JP2010161003A - Paste for electrode of fuel cell, membrane electrode assembly, and method for manufacturing paste for electrode - Google Patents

Paste for electrode of fuel cell, membrane electrode assembly, and method for manufacturing paste for electrode Download PDF

Info

Publication number
JP2010161003A
JP2010161003A JP2009003373A JP2009003373A JP2010161003A JP 2010161003 A JP2010161003 A JP 2010161003A JP 2009003373 A JP2009003373 A JP 2009003373A JP 2009003373 A JP2009003373 A JP 2009003373A JP 2010161003 A JP2010161003 A JP 2010161003A
Authority
JP
Japan
Prior art keywords
electrode
paste
polymer electrolyte
fuel cell
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009003373A
Other languages
Japanese (ja)
Other versions
JP5245838B2 (en
Inventor
Taizo Yamamoto
泰三 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2009003373A priority Critical patent/JP5245838B2/en
Publication of JP2010161003A publication Critical patent/JP2010161003A/en
Application granted granted Critical
Publication of JP5245838B2 publication Critical patent/JP5245838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a paste for an electrode of a fuel cell which is excellent in gas diffusion property of a catalyst layer and proton conductivity and obtains a high output while requiring small humidification or no humidificatiion. <P>SOLUTION: The method for manufacturing the paste for the electrode includes a first process in which a mixture containing catalyst carrying carbon and water is housed in a chamber and then a first intermediate product 30 is obtained by a centrifugal agitating method, and a second process in which the first intermediate product 30 and polymer electrolyte solution 35 which has a lower temperature than the first intermediate product 30 are poured from different input ports 43a, 43b to be joined and mixed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の電極用ペースト、膜電極接合体及び電極用ペーストの製造方法に関する。   The present invention relates to a fuel cell electrode paste, a membrane electrode assembly, and a method for producing an electrode paste.

従来、図13に示すような膜電極接合体(MEA:Membrane Electrode Assembly)90を用いた燃料電池システムが知られている。この膜電極接合体90は、ナフィオン(登録商標、Nafion(Dupon社製))等の固体高分子膜からなる電解質膜91と、この電解質膜91の一面に接合されて空気が供給されるカソード極93と、電解質膜91の他面に接合されて水素等の燃料が供給されるアノード極92とを有している。   Conventionally, a fuel cell system using a membrane electrode assembly (MEA) 90 as shown in FIG. 13 is known. The membrane electrode assembly 90 includes an electrolyte membrane 91 made of a solid polymer membrane such as Nafion (registered trademark, Nafion (manufactured by Dupon)), and a cathode electrode joined to one surface of the electrolyte membrane 91 and supplied with air. 93 and an anode 92 that is joined to the other surface of the electrolyte membrane 91 and is supplied with a fuel such as hydrogen.

カソード極93は、カーボンクロス、カーボンペーパー、カーボンフェルト等のガス透過性のある基材と、この基材の一面に形成されたカソード触媒層93aとからなる。カソード極93におけるカソード触媒層93a以外の部分は基材によって構成されており、ここは非電解質側でカソード触媒層93aに空気を拡散するカソード拡散層93bとされている。   The cathode electrode 93 includes a gas-permeable base material such as carbon cloth, carbon paper, carbon felt, and the like, and a cathode catalyst layer 93a formed on one surface of the base material. A portion of the cathode electrode 93 other than the cathode catalyst layer 93a is formed of a base material, which is a cathode diffusion layer 93b that diffuses air to the cathode catalyst layer 93a on the non-electrolyte side.

また、アノード極92も、上記基材と、この基材の一面に形成されたアノード触媒層92aとからなる。アノード極92におけるアノード触媒層92a以外の部分も基材によって構成されており、ここは非電解質側でアノード触媒層92aに空気を拡散するアノード拡散層92bとされている。   The anode 92 also includes the base material and an anode catalyst layer 92a formed on one surface of the base material. The portion other than the anode catalyst layer 92a in the anode electrode 92 is also formed of a base material, and this is an anode diffusion layer 92b that diffuses air to the anode catalyst layer 92a on the non-electrolyte side.

そして、この膜電極接合体90を図示しないセパレータで挟むことにより最小発電単位である燃料電池のセルが構成され、このセルが多数積層されて燃料電池スタックが構成される。カソード触媒層93aには空気供給手段によって空気が供給され、アノード触媒層92aには水素供給手段等によって水素等が供給されるようになっている。こうして燃料電池システムが構成される。   The membrane electrode assembly 90 is sandwiched between separators (not shown) to form a fuel cell as a minimum power generation unit, and a large number of these cells are stacked to form a fuel cell stack. Air is supplied to the cathode catalyst layer 93a by air supply means, and hydrogen or the like is supplied to the anode catalyst layer 92a by hydrogen supply means or the like. Thus, the fuel cell system is configured.

この膜電極接合体90では、アノード触媒層92aにおける電気化学的反応により、燃料から水素イオン(H+;プロトン)と電子とが生成される。そして、プロトンは水分子を伴ったH3+の形で電解質膜91内をカソード触媒層93aに向かって移動する。また、電子は、燃料電池システムに接続された負荷を通り、カソード触媒層93aに流れる。一方、カソード触媒層93aにおいては、空気中に含まれる酸素が還元されて水酸化物イオンとなり、プロトンが結合して水が生成される。このような電気化学的反応が連続して起こることにより、燃料電池システムは連続して電流を流し続けることができる。 In the membrane electrode assembly 90, hydrogen ions (H + ; protons) and electrons are generated from the fuel by an electrochemical reaction in the anode catalyst layer 92a. Protons move in the electrolyte membrane 91 toward the cathode catalyst layer 93a in the form of H 3 O + accompanied by water molecules. The electrons flow through the load connected to the fuel cell system and flow into the cathode catalyst layer 93a. On the other hand, in the cathode catalyst layer 93a, oxygen contained in the air is reduced to form hydroxide ions, and protons are combined to generate water. The continuous electrochemical reaction allows the fuel cell system to continuously pass a current.

上記のアノード触媒層92aやカソード触媒層93aに必要な特性としては、(1)酸化ガスや燃料ガスが拡散可能であること、(2)電気化学反応によって生じたプロトンを固体電解質膜へ移動させることが可能であること、(3)外部に電流を取り出すための電子伝導性が良好であることが挙げられる。そして、これらの特性を満たすために、電子伝導性を有する触媒担持カーボンと、プロトン伝導性を有する高分子固体電解質とを混合した電極用ペーストをカーボンクロス等の基材に塗布することによって、各触媒層が形成されていた。例えば、非特許文献1には、図14に示すように、触媒担持カーボンに高分子電解質溶液を注ぎ、超音波による撹拌を行って電極用ペーストとする方法が示されている。   The characteristics required for the anode catalyst layer 92a and the cathode catalyst layer 93a are as follows: (1) the oxidizing gas and fuel gas can be diffused; and (2) the proton generated by the electrochemical reaction is transferred to the solid electrolyte membrane. And (3) good electron conductivity for extracting current to the outside. And in order to satisfy these characteristics, each electrode paste is applied to a base material such as carbon cloth by mixing a catalyst-carrying carbon having electron conductivity and a polymer solid electrolyte having proton conductivity. A catalyst layer was formed. For example, as shown in FIG. 14, Non-Patent Document 1 discloses a method in which a polymer electrolyte solution is poured into catalyst-supporting carbon and stirred with ultrasonic waves to form an electrode paste.

しかし、このような方法で製造された電極用ペーストを用いて形成された触媒層では、高分子固体電解質に存在する親水性官能基の配向性が考慮されていないため、触媒層に存在する空孔側に多くの親水性官能基が存在することとなる。このため、空孔壁が親水性となって水濡れしやすくなるため、水が空孔に溜まり易く、溜まった水が空孔を介してのガスの拡散を阻害することとなる。
また、触媒担持カーボン側に配向し、かつ連通する親水性のパスが形成されていないため、カソード触媒層で生成した水が固体電解質膜側へ逆拡散し難くなる。このため、水がカソード触媒層内に滞留し、ガス拡散を阻害する要因となる。
さらには、触媒担持カーボンと高分子固体電解質とが大きな凝集塊(アグロメレート)となりやすく、アグロメレート内部の触媒担持カーボンが電極反応に寄与できなくなり、無駄となってしまう。加えて、触媒担持カーボンが固体高分子電解質にムラ無く付着していなければ、親水性パスの連通性が充分確保できず、上記水移送が円滑に行われなくなる。
However, in the catalyst layer formed using the electrode paste manufactured by such a method, the orientation of the hydrophilic functional group present in the polymer solid electrolyte is not taken into consideration. Many hydrophilic functional groups will be present on the pore side. For this reason, since the pore wall becomes hydrophilic and easily wets with water, the water easily accumulates in the pores, and the accumulated water inhibits gas diffusion through the pores.
Further, since a hydrophilic path that is oriented toward the catalyst-carrying carbon and does not communicate is not formed, water generated in the cathode catalyst layer is difficult to back-diffuse to the solid electrolyte membrane side. For this reason, water stays in the cathode catalyst layer and becomes a factor that inhibits gas diffusion.
Furthermore, the catalyst-carrying carbon and the polymer solid electrolyte tend to be large aggregates (agglomerates), and the catalyst-carrying carbon inside the agglomerates cannot contribute to the electrode reaction, which is wasted. In addition, unless the catalyst-carrying carbon adheres uniformly to the solid polymer electrolyte, the hydrophilic path cannot be sufficiently communicated, and the water transfer cannot be performed smoothly.

