007758 A JP2009007758 A JP 2009007758A JP 2010164473 A JP2010164473 A JP 2010164473A
Authority
JP
Japan
Prior art keywords
aircraft
reference point
atmospheric pressure
ground
flight test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009007758A
Other languages
Japanese (ja)
Other versions
JP4892695B2 (en
Inventor
Yuji Aihara
祐二 相原
Hidehisa Nozawa
秀久 野澤
Yoshio Asano
嘉夫 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES DEV INST MINI DEFENCE
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
TECH RES DEV INST MINI DEFENCE
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES DEV INST MINI DEFENCE, Technical Research and Development Institute of Japan Defence Agency filed Critical TECH RES DEV INST MINI DEFENCE
Priority to JP2009007758A priority Critical patent/JP4892695B2/en
Publication of JP2010164473A publication Critical patent/JP2010164473A/en
Application granted granted Critical
Publication of JP4892695B2 publication Critical patent/JP4892695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a test method for precisely and easily measuring the geometric altitude of an aircraft in a high altitude area and calibrating instruments of the aircraft. <P>SOLUTION: (3) A reference point of established coordinates is provided for the vicinity of a flight test location, and the reference point and the aircraft are both equipped with a K-GPS reception device. (5) The surface pressure (P<SB>0</SB>) and the surface temperature (T<SB>0</SB>) of the reference point are measured. (6) The geometric altitude of the aircraft is measured by the K-GPS reception device. (7) The geometric altitude (H) of the aircraft determined on the basis of the difference in geometric altitude between the aircraft and the reference point; the surface pressure (P<SB>0</SB>); and the surface temperature (T<SB>0</SB>) are substituted in the equation (A): P=P<SB>0×</SB>ä1-0.0065H/(273.15+T<SB>0</SB>)}<SP>5.256</SP>to convert the atmospheric pressure (P) of the altitude of flight. (8) The atmospheric pressure of an airborne ADC is calibrated by the atmospheric pressure P to correct measurement errors etc. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、航空機に搭載されて計器に気圧情報を提供するADC(Air Data Computer) を飛行高度において校正する計器校正試験のため、キネマティックGPS(Global Positioning System) を使用して基線解析法により当該航空機の飛行高度を幾何学的に計測し、当該飛行高度における気圧を正確に求めることができるキネマティックGPSを活用した計器校正飛行試験方法に関するものである。   The present invention is based on a baseline analysis method using a kinematic GPS (Global Positioning System) for an instrument calibration test for calibrating an ADC (Air Data Computer) mounted on an aircraft and providing barometric pressure information to the instrument at the flight altitude. The present invention relates to an instrument calibration flight test method using a kinematic GPS that can geometrically measure the flight altitude of the aircraft and accurately obtain the atmospheric pressure at the flight altitude.

一般に、航空機の高度計や速度計は、航空機に搭載されているADC(Air Data Computer) から気圧情報を供給されて機能しているが、このADCの気圧情報の校正は、当該航空機の飛行高度に基づいて行なうことができる。例えば、従来の小型航空機の計器校正飛行試験においては、光学計測用セオドライト板を使用して飛行高度を計測し、これを大気気圧に換算するタワーフライバイ法が実施されている。この方法は、低高度領域(例えば100ft〜300ft、約35m〜100m)で飛行試験が実施可能な小型機に適応される試験方法として知られている。   In general, aircraft altimeters and speedometers function by being supplied with atmospheric pressure information from an ADC (Air Data Computer) installed in the aircraft. Calibration of the atmospheric pressure information of the ADC is based on the flight altitude of the aircraft. Can be done based on. For example, in a conventional instrument calibration flight test for small aircraft, a tower fly-by method is used in which a flight altitude is measured using a theodolite plate for optical measurement and converted into atmospheric pressure. This method is known as a test method applied to a small aircraft capable of performing a flight test in a low altitude region (for example, 100 ft to 300 ft, about 35 m to 100 m).

ところが、大型機の計器校正試験は、エンジンからの排気の地上への影響、騒音、また緊急時の回避高度等の関係から、小型機よりも高高度領域(例えば1000ft〜1500ft、約350m〜500m)で実施する必要がある。このような高高度領域にある航空機に対して、従来の光学計測を使用したタワーフライバイ法を適用すると、光学計測距離の伸張及び仰角による誤差が加算され得るため、幾何高度の計測誤差が大きくなる可能性がある。このため、タワーフライバイ法は大型機の計器校正試験には適用が困難であると考えられる。   However, the instrument calibration test for large aircraft is based on the effects of exhaust from the engine on the ground, noise, and avoidance altitude in an emergency, etc., in the higher altitude region (for example, 1000 ft to 1500 ft, about 350 m to 500 m). ). When the tower fly-by method using conventional optical measurement is applied to an aircraft in such a high altitude region, the error due to the extension of the optical measurement distance and the elevation angle can be added, so the measurement error of the geometric altitude increases. there is a possibility. For this reason, it is considered that the tower fly-by method is difficult to apply to the instrument calibration test of large machines.

