JP2010163315A - Oxide magnetic material - Google Patents

Oxide magnetic material Download PDF

Info

Publication number
JP2010163315A
JP2010163315A JP2009006613A JP2009006613A JP2010163315A JP 2010163315 A JP2010163315 A JP 2010163315A JP 2009006613 A JP2009006613 A JP 2009006613A JP 2009006613 A JP2009006613 A JP 2009006613A JP 2010163315 A JP2010163315 A JP 2010163315A
Authority
JP
Japan
Prior art keywords
oxide
mol
surface resistance
magnetic material
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009006613A
Other languages
Japanese (ja)
Other versions
JP5660698B2 (en
Inventor
Mitsutsugu Kato
充次 加藤
Kiyoto Ono
清人 小野
Yoshio Matsuo
良夫 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2009006613A priority Critical patent/JP5660698B2/en
Publication of JP2010163315A publication Critical patent/JP2010163315A/en
Application granted granted Critical
Publication of JP5660698B2 publication Critical patent/JP5660698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide magnetic material which has good properties, such as large high-frequency magnetic permeability similar to that of NiZn-based ferrite, and high surface resistance, and which is suitable for reduction in cost and used suitably as an alternate material for the NiZn-based ferrite. <P>SOLUTION: A composition including 50.1-54.4 mol% of iron oxide as a main component, 3.8-20.3 mol% of manganese oxide, 10.3-25.0 mol% of zinc oxide and 5-15 mol% of copper oxide, and the balance being magnesium oxide is prepared. Zirconium oxide may be added as an additive in an amount of about 0.5 wt.% or a trace amount smaller than 0.5 wt.%. In a sintered compact thus obtained, characteristics of respective mixed materials are made to interact, and the sintered compact has such material properties that the variation rate Δμ<SB>i</SB>/μ<SB>i</SB>of initial magnetic permeability μ<SB>i</SB>is <5% in the frequency range of 10-100 kHz and the surface resistance is ≥10<SP>7</SP>[Ω]. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、Fe,Mn,Mg,Cu,Znを含む酸化物磁性材料に関するもので、より具体的には、初透磁率μの周波数特性および表面抵抗について適正化し得るような主成分組成の改良に関する。 The present invention relates to an oxide magnetic material containing Fe, Mn, Mg, Cu, and Zn, and more specifically, a main component composition that can optimize the frequency characteristic and surface resistance of the initial permeability μ i . Regarding improvement.

この種の酸化物磁性材料として、NiZn系フェライトは、比抵抗が高い特徴から高周波帯域での渦電流損失を小さくでき、高周波用のコア材料に用いることが多く、いわゆる通信用の用途など比較的に高周波領域での用途に好まれている。例えば積層インダクタといった積層チップ部品に用いられる。さらに近年では、電子部品の小型化、高周波化にともない、インダクタ、コモンコイル、チョークコイル等のコア材料として、電力変換部品やノイズ対策部品に広く用いられている。   As this kind of oxide magnetic material, NiZn-based ferrite can reduce eddy current loss in a high frequency band due to its high specific resistance, and is often used as a core material for high frequency. In particular, it is preferred for high frequency applications. For example, it is used for multilayer chip components such as multilayer inductors. Furthermore, in recent years, as electronic parts have become smaller and higher in frequency, they are widely used as power conversion parts and noise countermeasure parts as core materials for inductors, common coils, choke coils and the like.

比較的高周波領域での用途には、磁気特性はまず高周波透磁率が大きいということが最重要であると言えるが、改善すべき材質特性は適用製品に応じて多々あり、それぞれ適正化のための工夫が行われている。例えば特許文献1などには温度係数の改善を図る技術の提案があり、NiZn系フェライトについて組成の開示がある。   For applications in a relatively high frequency range, it can be said that the magnetic properties are most important because the high-frequency permeability is large. However, there are many material properties that should be improved depending on the product to be applied. Ingenuity has been made. For example, Patent Document 1 proposes a technique for improving the temperature coefficient, and discloses the composition of NiZn ferrite.

また、例えば特許文献2,3,4などには、高周波化およびコア損失の改善の観点で技術の提案があり、MgZn系フェライトについて組成の開示がある。例えば特許文献5,6などには、MnMgZn系フェライトについて組成の開示があり、これらも高周波化およびコア損失の改善の観点で技術を提案している。さらに例えば特許文献7,8などには、飽和磁束密度の向上およびコア損失の改善の観点で技術の提案があり、MnMgCuZn系フェライトについて組成の開示がある。   Further, for example, Patent Documents 2, 3, 4 and the like have a proposal of a technique from the viewpoint of high frequency and improvement of core loss, and disclose the composition of MgZn ferrite. For example, Patent Documents 5 and 6 disclose the composition of MnMgZn-based ferrites, and these have also proposed techniques from the viewpoint of increasing the frequency and improving the core loss. Further, for example, Patent Documents 7 and 8 propose a technique from the viewpoint of improving the saturation magnetic flux density and improving the core loss, and disclose the composition of the MnMgCuZn-based ferrite.