発明者らは、こうした問題点を解決する燃料電池の電極用ペーストの製造方法を既に開発している(特許文献1、2)。この製造方法では、第1工程として、チャンバー内に触媒担持カーボンと水とを含む混合物を収容した後、該チャンバーを公転させることによって該混合物に遠心力を付与しつつ、該チャンバーを自転させることによって該混合物を自身の自重で撹拌する。これにより、各触媒担持カーボンの表面から空気を強制的に追い出し、表面を水で覆われた状態にすることができる。この際、遠心力の付与及び撹拌のためにボール、プロペラ等の異物を用いないことから、触媒担持カーボン同士の接触は阻害され難い。   The inventors have already developed a method for producing an electrode paste for a fuel cell that solves these problems (Patent Documents 1 and 2). In this production method, as a first step, after containing a mixture containing catalyst-supporting carbon and water in the chamber, the chamber is rotated to revolve the chamber while applying centrifugal force to the mixture by revolving the chamber. The mixture with its own weight. As a result, air can be forced out of the surface of each catalyst-supporting carbon, and the surface can be covered with water. At this time, since foreign substances such as balls and propellers are not used for imparting centrifugal force and stirring, contact between the catalyst-supporting carbons is hardly hindered.

そして、第2工程として、第1工程で得られた混合物にイソプロピルアルコールを含む高分子電解質の溶液を混合し、電極用ペーストを得る。この際、各触媒担持カーボンは水に対する濡れ性を有していることから、高分子電解質は各触媒担持カーボン側に高分子電解質が有するプロトン交換基を配向させる。そして、互いに接触する各触媒担持カーボンと高分子電解質との間に、水によって互いに連続する親水層が形成された本発明の電極用ペーストが得られる。   And as a 2nd process, the polymer electrolyte solution containing isopropyl alcohol is mixed with the mixture obtained at the 1st process, and the paste for electrodes is obtained. At this time, since each catalyst-supporting carbon has wettability to water, the polymer electrolyte orients proton exchange groups of the polymer electrolyte on the catalyst-supporting carbon side. And the paste for electrodes of this invention in which the hydrophilic layer which mutually continues with water was formed between each catalyst support carbon and polymer electrolyte which mutually contact is obtained.

こうして得られた電極用ペーストは、図15に示すように、互いに接触する各触媒担持カーボン100と高分子電解質101との間に、水によって互いに連続する親水層102が形成されている。このため、この電極用ペーストを用いて燃料電池のアノード極やカソード極を製造すれば、そのアノード極やカソード極は親水層によってプロトンが移動しやすい。また、高分子電解質はその親水層側にプロトン交換基を配向させているため、プロトンの移動に親水層が有効に活用される。
また、高分子電解質の疎水性部分は空孔側に配向して空孔側が疎水性になるため、水が溜まり難く、フラッディングが防止され、ガス拡散が阻害され難くなる。このため、燃料電池システムは、MEAのアノード極、電解質膜及びカソード極でH3が良好に移動し、軽加湿又は無加湿でありながら高出力が得られる。
In the electrode paste thus obtained, as shown in FIG. 15, hydrophilic layers 102 that are continuous with each other are formed by water between the catalyst-supporting carbon 100 and the polymer electrolyte 101 that are in contact with each other. For this reason, if an anode electrode or a cathode electrode of a fuel cell is manufactured using this electrode paste, protons easily move through the hydrophilic layer in the anode electrode or the cathode electrode. In addition, since the proton exchange group is oriented on the hydrophilic layer side of the polymer electrolyte, the hydrophilic layer is effectively used for proton transfer.
Further, since the hydrophobic portion of the polymer electrolyte is oriented toward the pores and becomes hydrophobic, the water is difficult to accumulate, flooding is prevented, and gas diffusion is hardly inhibited. For this reason, in the fuel cell system, H 3 O + moves well at the anode electrode, electrolyte membrane, and cathode electrode of the MEA, and a high output can be obtained while being lightly humidified or not humidified.

特開2006−140061号公報JP 2006-140061 A 特開2006−140062号公報JP 2006-140062 JP

Handbook of Fuel Cells(John Wiley & Sons Lid.(2003))vol.3 p538Handbook of Fuel Cells (John Wiley & Sons Lid. (2003)) vol.3 p538

しかし、特許文献1及び2に記載の電極用ペーストは、軽加湿又は無加湿において、さらにそれを用いた燃料電池の出力を高める要請があった。   However, the electrode pastes described in Patent Documents 1 and 2 have been requested to further increase the output of a fuel cell using the same in light humidification or non-humidification.

本発明は、上記従来の実情に鑑みてなされたものであって、触媒層のガス拡散性及びプロトン伝導性に優れ、軽加湿又は無加湿でありながら高出力が得られる燃料電池の電極用ペーストを製造可能にすることを解決すべき課題としている。   The present invention has been made in view of the above-described conventional circumstances, and is excellent in gas diffusibility and proton conductivity of a catalyst layer, and is a paste for a fuel cell electrode capable of obtaining high output while being lightly humidified or non-humidified. Making it possible to manufacture is a problem to be solved.

本発明者は、上記従来の課題を解決するために、上記特許文献1に記載の電極用ペーストの製造方法について、さらに鋭意研究を行なった。その結果、触媒担持カーボンと水との混合物と、高分子電解質溶液とを撹拌するときの、それぞれの温度が、電極用ペーストの性能に深く関わっているという驚くべき事実を発見した。そしてさらに研究を進めた結果、高分子電解質溶液の温度が、触媒担持カーボンと水との混合物の温度よりも低い場合に、上記課題を解決できることを見出し、本発明を完成するに至った。   In order to solve the above-described conventional problems, the present inventor has further conducted earnest research on the method for manufacturing the electrode paste described in Patent Document 1. As a result, they have discovered the surprising fact that the temperature at which the mixture of the catalyst-supporting carbon and water and the polymer electrolyte solution are agitated is closely related to the performance of the electrode paste. As a result of further research, it was found that the above problems can be solved when the temperature of the polymer electrolyte solution is lower than the temperature of the mixture of the catalyst-supporting carbon and water, and the present invention has been completed.

すなわち、本発明の燃料電池の電極用ペーストの製造方法は、カーボン粉末に触媒金属を担持してなる触媒担持カーボンと、各該触媒担持カーボンを互いに結合するとともにガス透過性を有する基材に結合するための高分子電解質の溶液とを混合して電極用ペーストを得る燃料電池の電極用ペーストの製造方法であって、
チャンバー内に前記触媒担持カーボンと水とを含む混合物を収容した後、該チャンバーを公転させることによって該混合物に遠心力を付与しつつ、該チャンバーを自転させる遠心撹拌法によって該混合物を自身の自重で撹拌して第1中間物を得る第1工程と、
該第1中間物と、該第1中間物の温度よりも低い温度とされた高分子電解質溶液とを、別々の流入口から流入させて合流混合することにより電極用ペーストを得る第2工程とを備えていることを特徴とする。
That is, the method for producing a paste for an electrode of a fuel cell according to the present invention comprises a catalyst-supporting carbon obtained by supporting a catalyst metal on carbon powder, and each catalyst-supporting carbon and a base material having gas permeability. A method for producing an electrode paste for a fuel cell to obtain a paste for an electrode by mixing a polymer electrolyte solution for
After the mixture containing the catalyst-supporting carbon and water is accommodated in the chamber, the mixture is subjected to its own weight by a centrifugal stirring method in which the chamber is rotated while revolving the chamber while applying centrifugal force to the mixture. A first step of stirring to obtain a first intermediate;
A second step of obtaining an electrode paste by introducing the first intermediate and a polyelectrolyte solution having a temperature lower than the temperature of the first intermediate from separate inlets and combining them; It is characterized by having.

本発明の燃料電池の電極用ペーストの製造方法は、まず、第1工程として、チャンバー内に前記触媒担持カーボンと水とを含む混合物を収容した後、該チャンバーを公転させることによって該混合物に遠心力を付与しつつ、該チャンバーを自転させることによって該混合物を自身の自重で撹拌し、第1中間物を得る。これにより、各触媒担持カーボンの表面から空気を強制的に追い出し、表面を水で覆われた状態にすることができる。この際、遠心力の付与及び撹拌のためにボール、プロペラ等の異物を用いないことから、触媒担持カーボン同士の接触は阻害され難い。   In the method for producing a paste for a fuel cell electrode according to the present invention, first, as a first step, a mixture containing the catalyst-supporting carbon and water is contained in a chamber, and then the mixture is centrifuged to revolve the mixture. While applying force, the mixture is stirred by its own weight by rotating the chamber to obtain a first intermediate. As a result, air can be forced out of the surface of each catalyst-supporting carbon, and the surface can be covered with water. At this time, since foreign substances such as balls and propellers are not used for imparting centrifugal force and stirring, contact between the catalyst-supporting carbons is hardly hindered.

