JP2010160953A - Au colloid coating material - Google Patents

Au colloid coating material Download PDF

Info

Publication number
JP2010160953A
JP2010160953A JP2009002168A JP2009002168A JP2010160953A JP 2010160953 A JP2010160953 A JP 2010160953A JP 2009002168 A JP2009002168 A JP 2009002168A JP 2009002168 A JP2009002168 A JP 2009002168A JP 2010160953 A JP2010160953 A JP 2010160953A
Authority
JP
Japan
Prior art keywords
coating material
colloid coating
colloid
dispersion medium
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009002168A
Other languages
Japanese (ja)
Other versions
JP5273588B2 (en
Inventor
Hideaki Sakurai
英章 桜井
Reiko Izumi
礼子 泉
Toshiharu Hayashi
年治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009002168A priority Critical patent/JP5273588B2/en
Publication of JP2010160953A publication Critical patent/JP2010160953A/en
Application granted granted Critical
Publication of JP5273588B2 publication Critical patent/JP5273588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Au colloid coating material having superior dispersion stability and small changes in liquid composition with the passage of time. <P>SOLUTION: The Au colloid coating material is composed of Au particles and a protective agent which modifies the surfaces of the Au particles by coordination and has a carbon skeleton containing nitrogen in the molecule, and formed by dispersing the Au colloid particles each having a structure with the surface modified by coordination through nitrogen or an atomic group containing nitrogen as an anchor in a dispersion medium including amide compound. The dispersion medium contains 25 wt.% or more of the amide compound. This Au colloid coating material is coated on the base material, and contact resistance of a member having an Au sintered layer obtained by sintering the coated base material has less possibility of increase even if it is exposed to corrosive atmosphere for a long period of time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、分散安定性が良く、液組成の経時変化が少ないAuコロイド塗布材に関するものである。このAuコロイド塗布材を塗布して形成された塗布膜は焼結性に優れていることから、この塗布膜をチタン板、発泡チタン板、ステンレス鋼板など接触抵抗の高い基材表面に形成し焼結してAu焼結膜を形成すると、接触抵抗の低いチタン板、発泡チタン板、ステンレス鋼板を作製することができ、このAu焼結膜を形成した接触抵抗の低いチタン板、発泡チタン板、ステンレス鋼板は長期間腐食性雰囲気に曝されても接触抵抗が上昇することが少なく、このAuコロイド塗布材を用いて作製した接触抵抗の小さい発泡チタン板、発泡チタン板、ステンレス鋼板は、例えば固体高分子形燃料電池の空気極材、燃料極材、セパレータなどとして使用される。   The present invention relates to an Au colloid coating material having good dispersion stability and little change in liquid composition over time. Since the coating film formed by applying this Au colloid coating material is excellent in sinterability, this coating film is formed on the surface of a substrate having high contact resistance, such as a titanium plate, a foamed titanium plate, or a stainless steel plate. When an Au sintered film is formed by bonding, a titanium plate, a foamed titanium plate, and a stainless steel plate having a low contact resistance can be produced. A titanium plate, a foamed titanium plate, and a stainless steel plate having a low contact resistance formed with this Au sintered film. The contact resistance hardly increases even when exposed to a corrosive atmosphere for a long time. A foamed titanium plate, a foamed titanium plate, and a stainless steel plate with a small contact resistance produced using this Au colloid coating material are, for example, solid polymers. Used as an air electrode material, fuel electrode material, separator, etc.

平均粒径:1〜60nmの範囲内にあるAu粒子と前記Au粒子の表面に配位修飾した保護剤とにより構成され、前記保護剤が分子中に窒素を含む炭素骨格を有し、かつ前記窒素又は窒素を含む原子団をアンカーとしてAu粒子表面に配位修飾した構造を有するAuコロイド粒子を、アミド化合物(例えば、N,N−ジメチルホルムアミド)を含む分散媒に所定の割合で混合して分散させたAuコロイド塗布材はすでに知られおり、前記Auコロイド塗布材に含まれる分散媒は、水、アルコール、グリコール、ジメチルスルホキシドの中の1種又は2種以上を合計で80質量%を含有し、アミド化合物の一種であるN,N−ジメチルホルムアミドを20質量%未満含むことも知られている。
そして、この従来のAuコロイド塗布材を基材表面に塗布して塗布膜を形成し、この塗布膜の分散媒を除去したのち温度:15〜450℃で1〜60分間加熱することにより比抵抗:1×10−3Ω・cm以下の導電膜付き基材を作製することも知られている(特許文献1参照)。
Average particle size: composed of Au particles in the range of 1 to 60 nm and a protective agent coordinated on the surface of the Au particles, the protective agent having a carbon skeleton containing nitrogen in the molecule, and Au colloidal particles having a structure in which nitrogen or nitrogen-containing atomic groups are coordinated and modified on the surface of Au particles are mixed with a dispersion medium containing an amide compound (for example, N, N-dimethylformamide) at a predetermined ratio. Dispersed Au colloid coating materials are already known, and the dispersion medium contained in the Au colloid coating material contains 80% by mass in total of one or more of water, alcohol, glycol, and dimethyl sulfoxide. It is also known to contain less than 20% by mass of N, N-dimethylformamide, which is a kind of amide compound.
Then, this conventional Au colloid coating material is coated on the surface of the substrate to form a coating film, and after removing the dispersion medium of this coating film, the specific resistance is heated by heating at 15 to 450 ° C. for 1 to 60 minutes. It is also known to produce a substrate with a conductive film of 1 × 10 −3 Ω · cm or less (see Patent Document 1).