大型機の計器校正試験のために、大型機の飛行試験高度の大気気圧を直接計測する方法として、試験航空機で静圧ピトー管を曳航する方法や、気球に気圧計を装着して航空機近傍に展張する方法が知られているが、試験準備や試験実施に膨大な経費等が必要となる。また、試験設備も大規模になる可能性があるため、これらは現実的に適当な手法とはいえない。   For instrument calibration tests of large aircraft, methods of directly measuring atmospheric pressure at the flight test altitude of large aircraft include towing a static pressure Pitot tube on a test aircraft, or installing a barometer on a balloon to bring it close to the aircraft Although the method of extending is known, enormous expenses etc. are required for test preparation and test execution. In addition, since the test facility may be large, these are not practically appropriate methods.

このような事情から、特に大型機の計器校正試験のために、精度が高く、かつ簡易に実施可能な計器校正飛行試験方法が必要とされていた。   Under such circumstances, an instrument calibration flight test method that is highly accurate and can be easily implemented is required particularly for an instrument calibration test of a large machine.

このように移動体の幾何位置高度を高精度かつ簡易に計測する手段としては、GPSを使用する方法も提案されているが、従来のGPS測位である単独測位や相対測位のデファレンシャルGPSでは、位置精度や基準局の補正等の問題が懸念されるため、航空機のような高速移動体に搭載して飛行高度を幾何位置高度として測定する目的には適切ではなかった。   As a means for measuring the geometric position altitude of a moving body with high accuracy and simplicity, a method using GPS has also been proposed. However, in conventional GPS positioning, single positioning or relative positioning differential GPS, Because there are concerns about accuracy, correction of the reference station, etc., it was not suitable for the purpose of measuring the flight altitude as a geometric position altitude mounted on a high-speed moving body such as an aircraft.

例えば、移動体に搭載し、相応の精度を有する幾何位置高度を簡易に測定できる手段として、下記特許文献1には、リアルタイムキネマティックGPSを使用して幾何位置高度を測量する方法が提案されているが、これは航空機のような高速移動体とは異なる船舶のような低速の移動体を対象とし、基準局と移動局(船舶)の位置データと位相カウントにより移動局の位置データを測量する方法であり、短時間で計測を行なう航空機のような高速移動体には適していないと考えられる。   For example, as a means for easily measuring a geometric position altitude mounted on a moving body and having an appropriate accuracy, a method of surveying the geometric position altitude using real-time kinematic GPS is proposed in Patent Document 1 below. This is a method for surveying the position data of the mobile station based on the position data and phase count of the reference station and the mobile station (ship), targeting a low-speed moving body such as a ship different from the high-speed moving body such as an aircraft. Therefore, it is not suitable for a high-speed moving body such as an aircraft that performs measurement in a short time.

特開平10−48321号公報Japanese Patent Laid-Open No. 10-48321

本発明は、前述した従来の技術を踏まえてなされたものであり、高速移動体である航空機を対象とし、特に高高度領域における航空機の幾何高度を精密かつ簡易に測定して当該幾何高度における航空機の計器を校正する試験方法を提供することを目的としている。   The present invention has been made in view of the above-described conventional technology, and is intended for an aircraft that is a high-speed moving body. In particular, an aircraft at the geometric altitude can be measured by accurately and easily measuring the geometric altitude of the aircraft in a high altitude region. The purpose is to provide a test method for calibrating the instrument of the instrument.