特開昭55−136172号公報JP-A-55-136172 特開平5−51249号公報JP-A-5-51249 特開平8−12335号公報JP-A-8-12335 特開平10−25114号公報Japanese Patent Laid-Open No. 10-25114 特公平5−75714号公報Japanese Patent Publication No. 5-75714 特開平11−335160号公報JP 11-335160 A 特開平11−343121号公報JP 11-343121 A 特開2000−44249号公報JP 2000-44249 A

上述したように、この種の酸化物磁性材料では磁気特性を適用製品に応じて適宜それぞれ適正化するようにしている。しかし、磁気特性と共に重要な課題にコストがあり、見逃すことができない要素と言える。つまり、酸化物磁性材料の製造コストを安価に抑えたい要求がある。ところが、高周波領域での用途に好ましいNiZn系フェライトは、Niが高価で原料コストが高くなる問題があり対策が望まれている。   As described above, in this kind of oxide magnetic material, the magnetic characteristics are appropriately optimized according to the application product. However, it is an element that cannot be overlooked because of the cost associated with important issues as well as magnetic properties. That is, there is a demand to keep the manufacturing cost of the oxide magnetic material low. However, NiZn-based ferrite preferable for use in a high frequency region has a problem that Ni is expensive and raw material cost is high, and a countermeasure is desired.

この発明は上述した課題を解決するもので、その目的は、NiZn系フェライトと同等に高周波透磁率が大きく良好特性であり表面抵抗が大きく、そしてコストの削減に有利性があり、NiZn系フェライトの置き換えに好適に利用できる酸化物磁性材料を提供することにある。   The object of the present invention is to solve the above-described problems. The purpose of the present invention is to provide high-frequency magnetic permeability, good characteristics, large surface resistance, and an advantage in cost reduction, similar to NiZn-based ferrite. An object of the present invention is to provide an oxide magnetic material that can be suitably used for replacement.

上述した課題を達成するために、本発明の酸化物磁性材料は、(1)Fe,Mn,Mg,Cu,Znを含む酸化物磁性材料であって、主成分は
酸化鉄が50.1〜54.4mol%,
酸化マンガンが3.8〜20.3mol%,
酸化亜鉛が10.3〜25.0mol%,
酸化銅が5〜15mol%であり
残部を酸化マグネシウムとする組成に構成する。
In order to achieve the above-described problems, the oxide magnetic material of the present invention is (1) an oxide magnetic material containing Fe, Mn, Mg, Cu, Zn, and the main component is 50.1 to 50.1. 54.4 mol%,
Manganese oxide is 3.8-20.3 mol%,
Zinc oxide is 10.3 to 25.0 mol%,
The composition is such that the copper oxide is 5 to 15 mol% and the balance is magnesium oxide.

(2)添加剤として、酸化ジルコニウムを0.5wt%程度あるいは0.5wt%よりも少ない微量を追加して添加する組成に構成する。 (2) The composition is such that zirconium oxide is added in an additional amount of about 0.5 wt% or less than 0.5 wt% as an additive.

(3)上記組成による焼結体は、初透磁率μの変化率Δμ/μが周波数10〜100kHzにおいて5%未満であるものとし、(4)表面抵抗が10[Ω]以上であるものとするとよい。 (3) In the sintered body having the above composition, the change rate Δμ i / μ i of the initial permeability μ i is less than 5% at a frequency of 10 to 100 kHz, and (4) the surface resistance is 10 7 [Ω] or more. It is good to be.

本発明では、酸化鉄,酸化マンガン,酸化亜鉛,酸化銅および酸化マグネシウムを上述した所定の配合比とすることにより、得られた焼結体は、表面抵抗を高く得ることができ、高い初透磁率μを良好な周波数特性に得ることができる。上述した本発明に係る組成は実験から見いだした結果であり、焼結体の材質特性は、初透磁率μの変化率Δμ/μが周波数10〜100kHzにおいて5%未満であり、表面抵抗が10[Ω]以上であることを確認した。 In the present invention, by setting iron oxide, manganese oxide, zinc oxide, copper oxide and magnesium oxide to the above-described predetermined compounding ratio, the obtained sintered body can obtain a high surface resistance and a high initial permeability. Magnetic susceptibility μ i can be obtained with good frequency characteristics. The composition according to the present invention described above is a result found from experiments, and the material characteristics of the sintered body are that the change rate Δμ i / μ i of the initial permeability μ i is less than 5% at a frequency of 10 to 100 kHz, It was confirmed that the resistance was 10 7 [Ω] or more.