そして、第2工程として、第1中間物と、該第1中間物の温度よりも低い温度とされた高分子電解質溶液とを、別々の流入口から流入させて合流混合することにより電極用ペーストを得る。これにより、触媒層のガス拡散性及びプロトン伝導性に優れ、軽加湿又は無加湿でありながら高出力が得られる燃料電池の電極用ペーストを得ることができる。   Then, as the second step, the first intermediate and the polymer electrolyte solution having a temperature lower than the temperature of the first intermediate are introduced from different inlets and mixed and mixed to form an electrode paste. Get. Thereby, it is possible to obtain a fuel cell electrode paste which is excellent in gas diffusibility and proton conductivity of the catalyst layer, and can obtain high output while being lightly humidified or non-humidified.

第2工程において、高分子電解質溶液の温度が、第1中間物である触媒担持カーボンと水との混合物の温度よりも低い場合に、このように優れた性質の電極用ペーストが得られる理由については、次のように考えられる。すなわち、第1工程において得られる第1中間物は、多くの触媒担持カーボンが寄り集まったアグロメレートを形成しており、そのアグロメレートの表面に水が包み込むように存在する状態となっている。そして、第2工程において、第1中間物と、第1中間物の温度よりも低い温度とされた高分子電解質溶液とを、別々の流入口から流入させて合流混合すると、第1中間物のアグロメレートの周囲に存在する高分子電解質溶液の温度が局所的に高くなり、高分子電解質分子の運動性を選択的に高めることとなる。こうして活発化した高分子電解質分子は、より安定な配向をとるべく、水が存在しているため親水性となったアグロメレート側に親水性官能基を向けて配向する。こうして、本発明によって得られる電極用ペーストは、互いに接触する各触媒担持カーボンと高分子電解質との間に水によって互いに連続する親水層が形成されている。このため、この電極用ペーストを用いて燃料電池のアノード極やカソード極を製造すれば、そのアノード極やカソード極は親水層によってプロトンが移動しやすくなる。また、高分子電解質のプロトン交換基は、アグロメレートの表面に存在する水に強く配向するため、プロトンの移動に親水層が有効に活用される。さらには、高分子電解質の疎水基部分はアグロメレートの表面に存在する水から離れて配置されるため、ガス経路が疎水性となり、水によってガス経路が塞がれることが防止される。   In the second step, when the temperature of the polymer electrolyte solution is lower than the temperature of the mixture of the catalyst-supporting carbon that is the first intermediate and water, an electrode paste having such excellent properties can be obtained. Is considered as follows. That is, the first intermediate obtained in the first step forms an agglomerate in which many catalyst-carrying carbons are gathered, and is in a state where water is wrapped around the surface of the agglomerate. Then, in the second step, when the first intermediate and the polymer electrolyte solution having a temperature lower than the temperature of the first intermediate are introduced from separate inlets and mixed and mixed, The temperature of the polymer electrolyte solution existing around the agglomerate is locally increased, and the mobility of the polymer electrolyte molecules is selectively increased. The thus activated polyelectrolyte molecules are oriented with a hydrophilic functional group directed toward the agglomerate side that has become hydrophilic due to the presence of water in order to obtain a more stable orientation. Thus, in the electrode paste obtained by the present invention, hydrophilic layers that are continuous with each other by water are formed between the catalyst-supporting carbon and the polymer electrolyte that are in contact with each other. For this reason, if an anode electrode or a cathode electrode of a fuel cell is manufactured using this electrode paste, protons are easily moved by the hydrophilic layer in the anode electrode or the cathode electrode. In addition, since the proton exchange group of the polymer electrolyte is strongly oriented to the water present on the surface of the agglomerate, the hydrophilic layer is effectively used for proton transfer. Furthermore, since the hydrophobic group portion of the polymer electrolyte is arranged away from the water present on the surface of the agglomerate, the gas path becomes hydrophobic and the water prevents the gas path from being blocked.

また、本発明の電極用ペーストの製造方法における第2工程において、第1中間物と、第1中間物の温度よりも低い温度とされた高分子電解質溶液とを、別々の流入口から流入させるのは、次の理由による。すなわち、第1中間物と、第1中間物の温度よりも低い温度とされた高分子電解質溶液とを、バッチ処理で混合撹拌した場合、混合前の両者の温度差を保つためには、少量づつ行なわなければならない。なぜならば、両者を多量に混合撹拌した場合、充分に交じり合う前に、両者の温度差が小さくなってしまうからである。
これに対して、第1中間物と、第1中間物の温度よりも低い温度とされた高分子電解質溶液とを、別々の流入口から流入させた場合には、第1中間物と高分子電解質溶液とが、それぞれ常に所定の温度で合流し、少量ずつ撹拌される。このため、第1中間物のアグロメレートの周囲に存在する高分子電解質溶液の温度を局所的に高め、高分子電解質分子の運動性を選択的に高めるという効果が充分に発揮され、親水性となったアグロメレート側への親水性官能基の配向性がさらに顕著となり、上記本発明の効果が高いものとなる。また、第2工程によれば、電極用ペーストを連続的に製造することができるため、生産性が向上し、ひいては電極用ペーストの製造コストを低廉なものとすることができる。
Further, in the second step in the method for producing an electrode paste of the present invention, the first intermediate and the polymer electrolyte solution having a temperature lower than the temperature of the first intermediate are caused to flow from separate inlets. The reason is as follows. That is, when the first intermediate and the polymer electrolyte solution having a temperature lower than the temperature of the first intermediate are mixed and stirred in a batch process, a small amount is required to maintain the temperature difference between the two before mixing. Must be done one by one. This is because, when both are mixed and stirred in a large amount, the temperature difference between the two becomes small before they are sufficiently mixed.
On the other hand, when the first intermediate and the polymer electrolyte solution having a temperature lower than the temperature of the first intermediate are introduced from separate inlets, the first intermediate and the polymer The electrolyte solution always joins at a predetermined temperature and is stirred little by little. For this reason, the effect of locally increasing the temperature of the polymer electrolyte solution existing around the agglomerate of the first intermediate and selectively increasing the mobility of the polymer electrolyte molecules is sufficiently exerted and becomes hydrophilic. Further, the orientation of the hydrophilic functional group toward the agglomerate side becomes more remarkable, and the effect of the present invention is high. Further, according to the second step, since the electrode paste can be continuously manufactured, the productivity is improved, and as a result, the manufacturing cost of the electrode paste can be reduced.

本発明において、第2工程において第1中間物と高分子電解質溶液との合流混合時に超音波照射による混合を併用することが好ましい。これにより、第1中間物と高分子電解質溶液とを、超音波による振動によってさらに迅速かつ充分に混合することができる。このため、両者の温度差が保たれた状態での撹拌が容易となり、親水性となったアグロメレート側への親水性官能基の配向性がさらに顕著となり、上記本発明の効果がさらに高いものとなる。   In the present invention, it is preferable to use a combination of ultrasonic irradiation during the merging and mixing of the first intermediate and the polymer electrolyte solution in the second step. As a result, the first intermediate and the polymer electrolyte solution can be further rapidly and sufficiently mixed by vibration by ultrasonic waves. For this reason, stirring in a state where the temperature difference between the two is maintained becomes easy, the orientation of the hydrophilic functional group toward the agglomerate side that has become hydrophilic becomes more remarkable, and the effect of the present invention is further enhanced. Become.

本発明において、第2工程における第1中間物の温度と、高分子電解質溶液の温度は、得られる電極用ペーストの特性に大きな影響を与える。本発明者の実験結果によれば、第1中間物と高分子電解質溶液とを混合するときの第1中間物の温度は30〜70℃とされており、高分子電解質溶液の温度は20〜50℃とされていることが好ましい。特に好ましいのは第1中間物の温度が35〜50℃、高分子電解質溶液の温度が20〜40℃であり、最も好ましいのは第1中間物の温度が35〜50℃、第1中間物の温度が20〜30℃である。   In the present invention, the temperature of the first intermediate in the second step and the temperature of the polymer electrolyte solution greatly affect the characteristics of the obtained electrode paste. According to the experiment results of the present inventors, the temperature of the first intermediate when mixing the first intermediate and the polymer electrolyte solution is 30 to 70 ° C., and the temperature of the polymer electrolyte solution is 20 to 20 ° C. The temperature is preferably 50 ° C. Particularly preferred is a temperature of the first intermediate of 35-50 ° C. and a temperature of the polymer electrolyte solution of 20-40 ° C., and most preferred is a temperature of the first intermediate of 35-50 ° C. The temperature is 20-30 ° C.