請求項1に記載されたキネマティックGPSを活用した計器校正飛行試験方法は、
飛行試験実施場所の近傍で座標が既知の地上計測基準点に設けた第1のキネマティックGPS受信装置と、飛行試験実施場所で飛行中の航空機に設けた第2のキネマティックGPS受信装置によって、同一の衛星からの送信電波を互いに同期してそれぞれ受信し、
前記第1のキネマティックGPS受信装置と前記第2のキネマティックGPS受信装置がそれぞれ受信した送信電波の搬送波の各位相角から、前記地上計測基準点と前記航空機の前記衛星に関する行路差を求め、基線解析法により前記航空機の基線長を算出して前記航空機の幾何高度Hを求め、
前記地上計測基準点の地上気圧P0 及び地上気温T0 を測定し、
前記地上気圧P0 と、前記地上気温T0 と、前記航空機の幾何高度Hから、下記式(A)に示す大気気圧逓減校正式によって前記航空機の幾何高度Hにおける大気気圧Pを算出し、
前記航空機に搭載された計器の誤差を補正するために、前記航空機に搭載されて前記計器に気圧情報を提供するADCの大気気圧P’を幾何高度Hにおける前記大気気圧Pで校正することを特徴としている。
P=P0 ×{1−0.0065H/(273.15+T0 )}5.256 …(A)
An instrument calibration flight test method using the kinematic GPS described in claim 1 is:
A first kinematic GPS receiver provided at a ground measurement reference point whose coordinates are known in the vicinity of the flight test execution location and a second kinematic GPS reception device provided on an aircraft in flight at the flight test execution location, Receive radio waves transmitted from the same satellite in sync with each other,
From each phase angle of the carrier wave of the transmission radio wave received by each of the first kinematic GPS receiver and the second kinematic GPS receiver, a path difference regarding the ground measurement reference point and the satellite of the aircraft is obtained. The baseline length of the aircraft is calculated by the baseline analysis method to obtain the geometric height H of the aircraft,
Measure the ground pressure P 0 and the ground temperature T 0 at the ground measurement reference point,
From the ground pressure P 0 , the ground temperature T 0, and the geometric height H of the aircraft, the atmospheric pressure P at the geometric height H of the aircraft is calculated by the atmospheric pressure decreasing calibration formula shown in the following formula (A):
In order to correct an error of an instrument mounted on the aircraft, an atmospheric pressure P ′ of an ADC mounted on the aircraft and providing atmospheric pressure information to the instrument is calibrated with the atmospheric pressure P at a geometrical height H. It is said.
P = P 0 × {1−0.0065H / (273.15 + T 0 )} 5.256 (A)

請求項2に記載された発明は、請求項1記載のキネマティックGPSを活用した計器校正飛行試験方法において、
前記地上計測基準点を、国土交通省電子基準点を基にして飛行試験実施場所の近傍に任意に設定することを特徴としている。
The invention described in claim 2 is an instrument calibration flight test method using the kinematic GPS described in claim 1,
The ground measurement reference point is arbitrarily set in the vicinity of the flight test place based on the MLIT electronic reference point.

飛行試験実施場所の近傍に座標が既知の地上計測基準点を設けることによって航空機との基線長を可及的に短縮化して測定精度の向上を図り、さらに従来に比較して特に高速移動体についての計測精度が高いキネマティックGPSを利用してGPS衛星に関する地上計測基準点と航空機の行路差を計測し、得られたデータを基線解析法(RTD:Real Time Dynamics) で解析することにより地上計測基準点から航空機への基線長を短時間の計測で高精度に算出し、地上計測基準点の近傍上空にある航空機の幾何高度を精密に測定できる。さらに、大気気圧逓減計算式を用いて航空機の幾何高度での大気気圧を換算算出するにあたり、飛行試験実施場所の近傍である地上計測基準点で地上気圧及び地上気温を測定し、これを換算の基礎に用いることにより精度を高めているので、航空機の幾何高度における大気気圧を高精度で算出することができ、航空機に装備されたADCの補正を従来より簡易に、かつより高精度で実施することができる。これにより、低高度領域から高高度領域(500〜1,500ft)に至るまで、航空機の幾何高度計測が可能となり、短時間で高精度に計器校正飛行試験を行なうことが可能となった。   By providing a ground measurement reference point with known coordinates in the vicinity of the flight test site, the baseline length with the aircraft is shortened as much as possible to improve measurement accuracy. Using the kinematic GPS with high measurement accuracy, the ground measurement reference point for GPS satellites and the path difference between the aircraft are measured, and the obtained data is analyzed by the baseline analysis method (RTD: Real Time Dynamics). The base line length from the reference point to the aircraft can be calculated with a high degree of accuracy in a short time, and the geometrical height of the aircraft in the vicinity of the ground measurement reference point can be accurately measured. Furthermore, when calculating the atmospheric pressure at the aircraft's geometric altitude using the formula for decreasing atmospheric pressure, the ground pressure and surface temperature are measured at the ground measurement reference point near the flight test site, Since the accuracy is improved by using it as a foundation, it is possible to calculate the atmospheric pressure at the geometric altitude of the aircraft with high accuracy, and to perform correction of the ADC equipped on the aircraft more easily and with higher accuracy. be able to. As a result, it is possible to measure the aircraft's geometric altitude from the low altitude region to the high altitude region (500 to 1,500 ft), and to perform the instrument calibration flight test with high accuracy in a short time.