酸化鉄が50mol%を超える組成は、表面抵抗が低下することから一般的には採用しないが、組成を変更した試料を製造して評価試験を行ったところ、酸化マンガンを比較的に多量に配合することにより表面抵抗を高く維持できることを見いだした。酸化マンガンの配合は3.8〜20.3mol%程度が好ましく、このとき表面抵抗は10[Ω]程度に高く得ることができ、そして、NiZn系フェライトと同程度に高い初透磁率μを良好な周波数特性に得ることができる。 The composition with iron oxide exceeding 50 mol% is not generally adopted because the surface resistance decreases, but when a sample with a changed composition was manufactured and evaluated, a relatively large amount of manganese oxide was added. By doing so, it was found that the surface resistance can be kept high. The compounding amount of manganese oxide is preferably about 3.8 to 20.3 mol%. At this time, the surface resistance can be as high as 10 7 [Ω], and the initial permeability μ i is as high as that of the NiZn-based ferrite. Can be obtained with good frequency characteristics.

本発明に係る酸化物磁性材料では、主成分は酸化鉄が50.1〜54.4mol%,酸化マンガンが3.8〜20.3mol%,酸化亜鉛が10.3〜25.0mol%,酸化銅が5〜15mol%であり残部を酸化マグネシウムとする組成にするので、これによる焼結体(酸化物磁性材料)は、混合した各材料の特質を相互に作用させたものとなる。   In the oxide magnetic material according to the present invention, the main components are 50.1 to 54.4 mol% of iron oxide, 3.8 to 20.3 mol% of manganese oxide, 10.3 to 25.0 mol% of zinc oxide, and oxidation. Since the copper content is 5 to 15 mol% and the balance is magnesium oxide, the sintered body (oxide magnetic material) obtained by this has the characteristics of the mixed materials interacting with each other.

焼結体の材質特性は、初透磁率μの変化率Δμ/μが周波数10〜100kHzにおいて5%未満となり、表面抵抗が10[Ω]以上となる。すなわち本発明に係る焼結体はNiZn系フェライトと同等に高周波透磁率が大きく良好特性であり、表面抵抗が大きく、このため、NiZn系フェライトの置き換えに好適に利用できる。そして、本発明に係る組成は、価格が高いニッケルを使用しない組成なので原料コストを大幅に低減でき、コストの削減に好ましい。 The material properties of the sintered body are such that the change rate Δμ i / μ i of the initial magnetic permeability μ i is less than 5% at a frequency of 10 to 100 kHz, and the surface resistance is 10 7 [Ω] or more. That is, the sintered body according to the present invention has a high frequency permeability and good characteristics equivalent to those of NiZn-based ferrite, and has a large surface resistance. Therefore, it can be suitably used for replacement of NiZn-based ferrite. And since the composition which concerns on this invention is a composition which does not use expensive nickel, raw material cost can be reduced significantly and it is preferable for cost reduction.

初透磁率μの周波数特性を示すグラフであり、実施例1,4および比較例1,2の特性を示している。It is a graph which shows the frequency characteristic of initial permeability (micro | micron | mu) i , and has shown the characteristic of Example 1, 4 and the comparative examples 1 and 2. FIG. 初透磁率μの周波数特性を示すグラフであり、実施例11〜15の特性を示している。It is a graph which shows the frequency characteristic of initial permeability (mu) i , and has shown the characteristic of Examples 11-15.

以下、本発明の好適な実施の形態について説明する。本発明に係る酸化物磁性材料は、酸化鉄(Fe),酸化マンガン(MnO),酸化マグネシウム(MgO),酸化亜鉛(ZnO),酸化銅(CuO)等を主成分とし、いわゆるMnMgCuZn系フェライトの組成になっている。具体的には、主成分は
酸化鉄(Fe)が50.1〜54.4mol%,
酸化マンガン(MnO)が3.8〜20.3mol%,
酸化亜鉛(ZnO)が10.3〜25.0mol%,
酸化銅(CuO)が5〜15mol%であり
残部を酸化マグネシウム(MgO)とする組成にしている。
Hereinafter, preferred embodiments of the present invention will be described. The oxide magnetic material according to the present invention is mainly composed of iron oxide (Fe 2 O 3 ), manganese oxide (MnO), magnesium oxide (MgO), zinc oxide (ZnO), copper oxide (CuO), etc., and so-called MnMgCuZn. The composition of the system ferrite. Specifically, the main component is 50.1-54.4 mol% of iron oxide (Fe 2 O 3 ),
Manganese oxide (MnO) is 3.8-20.3 mol%,
Zinc oxide (ZnO) is 10.3 to 25.0 mol%,
Copper oxide (CuO) is 5 to 15 mol%, and the balance is magnesium oxide (MgO).

また添加剤として、酸化ジルコニウム(ZrO)を0.5wt%程度あるいは0.5wt%よりも少ない微量を追加して添加する組成を採ることもよい。 Further, as an additive, a composition in which zirconium oxide (ZrO 2 ) is added in an amount of about 0.5 wt% or less than 0.5 wt% may be employed.

製造には、まず上述した各原料成分を所定量秤量して湿式混合する。例えばボールミルで粉砕しつつ混ぜて混合粉体を製造し、これを乾燥させて解砕し、次に仮焼きする。仮焼きは、例えば電気炉を使用して大気中で温度を750℃程度とする。   For production, first, a predetermined amount of each of the above-mentioned raw material components is weighed and wet mixed. For example, a mixed powder is manufactured by pulverizing with a ball mill, dried, crushed, and then calcined. In the calcining, for example, an electric furnace is used and the temperature is set to about 750 ° C. in the atmosphere.

