JP2010157608A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2010157608A
JP2010157608A JP2008334992A JP2008334992A JP2010157608A JP 2010157608 A JP2010157608 A JP 2010157608A JP 2008334992 A JP2008334992 A JP 2008334992A JP 2008334992 A JP2008334992 A JP 2008334992A JP 2010157608 A JP2010157608 A JP 2010157608A
Authority
JP
Japan
Prior art keywords
phosphor
light
blue
emitting device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008334992A
Other languages
Japanese (ja)
Other versions
JP5195415B2 (en
Inventor
Hiroaki Okagawa
広明 岡川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008334992A priority Critical patent/JP5195415B2/en
Publication of JP2010157608A publication Critical patent/JP2010157608A/en
Application granted granted Critical
Publication of JP5195415B2 publication Critical patent/JP5195415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device capable of generating white light having stable white balance and excelling in a color rendering property in spite of using a semiconductor light emitting element for an excitation light source. <P>SOLUTION: This light emitting device includes the semiconductor light emitting element of which the red phosphor is a Mn activation fluoro complex salt-based phosphor, the blue phosphor is a Eu activation aluminate-based phosphor, the green phosphor is a Eu and Mn activation aluminate-based phosphor, and which emits light for exciting the blue phosphor and the green phosphor without substantially exciting the red phosphor. The red phosphor is excited by a part of blue light emitted by the blue phosphor by being excited by light emitted by the semiconductor light emitting element. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LEDなどの半導体発光素子と波長変換手段である蛍光体とを組み合わせた発光装置に関する。   The present invention relates to a light-emitting device that combines a semiconductor light-emitting element such as an LED and a phosphor that is wavelength converting means.

LEDと蛍光体とを組み合わせて白色光を発生させる白色発光装置が固体照明用光源として注目を集めている。LEDは供給する電流値の変化や周囲温度の変動によってその発光波長が変化するために、このような白色発光装置においてはホワイトバランスを安定化させることがひとつの課題となっている(特許文献1)。
特開2000−31531号公報 米国特許第3576756号公報 米国特許公開第2006/0169998号公報
White light-emitting devices that generate white light by combining LEDs and phosphors are attracting attention as light sources for solid-state illumination. Since the light emission wavelength of an LED changes due to a change in a current value to be supplied or a change in ambient temperature, in such a white light emitting device, it is one problem to stabilize white balance (Patent Document 1). ).
JP 2000-31531 A U.S. Pat. No. 3,576,756 US Patent Publication No. 2006/0169998

特許文献1にはホワイトバランスを安定化させた白色発光装置として、紫外線発光素子を用いて青色蛍光体を励起し、その青色蛍光体が放出する青色光の一部で黄色蛍光体を励起し、共に蛍光体由来の青色光および黄色光の混合により白色光を生成させる発光装置が開示されている。黄色蛍光体として用いられているのは(Y1-aGda3(Al1-bGab512:Ceで表されるCe付活YAG(YAGはイットリウム・アルミニウム・ガーネットの略)である。しかしながら、この白色発光装置が放射する白色光は成分光として青色光と黄色光しか含まないために演色性に劣るという問題点がある。 In Patent Document 1, as a white light emitting device with stabilized white balance, a blue phosphor is excited using an ultraviolet light emitting element, and a yellow phosphor is excited by a part of blue light emitted from the blue phosphor, Both disclose a light emitting device that generates white light by mixing blue light and yellow light derived from a phosphor. That used as a yellow phosphor (Y 1-a Gd a) 3 (Al 1-b Ga b) 5 O 12: Ce activated YAG represented by Ce (YAG stands for yttrium aluminum garnet ). However, the white light emitted from the white light emitting device has a problem that it is inferior in color rendering because it contains only blue light and yellow light as component light.