また、地上計測基準点は、国土交通省電子基準点を基にして飛行試験を実施しようとする場所の近傍に任意に設定できるので、計器校正飛行試験を実施するに際して試験場所の制約が少なくなり便利である。   In addition, the ground measurement reference point can be arbitrarily set in the vicinity of the place where the flight test is to be performed based on the Ministry of Land, Infrastructure, Transport and Tourism electronic reference point, so that there are fewer restrictions on the test place when performing the instrument calibration flight test. Convenient.

キネマティックGPSを活用した相対測位の原理を説明するための原理図である。It is a principle figure for demonstrating the principle of the relative positioning using kinematic GPS. 本発明に係るキネマティックGPSを活用した計器校正飛行試験方法を実施するための構成を示すブロック図である。It is a block diagram which shows the structure for implementing the instrument calibration flight test method using the kinematic GPS which concerns on this invention. 本発明に係るキネマティックGPSを活用した計器校正飛行試験方法を実施するための構成を示す全体概念図である。It is a whole conceptual diagram which shows the structure for implementing the instrument calibration flight test method using the kinematic GPS which concerns on this invention. 本発明に係るキネマティックGPSを活用した計器校正飛行試験方法を実施する手順を示す流れ図である。It is a flowchart which shows the procedure which implements the instrument calibration flight test method using the kinematic GPS which concerns on this invention.

最初に本発明の試験方法で採用されているGPSによる測位の原理を説明する。
本発明におけるキネマティックGPS測位は受信機間の相対位置を決定する干渉測位である。図1に示すように、キネマティックGPS測位では、基準局にある受信機100と、移動局(図示の航空機101)にある受信機から、ある衛星Sまでの距離の差(行路差)を搬送波の位相を使用して求め、後述する基線解析法により基線長を決定する。これにより、受信機100と航空機101の間の距離と、受信機100から航空機101への方位が測定され、移動局(航空機)の座標が確定する。試験中は、各受信機ではそれぞれの搬送波の位相角を測定しておき、基線解析法によるデータの解析は両受信機のデータを用いて後で行なう。
First, the principle of positioning by GPS adopted in the test method of the present invention will be described.
The kinematic GPS positioning in the present invention is an interference positioning that determines a relative position between receivers. As shown in FIG. 1, in kinematic GPS positioning, the difference in distance (path difference) from a receiver 100 in a reference station and a receiver in a mobile station (aircraft 101 in the figure) to a satellite S is calculated as a carrier wave. The phase is used to determine the baseline length by the baseline analysis method described below. Thereby, the distance between the receiver 100 and the aircraft 101 and the direction from the receiver 100 to the aircraft 101 are measured, and the coordinates of the mobile station (aircraft) are determined. During the test, the phase angle of each carrier is measured at each receiver, and data analysis by the baseline analysis method is performed later using the data of both receivers.

前述した行路差Lは、下記式(2)により、波長の整数個分の長さと位相角θに相当する端数分の長さの和として算出される。
L=(N+θ)×19cm …(2)
N:整数値バイアス
The path difference L described above is calculated as the sum of the length of an integral number of wavelengths and the length of a fraction corresponding to the phase angle θ by the following equation (2).
L = (N + θ) × 19 cm (2)
N: Integer value bias

前記行路差L及び前記基線長は基線解析法により求められる。基線解析法は、観測点間の幾何学的な位置関係を求める計算手法であり、上述した基準局100と移動局(航空機101)のように観測点が2点であれば、2点間の基線長(2点間の距離だけでなく方位も含む)を求めて両点の位置関係を算出することができる。   The path difference L and the base line length are obtained by a base line analysis method. The baseline analysis method is a calculation method for obtaining a geometric positional relationship between observation points. If there are two observation points such as the reference station 100 and the mobile station (aircraft 101) described above, the baseline between the two points is used. The positional relationship between the two points can be calculated by obtaining the length (including not only the distance between the two points but also the direction).