仮焼きすることでは粒成長するので、次にボールミル等によりそれを再び粉砕し、粉砕は所定時間行う。この粉体に対して、ポリビニルアルコール(PVA)を加えてスラリを形成し、スプレードライにより造粒して所定粒径の粉体を得る。   Since the grains are grown by calcining, they are pulverized again by a ball mill or the like, and pulverization is performed for a predetermined time. To this powder, polyvinyl alcohol (PVA) is added to form a slurry and granulated by spray drying to obtain a powder having a predetermined particle diameter.

次に、造粒した粉体に成形のための圧力を加えて、例えばリング形状に成形し、この後、ガス炉等で焼成を行う。焼成は、例えば大気中で温度を1000〜1250℃とし、所定時間の焼成により焼結体を製造する。   Next, pressure for molding is applied to the granulated powder to form, for example, a ring shape, and then firing is performed in a gas furnace or the like. Firing is performed at a temperature of 1000 to 1250 ° C. in the atmosphere, for example, and a sintered body is produced by firing for a predetermined time.

この焼結体は、平均結晶粒子径が所定値となるように製造しており、これは各原料の均一化および高精度な秤量制御,焼成工程における高精度制御など、製造工程の全般についての精緻化により実現している。   This sintered body is manufactured so that the average crystal particle diameter becomes a predetermined value. This is about the entire manufacturing process such as homogenization of each raw material, high-precision weighing control, and high-precision control in the firing process. Realized by refinement.

酸化鉄(Fe)の配合は、50mol%を超えると初透磁率μの周波数特性を良好に得ることができる。ただし、酸化鉄(Fe)の成分量が増すことでは表面抵抗が下がるため、酸化鉄(Fe)は50.1〜51.0mol%が好ましい。表面抵抗が比較的に低値でも問題ない使用環境では、酸化鉄(Fe)の成分量は51.0mol%を上回ることは制限なく、上限は54.4mol%程度であると言える。 When the blending of iron oxide (Fe 2 O 3 ) exceeds 50 mol%, the frequency characteristics of the initial permeability μ i can be obtained satisfactorily. However, increasing the amount of iron oxide (Fe 2 O 3 ) decreases the surface resistance, and therefore iron oxide (Fe 2 O 3 ) is preferably 50.1 to 51.0 mol%. In an environment where there is no problem even if the surface resistance is relatively low, it can be said that the amount of iron oxide (Fe 2 O 3 ) component does not exceed 51.0 mol%, and the upper limit is about 54.4 mol%.

酸化マンガン(MnO)の配合は、38mol%以下では表面抵抗が10[Ω]以下となり、要求仕様が厳しい場合には好ましくない。逆に、酸化マンガン(MnO)が3.8mol%以下では初透磁率μが低下する。また、酸化マンガン(MnO)が20.3mol%以上になると他の成分の割合が減ってしまい、初透磁率μの低下が起きてしまう。このため、酸化マンガン(MnO)の配合は3.8〜20.3mol%の範囲内が好ましく、16.3mol%程度までに制限することがより好ましいことが分かっている。 When the compounding of manganese oxide (MnO) is 38 mol% or less, the surface resistance is 10 7 [Ω] or less, which is not preferable when the required specifications are strict. Conversely, when the manganese oxide (MnO) is 3.8 mol% or less, the initial permeability μ i is lowered. Further, when manganese oxide (MnO) is 20.3 mol% or more, the ratio of other components is reduced, and the initial permeability μ i is lowered. For this reason, it has been found that the manganese oxide (MnO) content is preferably in the range of 3.8 to 20.3 mol%, and more preferably limited to about 16.3 mol%.

酸化亜鉛(ZnO)の配合は、10.3mol%以下では初透磁率μが小さくなり実用上適さない。逆に、酸化亜鉛(ZnO)が25.5mol%以上ではキュリー点の低下を招き、これも実用上適さない。したがって、酸化亜鉛(ZnO)の配合は10.3〜25.0mol%の範囲内が好ましい。 When zinc oxide (ZnO) is blended in an amount of 10.3 mol% or less, the initial permeability μ i becomes small, which is not suitable for practical use. On the other hand, if zinc oxide (ZnO) is 25.5 mol% or more, the Curie point is lowered, which is also not practically suitable. Therefore, the amount of zinc oxide (ZnO) is preferably in the range of 10.3 to 25.0 mol%.

酸化銅(CuO)の配合は、5mol%未満では焼成を比較的に低温(1000〜1250℃程度)で行うことができなくなる。逆に、酸化銅(CuO)が15mol%を超えると、初透磁率μの低下があり、飽和磁束密度が低下し、キュリー点の低下が起きる。したがって、酸化銅(CuO)の配合は5〜15mol%の範囲内が好ましい。 When the compounding of copper oxide (CuO) is less than 5 mol%, firing cannot be performed at a relatively low temperature (about 1000 to 1250 ° C.). On the contrary, when copper oxide (CuO) exceeds 15 mol%, there is a decrease in initial permeability μ i , a saturation magnetic flux density is lowered, and a Curie point is lowered. Therefore, the amount of copper oxide (CuO) is preferably in the range of 5 to 15 mol%.