本発明の燃料電池の膜電極接合体の製造方法は、高分子固体電解質層と、該高分子固体電解質層の一面に接合されて空気が供給されるカソード極と、該高分子固体電解質層の他面に接合されて燃料が供給されるアノード極とを有する燃料電池の膜電極接合体の製造方法において、上記電極用ペーストを前記基材の一面に塗布してなる電極を前記カソード極及びアノード極の少なくとも一方に用いることを特徴とする。   The method for producing a membrane electrode assembly for a fuel cell according to the present invention comprises a polymer solid electrolyte layer, a cathode electrode joined to one surface of the polymer solid electrolyte layer and supplied with air, and the polymer solid electrolyte layer. In a manufacturing method of a membrane electrode assembly of a fuel cell having an anode electrode joined to another surface and supplied with fuel, an electrode formed by applying the electrode paste on one surface of the substrate is the cathode electrode and the anode. It is used for at least one of the poles.

こうして得られる膜電極接合体は、互いに接触する各触媒担持カーボンと高分子電解質との間に水によって互いに連続する親水層が形成されている。このため、アノード極やカソード極は親水層によってプロトンが移動しやすい。また、高分子電解質は親水層側にプロトン交換基を高度に配向させているため、プロトンの移動に親水層が有効に活用される。   In the membrane electrode assembly thus obtained, hydrophilic layers that are continuous with each other are formed by water between the catalyst-supporting carbon and the polymer electrolyte that are in contact with each other. For this reason, protons tend to move in the anode and cathode by the hydrophilic layer. In addition, since the polymer electrolyte has proton exchange groups highly oriented on the hydrophilic layer side, the hydrophilic layer is effectively used for proton transfer.

実施形態における第1工程を示す工程図である。It is process drawing which shows the 1st process in embodiment. 自転/公転式遠心撹拌機のチャンバーの模式図である。It is a schematic diagram of the chamber of a rotation / revolution type centrifugal stirrer. 自転/公転式遠心撹拌機のチャンバーの回転状態を示す模式図である。It is a schematic diagram which shows the rotation state of the chamber of a rotation / revolution type centrifugal stirrer. 撹拌工程S3における撹拌状態を示す拡大模式図である。It is an expansion schematic diagram which shows the stirring state in stirring process S3. 撹拌工程S3終了後におけるアグロメレートの状態を示した拡大模式図である。It is the expansion schematic diagram which showed the state of the agglomerate after completion | finish of stirring process S3. 電極用ペースト製造装置の模式図である。It is a schematic diagram of the paste manufacturing apparatus for electrodes. 実施形態に係るマイクロ混合器の斜視図である。It is a perspective view of the micromixer concerning an embodiment. 試験例の電極用ペーストの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the paste for electrodes of a test example. 本撹拌工程S7における撹拌状態を示す拡大模式図である。It is an expansion schematic diagram which shows the stirring state in this stirring process S7. 本撹拌工程S7終了後におけるアグロメレートの状態を示した拡大模式図である。It is the expansion schematic diagram which showed the state of the agglomerate after this stirring process S7 completion | finish. 燃料電池単層セルの模式断面図である。It is a schematic cross section of a fuel cell single layer cell. 電流密度とセル電圧との関係、及び電流密度と電池抵抗との関係を示すグラフである。It is a graph which shows the relationship between a current density and a cell voltage, and the relationship between a current density and battery resistance. 従来のMEAを示す模式断面図である。It is a schematic cross section which shows the conventional MEA. 従来の電極用ペーストの製造方法を示す図である。It is a figure which shows the manufacturing method of the conventional paste for electrodes. 特許文献1に記載された方法で製造された電極用ペーストを用いた触媒層の模式拡大断面図である。It is a model expanded sectional view of the catalyst layer using the paste for electrodes manufactured by the method described in patent documents 1.

以下、本発明を具体化した実施形態を図面を参照しつつ説明する。
<第1工程>
まず、第1工程として図1の工程図に従って第1中間物を製造した。
すなわち、市販の触媒担持カーボン1gをビーカーに入れ、150°Cの真空乾燥チャンバー内に1時間真空乾燥した後、粉砕機で粉砕した(粉砕工程S1)。触媒担持カーボンを真空乾燥するのは、各触媒担持カーボンの表面の不純物を可及的に除去し、親水性に近づけるためである。触媒担持カーボンは、ほぼ球形のカーボン粉末にPtからなる触媒金属を60重量%担持してなるものである。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.
<First step>
First, the 1st intermediate was manufactured according to the flowchart of FIG. 1 as a 1st process.
That is, 1 g of commercially available catalyst-supporting carbon was put in a beaker, vacuum-dried in a vacuum drying chamber at 150 ° C. for 1 hour, and then pulverized by a pulverizer (pulverization step S1). The reason why the catalyst-carrying carbon is vacuum-dried is to remove the impurities on the surface of each catalyst-carrying carbon as much as possible and to bring it close to hydrophilicity. The catalyst-supporting carbon is obtained by supporting 60% by weight of a catalyst metal composed of Pt on a substantially spherical carbon powder.

その後、水添加工程S2において、真空乾燥した触媒担持カーボンに水12gを加え、さらに撹拌工程S3において、以下の方法により遠心撹拌し、第1中間物を得た。すなわち、まず、図2に示すチャンバー10を有する自転/公転式遠心撹拌機(キーエンス社製、商品名「ハイブリッドミキサーHM−500」)を用意した。このチャンバー10は、容器10aと、この容器10aを封止する蓋10bとからなり、中心点O回りに、中心点Oから延びる自己の軸芯Pが円錐を描くように高速で公転されるとともに、軸芯P回りに高速で自転され得るようになっている(図3参照)。このチャンバー10内に触媒担持カーボン11と、触媒担持カーボン11の8倍当量の水12とを含む混合物20を収容した。この後、チャンバー10を公転させることによって混合物20に遠心力を付与しつつ、チャンバー10を自転させることによって混合物20自身の自重で撹拌した。 Thereafter, in the water addition step S2, 12 g of water was added to the vacuum-dried catalyst-supported carbon, and in the stirring step S3, centrifugal stirring was performed by the following method to obtain a first intermediate. That is, first, a rotation / revolution centrifugal stirrer (manufactured by Keyence Corporation, trade name “Hybrid Mixer HM-500”) having the chamber 10 shown in FIG. 2 was prepared. The chamber 10 includes a container 10a, the container 10a made of a lid 10b which seals the, to the center point O 1 about, the axis P of the self is revolved at a high speed to draw a cone extending from the central point O 1 And can be rotated around the axis P at high speed (see FIG. 3). In this chamber 10, a mixture 20 containing catalyst-carrying carbon 11 and water 12 equivalent to 8 times the amount of catalyst-carrying carbon 11 was accommodated. Thereafter, the chamber 10 was revolved by rotating the chamber 10 by rotating the chamber 10 while applying centrifugal force to the mixture 20 by revolving the chamber 10.

この撹拌工程S3では、図4に示すように、粘度が低くて比重の小さい水12が、粘度が大きくて比重の大きい混合物20の上を高速で移動する。このため、混合物20は大きなせん断力を受けて、表面から剥がれて小さな塊から成るアグロメレート32が形成される。こうして、図5に示すように、触媒担持カーボン31が集合したアグロメレート32の周りを水33が取り囲んだ状態となり、水に対する濡れ性が付与された第1中間物30が得られる。この際、遠心力の付与及び撹拌のためにボール、プロペラ等の異物を用いないことから、触媒担持カーボン31同士の接触を阻害することがない。以上の粉砕工程S1、水添加工程S2及び撹拌工程S3が第1工程である。   In the stirring step S3, as shown in FIG. 4, the water 12 having a low viscosity and a low specific gravity moves at high speed on the mixture 20 having a high viscosity and a high specific gravity. For this reason, the mixture 20 receives a large shearing force and is peeled off from the surface to form an agglomerate 32 composed of small lumps. In this way, as shown in FIG. 5, the water 33 surrounds the agglomerate 32 in which the catalyst-supporting carbon 31 is gathered, and the first intermediate 30 imparted with wettability to water is obtained. At this time, since foreign substances such as balls and propellers are not used for applying centrifugal force and stirring, contact between the catalyst-supporting carbons 31 is not hindered. The above pulverization step S1, water addition step S2 and stirring step S3 are the first step.

<第2工程>
次に上記第1工程で得られた第1中間物30と、高分子電解質溶液とを用意する。そして、図6に示す電極用ペースト製造装置40を用いて電極用ペーストを製造する。
<Second step>
Next, the first intermediate 30 obtained in the first step and a polymer electrolyte solution are prepared. And the electrode paste is manufactured using the electrode paste manufacturing apparatus 40 shown in FIG.