次に、本発明の計器校正飛行試験方法を実施するための構成を、図2を参照して説明する。
航空機1と、飛行試験実施場所の近傍に設定した地上の地上計測基準点2(国土交通省の電子基準点を基準として基線長が測定され、座標は既知である。)には、それぞれキネマティックGPS(K−GPS)受信装置3、3が装備される。K−GPS受信装置3は、GPS衛星からの電波を受信するK−GPSアンテナ4及びK−GPS受信機5と、受信したデータを保存に適当なフォーマットに変換するデータロガー6と、データを保存するメモリ7とを備えている。K−GPS受信装置3は、GPS衛星からの搬送波の位相角を受信してメモリ7に記憶しておき、これらのデータは後で演算装置10に入力されて解析され、航空機位置諸元が算出される。この演算装置10には、GPS衛星位置情報と、電子基準点位置情報とが与えられるが、電子基準点位置情報は地上の地上計測基準点2を設定する段階で校正に利用する。なお、GPS衛星位置情報と電子基準点位置情報は、汎用のデータフォーマットであるRINEX (ライネックス)フォーマットで与えられ、解析に用いられる。
Next, a configuration for carrying out the instrument calibration flight test method of the present invention will be described with reference to FIG.
The aircraft 1 and the ground measurement reference point 2 set near the flight test site (baseline length is measured with reference to the Ministry of Land, Infrastructure, Transport and Tourism's electronic reference point and coordinates are known) are kinematic. GPS (K-GPS) receivers 3 and 3 are provided. The K-GPS receiver 3 includes a K-GPS antenna 4 and a K-GPS receiver 5 that receive radio waves from GPS satellites, a data logger 6 that converts received data into a format suitable for storage, and stores data. And a memory 7 is provided. The K-GPS receiver 3 receives the phase angle of the carrier wave from the GPS satellite and stores it in the memory 7, and these data are later input to the arithmetic unit 10 for analysis and the aircraft position specifications are calculated. Is done. The arithmetic device 10 is given GPS satellite position information and electronic reference point position information. The electronic reference point position information is used for calibration at the stage of setting the ground measurement reference point 2 on the ground. The GPS satellite position information and the electronic reference point position information are given in a general-purpose data format RINEX format and used for analysis.

次に、本発明の計器校正飛行試験方法の実施手順について図3及び図4を参照して説明する。なお、以下の説明にはかっこ付き番号を付し、図3及び図4中の箇所で説明と対応する部分には同じかっこ付き番号を付するものとする。   Next, the execution procedure of the instrument calibration flight test method of the present invention will be described with reference to FIGS. In addition, the numbers with parentheses are attached to the following description, and the same numbers with the same parentheses are attached to portions corresponding to the descriptions in FIGS. 3 and 4.

(1) 飛行試験を計画するにあたり、キネマティックGPS受信装置3を試験航空機(以下航空機1と称する。)に搭載する場合の電磁干渉等の適合性を確認する。   (1) When planning a flight test, confirm compatibility of electromagnetic interference and the like when the kinematic GPS receiver 3 is mounted on a test aircraft (hereinafter referred to as aircraft 1).

(2) 飛行試験実施場所におけるGPS衛星の配置状況、受信衛星数を確認する。   (2) Check the GPS satellite placement status and the number of satellites received at the flight test site.

(3) 飛行試験実施場所の近傍に地上計測基準点2を設ける。この地上計測基準点2と、後述するように航空機1の双方に、K−GPS受信装置3を装備する。   (3) Ground measurement reference point 2 will be provided near the flight test site. Both the ground measurement reference point 2 and the aircraft 1 are equipped with a K-GPS receiver 3 as will be described later.

(4) 地上計測基準点2と国土交通省電子基準点の基線長測定を行なう。すなわち、電子基準点を基準とした地上計測基準点2の基線長を測定し、地上計測基準点2の座標(幾何高度を含む)を確定する。   (4) Measure the baseline length of ground measurement reference point 2 and the MLIT electronic reference point. That is, the base line length of the ground measurement reference point 2 with respect to the electronic reference point is measured, and the coordinates (including the geometric height) of the ground measurement reference point 2 are determined.

(5) 地上計測基準点2のK−GPS受信装置3が設置された位置において、気圧計及び温度計により地上気圧(P0 )及び地上気温(T0 )を測定する。 (5) At the position where the K-GPS receiver 3 of the ground measurement reference point 2 is installed, the ground pressure (P 0 ) and the ground temperature (T 0 ) are measured with a barometer and a thermometer.