したがって、半導体発光素子を励起光源に用いながらも、ホワイトバランスが安定でかつ演色性の良好な白色光を生成することのできる発光装置が求められている。かかる発光装置が実現されれば、照明用光源やカラー液晶表示装置のバックライト用光源として好ましく使用できることはいうまでもない。   Therefore, there is a need for a light emitting device that can generate white light with stable white balance and good color rendering while using a semiconductor light emitting element as an excitation light source. It goes without saying that if such a light emitting device is realized, it can be preferably used as a light source for illumination or a backlight for a color liquid crystal display device.

本発明が提供する半導体発光装置は、赤色蛍光体としてM2XF6:Mn(ここで、MはLi,Na,K,Rb,CsおよびNH4からなる群から選ばれる一種以上を含有し、XはGe、Si,Sn,TiおよびZrからなる群より選ばれる1種以上を含有する)で表されるMn付活フルオロ錯体塩系蛍光体を用いることをひとつの特徴としている。なお、以下ではこの蛍光体を「MXF」と略称する場合がある。 The semiconductor light emitting device provided by the present invention contains M 2 XF 6 : Mn (wherein M is one or more selected from the group consisting of Li, Na, K, Rb, Cs and NH 4 as a red phosphor, One feature is that X uses a Mn-activated fluorocomplex salt-based phosphor represented by X) containing at least one selected from the group consisting of Ge, Si, Sn, Ti and Zr. Hereinafter, this phosphor may be abbreviated as “MXF”.

MXFは特許文献2、特許文献3などに開示されている公知の赤色蛍光体である。特許文献2のFig.1にはMXFの典型的な励起スペクトルとしてK2TiF6:Mnの励起スペクトルが示されているが、その励起スペクトルが示す通り、MXFは青色波長域(430nm〜480nm)の光によって強く励起される一方、波長400nm付近(380nm〜420nm)の光によっては実質的に励起されないという性質を有している。 MXF is a known red phosphor disclosed in Patent Document 2, Patent Document 3, and the like. FIG. 1 shows the excitation spectrum of K 2 TiF 6 : Mn as a typical excitation spectrum of MXF. As the excitation spectrum shows, MXF is strongly excited by light in the blue wavelength region (430 nm to 480 nm). On the other hand, it has a property that it is not substantially excited by light having a wavelength of around 400 nm (380 nm to 420 nm).

従って、発光波長400nm付近の半導体発光素子を用いて青色蛍光体を励起し、その青色蛍光体が放出する光の一部を用いてMXFを励起させるようにすれば、青色光と赤色光とのバランスが安定した発光装置が得られる。しかし、青色光と赤色光のみでは高演色照明やカラー液晶ディスプレイに用い得る良質な白色光を生成させることはできない。そのような白色光を生成させるには、この発光装置に更に緑色光源として緑色蛍光体を追加する必要がある。MXFは緑色光によっても実質的に励起されないので、緑色蛍光体を追加しても青色光と赤色光とのバランスには影響がないという利点がある。ただし、半導体発光素子の発光波長が変化したときには緑色蛍光体から生じる緑色光の強度も青色光および赤色光と同じように変化するようにしないと、ホワイトバランスの安定化が達成できない。   Therefore, if a blue phosphor is excited using a semiconductor light emitting element having an emission wavelength of about 400 nm and MXF is excited using a part of the light emitted from the blue phosphor, the blue and red lights A light-emitting device with a stable balance can be obtained. However, high-quality white light that can be used for high color rendering illumination and color liquid crystal displays cannot be generated with only blue light and red light. In order to generate such white light, it is necessary to add a green phosphor as a green light source to the light emitting device. Since MXF is not substantially excited by green light, there is an advantage that even if a green phosphor is added, the balance between blue light and red light is not affected. However, when the emission wavelength of the semiconductor light emitting element is changed, the white balance cannot be stabilized unless the intensity of the green light generated from the green phosphor is changed in the same manner as the blue light and the red light.