酸化マグネシウム(MgO)は他の成分の割合を維持させるため配合しており、これは組成の補充的な役割を果たし、他の成分との割合関係から配合は4.0〜16.0mol%程度になる。   Magnesium oxide (MgO) is blended to maintain the proportion of other components, which plays a supplementary role in the composition, and the blending is about 4.0 to 16.0 mol% from the proportion relationship with other components. become.

ここに本発明に係る組成にあっては、Mn,Mg,Cu,Znを含むMnMgCuZn系のフェライト組成について各成分の配合がきわめて適正値となっており、混合した各材料の特質を相互に作用させることができ、磁気特性を良好に得ることができる。具体的には後述する実施例に示すように、本発明に係る組成による焼結体は、材質特性が、初透磁率μの変化率Δμ/μが周波数10〜100kHzにおいて5%未満となり、表面抵抗が10[Ω]以上となるようになっている。 In the composition according to the present invention, the composition of each component is extremely appropriate for the ferrite composition of MnMgCuZn containing Mn, Mg, Cu, and Zn, and the characteristics of the mixed materials interact with each other. The magnetic characteristics can be obtained satisfactorily. Specifically, as shown in the examples below, the sintered body according to the composition of the present invention, the material properties, less than 5% change rate Δμ i / μ i of the initial permeability mu i is the frequency 10~100kHz Thus, the surface resistance is 10 7 [Ω] or more.

したがって、十分に高い透磁率を周波数10〜100kHzにおいて安定に得ることができ、表面抵抗も高く確保できる。その結果、NiZn系フェライトの置き換えに好適に利用することができ、インダク夕,コモンコイル,チョークコイル等のコア材料に好ましく利用することができる。   Therefore, a sufficiently high magnetic permeability can be stably obtained at a frequency of 10 to 100 kHz, and a high surface resistance can be ensured. As a result, it can be suitably used for replacement of NiZn-based ferrite, and can be preferably used for core materials such as inductors, common coils, and choke coils.

本発明に係る組成は、価格が高いニッケルを使用しない組成なので、原料コストを大幅に低減できる。具体的には、NiZn系フェライトに比べて原材料費は半分以下にすることができる。   Since the composition according to the present invention does not use expensive nickel, the raw material cost can be greatly reduced. Specifically, the raw material cost can be reduced to half or less compared to NiZn ferrite.

また、酸化ジルコニウム(ZrO)を添加した場合、初透磁率μを上げることができる。酸化ジルコニウム(ZrO)の添加量は0.5wt%程度あるいは0.5wt%よりも少ない微量とし、所望する特性に応じて適宜に調整することが好ましいことが分かっている。 Further, when zirconium oxide (ZrO 2 ) is added, the initial permeability μ i can be increased. It has been found that the amount of zirconium oxide (ZrO 2 ) added is preferably about 0.5 wt% or less than 0.5 wt%, and is appropriately adjusted according to desired characteristics.

以上により本発明にあっては、NiZn系フェライトと同等に高周波透磁率が大きく良好特性であり表面抵抗が大きく、そしてコストの削減に好ましく、NiZn系フェライトの置き換えに好適に利用できる。   As described above, in the present invention, high-frequency magnetic permeability is as good as NiZn-based ferrite and good characteristics and surface resistance is large, which is preferable for cost reduction and can be suitably used for replacement of NiZn-based ferrite.

上述した製造手順により試料を製造した。つまり、本発明の効果を実証するため、組成を変更して複数の試料を製造し、それら各試料について初透磁率μの変化率Δμ/μ,表面抵抗を測定した。 Samples were manufactured according to the manufacturing procedure described above. In other words, in order to demonstrate the effect of the present invention, by changing the composition to produce a plurality of samples, the rate of change of initial permeability μ i Δμ i / μ i, the surface resistance was measured for each of these samples.

(実施例1〜10)
試料は表1に示すように、組成を変更した14個の試料とし、外形をリング形状のものとした。主成分の配合は、酸化鉄(Fe)は49.0〜56.2mol%の範囲で変更し、酸化マンガン(MnO)は3.5〜16.3mol%の範囲で変更し、酸化亜鉛(ZnO)は21.9〜23.2mol%の範囲で変更し、酸化銅(CuO)は7.0mol%とし、残部となる酸化マグネシウム(MgO)は4.0〜15.9mol%の範囲で変更し、これらの組み合わせから14の試料を用意した。また、これら各組成による焼結体は、平均結晶粒子径が所定値となるように製造しており、これは各原料の均一化および高精度な秤量制御,焼成工程における高精度制御など、製造工程の全般についての精緻化により実現した。
(Examples 1 to 10)
As shown in Table 1, the samples were 14 samples with different compositions, and the outer shape was a ring shape. The composition of the main component is changed in the range of 49.0 to 56.2 mol% for iron oxide (Fe 2 O 3 ), and in the range of 3.5 to 16.3 mol% for manganese oxide (MnO). Zinc (ZnO) is changed in the range of 21.9 to 23.2 mol%, copper oxide (CuO) is set to 7.0 mol%, and the remaining magnesium oxide (MgO) is in the range of 4.0 to 15.9 mol%. 14 samples were prepared from these combinations. In addition, the sintered body with each of these compositions is manufactured so that the average crystal particle diameter becomes a predetermined value, which includes the homogenization of each raw material, high-precision weighing control, and high-precision control in the firing process. Realized by refinement of the overall process.