この電極用ペースト製造装置40には、第1中間物30を収容する第1中間物収容容器41と、高分子電解液35を収容する電解液収容容器42とが設けられており、第1中間物収容容器41及び電解液収容容器42にはそれぞれ輸送チューブ41a、42aが接続されている。輸送チューブ41aはチューブポンプ41b、温調ヒータ41cを経て、マイクロ混合器43の流入口43aに接続されている。また、輸送チューブ42aはチューブポンプ42b、温調ヒータ42cを経て、マイクロ混合器43の流入口43bに接続されている。   The electrode paste manufacturing apparatus 40 is provided with a first intermediate container 41 that stores the first intermediate 30 and an electrolyte container 42 that stores the polymer electrolyte 35. Transport tubes 41a and 42a are connected to the object storage container 41 and the electrolyte solution storage container 42, respectively. The transport tube 41a is connected to the inlet 43a of the micromixer 43 via a tube pump 41b and a temperature control heater 41c. The transport tube 42a is connected to the inlet 43b of the micromixer 43 through a tube pump 42b and a temperature control heater 42c.

マイクロ混合器43は、図7に示すように、2枚の四角板状の上ブロック43c及び下ブロック43dを重ねた構造とされており、下ブロックの上面にはT字状の流路溝43eが形成されており、流路溝43eの3つの端のうち、2つは流入口43a及び流入口43bに接続されており、残りは吐出口43fに接続されている。また、下ブロック43dの内部には熱交換チューブ43gが設けられており、熱交換チューブ43gは図示しない電気ヒータを内蔵する温水循環装置44(図6参照)に接続されている。さらに、流路溝43eが3方向に分かれる分岐点の上方には超音波発生器45が上ブロック43cに接触して取付けられている。   As shown in FIG. 7, the micro mixer 43 has a structure in which two rectangular plate-like upper blocks 43c and a lower block 43d are stacked, and a T-shaped channel groove 43e is formed on the upper surface of the lower block. Of the three ends of the channel groove 43e, two are connected to the inlet 43a and the inlet 43b, and the rest are connected to the outlet 43f. In addition, a heat exchange tube 43g is provided inside the lower block 43d, and the heat exchange tube 43g is connected to a hot water circulation device 44 (see FIG. 6) incorporating an electric heater (not shown). Furthermore, an ultrasonic generator 45 is attached to the upper block 43c above the branch point where the flow channel 43e is divided in three directions.

上記チューブポンプ41b、42a、温調ヒータ41c、42c、温水循環装置44及び超音波発生器45は、制御装置46に接続され制御可能とされている。   The tube pumps 41b and 42a, the temperature control heaters 41c and 42c, the hot water circulation device 44 and the ultrasonic generator 45 are connected to a control device 46 and can be controlled.

以上のように構成された電極用ペースト製造装置40を用いて、以下のようにして電極用ペーストを製造する。すなわち、図6に示す制御装置46によって温調ヒータ41c、42cを制御して、所定の温度に調節する。このとき温調ヒータ41c内の輸送チューブ41a内を流れる第1中間物30の温度(T1)よりも、温調ヒータ42c内の輸送チューブ42a内を流れる高分子電解液35の温度(T2)の方が低くなるように調整する。そして、制御装置46によってチューブポンプ41b、42b、温水循環装置44及び超音波発生器45を駆動させる。これにより第1中間物30は輸送チューブ41aを通り、チューブポンプ41b、温調ヒータ41cを経て、所定の温度(T1)となってマイクロ混合器43の流入口43aに流入する。また、高分子電解液35は、輸送チューブ42aを通り、チューブポンプ42b、温調ヒータ42cを経て、所定の温度(T2)となってマイクロ混合器43の流入口43bに流入する。   Using the electrode paste manufacturing apparatus 40 configured as described above, an electrode paste is manufactured as follows. That is, the temperature control heaters 41c and 42c are controlled by the control device 46 shown in FIG. 6 to adjust to a predetermined temperature. At this time, the temperature (T2) of the polymer electrolyte 35 flowing in the transport tube 42a in the temperature control heater 42c is higher than the temperature (T1) of the first intermediate 30 flowing in the transport tube 41a in the temperature control heater 41c. Adjust so that it is lower. Then, the tube pumps 41 b and 42 b, the hot water circulation device 44 and the ultrasonic generator 45 are driven by the control device 46. As a result, the first intermediate 30 passes through the transport tube 41a, passes through the tube pump 41b and the temperature control heater 41c, and flows into the inlet 43a of the micromixer 43 at a predetermined temperature (T1). The polymer electrolyte 35 passes through the transport tube 42a, passes through the tube pump 42b and the temperature control heater 42c, and flows into the inlet 43b of the micromixer 43 at a predetermined temperature (T2).

そして、さらに第1中間物30及び高分子電解液35は、図7に示すT字状の流路溝43eの両端から流入し、中央で合流混合される。ここで、合流点の上方には超音波発生器45が上ブロック43cに接触して取付けられているため、超音波発生器45からの振動が上ブロック43cに伝わり、流体の流れに振動エネルギーが加わって第1中間物30と高分子電解液35とが急速に混合される。そしてさらに吐出口43fにから電極用ペーストが吐出される。   Further, the first intermediate 30 and the polymer electrolyte 35 flow in from both ends of the T-shaped channel groove 43e shown in FIG. 7, and are merged and mixed at the center. Here, since the ultrasonic generator 45 is mounted in contact with the upper block 43c above the confluence, vibration from the ultrasonic generator 45 is transmitted to the upper block 43c, and vibration energy is transmitted to the fluid flow. In addition, the first intermediate 30 and the polymer electrolyte solution 35 are rapidly mixed. Further, the electrode paste is discharged from the discharge port 43f.

こうして得られた電極用ペーストは、流路溝43e内での流れによる混合と、超音波発生器45による振動により、第1中間物30の温度(T1)>高分子電解液35の温度(T2)の状態で急速に混合撹拌される。このため、第1中間物30のアグロメレートの周囲に存在する高分子電解質溶液30の温度が局所的に高くなり、高分子電解質分子の運動性を選択的に高めることとなる。こうして活発化した高分子電解質分子は、より安定な配向をとるべく、水が存在しているため親水性となったアグロメレート側に親水性官能基を向けて配向する。このため、こうして得られた電極用ペーストは、互いに接触する各触媒担持カーボンと高分子電解質との間に水によって互いに連続する親水層が形成されている。このため、この電極用ペーストを用いて燃料電池のアノード極やカソード極を製造すれば、そのアノード極やカソード極は親水層によってプロトンが移動しやすくなる。また、高分子電解質のプロトン交換基は、アグロメレートの表面に存在する水に強く配向するため、プロトンの移動に親水層が有効に活用される。さらには、高分子電解質の疎水基部分はアグロメレートの表面に存在する水から離れて配置されるため、ガス経路が疎水性となり、水によってガス経路が塞がれることが防止される。   The electrode paste thus obtained is mixed by the flow in the flow channel 43e and vibrated by the ultrasonic generator 45, so that the temperature of the first intermediate 30 (T1)> the temperature of the polymer electrolyte 35 (T2). ) And rapidly mixing and stirring. For this reason, the temperature of the polymer electrolyte solution 30 existing around the agglomerate of the first intermediate 30 is locally increased, and the mobility of the polymer electrolyte molecules is selectively increased. The thus activated polyelectrolyte molecules are oriented with a hydrophilic functional group directed toward the agglomerate side that has become hydrophilic due to the presence of water in order to obtain a more stable orientation. For this reason, in the electrode paste thus obtained, hydrophilic layers that are continuous with each other are formed by water between the catalyst-supporting carbon and the polymer electrolyte that are in contact with each other. For this reason, if an anode electrode or a cathode electrode of a fuel cell is manufactured using this electrode paste, protons are easily moved by the hydrophilic layer in the anode electrode or the cathode electrode. In addition, since the proton exchange group of the polymer electrolyte is strongly oriented to the water present on the surface of the agglomerate, the hydrophilic layer is effectively used for proton transfer. Furthermore, since the hydrophobic group portion of the polymer electrolyte is arranged away from the water present on the surface of the agglomerate, the gas path becomes hydrophobic and the water prevents the gas path from being blocked.

(試験例)
上記実施形態の発明の効果を明らかにすべく、以下の試験を行なった。
(試験例1〜4)
図8に示すように、上記実施形態において行ったのと同様の第1工程(すなわち、粉砕工程S1、水添加工程S2及び撹拌工程S3)を行なった。
(Test example)
In order to clarify the effects of the invention of the above embodiment, the following tests were conducted.
(Test Examples 1 to 4)
As shown in FIG. 8, the 1st process (namely, crushing process S1, water addition process S2, and stirring process S3) similar to what was performed in the said embodiment was performed.