そこで、本発明では、波長400nm付近における青色蛍光体と緑色蛍光体の励起特性が揃うように、青色および緑色の蛍光体として母体の基本構造が同一であるものを選択する。すなわち、青色蛍光体として(Ca,Sr,Ba)MgAl1017:Euで表されるEu付活アルミン酸塩系蛍光体を用い、緑色蛍光体として(Ba,Sr)MgAl1017:Eu,Mnで表されるEuおよびMn付活アルミン酸塩系蛍光体を用いる。好ましくは、青色蛍光体にBaMgAl1017:Euを用い、緑色蛍光体にBaMgAl1017:Eu,Mnを用いる。このようにすれば、半導体発光素子の発光波長が変化しても、青色蛍光体から生じる青色光の強度と緑色蛍光体から生じる緑色光の強度とが同じように変化するので、青色光と緑色光とのバランスは変わらない。そして、前述の通り、赤色蛍光体としてMXFを用いることにより、赤色光と青色光との間のバランスも安定しているので、得られる発光装置においては、成分光である赤色光と青色光と緑色光との間のバランスが安定した、演色性にもホワイトバランスの安定性にも優れた良質な白色光の生成が可能となる。なお、MXFの発光スペクトルが赤色領域に有するピークは半値幅が極めて小さいので、この三原色光を同時に放射する発光装置は色再現範囲の広いことが要求されるカラー液晶表示装置のバックライト用途に特に適している。 Therefore, in the present invention, blue and green phosphors having the same basic structure are selected so that the excitation characteristics of the blue phosphor and the green phosphor in the vicinity of a wavelength of 400 nm are aligned. That is, an Eu-activated aluminate-based phosphor represented by (Ca, Sr, Ba) MgAl 10 O 17 : Eu is used as the blue phosphor, and (Ba, Sr) MgAl 10 O 17 : Eu is used as the green phosphor. Eu and Mn activated aluminate phosphors represented by Mn are used. Preferably, BaMgAl 10 O 17 : Eu is used for the blue phosphor, and BaMgAl 10 O 17 : Eu, Mn is used for the green phosphor. In this way, even if the emission wavelength of the semiconductor light emitting device changes, the intensity of blue light generated from the blue phosphor and the intensity of green light generated from the green phosphor change in the same way. The balance with light does not change. As described above, since the balance between red light and blue light is stable by using MXF as the red phosphor, in the obtained light emitting device, red light and blue light as component lights are It is possible to generate high-quality white light with a stable balance between green light and excellent color rendering and white balance stability. Note that the peak of the MXF emission spectrum in the red region has a very small half-value width. Therefore, the light emitting device that simultaneously emits these three primary colors is particularly suitable for backlight applications in color liquid crystal display devices that require a wide color reproduction range. Is suitable.

また、本発明では、上記のように選択する赤色蛍光体、青色蛍光体および緑色蛍光体に加えて、更にCe付活YAGを組み合わせて発光装置を構成してもよい。Ce付活YAGは青色光により励起される一方、波長400nm付近の光によっても、また、緑色光によっても、実質的に励起されない。よって、半導体発光素子の発光波長が変化しても、Ce付活YAGから生じる黄色光の強度は青色蛍光体から生じる青色光の強度と同じように変化するので、青色光と黄色光とのバランスは変わらない。よって、得られる発光装置においては、赤色光、青色光、緑色光および黄色光の間のバランスが安定した、演色性にもホワイトバランスの安定性にも優れた白色光が生成可能となる。このような4つの成分光からなる白色光を生成し得る発光装置は演色性が重視される照明用途に特に適している。   In the present invention, in addition to the red phosphor, blue phosphor, and green phosphor selected as described above, a Ce-activated YAG may be further combined to constitute a light emitting device. Ce-activated YAG is excited by blue light, but is not substantially excited by light in the vicinity of a wavelength of 400 nm or by green light. Therefore, even if the emission wavelength of the semiconductor light emitting element changes, the intensity of yellow light generated from Ce-activated YAG changes in the same way as the intensity of blue light generated from the blue phosphor, so the balance between blue light and yellow light Will not change. Therefore, in the obtained light emitting device, it is possible to generate white light having a stable balance among red light, blue light, green light, and yellow light and having excellent color rendering properties and white balance stability. Such a light-emitting device capable of generating white light composed of four component lights is particularly suitable for lighting applications where color rendering is important.