さらに、近年、これらAuコロイド塗布材を固体高分子形燃料電池における燃料極、空気極、セパレータなどの基材に塗布してこの基材の接触抵抗を低下させ、固体高分子形燃料電池の性能を向上させ、長期間使用できる固体高分子形燃料電池の研究が進められている。固体高分子形燃料電池は、電解質の片面に触媒を伴った導電性多孔質体からなる空気極が形成され、電解質のもう一方の片面に同じく触媒を伴った導電性多孔質体からなる燃料極が形成されており、かかる構造を有する固体高分子形燃料電池を複数個重ねた構造を有している。空気極と第一セパレータが接しており、燃料極と第二セパレータがそれぞれ接していることが一般に知られており、その接触抵抗は低いことが必要である。セパレータとしてはカーボン板や金属板が、導電性多孔質体としてはカーボンペーパーと呼ばれるカーボン繊維の不織布や多孔質金属が一般に用いられている。多孔質金属としては、多孔質発泡チタン板が知られている。   Furthermore, in recent years, these Au colloid coating materials have been applied to substrates such as a fuel electrode, an air electrode, and a separator in a polymer electrolyte fuel cell to reduce the contact resistance of the substrate, and the performance of the polymer electrolyte fuel cell Research on solid polymer fuel cells that can be used for a long period of time is underway. In the polymer electrolyte fuel cell, an air electrode made of a conductive porous body with a catalyst is formed on one side of an electrolyte, and a fuel electrode made of a conductive porous body with the same catalyst on the other side of the electrolyte. Is formed, and a plurality of polymer electrolyte fuel cells having such a structure are stacked. It is generally known that the air electrode and the first separator are in contact with each other, and that the fuel electrode and the second separator are in contact with each other, and the contact resistance is required to be low. A carbon plate or a metal plate is generally used as the separator, and a carbon fiber nonwoven fabric or porous metal called carbon paper is generally used as the conductive porous body. As a porous metal, a porous foamed titanium plate is known.

前記発泡チタン板は、チタン粉末、水溶性樹脂結合剤、可塑剤、起泡剤、発泡剤および水を用意し、これらを配合し混合して発泡スラリーを作製し、得られた発泡スラリーをドクターブレード法によりPETフィルム上に板状に成形し、恒温高湿度槽に供給し、そこで発泡させたのち温風乾燥を行い、スポンジ状グリーン成形体を作製し、この成形体をPETフィルムから剥がし、アルミナ板上に載せ、不活性ガス雰囲気中で加熱して脱脂し、続いて真空焼結炉に装入し焼結することにより気孔率90%以上を有する多孔質な発泡チタン板を作製することができることが知られている(特許文献2参照)。
特開2006−76283号公報 特開2007−107091号公報
The titanium foam plate is prepared by preparing titanium powder, a water-soluble resin binder, a plasticizer, a foaming agent, a foaming agent, and water, and mixing and mixing them to prepare a foamed slurry. Molded into a plate shape on a PET film by the blade method, supplied to a constant temperature and high humidity tank, foamed there and then dried with warm air to produce a sponge-like green molded body, and peeled off the molded body from the PET film, Producing a porous titanium foam plate having a porosity of 90% or more by placing on an alumina plate, degreasing by heating in an inert gas atmosphere, and subsequently charging and sintering in a vacuum sintering furnace. It is known that can be performed (see Patent Document 2).
JP 2006-76283 A JP 2007-107091 A

前記従来のAuコロイド塗布材は、分散安定性が十分でなく、さらに揮発しやすい分散媒化合物が多く含まれていることから塗布工程において分散媒が揮発し、それによってAuコロイド塗布材に含まれる分散媒の構成が変化し、Auコロイド塗布材の経時変化が起こりやすいために、従来のAuコロイド塗布材を使用して形成したAu膜の膜厚が経時的に一定しない。また、従来のAuコロイド塗布材を使用して固体高分子形燃料電池における接触抵抗の少ない燃料極、空気極、セパレータなどの構成部材を作製しても、従来のAuコロイド塗布材を使用して形成した塗布膜の焼結性が悪いために、この塗布膜を焼結してAu焼結膜を形成しようとしても大きなAu焼結膜に成長せず、この大きなAu焼結膜に成長しないAu焼結膜を基材表面に形成した部材を使用して作製した燃料極、空気極、セパレータなどを組み込んだ固体高分子形燃料電池は、燃料極、空気極、セパレータなどの接触抵抗が増加するようになって固体高分子形燃料電池の性能が低下し、長期間使用できる信頼性のある導電膜を形成することができなかった。 The conventional Au colloid coating material has insufficient dispersion stability and contains a large amount of a dispersion medium compound that easily volatilizes. Therefore, the dispersion medium volatilizes in the coating process, and is thus included in the Au colloid coating material. Since the structure of the dispersion medium changes and the Au colloid coating material is likely to change over time, the film thickness of the Au film formed using the conventional Au colloid coating material is not constant over time. In addition, even if the conventional Au colloid coating material is used to produce components such as a fuel electrode, an air electrode, and a separator with low contact resistance in a polymer electrolyte fuel cell, the conventional Au colloid coating material is used. Since the formed coating film has poor sinterability, an attempt to form an Au sintered film by sintering the coated film does not grow into a large Au sintered film, and an Au sintered film that does not grow into this large Au sintered film A polymer electrolyte fuel cell incorporating a fuel electrode, an air electrode, a separator, etc., produced using a member formed on the surface of a base material has increased contact resistance of the fuel electrode, air electrode, separator, etc. The performance of the polymer electrolyte fuel cell was lowered, and a reliable conductive film that could be used for a long time could not be formed.