(6) 航空機1にキネマティックGPS受信装置3を搭載し、定常状態にて地上計測基準点2の近傍上空を飛行し、試験実施飛行高度における幾何高度を計測し、幾何高度のばらつき度を考慮し、平均値を測定値とする。この幾何高度は、飛行している当該航空機1の実際の幾何高度である。   (6) The kinematic GPS receiver 3 is installed in the aircraft 1, and it flies over the ground measurement reference point 2 in a steady state, measures the geometric altitude at the test flight altitude, and considers the degree of variation in the geometric altitude. The average value is taken as the measured value. This geometric altitude is the actual geometric altitude of the aircraft 1 in flight.

(7) (6) でキネマティックGPS受信装置3で測定した航空機1の幾何高度と、(4) で測定した地上計測基準点2の幾何高度の差から、航空機1の幾何高度(H)を求める。この幾何高度(H)と、地上気圧(P0 )及び地上温度(T0 )とを、次式の大気気圧逓減計算式に代入して、飛行高度における大気気圧(P)を換算する。
P=P0 ×{1−0.0065H/(273.15+T0 )}5.256 …(A)
P:大気気圧[hPa] P0 :地上気圧[hPa]
H:幾何高度[m] T0 :地上温度[℃]
(7) From the difference between the geometric altitude of the aircraft 1 measured by the kinematic GPS receiver 3 in (6) and the geometric altitude of the ground measurement reference point 2 measured in (4), the geometric altitude (H) of the aircraft 1 is calculated. Ask. The geometric altitude (H), the ground pressure (P 0 ), and the ground temperature (T 0 ) are substituted into the following formula for decreasing atmospheric pressure to convert the atmospheric pressure (P) at the flight altitude.
P = P 0 × {1−0.0065H / (273.15 + T 0 )} 5.256 (A)
P: Atmospheric pressure [hPa] P 0 : Ground pressure [hPa]
H: Geometric altitude [m] T 0 : Ground temperature [° C.]

(8) 大気気圧逓減計算式(A)から得られたキネマティックGPS計測大気気圧である大気気圧(P)を用いて、航空機1に搭載したADCの大気気圧(P' )を校正し、ADCの計測誤差等を補正する。これによって航空機1の計器校正が行なわれる。   (8) The atmospheric pressure (P ′) of the ADC mounted on the aircraft 1 is calibrated by using the atmospheric pressure (P) which is the kinematic GPS measurement atmospheric pressure obtained from the atmospheric pressure decrease calculation formula (A), and the ADC To correct measurement errors. Thereby, the instrument calibration of the aircraft 1 is performed.

以上説明したように、本発明の方法によれば、飛行試験実施場所になるべく近い位置に座標が既知の地上計測基準点を設けて航空機との距離を可能な限り短縮化し、さらに特に高速移動体についての計測精度が高いキネマティックGPSを用いて基線解析法により航空機の幾何高度を測定し、さらにまた大気気圧逓減計算式を用いて航空機の幾何高度での大気気圧を換算算出するにあたり、飛行試験実施場所の近傍である地上計測基準点で地上気圧及び地上気温を測定し、これを換算の基礎に用いている。従って、本方法によれば、航空機の幾何高度を短時間で高精度に測定でき、航空機の幾何高度における大気気圧を高精度で換算・算出することができ、これによって航空機に装備されたADCの補正を従来より簡易に、かつより高精度で実施することができる。このため、低高度領域から高高度領域(500〜1,500ft)に至るまで、航空機の幾何高度計測が可能となり、短時間で高精度に計器校正飛行試験を行なうことが可能となった。   As described above, according to the method of the present invention, the ground measurement reference point whose coordinates are known is provided as close as possible to the place where the flight test is performed to shorten the distance from the aircraft as much as possible. A flight test in measuring the geometric altitude of an aircraft by the baseline analysis method using a kinematic GPS with high measurement accuracy and converting the atmospheric pressure at the geometric altitude of the aircraft using a formula for decreasing atmospheric pressure The ground pressure and the ground temperature are measured at the ground measurement reference point in the vicinity of the place of implementation and used as the basis for conversion. Therefore, according to this method, the geometric altitude of the aircraft can be measured with high accuracy in a short time, and the atmospheric pressure at the geometric altitude of the aircraft can be converted and calculated with high accuracy. Correction can be performed more easily and with higher accuracy than in the past. For this reason, it is possible to measure the geometric altitude of the aircraft from the low altitude region to the high altitude region (500 to 1,500 ft), and to perform the instrument calibration flight test with high accuracy in a short time.