本発明の半導体発光装置は、半導体発光素子を励起光源に用いながらも、演色性にもホワイトバランスの安定性にも優れた良質な白色光を生成させることができるので、照明用光源やカラー液晶表示装置のバックライト用光源として好ましく使用できる。   The semiconductor light-emitting device of the present invention can generate high-quality white light excellent in color rendering and white balance stability while using a semiconductor light-emitting element as an excitation light source. It can be preferably used as a light source for a backlight of a display device.

前述の通り、本発明は赤色蛍光体としてM2XF6:Mn(ここで、MはLi,Na,K,Rb,CsおよびNH4からなる群から選ばれる一種以上を含有し、XはGe、Si,Sn,TiおよびZrからなる群より選ばれる1種以上を含有する)で表されるMn付活フルオロ錯体塩系蛍光体を用いることをひとつの特徴としている。
Mn付活フルオロ錯体塩系蛍光体の中でも好ましいのは、上記化学式においてMがK(カリウム)またはNa(ナトリウム)から選ばれる1種以上であり、XがSi(ケイ素)であるものである。その中でもより好ましいのは、M全量に占めるKの比率が90モル%以上、特に97モル%以上、更には99モル%以上のものである。
付活元素はMn(マンガン)が100%であることが望ましいが、限定されるものではなく、付活元素の全量に対し10モル%未満の範囲でTi、Zr、Ge、Sn、Al、Ga、B、In、Cr、Fe、Co、Ni、Cu、Nb、Mo、Ru、Ag、Zn、Mgなどを含んでいてもよい。
XがSiの場合、SiとMnとの合計におけるMnの割合は、0.5モル%〜10モル%の範囲内であることが望ましい。
As described above, the present invention includes M 2 XF 6 : Mn (wherein M is one or more selected from the group consisting of Li, Na, K, Rb, Cs and NH 4) , and X is Ge. One feature is the use of a Mn-activated fluoro complex salt-based phosphor represented by the formula (1) containing at least one selected from the group consisting of Si, Sn, Ti and Zr.
Among the Mn-activated fluorocomplex salt-based phosphors, those in which M is one or more selected from K (potassium) or Na (sodium) and X is Si (silicon) are preferable. Of these, the ratio of K in the total amount of M is 90 mol% or more, particularly 97 mol% or more, and more preferably 99 mol% or more.
The activator element is preferably 100% Mn (manganese), but is not limited, and Ti, Zr, Ge, Sn, Al, Ga in a range of less than 10 mol% with respect to the total amount of the activator element. , B, In, Cr, Fe, Co, Ni, Cu, Nb, Mo, Ru, Ag, Zn, Mg, and the like may be included.
When X is Si, the ratio of Mn in the sum of Si and Mn is preferably in the range of 0.5 mol% to 10 mol%.