そこで、本発明者らは、分散安定性に優れ、分散媒の揮発を少なくして経時変化が小さく、さらに優れた焼結性を有する塗布膜を得ることができるAuコロイド塗布材を開発すべく研究を行った。その結果、
(イ)従来のAuコロイド塗布材に含まれる分散媒に含まれるアミド化合物の含有量に比べてアミド化合物が一層多く含まれる分散媒を使用して作製したAuコロイド塗布材は、分散安定性に一層優れ、分散媒中に高沸点のアミド化合物が一層多く含まれることから揮発量が少なくなって経時変化が小さく、さらにアミド化合物が一層多く含まれる分散媒を使用して作製したAuコロイド塗布材を塗布して形成した塗布膜の焼結性が優れていることから大きく成長したAu焼結膜を得ることができ、この大きく成長したAu焼結膜を有する部材は、長期間接触抵抗を低い状態に維持することができる、
(ロ)前記分散媒に含まれるアミド化合物は25質量%以上(100質量%も含む)含有した分散媒であることが好ましい、という研究結果が得られたのである。
Therefore, the inventors of the present invention are to develop an Au colloid coating material that is excellent in dispersion stability, reduces volatilization of the dispersion medium, has a small change with time, and can obtain a coating film having excellent sinterability. I did research. as a result,
(A) An Au colloid coating material produced using a dispersion medium containing a larger amount of amide compound than the content of amide compound contained in the dispersion medium contained in a conventional Au colloid coating material has improved dispersion stability. Au colloid coating material produced using a dispersion medium that is superior and has a higher volatilization amide compound in the dispersion medium, thus reducing the volatilization amount and causing less change with time, and further containing more amide compound. Since the coating film formed by applying sapphire has excellent sinterability, a large-growth Au sintered film can be obtained, and the member having this large-grown Au-sintered film has a low contact resistance for a long time. Can be maintained,
(B) A research result was obtained that the amide compound contained in the dispersion medium is preferably a dispersion medium containing 25% by mass or more (including 100% by mass).

この発明は、かかる研究結果に基づいてなされたものであって、
(1)Au粒子と前記Au粒子の表面に配位修飾した保護剤とにより構成され、前記保護剤が分子中に窒素を含む炭素骨格を有し、かつ前記窒素又は窒素を含む原子団をアンカーとしてAu粒子表面に配位修飾した構造を有するAuコロイド粒子をアミド化合物を含む分散媒に分散してなるAuコロイド塗布材において、前記分散媒は、アミド化合物を25質量%以上含む分散媒であるAuコロイド塗布材、に特徴を有するものである。
前記分散媒に含まれるアミド化合物の量を25質量%以上としたのは、分散媒に含まれるアミド化合物の量を25質量%未満では経時変化が大きくなり、さらに塗布膜の焼結性が低下して基体表面に大きく成膜したAu焼結膜を成膜することができないので好ましくないからである。
The present invention has been made based on the results of such research,
(1) Consists of Au particles and a protective agent coordinated on the surface of the Au particles, the protective agent has a carbon skeleton containing nitrogen in the molecule, and anchors the nitrogen or nitrogen-containing atomic group In the Au colloid coating material in which Au colloid particles having a structure modified on the surface of Au particles are dispersed in a dispersion medium containing an amide compound, the dispersion medium is a dispersion medium containing 25% by mass or more of the amide compound. It is characterized by the Au colloid coating material.
The reason why the amount of the amide compound contained in the dispersion medium is 25% by mass or more is that when the amount of the amide compound contained in the dispersion medium is less than 25% by mass, the change with time increases, and the sinterability of the coating film further decreases. This is because it is not preferable because the Au sintered film largely formed on the surface of the substrate cannot be formed.