製造時の条件は、仮焼きは大気中で750℃のトップ温度で行い、仮焼き後の粉砕はボールミルにより20時間の粉砕を行った。そして、この粉体にポリビニルアルコール(PVA)をlwt%添加して造粒を行った。リング形状の成形物に対して焼成は、大気中で1160〜1220℃のトップ温度により2時間行い、焼結体を得た。   The production conditions were as follows: calcining was performed at the top temperature of 750 ° C. in the air, and crushing after calcining was performed for 20 hours by a ball mill. Then, 1 wt% of polyvinyl alcohol (PVA) was added to the powder and granulated. The ring-shaped molded product was fired in the atmosphere at a top temperature of 1160 to 1220 ° C. for 2 hours to obtain a sintered body.

Figure 2010163315
Figure 2010163315

初透磁率μの測定にはインピーダンスアナライザを使用し、周波数10kHz〜40MHz,電流0.01Aにおいて初透磁率μの周波数特性を測定した。表面抵抗の測定にはオームメータを使用し、電極間の距離20mm,電圧500Vの条件により測定を行った。初透磁率μの変化率Δμ/μは、以下の式(1)により求めた。

Δμ/μ = [|μ100kHz−μ10kHz|/μ100kHz ]×100 … (1)
Using the impedance analyzer for the measurement of the initial permeability mu i, frequency 10KHz~40MHz, the frequency characteristics were measured for initial permeability mu i at a current 0.01 A. The surface resistance was measured using an ohmmeter under the conditions of a distance between electrodes of 20 mm and a voltage of 500V. The change rate Δμ i / μ i of the initial magnetic permeability μ i was obtained by the following formula (1).

Δμ i / μ i = [| μ i 100 kHz−μ i 10 kHz | / μ i 100 kHz] × 100 (1)

各試料について初透磁率μの変化率Δμ/μ,表面抵抗を測定したところ、本発明に係る組成の実施例1から実施例10についてその磁気特性を確認した。そして、他の4つの試料はすべて比較例となる。また、図1は初透磁率μの周波数特性を示すグラフであり、実施例1,4および比較例1,2の特性を示している。 When the change rate Δμ i / μ i of the initial permeability μ i and the surface resistance were measured for each sample, the magnetic properties of Examples 1 to 10 having the composition according to the present invention were confirmed. The other four samples are all comparative examples. FIG. 1 is a graph showing the frequency characteristics of the initial permeability μ i and shows the characteristics of Examples 1 and 4 and Comparative Examples 1 and 2.

表1に示す測定結果から明らかなように、各原料成分の特質を相互に作用させて好適な磁気特性を発現させるには、各成分の組成を本発明に係る所定範囲とすることが好ましい。すなわち、主成分は
酸化鉄(Fe)が50.1〜54.4mol%,
酸化マンガン(MnO)が3.8〜20.3mol%,
酸化亜鉛(ZnO)が10.3〜25.0mol%,
酸化銅(CuO)が5〜15mol%であり
残部を酸化マグネシウム(MgO)とする組成は、表1に示す実施例1〜10が該当する。これらのものでは、初透磁率μiの変化率Δμ/μが周波数10〜100kHzにおいて5%未満となり、表面抵抗が10[Ω]以上となる材質特性が得られることを確認した。
As apparent from the measurement results shown in Table 1, it is preferable that the composition of each component is within a predetermined range according to the present invention in order to allow the characteristics of each raw material component to interact with each other to develop suitable magnetic properties. That is, the main component is iron oxide (Fe 2 O 3 ) 50.1-54.4 mol%,
Manganese oxide (MnO) is 3.8-20.3 mol%,
Zinc oxide (ZnO) is 10.3 to 25.0 mol%,
Examples 1 to 10 shown in Table 1 correspond to the composition in which copper oxide (CuO) is 5 to 15 mol% and the balance is magnesium oxide (MgO). With these materials, it was confirmed that the material characteristics that the change rate Δμ i / μ i of the initial permeability μ i was less than 5% at a frequency of 10 to 100 kHz and the surface resistance was 10 7 [Ω] or more were obtained.