MXFの製造方法については特許文献2または特許文献3を参照すればよいが、ここでは一例としてK2SiF6:Mnの合成例を説明する。
工程1
KF粉体またはKHF2粉体をフッ化水素酸(47.3重量%)に溶解させてから、KMnO4粉体をこの溶液に溶解させる。溶液を攪拌しながら過酸化水素水を滴下していくと、KMnO4とH22とのモル比が1.5になった時に黄色い沈澱物が得られる。その沈澱物をアセトンで洗浄した後130℃で1時間乾燥させることによりK2MnF6が得られる。
工程2
蛍光体の各原料の仕込み組成がK2Si0.9Mn0.16となるように、K2SiF6(1.7783g)とK2MnF6(0.2217g)を大気圧下、室温の下で、フッ化水素酸(47.3重量%)70mlに添加して溶解させる。各原料化合物が完全に溶解した後、溶液を攪拌しながらアセトン70mlを240ml/hrの速度で添加して蛍光体を析出させる。析出物をエタノールで洗浄し、130℃で1時間乾燥させることにより1.7gの蛍光体K2SiF6:Mnが得られる。
得られる蛍光体におけるSiとMnのモル比は、EDX(エネルギー分散X線分析)法による組成分析から知ることができる。このモル比は仕込み組成を変更することにより調整することができる。
As for the manufacturing method of MXF, Patent Document 2 or Patent Document 3 may be referred to, but here, a synthesis example of K 2 SiF 6 : Mn will be described as an example.
Process 1
KF powder or KHF 2 powder is dissolved in hydrofluoric acid (47.3% by weight), and then KMnO 4 powder is dissolved in this solution. When hydrogen peroxide is added dropwise while stirring the solution, a yellow precipitate is obtained when the molar ratio of KMnO 4 and H 2 O 2 reaches 1.5. The precipitate is washed with acetone and dried at 130 ° C. for 1 hour to obtain K 2 MnF 6 .
Process 2
K 2 SiF 6 (1.7783 g) and K 2 MnF 6 (0.2217 g) were added under atmospheric pressure and room temperature so that the charged composition of each raw material of the phosphor was K 2 Si 0.9 Mn 0.1 F 6. Add to 70 ml of hydrofluoric acid (47.3% by weight) and dissolve. After each raw material compound is completely dissolved, 70 ml of acetone is added at a rate of 240 ml / hr while stirring the solution to precipitate the phosphor. The precipitate is washed with ethanol and dried at 130 ° C. for 1 hour to obtain 1.7 g of phosphor K 2 SiF 6 : Mn.
The molar ratio of Si and Mn in the obtained phosphor can be known from composition analysis by EDX (energy dispersive X-ray analysis) method. This molar ratio can be adjusted by changing the charged composition.

上記工程1および工程2を実際に行うことにより得たK2SiF6:Mnの励起スペクトルおよび発光スペクトルを図1に示す。励起スペクトルは波長350nm付近と波長450nm〜460nmの範囲にそれぞれピークを有しており、青色光により効率よく励起可能であること、また、波長400nm付近では励起効率が低いことが分かる。また、発光スペクトルは波長630nmに半値幅6nmの鋭いピークを有している。 FIG. 1 shows an excitation spectrum and an emission spectrum of K 2 SiF 6 : Mn obtained by actually performing the above steps 1 and 2. The excitation spectrum has peaks in the vicinity of a wavelength of 350 nm and in the range of wavelengths of 450 nm to 460 nm, and it can be seen that excitation can be efficiently performed with blue light, and that the excitation efficiency is low in the vicinity of a wavelength of 400 nm. The emission spectrum has a sharp peak at a wavelength of 630 nm and a half width of 6 nm.

青色蛍光体として用いるEu付活アルミン酸塩系蛍光体、緑色蛍光体として用いるEuおよびMn付活アルミン酸塩系蛍光体、および、黄色蛍光体として用いるCe付活YAGは、それぞれ公知の物質であり、その製造方法等については従来技術を適宜参照することができる。
本発明における好ましい青色蛍光体であるBaMgAl1017:Euの励起スペクトルおよび発光スペクトルを図2に示す。また、本発明における好ましい緑色蛍光体であるBaMgAl1017:Eu,Mnの励起スペクトルおよび発光スペクトルを図3に示す。
Eu-activated aluminate phosphors used as blue phosphors, Eu and Mn activated aluminate phosphors used as green phosphors, and Ce-activated YAG used as yellow phosphors are known materials, respectively. Yes, the prior art can be referred to as appropriate for the manufacturing method and the like.
FIG. 2 shows the excitation spectrum and emission spectrum of BaMgAl 10 O 17 : Eu, which is a preferred blue phosphor in the present invention. FIG. 3 shows the excitation spectrum and emission spectrum of BaMgAl 10 O 17 : Eu, Mn, which is a preferred green phosphor in the present invention.