前記前記アミド化合物は、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N,N,N‘,N’−テトラメチル尿素、2−ピロリドン、N−メチルピロリドン、カルバミド酸エステルなどが好ましい。したがって、この発明は、
(2)前記アミド化合物は、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N,N,N‘,N’−テトラメチル尿素、2−ピロリドン、N−メチルピロリドン、カルバミド酸エステルの中の1種又は2種以上である(1)記載のAuコロイド塗布材、に特徴を有するものである。
The amide compound includes formamide, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methylpropionamide, N, N, N ′, N′-. Tetramethylurea, 2-pyrrolidone, N-methylpyrrolidone, carbamic acid ester and the like are preferable. Therefore, the present invention
(2) Formamide, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methylpropionamide, N, N, N ′, N It is characterized by the Au colloid coating material according to (1), which is one or more of '-tetramethylurea, 2-pyrrolidone, N-methylpyrrolidone, and carbamate.

この発明のAuコロイド塗布材に含まれる前記Au粒子の平均粒径は、従来のAuコロイド塗布材に含まれる前記Au粒子の平均粒径と同じであり、1〜60nmの範囲内にある。したがって、この発明は、
(3)前記Au粒子の平均粒径は、1〜60nmの範囲内にある前記(1)または(2)記載のAuコロイド塗布材、に特徴を有するものである。
The average particle diameter of the Au particles contained in the Au colloid coating material of the present invention is the same as the average particle diameter of the Au particles contained in the conventional Au colloid coating material, and is in the range of 1 to 60 nm. Therefore, the present invention
(3) The average particle diameter of the Au particles is characterized by the Au colloid coating material according to (1) or (2), which is in the range of 1 to 60 nm.

この発明のAuコロイド塗布材に含まれるAu粒子は0.02〜5質量%の範囲内にあることが好ましい。Au粒子が0.02質量%未満では十分な導電性を得るためにはAuコロイド液を何度も重ねて塗布する必要があり、量産性に劣るので好ましくなく、一方、質量%を越えて含有すると、Auコロイド液の分散安定性が劣化したり、塗布時に必要以上のAuが基板上に塗布されてしまい、材料コスト的に好ましくないからである。
したがって、この発明は、
(4)前記Au粒子は0.02〜5質量%含まれる前記(1)、(2)または(3)記載のAuコロイド塗布材、に特徴を有するものである。
The Au particles contained in the Au colloid coating material of the present invention are preferably in the range of 0.02 to 5% by mass. If the Au particles are less than 0.02% by mass, it is necessary to repeatedly apply the Au colloid liquid several times in order to obtain sufficient electrical conductivity, which is not preferable because it is inferior in mass production, while exceeding 5 % by mass. If contained, the dispersion stability of the Au colloidal liquid deteriorates, or more Au than necessary is applied on the substrate during application, which is not preferable in terms of material cost.
Therefore, the present invention
(4) The Au particles are characterized by the Au colloid coating material according to (1), (2) or (3), which is contained in 0.02 to 5 mass%.

前記(1)、(2)、(3)または(4)記載のAuコロイド塗布材を基材に塗布して塗布膜を形成し、この塗布膜を加熱して焼結することにより形成したAu焼結膜は、基材表面に大きな島状のAu焼結膜が連続接合して基材表面を被覆し、その被覆面積が大きくなり、この被覆面積の大きなAu焼結膜を形成した部材は腐食性雰囲気に長期間曝されても接触抵抗の低下が少なく、この部材を用いて作製した燃料極、空気極およびセパレータを固体高分子形燃料電池は長期に亘って高性能を維持することができる。したがって、この発明は、
(5)前記(1)、(2)、(3)または(4)記載のAuコロイド塗布材を用いてAu膜を形成した固体高分子形燃料電池における接触抵抗の低い燃料極、空気極またはセパレータ、に特徴を有するものである。
Au colloid coating material described in (1), (2), (3) or (4) above is applied to a substrate to form a coating film, and this coating film is heated and sintered to form Au. In the sintered film, a large island-shaped Au sintered film is continuously bonded to the surface of the base material to cover the surface of the base material, and the coated area becomes large. A member formed with the large sintered area of the Au sintered film is a corrosive atmosphere. Even when exposed to a long period of time, the contact resistance is less lowered, and the polymer electrolyte fuel cell can maintain high performance over a long period of time using a fuel electrode, an air electrode and a separator produced using this member. Therefore, the present invention
(5) A fuel electrode, an air electrode or a low contact resistance in a polymer electrolyte fuel cell in which an Au film is formed using the Au colloid coating material described in (1), (2), (3) or (4) It is characterized by the separator.

この発明のAuコロイド塗布材は、分散安定性に一層優れ、分散媒の揮発が少なくなって経時変化が小さく、さらにこの発明のAuコロイド塗布材を塗布して形成した塗布膜は焼結性に優れることから基材表面に大きな島状のAu焼結膜を形成することができ、この大きな島状の連結膜を形成した部材は腐食雰囲気に曝されても長期間接触抵抗が低い状態に維持することができ、この部材を固体高分子形燃料電池の空気極、燃料極、セパレータなどの部材として使用した場合、固体高分子形燃料電池の性能を長期間高性能に維持することができる。   The Au colloid coating material of the present invention is further excellent in dispersion stability, the volatilization of the dispersion medium is reduced and the change over time is small, and the coating film formed by applying the Au colloid coating material of the present invention is sinterable. Because of its superiority, it is possible to form a large island-shaped Au sintered film on the surface of the substrate, and the member formed with this large island-shaped connecting film maintains a low contact resistance for a long time even when exposed to a corrosive atmosphere. When this member is used as a member of an air electrode, a fuel electrode, a separator or the like of a polymer electrolyte fuel cell, the performance of the polymer electrolyte fuel cell can be maintained for a long period of time.