1…移動局としての航空機
2…地上計測基準点
3…キネマティックGPS受信装置(K−GPS受信装置)
10…演算装置
DESCRIPTION OF SYMBOLS 1 ... Aircraft as a mobile station 2 ... Ground measurement reference point 3 ... Kinematic GPS receiver (K-GPS receiver)
10. Arithmetic unit

Claims (2)

飛行試験実施場所の近傍で座標が既知の地上計測基準点に設けた第1のキネマティックGPS受信装置と、飛行試験実施場所で飛行中の航空機に設けた第2のキネマティックGPS受信装置によって、同一の衛星からの送信電波を互いに同期してそれぞれ受信し、
前記第1のキネマティックGPS受信装置と前記第2のキネマティックGPS受信装置がそれぞれ受信した送信電波の搬送波の各位相角から、前記地上計測基準点と前記航空機の前記衛星に関する行路差を求め、基線解析法により前記航空機の基線長を算出して前記航空機の幾何高度Hを求め、
前記地上計測基準点の地上気圧P0 及び地上気温T0 を測定し、
前記地上気圧P0 と、前記地上気温T0 と、前記航空機の幾何高度Hから、下記式(A)に示す大気気圧逓減校正式によって前記航空機の幾何高度Hにおける大気気圧Pを算出し、
前記航空機に搭載された計器の誤差を補正するために、前記航空機に搭載されて前記計器に気圧情報を提供するADCの大気気圧P’を幾何高度Hにおける前記大気気圧Pで校正することを特徴とするキネマティックGPSを活用した計器校正飛行試験方法。
P=P0 ×{1−0.0065H/(273.15+T0 )}5.256 …(A)
By a first kinematic GPS receiver provided at a ground measurement reference point whose coordinates are known in the vicinity of the flight test execution location and a second kinematic GPS reception device provided on an aircraft in flight at the flight test execution location, Receive radio waves transmitted from the same satellite in sync with each other,
From each phase angle of the carrier wave of the transmission radio wave received by each of the first kinematic GPS receiver and the second kinematic GPS receiver, a path difference between the ground measurement reference point and the satellite of the aircraft is obtained. The baseline length of the aircraft is calculated by the baseline analysis method to obtain the geometric height H of the aircraft,
Measure the ground pressure P 0 and the ground temperature T 0 at the ground measurement reference point,
From the ground pressure P 0 , the ground temperature T 0, and the geometric height H of the aircraft, the atmospheric pressure P at the geometric height H of the aircraft is calculated by the atmospheric pressure decreasing calibration formula shown in the following formula (A):
In order to correct an error of an instrument mounted on the aircraft, an atmospheric pressure P ′ of an ADC mounted on the aircraft and providing atmospheric pressure information to the instrument is calibrated with the atmospheric pressure P at a geometrical height H. Instrument calibration flight test method using kinematic GPS.
P = P 0 × {1−0.0065H / (273.15 + T 0 )} 5.256 (A)
前記地上計測基準点は、国土交通省電子基準点を基にして飛行試験実施場所の近傍に任意に設定することを特徴とする請求項1記載のキネマティックGPSを活用した計器校正飛行試験方法。 2. The instrument calibration flight test method using kinematic GPS according to claim 1, wherein the ground measurement reference point is arbitrarily set in the vicinity of a flight test place based on an electronic reference point of the Ministry of Land, Infrastructure, Transport and Tourism.
JP2009007758A 2009-01-16 2009-01-16 Instrument calibration flight test method using kinematic GPS Active JP4892695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009007758A JP4892695B2 (en) 2009-01-16 2009-01-16 Instrument calibration flight test method using kinematic GPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009007758A JP4892695B2 (en) 2009-01-16 2009-01-16 Instrument calibration flight test method using kinematic GPS

Publications (2)

Publication Number Publication Date
JP2010164473A true JP2010164473A (en) 2010-07-29
JP4892695B2 JP4892695B2 (en) 2012-03-07

Family

ID=42580751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009007758A Active JP4892695B2 (en) 2009-01-16 2009-01-16 Instrument calibration flight test method using kinematic GPS

Country Status (1)