そして、温調工程S4において、第1中間物30を70℃の温浴上で加温した後、準備撹拌工程S5を行った。この準備撹拌工程S5は、撹拌工程S3と同じ遠心撹拌方法であり、その目的は、温調工程S4における加温の際、水分の蒸発及び凝集によって水分と触媒担持カーボンとが分離する現象を起こした場合に、これを元の状態(すなわち、図5に示すような、触媒担持カーボン31が集合したアグロメレート32の周りを水33が取り囲んだ状態)に戻すことにある。   And in temperature control process S4, after heating the 1st intermediate 30 on a 70 degreeC warm bath, preparation stirring process S5 was performed. This preparatory stirring step S5 is the same centrifugal stirring method as the stirring step S3, and its purpose is to cause a phenomenon in which water and catalyst-supported carbon are separated by evaporation and aggregation of water during heating in the temperature adjustment step S4. In this case, this is to return to the original state (that is, the state in which the water 33 surrounds the agglomerate 32 in which the catalyst-carrying carbon 31 is gathered as shown in FIG. 5).

そして、さらに高分子電解質添加工程S6として、温度Tとされた第1中間物30に、温度Tより低い所定の温度Tとされたナフィオン(登録商標)溶液を添加し(試験例1ではT=40℃、T=20℃、試験例2ではT=40℃、T=35℃、試験例3ではT=30℃、T=20℃、試験例4ではT=15℃、T=20℃)、さらに本撹拌工程S7を行った。この本撹拌工程S7における撹拌方法も、撹拌工程S3及び準備撹拌工程S5と同様の遠心撹拌方法である。このため、図9に示すように、粘度が低くて比重の小さいナフィオン(登録商標)34の溶液が、粘度が大きくて比重の大きい第1中間物30の上を高速で移動する。このため、第1中間物30は大きなせん断力を受けて、表面から引き剥がされて小さな塊のアグロメレート32となる。このとき、周囲に存在するナフィオン(登録商標)34の溶液の温度は、第1中間物30よりも低いため、ナフィオン(登録商標)34の溶液の温度がアグロメレート32の周辺だけ局部的に高くなり、ナフィオン(登録商標)分子の運動性を選択的に高めることとなる。こうして活発化したナフィオン(登録商標)34は、より安定な配向をとるべく、水33が存在しているため親水性となったアグロメレート32側にスルホン酸基を向けて配向する。このため、図10に示すように、触媒担持カーボン31が集合したアグロメレート32の周りを水33が取り囲み、さらにその水33にスルホン酸基が強く配向したナフィオン(登録商標)34が取り囲む構造を有する電極用ペーストが得られる。こうして得られた試験例1〜4の電極用ペーストは、互いに接触する各触媒担持カーボン31とナフィオン(登録商標)34との間に水33によって互いに連続する親水層が形成されている。 Then, further as a polymer electrolyte addition step S6, the first intermediate product 30 which is a temperature T 1, by adding a predetermined temperature T 2 and is Nafion® solution lower than the temperature T 1 (Test Example 1 T 1 = 40 ° C., T 2 = 20 ° C., Test Example 2 T 1 = 40 ° C., T 2 = 35 ° C., Test Example 3 T 1 = 30 ° C., T 2 = 20 ° C., Test Example 4 T 1 = 15 ° C., T 2 = 20 ° C.), and further the main stirring step S7 was performed. The stirring method in the main stirring step S7 is also the same centrifugal stirring method as the stirring step S3 and the preparatory stirring step S5. Therefore, as shown in FIG. 9, a solution of Nafion (registered trademark) 34 having a low viscosity and a low specific gravity moves at high speed on the first intermediate 30 having a high viscosity and a high specific gravity. For this reason, the first intermediate 30 receives a large shearing force and is peeled off from the surface to become a small agglomerate 32. At this time, since the temperature of the solution of Nafion (registered trademark) 34 present in the surroundings is lower than that of the first intermediate 30, the temperature of the solution of Nafion (registered trademark) 34 is locally higher only around the agglomerate 32. This will selectively enhance the mobility of the Nafion® molecule. The activated Nafion (registered trademark) 34 is oriented with the sulfonic acid group directed toward the agglomerate 32 that has become hydrophilic due to the presence of water 33 in order to obtain a more stable orientation. For this reason, as shown in FIG. 10, the water 33 surrounds the agglomerate 32 in which the catalyst-supporting carbon 31 is gathered, and the water 33 has a structure surrounded by Nafion (registered trademark) 34 in which sulfonic acid groups are strongly oriented. An electrode paste is obtained. In the electrode pastes of Test Examples 1 to 4 thus obtained, hydrophilic layers that are continuous with each other by water 33 are formed between the catalyst-supporting carbon 31 and Nafion (registered trademark) 34 that are in contact with each other.

(比較例1)
比較例1では、T=20℃、T=20℃とした。その他は上記試験例と同様であり、説明を省略する。
(Comparative Example 1)
In Comparative Example 1, T 1 = 20 ℃, was T 2 = 20 ℃. Others are the same as the above-mentioned test example, and explanation is omitted.

(比較例2)
比較例2では、T=15℃、T=20℃とした。その他は上記試験例と同様であり、説明を省略する。
(Comparative Example 2)
In Comparative Example 2, T 1 = 15 ° C. and T 2 = 20 ° C. Others are the same as the above-mentioned test example, and explanation is omitted.

表1に、各試験例及び各比較例についての、高分子電解質添加工程S6における第1中間物30の温度Tと、ナフィオン(登録商標)溶液の温度Tとをまとめて示す。

Figure 2010161003
Table 1, for each test example and comparative examples, the temperature T 1 of the first intermediate 30 in the polymer electrolyte addition step S6, are summarized the temperature T 2 of the Nafion® solution.
Figure 2010161003

<燃料電池単層セルの製造>
上記試験例1〜4及び比較例1、2の電極用ペーストを用いて燃料電池単層セルを作製し、その評価を行った。
すなわち、まず電極用ペーストをカーボンクロスの表面にPt担持量が0.4mg/cmとなるように印刷して、乾燥して拡散層を得た。なお、拡散層の上に印刷して反応層を形成する替わりに、ポリテトラフルオロエチレン製のシート上に上記触媒ペーストで印刷し、乾燥後、剥離させて自立した反応層膜を作製し、これを拡散層と熱圧着させて反応層を形成してもよい。
<Manufacture of fuel cell single layer cells>
A fuel cell single-layer cell was prepared using the electrode pastes of Test Examples 1 to 4 and Comparative Examples 1 and 2 and evaluated.
That is, first, the electrode paste was printed on the surface of the carbon cloth so that the amount of Pt supported was 0.4 mg / cm 2 and dried to obtain a diffusion layer. Instead of printing on the diffusion layer to form the reaction layer, the catalyst paste is printed on a polytetrafluoroethylene sheet, dried, and peeled to produce a self-supporting reaction layer film. The reaction layer may be formed by thermocompression bonding with a diffusion layer.

上記のようにして調製した拡散層を用いて、図11に示す燃料電池単層セルを作成した。すなわち、2枚の拡散層1a、1bを用意し、ナフィオン(登録商標)からなる高分子電解質膜2の両側に反応層3a、3bを間において挟み、ホットプレスによって圧着して一体化し、膜電極接合体を得る。さらに、その外側に酸素及び水素のガス供給路となるセパレータ4a、4bを図示しない取付治具により圧接する。こうして、燃料電池単層セル5を作製し、さらに、この燃料電池単層セル5を積層させることにより、燃料電池スタックが完成する。   Using the diffusion layer prepared as described above, a fuel cell single-layer cell shown in FIG. 11 was prepared. That is, two diffusion layers 1a and 1b are prepared, and reaction layers 3a and 3b are sandwiched between both sides of a polymer electrolyte membrane 2 made of Nafion (registered trademark), and are integrated by pressure bonding by hot pressing. Obtain a zygote. Further, separators 4a and 4b serving as oxygen and hydrogen gas supply passages are pressed against the outside by a mounting jig (not shown). In this way, the fuel cell single-layer cell 5 is manufactured, and the fuel cell single-layer cell 5 is further laminated to complete the fuel cell stack.

<評価>
上記のようにして作製した試験例1〜4及び比較例1、2に係る燃料電池単層セル(電極面積20.25cm)について、セル温度70℃−バブラー温度50℃(湿度40%RH)という高温低加湿の条件で、電流密度とセル電圧との関係、及び電流密度と電池抵抗との関係を測定した。なお、空気及び水素は常圧で並行流とし、空気は3.4L/分、ストイキ比10(at 1.0A/cm)、水素ガスは0.2L/分、ストイキ比1.3(at 1.0A/cm)とした。
<Evaluation>
About the fuel cell single layer cell (electrode area 20.25cm < 2 >) which concerns on Test Examples 1-4 and Comparative Examples 1 and 2 produced as mentioned above, cell temperature 70 degreeC-bubbler temperature 50 degreeC (humidity 40% RH) The relationship between the current density and the cell voltage and the relationship between the current density and the battery resistance were measured under the conditions of high temperature and low humidity. Air and hydrogen are parallel flow at normal pressure, air is 3.4 L / min, stoichiometric ratio 10 (at 1.0 A / cm 2 ), hydrogen gas is 0.2 L / min, stoichiometric ratio 1.3 (at 1.0 A / cm 2 ).