本発明の半導体発光装置において、青色蛍光体および緑色蛍光体の励起に用いる半導体発光素子にはGaN系発光素子を好適に用いることができる。GaN系発光素子とは、PN接合構造、MIS構造などの発光素子構造を一般式InxGayAl1-x-yNで表されるGaN系半導体で形成したLEDやLD(レーザダイオード)である。現在では、ダブルヘテロPN接合型の素子構造を採用するとともに、発光層を井戸層および障壁層からなる多重量子井戸構造とした高輝度のGaN系発光素子が市販されている。このようなGaN系発光素子の発光波長は井戸層を形成するGaN系半導体の組成により制御することができる。青色蛍光体に用いるEu付活アルミン酸塩系蛍光体と緑色蛍光体に用いるEuおよびMn付活アルミン酸塩系蛍光体の励起特性を考慮すると、GaN系半導体発光素子の主発光波長は好ましくは410nm以下、より好ましくは400nm以下である。 In the semiconductor light emitting device of the present invention, a GaN-based light emitting element can be suitably used as the semiconductor light emitting element used for exciting the blue phosphor and the green phosphor. A GaN-based light-emitting element is an LED or LD (laser diode) in which a light-emitting element structure such as a PN junction structure or a MIS structure is formed of a GaN-based semiconductor represented by the general formula In x Ga y Al 1-xy N. Currently, a high-brightness GaN-based light-emitting element that employs a double hetero PN junction type element structure and has a light-emitting layer having a multiple quantum well structure including a well layer and a barrier layer is commercially available. The emission wavelength of such a GaN-based light-emitting element can be controlled by the composition of the GaN-based semiconductor that forms the well layer. Considering the excitation characteristics of the Eu-activated aluminate phosphor used for the blue phosphor and the Eu and Mn-activated aluminate phosphor used for the green phosphor, the main emission wavelength of the GaN-based semiconductor light emitting device is preferably It is 410 nm or less, More preferably, it is 400 nm or less.

Inを含むGaN系半導体で井戸層を形成したGaN系発光素子は、当該層の内部でIn濃度が自発的に不均一化し、In濃度が局所的に高くなった領域において発光再結合が促進されるために、発光層中に貫通転位と呼ばれる結晶欠陥が高密度に存在するにもかかわらず、極めて高い発光効率を示す。しかし、InxGayN(x+y=1)からなる井戸層を用いて380nm〜400nmという短波長光を発生させようとすると、井戸層のIn組成xを低く抑えなくてはならず、そのためにIn濃度の不均一化による上記の効果が小さくなり、特に、温度上昇に伴う素子の発光効率の低下が顕著となってくる。
この問題を改善するためには、AlおよびInを含む多重量子井戸構造の発光層を採用することが望ましい。Alの添加はGaN系半導体のバンドギャップを大きくする働きがあるので、例えば、井戸層をAlおよびInを含むInGaAlNで形成すると、In含有量を低く抑えることなく、発光波長を短くすることができる。あるいは、井戸層はInGaNで形成する一方、障壁層にAlを添加すると、井戸層と障壁層とのバンドギャップ差が大きくなるためにキャリアが井戸層に留まる時間が長くなり、井戸層における発光再結合が促進される。
In a GaN-based light emitting device in which a well layer is formed of a GaN-based semiconductor containing In, the In concentration spontaneously becomes nonuniform within the layer, and light emission recombination is promoted in a region where the In concentration is locally high. Therefore, even though crystal defects called threading dislocations exist in the light emitting layer at a high density, extremely high light emission efficiency is exhibited. However, when trying to generate light having a short wavelength of 380 nm to 400 nm using a well layer made of In x Ga y N (x + y = 1), the In composition x of the well layer must be kept low. The above-mentioned effect due to the non-uniformity of the In concentration is reduced, and in particular, the decrease in the light emission efficiency of the element accompanying the temperature rise becomes remarkable.
In order to improve this problem, it is desirable to employ a light emitting layer having a multiple quantum well structure containing Al and In. Since the addition of Al serves to increase the band gap of the GaN-based semiconductor, for example, when the well layer is formed of InGaAlN containing Al and In, the emission wavelength can be shortened without reducing the In content. . Alternatively, when the well layer is formed of InGaN and Al is added to the barrier layer, the band gap difference between the well layer and the barrier layer increases, so that the time for the carriers to stay in the well layer increases, and the light emission in the well layer is regenerated. Bonding is promoted.