図1から明らかなように、酸化鉄(Fe)が50mol%を超えると初透磁率μの変化率Δμ/μが大幅に改善する。また、比較例3から分かるように、酸化マンガン(MnO)が3.8mol%に満たない場合は、表面抵抗が大きく低下し、10[Ω]を得ることができない。 As apparent from FIG. 1, the rate of change Δμ i / μ i of the initial permeability mu i the iron oxide (Fe 2 O 3) exceeds 50 mol% is significantly improved. Further, as can be seen from Comparative Example 3, when manganese oxide (MnO) is less than 3.8 mol%, the surface resistance is greatly reduced, and 10 7 [Ω] cannot be obtained.

(実施例11〜15)
次に、酸化ジルコニウム(ZrO)を添加する組成について試料を製造した。試料は表2に示すように、組成を変更した5つの試料とし、外形をリング形状のものとした。主成分の配合は、酸化鉄(Fe)は50.8mol%とし、酸化マンガン(MnO)は6.3mol%とし、酸化亜鉛(ZnO)は23.2mol%とし、酸化銅(CuO)は7.0mol%とし、残部となる酸化マグネシウム(MgO)は12.7mol%とし、そして、添加剤の酸化ジルコニウム(ZrO)は0〜0.5wt%の範囲で変更し、これらの組み合わせから5つの試料を用意した。製造工程および製造時の条件は、上述した表1の試料と同様であり、同様に焼結体を得た。
(Examples 11 to 15)
Next, a sample was manufactured for a composition to which zirconium oxide (ZrO 2 ) was added. As shown in Table 2, the samples were five samples with different compositions, and the outer shape was a ring shape. The main components are iron oxide (Fe 2 O 3 ) 50.8 mol%, manganese oxide (MnO) 6.3 mol%, zinc oxide (ZnO) 23.2 mol%, and copper oxide (CuO). Is 7.0 mol%, the remaining magnesium oxide (MgO) is 12.7 mol%, and the additive zirconium oxide (ZrO 2 ) is changed in the range of 0 to 0.5 wt%. Five samples were prepared. The manufacturing process and manufacturing conditions were the same as those of the sample in Table 1 described above, and a sintered body was obtained in the same manner.

Figure 2010163315
Figure 2010163315

各試料について初透磁率μの変化率Δμ/μ,表面抵抗を測定した。さらに本発明に係る組成の実施例11から実施例15についてその磁気特性を確認した。表2に示す測定結果から明らかなように、これらのものでは、初透磁率μの変化率Δμ/μが周波数10〜100kHzにおいて5%未満となり、表面抵抗が10[Ω]以上となる材質特性が得られることを確認した。 Rate of change of the initial permeability μ i Δμ i / μ i, the surface resistance was measured for each sample. Further, the magnetic properties of Examples 11 to 15 having the compositions according to the present invention were confirmed. As is apparent from the measurement results shown in Table 2, in these cases, the change rate Δμ i / μ i of the initial permeability μ i is less than 5% at a frequency of 10 to 100 kHz, and the surface resistance is 10 7 [Ω] or more. It was confirmed that the following material characteristics were obtained.

一方、図2は初透磁率μの周波数特性を示すグラフであり、実施例11〜15の特性を示している。図2から明らかなように、初透磁率μが最も高いものは、酸化ジルコニウム(ZrO)を0.2wt%添加した実施例13であるが、主成分の配合比および所望する仕様特性によって最適な添加量が変わってくる。このため、酸化ジルコニウム(ZrO)の添加は、0〜0.5wt%の範囲内で適宜に調整することが好ましい。 On the other hand, FIG. 2 is a graph showing the frequency characteristics of the initial permeability μ i and shows the characteristics of Examples 11-15. As is apparent from FIG. 2, the one having the highest initial permeability μ i is Example 13 in which 0.2 wt% of zirconium oxide (ZrO 2 ) is added. However, depending on the blending ratio of the main component and desired specification characteristics The optimum addition amount changes. For this reason, it is preferable to adjust the addition of zirconium oxide (ZrO 2 ) appropriately within a range of 0 to 0.5 wt%.

Claims (4)

Fe,Mn,Mg,Cu,Znを含む酸化物磁性材料であって、主成分は、
酸化鉄が50.1〜54.4mol%,
酸化マンガンが3.8〜20.3mol%,
酸化亜鉛が10.3〜25.0mol%,
酸化銅が5〜15mol%であり
残部を酸化マグネシウムとする組成であることを特徴とする酸化物磁性材料。
An oxide magnetic material containing Fe, Mn, Mg, Cu, Zn, the main component is
50.1-54.4 mol% of iron oxide,
Manganese oxide is 3.8-20.3 mol%,
Zinc oxide is 10.3 to 25.0 mol%,
An oxide magnetic material having a composition in which copper oxide is 5 to 15 mol% and the balance is magnesium oxide.
添加剤として、酸化ジルコニウムを0.5wt%程度あるいは0.5wt%よりも少ない微量を追加して添加することを特徴とする請求項1に記載の酸化物磁性材料。   2. The oxide magnetic material according to claim 1, wherein zirconium oxide is added as an additive in a small amount of about 0.5 wt% or less than 0.5 wt%. 前記組成による焼結体は、初透磁率μの変化率Δμ/μが周波数10〜100kHzにおいて5%未満であることを特徴とする請求項1あるいは2の何れか1項に記載の酸化物磁性材料。 3. The sintered body according to claim 1, wherein a change rate Δμ i / μ i of the initial permeability μ i is less than 5% at a frequency of 10 to 100 kHz. Oxide magnetic material. 前記組成による焼結体は、表面抵抗が10[Ω]以上であることを特徴とする請求項1あるいは2の何れか1項に記載の酸化物磁性材料。 The oxide magnetic material according to claim 1, wherein the sintered body having the composition has a surface resistance of 10 7 [Ω] or more.
JP2009006613A 2009-01-15 2009-01-15 Magnetic oxide material Active JP5660698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009006613A JP5660698B2 (en) 2009-01-15 2009-01-15 Magnetic oxide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009006613A JP5660698B2 (en) 2009-01-15 2009-01-15 Magnetic oxide material