その結果、電流密度とセル電圧との関係では、(第1中間物の温度T)<(ナフィオン(登録商標)溶液の温度T)とした比較例1及び比較例2においては、図12に示すように、電流密度の増大に伴うセル電圧の低下が顕著となり、特に電流密度が0.8A/cm以上において急激な電圧低下が認められた。また、電流密度と電池抵抗との関係では、0.7A/cm以上において抵抗の上昇が認められた。
これに対して、T>Tとした試験例1及び試験例2では、電流密度の増大に伴うセル電圧の低下が緩やかであり、0.8A/cm以上においても急激な低下は認められなかった。また、電流密度と電池抵抗との関係においても、1.0A/cmまで、抵抗は徐々に低下し、比較例1、2よりも低かった。
また、図12には示していないが、試験例3、4についても試験例2の場合とほぼ同様の結果となった。
As a result, in the relationship between the current density and the cell voltage, in Comparative Example 1 and Comparative Example 2 where (temperature T 1 of the first intermediate) <(temperature T 2 of the Nafion (registered trademark) solution), FIG. As shown in FIG. 4, the cell voltage is significantly reduced with the increase of the current density, and a rapid voltage drop is recognized particularly when the current density is 0.8 A / cm 2 or more. As for the relationship between current density and battery resistance, an increase in resistance was observed at 0.7 A / cm 2 or more.
On the other hand, in Test Example 1 and Test Example 2 in which T 1 > T 2 , the cell voltage decreases gradually with increasing current density, and a rapid decrease is observed even at 0.8 A / cm 2 or more. I couldn't. Moreover, also in the relationship between the current density and the battery resistance, the resistance gradually decreased to 1.0 A / cm 2 and was lower than those of Comparative Examples 1 and 2.
Further, although not shown in FIG. 12, the results of Test Examples 3 and 4 were almost the same as those of Test Example 2.

以上のように、触媒担持カーボンと水とを含む混合物を遠心撹拌法によって混合撹拌して得られた第1中間物と、ナフィオン(登録商標)溶液とを混合する際、(第1中間物の温度T)<(ナフィオン(登録商標)溶液の温度T)とすれば、第1中間物のアグロメレートの周囲に存在する高分子電解質溶液の温度が局所的に高くなり、高分子電解質分子の運動性を選択的に高めることとなり、高分子電解質分子がより安定な配向をとるべく、水が存在しているため親水性となったアグロメレート側に親水性官能基を向けて配向し、親水層によってプロトンが移動しやすくなる。また、高分子電解質のプロトン交換基は、アグロメレートの表面に存在する水に強く配向するため、プロトンの移動に親水層が有効に活用される。さらには、高分子電解質の疎水基部分はアグロメレートの表面に存在する水から離れて配置されるため、ガス経路が疎水性となり、水によってガス経路が塞がれることが防止される。 As described above, when the first intermediate obtained by mixing and stirring the mixture containing the catalyst-supporting carbon and water by the centrifugal stirring method is mixed with the Nafion (registered trademark) solution (of the first intermediate). If temperature T 1 ) <(temperature T 2 of the Nafion (registered trademark) solution), the temperature of the polymer electrolyte solution existing around the agglomerate of the first intermediate is locally increased, and the polymer electrolyte molecule In order to selectively enhance the mobility, the polymer electrolyte molecules are oriented with the hydrophilic functional group facing the agglomerate side that has become hydrophilic due to the presence of water in order to achieve a more stable orientation. Makes it easier for protons to move. In addition, since the proton exchange group of the polymer electrolyte is strongly oriented to the water present on the surface of the agglomerate, the hydrophilic layer is effectively used for proton transfer. Furthermore, since the hydrophobic group portion of the polymer electrolyte is arranged away from the water present on the surface of the agglomerate, the gas path becomes hydrophobic and the water prevents the gas path from being blocked.

上記試験例1〜4では、第1中間物と、ナフィオンとをバッチ処理による遠心撹拌法で混合したが、上記実施形態では、これらを別々の流入口から流入させて合流混合するため、第1中間物と高分子電解質溶液とが、それぞれ常に所定の温度で合流し、少量ずつ撹拌される。このため、第1中間物のアグロメレートの周囲に存在する高分子電解質溶液の温度を局所的に高め、高分子電解質分子の運動性を選択的に高めるという効果が充分に発揮され、親水性となったアグロメレート側への親水性官能基の配向性がさらに顕著となり、上記本発明の効果が高いものとなる。
また、電極用ペーストを連続的に製造することができるため、生産性が向上し、ひいては電極用ペーストの製造コストを低廉なものとすることができる。
さらには、第2工程において第1中間物と高分子電解質溶液との合流混合時に超音波照射による混合を併用しているため、第1中間物と高分子電解質溶液とを、超音波による振動によってさらに迅速かつ充分に混合することができる。このため、両者の温度差が保たれた状態での撹拌が容易となり、親水性となったアグロメレート側への親水性官能基の配向性がさらに顕著となり、上記本発明の効果がさらに高いものとなる。
In the above Test Examples 1 to 4, the first intermediate and Nafion were mixed by the centrifugal stirring method by batch processing. However, in the above-described embodiment, the first intermediate and the Nafion are mixed and mixed through the separate inlets. The intermediate and the polymer electrolyte solution are always joined together at a predetermined temperature and stirred little by little. For this reason, the effect of locally increasing the temperature of the polymer electrolyte solution existing around the agglomerate of the first intermediate and selectively increasing the mobility of the polymer electrolyte molecules is sufficiently exerted and becomes hydrophilic. Further, the orientation of the hydrophilic functional group toward the agglomerate side becomes more remarkable, and the effect of the present invention is high.
In addition, since the electrode paste can be continuously manufactured, the productivity is improved, and as a result, the manufacturing cost of the electrode paste can be reduced.
Furthermore, since the mixing by ultrasonic irradiation is used together in the second step when the first intermediate and the polymer electrolyte solution are mixed and mixed, the first intermediate and the polymer electrolyte solution are caused to vibrate by ultrasonic vibration. Furthermore, it can be mixed quickly and sufficiently. For this reason, it becomes easy to stir in a state where the temperature difference between the two is maintained, the orientation of the hydrophilic functional group toward the agglomerate side that has become hydrophilic becomes more remarkable, and the effect of the present invention is further enhanced. Become.

この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

本発明は電気自動車等の移動用電源、あるいは据え置き用電源に利用可能である。   The present invention can be used for a moving power source for an electric vehicle or the like, or a stationary power source.

S1、S2、S3…第1工程(S1…粉砕工程、S2…水添加工程、S3…撹拌工程)
S4、S5、S6、S7…第2工程(S4…温調工程、S5…準備撹拌工程、S6…高分子電解質添加工程、S7…本撹拌工程)
10…チャンバー
11…触媒担持カーボン
12…水
31…触媒担持カーボン
1a、1b…基材(拡散層)
30…第1中間物
35…高分子電解質溶液
45…超音波発生器
3a…カソード極(反応層)
3b…アノード極(反応層)
1a、1b、2、3a、3b…膜電極接合体(1a、1b…拡散層、2…高分子電解質膜、3a、3b…反応層)
S1, S2, S3 ... 1st process (S1 ... crushing process, S2 ... water addition process, S3 ... stirring process)
S4, S5, S6, S7 ... 2nd process (S4 ... temperature control process, S5 ... preparatory stirring process, S6 ... polymer electrolyte addition process, S7 ... main stirring process)
DESCRIPTION OF SYMBOLS 10 ... Chamber 11 ... Catalyst carrying | support carbon 12 ... Water 31 ... Catalyst carrying | support carbon 1a, 1b ... Base material (diffusion layer)
30 ... First intermediate 35 ... Polymer electrolyte solution 45 ... Ultrasonic generator 3a ... Cathode electrode (reaction layer)
3b ... Anode electrode (reaction layer)
1a, 1b, 2, 3a, 3b ... membrane electrode assembly (1a, 1b ... diffusion layer, 2 ... polymer electrolyte membrane, 3a, 3b ... reaction layer)

Claims (5)