Au塩として塩化金酸を用意し、
保護剤前駆体として1−アミノ−2−プロパノールを用意し、
還元剤としてジメチルアミンボランを用意し、
さらに、分散媒を作製するための物質として水、ジアセトンアルコール、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N,N,N,N−テトラメチル尿素、2−ピロリドン、N−メチルピロリドン、カルバミド酸エステルを用意した。
Prepare chloroauric acid as Au salt,
Prepare 1-amino-2-propanol as a protective agent precursor,
Prepare dimethylamine borane as a reducing agent,
Further, water, diacetone alcohol, formamide, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methylpropionamide as materials for preparing the dispersion medium N, N, N, N-tetramethylurea, 2-pyrrolidone, N-methylpyrrolidone, carbamic acid ester were prepared.

実施例1
保護剤前駆体である1−アミノ−2−プロパノール:12.0gにAu濃度が0.2質量%になるように塩化金酸を溶解したメタノール液を徐々に投入した混合溶液を調製した。次にこの混合溶液に還元剤であるジメチルアミンボランを適量添加したのち、60℃に保温し、この保温した混合溶液をマグネチックスターラーで撹拌しながらAuコロイド粒子が生成して赤色を呈するまで還元し、この還元した混合溶液を室温まで冷却し、冷却後、混合溶液を限外ろ過法により脱塩を行い、表1に示されるアミド化合物を分散媒としてAuコロイドを得た。このAuコロイドに水を適宜添加して濃度を調節し、Auコロイド粒子を水に分散させたAu濃度:4.0質量%の本発明金コロイド塗布材1〜10および従来金コロイド塗布材1を得た。
これら本発明金コロイド塗布材1〜10および従来金コロイド塗布材1について、下記の相溶試験により分散安定性を評価し、これらの結果を表1に示した。
Example 1
A mixed solution was prepared by gradually adding a methanol solution in which chloroauric acid was dissolved in 12.0 g of 1-amino-2-propanol as a protective agent precursor to an Au concentration of 0.2% by mass. Next, after adding an appropriate amount of dimethylamine borane as a reducing agent to this mixed solution, the mixture is kept at 60 ° C., and this mixed solution is stirred with a magnetic stirrer until Au colloidal particles are produced and appear red. The reduced mixed solution was cooled to room temperature, and after cooling, the mixed solution was desalted by an ultrafiltration method to obtain Au colloid using the amide compound shown in Table 1 as a dispersion medium. The gold colloid coating material 1 to 10 according to the present invention and the conventional gold colloid coating material 1 having an Au concentration of 4.0% by mass, in which water is appropriately added to the Au colloid to adjust the concentration and the Au colloidal particles are dispersed in water. Obtained.
With respect to these gold colloid coating materials 1 to 10 and the conventional gold colloid coating material 1, the dispersion stability was evaluated by the following compatibility test, and the results are shown in Table 1.

相溶試験:
溶媒(具体的には表1に示される分散媒):3gに本発明金コロイド塗布材1〜10および従来金コロイド塗布材1を1滴(約0.02g)滴下して約100倍に希釈し、凝集、沈殿、色変化あるかを目視にて観察し、赤色を呈しているAuコロイド塗布材を分散安定性が良いと判断して○、色が変化したものを△、凝集、沈殿したものを分散安定性が悪いとして×を付し、その結果を表1〜3に示した。さらに、基板としてチタン板を用意した。
Compatibility test:
Solvent (specifically, dispersion medium shown in Table 1): 1 g (about 0.02 g) of the present gold colloid coating material 1 to 10 and the conventional gold colloid coating material 1 are dripped to 3 g and diluted about 100 times. It was visually observed whether there was agglomeration, precipitation, or color change, and it was judged that the Au colloid coating material exhibiting red color had good dispersion stability. Those with poor dispersion stability were marked with x, and the results are shown in Tables 1-3. Furthermore, a titanium plate was prepared as a substrate.

Figure 2010160953
Figure 2010160953

表1に示される結果から、本発明金コロイド塗布材1〜10は色が変化せず、したがって、本発明金コロイド塗布材1〜10は従来金コロイド塗布材1に比べて分散安定性に一層優れていることがわかる。 From the results shown in Table 1, the color of the gold colloid coating materials 1 to 10 of the present invention does not change. Therefore, the gold colloid coating materials 1 to 10 of the present invention are more stable in dispersion than the conventional gold colloid coating material 1. It turns out that it is excellent.