Country Link
JP (1) JP4892695B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892305A (en) * 2014-12-15 2016-08-24 北京空间技术研制试验中心 General spacecraft ground test bed system
CN111551149A (en) * 2020-04-24 2020-08-18 中国航空无线电电子研究所 Calculation method suitable for aircraft geometric height
CN115808186A (en) * 2023-01-29 2023-03-17 中国空气动力研究与发展中心高速空气动力研究所 Correction method for distance measurement result of flapping wing aircraft
CN116902220A (en) * 2023-09-11 2023-10-20 农业农村部南京农业机械化研究所 Agricultural unmanned plane ground-imitating flight detection method and detection equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048321A (en) * 1996-08-06 1998-02-20 Furuno Electric Co Ltd Apparatus and method for surveying real time kinematic gps
JP2001522456A (en) * 1997-03-27 2001-11-13 ヘドリック,ジェオフリイ,エス.,エム. How to calibrate an aircraft altitude sensor
JP2004500573A (en) * 2000-03-22 2004-01-08 アスラブ・エス アー Portable device for determining horizontal and vertical position and method for operating the same
JP2006214993A (en) * 2005-02-07 2006-08-17 Mitsubishi Electric Corp Mobile navigation apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048321A (en) * 1996-08-06 1998-02-20 Furuno Electric Co Ltd Apparatus and method for surveying real time kinematic gps
JP2001522456A (en) * 1997-03-27 2001-11-13 ヘドリック,ジェオフリイ,エス.,エム. How to calibrate an aircraft altitude sensor
JP2004500573A (en) * 2000-03-22 2004-01-08 アスラブ・エス アー Portable device for determining horizontal and vertical position and method for operating the same
JP2006214993A (en) * 2005-02-07 2006-08-17 Mitsubishi Electric Corp Mobile navigation apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892305A (en) * 2014-12-15 2016-08-24 北京空间技术研制试验中心 General spacecraft ground test bed system
CN105892305B (en) * 2014-12-15 2019-07-30 北京空间技术研制试验中心 General spacecraft ground tests bed system
CN111551149A (en) * 2020-04-24 2020-08-18 中国航空无线电电子研究所 Calculation method suitable for aircraft geometric height
CN111551149B (en) * 2020-04-24 2022-05-20 中国航空无线电电子研究所 Calculation method suitable for airplane geometric height
CN115808186A (en) * 2023-01-29 2023-03-17 中国空气动力研究与发展中心高速空气动力研究所 Correction method for distance measurement result of flapping wing aircraft
CN116902220A (en) * 2023-09-11 2023-10-20 农业农村部南京农业机械化研究所 Agricultural unmanned plane ground-imitating flight detection method and detection equipment
CN116902220B (en) * 2023-09-11 2023-12-22 农业农村部南京农业机械化研究所 Agricultural unmanned plane ground-imitating flight detection method and detection equipment

Also Published As

Publication number Publication date
JP4892695B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
CN103472503B (en) Sonde and upper air wind finding method based on INS
CN105445774B (en) Measuring system and measuring method that a kind of GNSS is combined with laser ranging
CN102879779B (en) Rod arm measurement and compensation method based on synthetic aperture radar (SAR) remote sensing imaging
JP2006214993A (en) Mobile navigation apparatus
CN104154928A (en) Installation error calibrating method applicable to built-in star sensor of inertial platform
CA2754397A1 (en) System for determining the airspeed of an aircraft
CN111766599B (en) Laser radar device and method for measuring sea wave height in real time
Haimov et al. Fixed-antenna pointing-angle calibration of airborne Doppler cloud radar
JP4892695B2 (en) Instrument calibration flight test method using kinematic GPS
CN110673170A (en) Method and terminal for testing dynamic single-point positioning accuracy
CN104330806A (en) Inter-satellite system difference calibration method based on Ka range finding mode
CN104049269A (en) Target navigation mapping method based on laser ranging and MEMS/GPS integrated navigation system
CN107991676A (en) Troposphere error correction method of satellite-borne single-navigation-pass InSAR system
CN108061477A (en) Opposite installation error bearing calibration between a kind of target seeker and used system system
CN106052717A (en) Method for calibrating radio wave refraction correction effects by virtue of precision trajectory
CN113671598B (en) Combined high-altitude wind detection method
JP4019149B2 (en) Radio wave arrival direction identification system
KR101608809B1 (en) Apparatus and Method for correcting vector error to extend operational boundary of Ground Based Augmentation System
CN110568461A (en) system and method for testing performance of satellite positioning product
CN102830410A (en) Positioning method in combination with Doppler velocity measurement in satellite navigation
JP2020017790A (en) Actual machine antenna pattern acquisition system, actual machine antenna pattern acquisition method, and actual machine antenna pattern acquisition program
CN104101881B (en) Target navigation mapping error angular estimation method based on laser ranging and MEMS/GPS
JP5496077B2 (en) Sound ray analyzer
KR101404170B1 (en) GPS based aircraft structural integrity evaluation system
CN102928857A (en) Multi-carrier positioning method in satellite navigation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350