カーボン粉末に触媒金属を担持してなる触媒担持カーボンと、各該触媒担持カーボンを互いに結合するとともにガス透過性を有する基材に結合するための高分子電解質の溶液とを混合して電極用ペーストを得る燃料電池の電極用ペーストの製造方法であって、
チャンバー内に前記触媒担持カーボンと水とを含む混合物を収容した後、該チャンバーを公転させることによって該混合物に遠心力を付与しつつ、該チャンバーを自転させる遠心撹拌法によって該混合物を自身の自重で撹拌して第1中間物を得る第1工程と、
該第1中間物と、該第1中間物の温度よりも低い温度とされた高分子電解質溶液とを、別々の流入口から流入させて合流混合することにより電極用ペーストを得る第2工程とを備えていることを特徴とする燃料電池の電極用ペーストの製造方法。
A paste for an electrode by mixing a catalyst-supporting carbon obtained by supporting a catalyst metal on a carbon powder and a polymer electrolyte solution for binding the catalyst-supporting carbons to each other and a gas-permeable substrate. A fuel cell electrode paste manufacturing method for obtaining
After the mixture containing the catalyst-supporting carbon and water is accommodated in the chamber, the mixture is subjected to its own weight by a centrifugal stirring method in which the chamber is rotated while revolving the chamber while applying centrifugal force to the mixture. A first step of stirring to obtain a first intermediate;
A second step of obtaining an electrode paste by introducing the first intermediate and a polyelectrolyte solution having a temperature lower than the temperature of the first intermediate from separate inlets and combining them; A method for producing a paste for an electrode of a fuel cell, comprising:
第2工程において第1中間物と高分子電解質溶液との合流混合時に超音波照射による混合を併用することを特徴とする請求項1記載の電極用ペーストの製造方法。   The method for producing an electrode paste according to claim 1, wherein in the second step, mixing by ultrasonic irradiation is used in combination when the first intermediate and the polymer electrolyte solution are mixed and mixed. 前記第2工程において第1中間物と高分子電解質溶液とを合流させる前の該第1中間物の温度は30〜70℃とされており、該高分子電解質溶液の温度は20〜50℃とされていることを特徴とする請求項1又は2記載の燃料電池の電極用ペーストの製造方法。   In the second step, the temperature of the first intermediate before joining the first intermediate and the polymer electrolyte solution is 30 to 70 ° C., and the temperature of the polymer electrolyte solution is 20 to 50 ° C. 3. The method for producing a paste for an electrode of a fuel cell according to claim 1, wherein the paste is used. 請求項1乃至3のいずれか1項記載の方法により製造してなることを特徴とする燃料電池の電極用ペースト。   A paste for a fuel cell electrode produced by the method according to any one of claims 1 to 3. 高分子固体電解質層と、該高分子固体電解質層の一面に接合されて空気が供給されるカソード極と、該高分子固体電解質層の他面に接合されて燃料が供給されるアノード極とを有する燃料電池の膜電極接合体の製造方法において、
請求項4記載の電極用ペーストを前記基材の一面に塗布してなる電極を前記カソード極及びアノード極の少なくとも一方に用いることを特徴とする燃料電池の膜電極接合体の製造方法。
A solid polymer electrolyte layer, a cathode electrode joined to one surface of the polymer solid electrolyte layer and supplied with air, and an anode electrode joined to the other surface of the polymer solid electrolyte layer and supplied with fuel In the method of manufacturing a fuel cell membrane electrode assembly,
A method for producing a membrane electrode assembly for a fuel cell, wherein an electrode formed by applying the electrode paste according to claim 4 on one surface of the substrate is used for at least one of the cathode electrode and the anode electrode.
JP2009003373A 2009-01-09 2009-01-09 Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste Active JP5245838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003373A JP5245838B2 (en) 2009-01-09 2009-01-09 Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003373A JP5245838B2 (en) 2009-01-09 2009-01-09 Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste

Publications (2)

Publication Number Publication Date
JP2010161003A true JP2010161003A (en) 2010-07-22
JP5245838B2 JP5245838B2 (en) 2013-07-24

Family

ID=42578027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003373A Active JP5245838B2 (en) 2009-01-09 2009-01-09 Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste

Country Status (1)

Country Link
JP (1) JP5245838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190776A (en) * 2011-02-21 2012-10-04 Equos Research Co Ltd Manufacturing method of catalyst for fuel cells and device thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347152A (en) * 1999-10-07 2001-12-18 Toyota Motor Corp Mixing/deaerating device and mixing/deaerating method
JP2006509859A (en) * 2002-12-10 2006-03-23 スリーエム イノベイティブ プロパティズ カンパニー Catalyst ink
JP2006140061A (en) * 2004-11-12 2006-06-01 Equos Research Co Ltd Electrode and membrane-electrode assembly of fuel cell, and fuel cell system
JP2006140062A (en) * 2004-11-12 2006-06-01 Equos Research Co Ltd Electrode paste for fuel cell, electrode and membrane-electrode assembly, and manufacturing method of fuel cell system
JP2006142293A (en) * 2004-11-16 2006-06-08 Samsung Sdi Co Ltd Metal catalyst, manufacturing method of metal catalyst, electrode, manufacturing method of electrode and fuel cell
JP2006185855A (en) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd Method of producing electrode catalyst ink and electrode catalyst layer obtained from the electrode catalyst ink
JP2006210181A (en) * 2005-01-28 2006-08-10 Fuji Electric Holdings Co Ltd Method of manufacturing electrode catalyst layer for fuel cell and fuel cell having electrode catalyst layer
JP2008140763A (en) * 2006-11-06 2008-06-19 Toyota Motor Corp Manufacturing method of fuel cell
WO2008085149A2 (en) * 2005-12-21 2008-07-17 E. I. Du Pont De Nemours And Company Membrane electrode assembly for organic/air fuel cells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001347152A (en) * 1999-10-07 2001-12-18 Toyota Motor Corp Mixing/deaerating device and mixing/deaerating method
JP2006509859A (en) * 2002-12-10 2006-03-23 スリーエム イノベイティブ プロパティズ カンパニー Catalyst ink
JP2006140061A (en) * 2004-11-12 2006-06-01 Equos Research Co Ltd Electrode and membrane-electrode assembly of fuel cell, and fuel cell system
JP2006140062A (en) * 2004-11-12 2006-06-01 Equos Research Co Ltd Electrode paste for fuel cell, electrode and membrane-electrode assembly, and manufacturing method of fuel cell system
JP2006142293A (en) * 2004-11-16 2006-06-08 Samsung Sdi Co Ltd Metal catalyst, manufacturing method of metal catalyst, electrode, manufacturing method of electrode and fuel cell
JP2006185855A (en) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd Method of producing electrode catalyst ink and electrode catalyst layer obtained from the electrode catalyst ink
JP2006210181A (en) * 2005-01-28 2006-08-10 Fuji Electric Holdings Co Ltd Method of manufacturing electrode catalyst layer for fuel cell and fuel cell having electrode catalyst layer
WO2008085149A2 (en) * 2005-12-21 2008-07-17 E. I. Du Pont De Nemours And Company Membrane electrode assembly for organic/air fuel cells
JP2009521795A (en) * 2005-12-21 2009-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Membrane electrode assembly for organic / air fuel cells
JP2008140763A (en) * 2006-11-06 2008-06-19 Toyota Motor Corp Manufacturing method of fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012190776A (en) * 2011-02-21 2012-10-04 Equos Research Co Ltd Manufacturing method of catalyst for fuel cells and device thereof

Also Published As

Publication number Publication date
JP5245838B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP3555196B2 (en) Fuel cell and method of manufacturing the same
JP7304524B2 (en) Fuel cell cathode catalyst layer and fuel cell
WO2011083842A1 (en) Apparatus for production of catalyst layer for fuel cell, method for production of catalyst layer for fuel cell, polyelectrolyte solution, and process for production of polyelectrolyte solution
JP4896393B2 (en) Method for producing fuel cell electrode paste, method for producing fuel cell electrode, method for producing membrane electrode assembly of fuel cell, and method for producing fuel cell system
JP4165154B2 (en) Method and apparatus for manufacturing fuel cell electrode
JP5245838B2 (en) Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste
JP2008243768A (en) Solid polymer electrolyte fuel cell and membrane electrode assembly thereof
JP4940657B2 (en) Fuel cell electrode
JP2009104905A (en) Paste for electrode of fuel cell, electrode, membrane electrode assembly, and method for manufacturing fuel cell system
JP2006140061A (en) Electrode and membrane-electrode assembly of fuel cell, and fuel cell system
JP5293149B2 (en) Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste
JP5071653B2 (en) Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste
JP5071646B2 (en) Fuel cell electrode paste, electrode and membrane electrode assembly, and fuel cell system manufacturing method.
JP5245839B2 (en) Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste
JP2012142151A (en) Production apparatus of catalyst paste and production method of catalyst paste
JP2009043688A (en) Fuel cell
JP5578134B2 (en) Manufacturing method of fuel cell
JP2008243445A (en) Manufacturing method of membrane electrode assembly (mea) and solid polymer fuel cell equipped with membrane electrode assembly (mea)
JP2006031951A (en) Method of manufacturing gas diffusion electrode for solid polymer fuel cell
JP2007323939A (en) Fuel cell
JP2011159624A (en) Device for manufacturing catalyst layer of fuel cell, method for manufacturing catalyst layer of fuel cell, polymer electrolytic solution, and method for manufacturing polymer electrolytic solution
JP2009117087A (en) Methods of manufacturing paste for electrode of fuel cell and membrane electrode assembly
JP2005174768A (en) Membrane electrode assembly, its manufacturing method, and its usage
JP2005166310A (en) Gas diffusion electrode and its manufacturing method and fuel cell
JPH11167925A (en) Electrode for fuel cell and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5245838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250