実施例2
保護剤前駆体である1−アミノ−2−プロパノール:12.0gにAu濃度が0.2質量%になるように塩化金酸を溶解したメタノール液を徐々に投入した混合溶液を調製した。次にこの混合溶液に還元剤であるジメチルアミンボランを適量添加したのち、60℃に保温し、冷却後、混合溶液を限外ろ過法により脱塩を行い、表2に示されるN,N−ジメチルホルムアミド含有量の異なる分散媒を有する本発明金コロイド塗布材11〜16および従来金コロイド塗布材2を得た。
これら本発明金コロイド塗布材11〜16および従来金コロイド塗布材2を用い多孔質チタンおよび板状チタンにディップコーティング法にて塗布したのち、大気中、温度:60℃、1時間保持することにより乾燥して塗布膜を形成し、この塗布膜を大気中、温度:400℃で30分間保持の条件で焼結することによりAu焼結膜を形成し、接触抵抗の低い多孔質チタンおよび板状チタンを作製した。この接触抵抗の低い多孔質チタンは未処理板状チタンと、接触抵抗の低い板状チタンは未処理カーボン不織布との接触抵抗を測定し、その値(初期値)を1.0とした。
その後、寿命加速試験として1mol/LのHSO酸性水溶液中に80℃で100時間浸漬した後、上記接触抵抗の変化を初期値と比較し、相対値で表2に示した。
Example 2
A mixed solution was prepared by gradually adding a methanol solution in which chloroauric acid was dissolved in 12.0 g of 1-amino-2-propanol as a protective agent precursor to an Au concentration of 0.2% by mass. Next, an appropriate amount of dimethylamine borane as a reducing agent is added to this mixed solution, and then kept at 60 ° C. After cooling, the mixed solution is desalted by ultrafiltration, and N, N— The gold colloid coating materials 11 to 16 of the present invention and the conventional gold colloid coating material 2 having dispersion media having different dimethylformamide contents were obtained.
By applying these gold colloid coating materials 11 to 16 and the conventional gold colloid coating material 2 to porous titanium and plate-like titanium by the dip coating method, and maintaining in the atmosphere at a temperature of 60 ° C. for 1 hour. A coating film is formed by drying, and an Au sintered film is formed by sintering the coating film in the atmosphere at a temperature of 400 ° C. for 30 minutes to form porous titanium and plate-like titanium having low contact resistance. Was made. The porous titanium having a low contact resistance was measured for the contact resistance between the untreated plate-like titanium and the plate-like titanium having a low contact resistance with the untreated carbon nonwoven fabric, and the value (initial value) was 1.0.
Then, after immersing in a 1 mol / L H 2 SO 4 acidic aqueous solution at 80 ° C. for 100 hours as a life acceleration test, the change in the contact resistance was compared with the initial value, and the relative value is shown in Table 2.

Figure 2010160953
Figure 2010160953

表2に示される結果から、N,N−ジメチルホルムアミド:25質量%以上含む分散媒を用いて作製した本発明金コロイド塗布材11〜16では初期値からの接触抵抗の変化率が1.0〜1.3倍と、N,N−ジメチルホルムアミド:20質量%含む分散媒を用いて作製した従来金コロイド塗布材2の2.5〜2.8倍に比較し小さく、燃料電池使用環境下で長寿命であることが判る。 From the results shown in Table 2, the gold colloid coating materials 11 to 16 of the present invention produced using a dispersion medium containing N, N-dimethylformamide: 25% by mass or more have a contact resistance change rate of 1.0 from the initial value. -1.3 times smaller than the conventional gold colloid coating material 2 produced using a dispersion medium containing 20% by mass of N, N-dimethylformamide: 2.5-2.8 times, and in a fuel cell environment It can be seen that it has a long life.

実施例3
表3に示されるN,N−ジメチルホルムアミド以外のアミド化合物を含む分散媒を用いて作製したAu濃度:0.25質量%の本発明金コロイド塗布材17〜24を用い多孔質チタンまたは板状チタンにディップコーティング法にて塗布したのち、大気中、温度:60℃、1時間保持することにより乾燥して塗布膜を形成し、この塗布膜を大気中、温度:400℃で30分間保持の条件で焼結することによりAu焼結膜を形成し、接触抵抗の低い多孔質チタンおよび板状チタンを作製した。この接触抵抗の低い多孔質チタンは未処理板状チタンと、接触抵抗の低い板状チタンは未処理カーボン不織布との接触抵抗を測定し、その値(初期値)を1.0とした。
その後、腐食加速試験として1mol/LのHSO酸性水溶液中に80℃で100時間浸漬した後、上記接触抵抗の変化を初期値と比較し、相対値で表3に示した。
Example 3
Porous titanium or plate-like materials using Au colloid coating materials 17 to 24 of the present invention having an Au concentration of 0.25% by mass prepared using a dispersion medium containing an amide compound other than N, N-dimethylformamide shown in Table 3 After being applied to titanium by the dip coating method, the coating film is formed by drying by holding in the atmosphere at a temperature of 60 ° C. for 1 hour, and this coating film is held in the atmosphere at a temperature of 400 ° C. for 30 minutes. By sintering under conditions, an Au sintered film was formed, and porous titanium and plate-like titanium having low contact resistance were produced. The porous titanium having a low contact resistance was measured for the contact resistance between the untreated plate-like titanium and the plate-like titanium having a low contact resistance with the untreated carbon nonwoven fabric, and the value (initial value) was 1.0.
Then, after immersing in a 1 mol / L H 2 SO 4 acidic aqueous solution for 100 hours at 80 ° C. as a corrosion acceleration test, the change in the contact resistance was compared with the initial value, and the relative value is shown in Table 3.