Publications (2)

Publication Number Publication Date
JP2010163315A true JP2010163315A (en) 2010-07-29
JP5660698B2 JP5660698B2 (en) 2015-01-28

Family

ID=42579799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009006613A Active JP5660698B2 (en) 2009-01-15 2009-01-15 Magnetic oxide material

Country Status (1)

Country Link
JP (1) JP5660698B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503068A (en) * 2015-11-16 2019-01-31 アモテック・カンパニー・リミテッド Magnetic shielding unit for wireless power transmission and wireless power transmission module including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565331A (en) * 1979-06-26 1981-01-20 Tdk Corp Oxide type magnetic material of low electric power loss for use in high temperature range
JPS565332A (en) * 1979-06-26 1981-01-20 Tdk Corp Oxide magnetic material
JP2000044249A (en) * 1998-05-20 2000-02-15 Tdk Corp MnMgCuZn FERRITE MATERIAL

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565331A (en) * 1979-06-26 1981-01-20 Tdk Corp Oxide type magnetic material of low electric power loss for use in high temperature range
JPS565332A (en) * 1979-06-26 1981-01-20 Tdk Corp Oxide magnetic material
JP2000044249A (en) * 1998-05-20 2000-02-15 Tdk Corp MnMgCuZn FERRITE MATERIAL

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN7014003345; 五十嵐克彦: 'MgZnフェライトのインダクタンスの温度依存性' 粉体および粉末冶金 Vol.43 No.8, 199608, P.972-977 *
JPN7014003346; 五十嵐克彦: 'MnMgZnフェライトにおける緩和現象について' 粉体および粉末冶金 Vol.42 No.1, 199501, P.22-26 *
JPN7014003347; 沢井淳: 'CuO置換によるMnMgZnフェライトの低損失化' 日本応用磁気学会誌 Vol.21 No.5, 1997, p.915-918 *
JPN7014003348; TSUTOMU Iimura: 'Effects of Fe2+ Ion on the Initial Permeability of MnO-ZnO-FE2O3 Ferrites' Journal of the American Ceramic Society Vol.59 No.9-10, 1976, P.458-459 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503068A (en) * 2015-11-16 2019-01-31 アモテック・カンパニー・リミテッド Magnetic shielding unit for wireless power transmission and wireless power transmission module including the same

Also Published As

Publication number Publication date
JP5660698B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5546135B2 (en) MnZn-based ferrite core and manufacturing method thereof
JP4244193B2 (en) Method for producing MnZn ferrite and MnZn ferrite
JP5578766B2 (en) MnZn ferrite and transformer core
JP2006206347A (en) Oxide magnetic material
WO2007032338A1 (en) Ferrite material
JP2006193343A (en) Ferrite sintered body and electronic component using the same
JPWO2019123681A1 (en) MnCoZn ferrite and method for producing the same
JP2006206415A (en) Ferrite, electronic component and method of manufacturing the same
JP2008251848A (en) NiMnZn-BASED FERRITE AND ITS MANUFACTURING METHOD
JP4750563B2 (en) MnCoZn ferrite and transformer core
JP5660698B2 (en) Magnetic oxide material
JP2010120808A (en) MnZn FERRITE AND METHOD OF PRODUCING THE SAME
JP4656958B2 (en) Mn-Co-Zn ferrite
CN1686930A (en) High additivity ferrite in manganese zinc series and preparation method thereof
JP2010215453A (en) NiCuZn FERRITE
JP5387422B2 (en) Ferrite composition and electronic component
JP2004247371A (en) MnZn FERRITE
JP2022059859A (en) MnZn BASED FERRITE AND MANUFACTURING METHOD OF SAME
JP2010111545A (en) Ferrite composition and inductor
JP4761187B2 (en) Magnetic oxide material
JP2008184364A (en) Oxide magnetic material
JP2006232647A (en) Ni-Cu-Zn-BASED FERRITE MATERIAL AND ITS PRODUCTION METHOD
JP2007031210A (en) Mn-Zn FERRITE
JP2005179098A (en) Mn-Ni-Zn BASED FERRITE
JP5952236B2 (en) Mn-Zn-Ni ferrite and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5660698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250