Figure 2010160953
Figure 2010160953

表3に示される結果から、N,N−ジメチルホルムアミド以外のアミド化合物を含む分散媒を用いて作製した本発明金コロイド塗布材17〜24では初期値からの接触抵抗の変化率が1.0〜1.3倍と、表2の従来金コロイド塗布材2の2.5〜2.8倍に比較し小さく、燃料電池使用環境下で長寿命であることが判る。
表3に示される長寿命であった本発明金コロイド塗布材19を使用して形成した塗布膜を焼結して得られたAu焼結膜と劣化が激しかった表2の従来金コロイド塗布材2を使用して形成した塗布膜を焼結して得られたAu焼結膜の腐食加速試験前の微細組織をSEM(Scanning Electron Microscopy)で観察し、その組織写真を図1および図2に示した。図1に示される本発明金コロイド塗布材19を使用して形成した塗布膜を焼結して得られたAu焼結膜の写真では金微細組織が大きく、400℃での焼結・粒成長がかなり進行しているのに対し、図2に示される従来金コロイド塗布材2を使用して形成した塗布膜を焼結して得られたAu焼結膜ではコロイド合成直後のAu粒径(数十nm)を維持したままで周囲のAu粒子との焼結・粒成長が乏しいことがわかる。
From the results shown in Table 3, in the gold colloid coating materials 17 to 24 of the present invention produced using a dispersion medium containing an amide compound other than N, N-dimethylformamide, the rate of change in contact resistance from the initial value is 1.0. It can be seen that it is -1.3 times smaller than 2.5 to 2.8 times of the conventional gold colloid coating material 2 in Table 2, and has a long life under the fuel cell usage environment.
The conventional gold colloid coating material 2 shown in Table 2 and the Au sintered film obtained by sintering the coating film formed by using the gold colloid coating material 19 of the present invention having a long life shown in Table 3 and the deterioration was severe. The microstructure before the accelerated corrosion test of the Au sintered film obtained by sintering the coating film formed by using SEM was observed by SEM (Scanning Electron Microscopy), and photographs of the structure are shown in FIG. 1 and FIG. . In the photograph of the Au sintered film obtained by sintering the coating film formed using the gold colloid coating material 19 of the present invention shown in FIG. 1, the gold microstructure is large, and the sintering and grain growth at 400 ° C. In contrast, the Au sintered film obtained by sintering the coating film formed using the conventional gold colloid coating material 2 shown in FIG. It can be seen that sintering and grain growth with surrounding Au particles are poor while maintaining (nm).

本発明金コロイド塗布材19を使用して形成した塗布膜を焼結して得られたAu焼結膜のSEM写真である。It is a SEM photograph of the Au sintered film obtained by sintering the coating film formed using the gold colloid coating material 19 of the present invention. 従来金コロイド塗布材2を使用して形成した塗布膜を焼結して得られたAu焼結膜のSEM写真である。It is a SEM photograph of the Au sintered film obtained by sintering the coating film formed using the conventional colloidal gold coating material 2.

Claims (5)

Au粒子と前記Au粒子の表面に配位修飾した保護剤とにより構成され、前記保護剤が分子中に窒素を含む炭素骨格を有し、かつ前記窒素又は窒素を含む原子団をアンカーとしてAu粒子表面に配位修飾した構造を有するAuコロイド粒子をアミド化合物を含む分散媒に分散してなるAuコロイド塗布材において、前記分散媒は、アミド化合物を25質量%以上含む分散媒であることを特徴とするAuコロイド塗布材。 An Au particle comprising an Au particle and a protective agent coordinated on the surface of the Au particle, the protective agent having a carbon skeleton containing nitrogen in the molecule, and using the nitrogen or nitrogen-containing atomic group as an anchor An Au colloid coating material obtained by dispersing Au colloid particles having a structure modified on the surface in a dispersion medium containing an amide compound, wherein the dispersion medium is a dispersion medium containing 25% by mass or more of an amide compound. Au colloid coating material. 前記アミド化合物は、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド、N,N,N‘,N’−テトラメチル尿素、2−ピロリドン、N−メチルピロリドン、カルバミド酸エステルの中の1種又は2種以上であることを特徴とする請求項1記載のAuコロイド塗布材。 The amide compound includes formamide, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methylpropionamide, N, N, N ′, N′-tetra. The Au colloid coating material according to claim 1, which is one or more of methylurea, 2-pyrrolidone, N-methylpyrrolidone and carbamic acid ester. 前記Au粒子の平均粒径は、1〜60nmの範囲内にあることを特徴とする請求項1または2記載のAuコロイド塗布材。 The Au colloid coating material according to claim 1 or 2, wherein an average particle diameter of the Au particles is in a range of 1 to 60 nm. 前記Au粒子は0.02〜5質量%含まれることを特徴とする請求項1、2または3記載のAuコロイド塗布材。 The Au colloid coating material according to claim 1, wherein the Au particles are contained in an amount of 0.02 to 5 mass%. 前記請求項1、2、3または4記載のAuコロイド塗布材を用いてAu膜を形成して作製した固体高分子形燃料電池における燃料極、空気極またはセパレータ。 A fuel electrode, an air electrode, or a separator in a polymer electrolyte fuel cell produced by forming an Au film using the Au colloid coating material according to claim 1, 2, 3, or 4.
JP2009002168A 2009-01-08 2009-01-08 Au colloid coating material Expired - Fee Related JP5273588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002168A JP5273588B2 (en) 2009-01-08 2009-01-08 Au colloid coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002168A JP5273588B2 (en) 2009-01-08 2009-01-08 Au colloid coating material

Publications (2)

Publication Number Publication Date
JP2010160953A true JP2010160953A (en) 2010-07-22
JP5273588B2 JP5273588B2 (en) 2013-08-28

Family

ID=42577980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002168A Expired - Fee Related JP5273588B2 (en) 2009-01-08 2009-01-08 Au colloid coating material

Country Status (1)

Country Link
JP (1) JP5273588B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642094A (en) * 2011-02-22 2012-08-22 三菱综合材料株式会社 Paste for jointing and method for jointing semiconductor device and substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095440A (en) * 2002-09-02 2004-03-25 Daido Steel Co Ltd Metal member for fuel cell, its manufacturing method, and fuel cell
JP2008078122A (en) * 2006-08-21 2008-04-03 Mitsubishi Materials Corp Porous titanium having low contact resistance, and manufacturing method therefor
JP2008095182A (en) * 2006-09-11 2008-04-24 Mitsubishi Materials Corp Method for forming metal film and metal film obtained by the method
JP2008196051A (en) * 2007-01-19 2008-08-28 Mitsubishi Materials Corp Metal film forming method, and metal film obtained by the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095440A (en) * 2002-09-02 2004-03-25 Daido Steel Co Ltd Metal member for fuel cell, its manufacturing method, and fuel cell
JP2008078122A (en) * 2006-08-21 2008-04-03 Mitsubishi Materials Corp Porous titanium having low contact resistance, and manufacturing method therefor
JP2008095182A (en) * 2006-09-11 2008-04-24 Mitsubishi Materials Corp Method for forming metal film and metal film obtained by the method
JP2008196051A (en) * 2007-01-19 2008-08-28 Mitsubishi Materials Corp Metal film forming method, and metal film obtained by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642094A (en) * 2011-02-22 2012-08-22 三菱综合材料株式会社 Paste for jointing and method for jointing semiconductor device and substrate
JP2012174480A (en) * 2011-02-22 2012-09-10 Mitsubishi Materials Corp Bonding paste and method for bonding semiconductor element and substrate together
KR101749357B1 (en) 2011-02-22 2017-06-20 미쓰비시 마테리알 가부시키가이샤 Paste for jointing and method for jointing semiconductor device and substrate

Also Published As

Publication number Publication date
JP5273588B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP3958217B2 (en) Cathode side hardware for carbonate fuel cell with sol-gel coating
JP5237815B2 (en) Carbon-containing particle dispersion for current collector production and method for adjusting the same
JP4811793B2 (en) Silica-coated porous metal whose hydrophilicity is maintained for a long time and method for producing the same
JP5851386B2 (en) Method for producing microporous layer forming paste composition
CA2492341A1 (en) Mixed metal oxide layer and method of manufacture
WO2010047321A1 (en) Ceramic electrode material and process for producing the ceramic electrode material
JP2020519768A (en) Metal foam manufacturing method
JP7252941B2 (en) Dispersion for silicon carbide sintered body, green sheet for silicon carbide sintered body using the same, prepreg material for silicon carbide sintered body, and method for producing the same
JP2011111644A (en) Hydrophilic metal foam body
JP6132026B2 (en) Method for producing aluminum porous body
JP2009123691A (en) Corrosion-resistant ceramic electrode material, and its manufacturing method
US11612933B2 (en) Preparation method for metal foam
JP5273588B2 (en) Au colloid coating material
CN111360264A (en) Method for manufacturing porosity-adjustable foamed aluminum electrode material
TW200809884A (en) Method for producing a coating of a porous, electrically conductive substrate material with a dielectric and production of high capacitance density capacitors by using this method
JP4949833B2 (en) Method for producing metal oxide layer
JP2008106355A (en) Hydrophilic porous metal member and manufacturing method therefor
JP2007177280A (en) Method for producing metal porous body
JP2004119072A (en) Electrode for fuel cell
KR20200002456A (en) Preparation method for metal foam
JP7090942B2 (en) Composite material
JP5083936B2 (en) Method for producing metal porous body
JP2010163636A (en) Porous titanium sheet small in contact resistance and method for producing the porous titanium sheet
JP2008159420A (en) Composite titanium material capable of keeping contact resistance low over long time
JP2008108715A (en) Hydrophilic porous metal member and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130505

LAPS Cancellation because of no payment of annual fees