本発明の半導体発光装置は、既に説明した通り、半導体発光素子が放出する光により青色および緑色の蛍光体が励起され、このうち青色蛍光体が放出する光の一部により赤色蛍光体(黄色蛍光体を用いる場合は赤色蛍光体および黄色蛍光体)が励起され、各蛍光体から生じる光が同時に当該発光装置から外部に放射されるように構成される。本発明の半導体発光装置は、蛍光体の具体的な固定化方法であるとか、半導体発光素子と蛍光体との具体的な結合方法や結合構造などにより限定されるものではない。本発明の半導体発光装置を作るにあたり必要となる、蛍光体の固定化方法や、半導体発光素子と蛍光体との結合方法や結合構造などについては、公知技術を適宜参照すればよい   In the semiconductor light emitting device of the present invention, as already described, the blue and green phosphors are excited by the light emitted from the semiconductor light emitting element, and the red phosphor (yellow fluorescent light) is produced by a part of the light emitted from the blue phosphor. When a body is used, red phosphor and yellow phosphor) are excited, and light generated from each phosphor is simultaneously emitted to the outside from the light emitting device. The semiconductor light-emitting device of the present invention is not limited by a specific method for fixing a phosphor, or by a specific bonding method or bonding structure between the semiconductor light-emitting element and the phosphor. For the phosphor immobilization method, the semiconductor light-emitting element-phosphor bonding method, the bonding structure, and the like, which are necessary for manufacturing the semiconductor light-emitting device of the present invention, known techniques may be referred to as appropriate.

一実施形態において、本発明の半導体発光装置は、パッケージ、リードフレーム、ユニット基板等に固定された1つ以上の半導体発光素子と、これを埋め込んだ透光性の被覆部材を含む。この被覆部材は単層構造であってもよいし多層構造を有していてもよい。この被覆部材のベース材料に限定はなく、樹脂であってもよいしガラスであってもよい。被覆部材が多層構造である場合には、層毎にベース材料が異なっていてもよい。樹脂材料としては、エポキシ樹脂などと比べて短波長光により劣化し難いシリコーン樹脂が好ましい。この被覆部材中には増量や屈折率調整の目的で、シリカ微粒子、ジルコニア微粒子、チタニア微粒子のような無色透明の金属酸化物微粒子を分散することができる。この被覆部材の成形方法に限定はなく、例えば、モールドやポッティングなどであってもよい。被覆部材が多層構造である場合には、層毎に異なる方法で成形してもよい。
蛍光体は上記被覆部材のいずれかの層内に固定化することができる。全部の蛍光体を混合してひとつの層内に固定化することもできるし、あるいは、赤色蛍光体を分散した赤色蛍光体層、青色蛍光体を分散した青色蛍光体層、緑色蛍光体を分散した緑色蛍光体層、黄色蛍光体を分散した黄色蛍光体層をそれぞれ設けることもできる。
蛍光体を透明な樹脂やガラス中に分散固定化した板状ないし膜状の蛍光部材を別途形成し、これを上記被覆部材の外部に設置することもできる。蛍光体の一部を上記被覆部材の内部に固定化し、他の一部を外部の蛍光部材中に固定化することもできる。上記被覆部材の外部に蛍光部材を設置した場合に、被覆部材と蛍光部材との間に形成される空間の全部または一部を透明材料(樹脂、ガラス、高分子液体など)で充たすことができる。
In one embodiment, the semiconductor light-emitting device of the present invention includes one or more semiconductor light-emitting elements fixed to a package, a lead frame, a unit substrate, and the like, and a light-transmitting covering member embedded therein. The covering member may have a single layer structure or a multilayer structure. There is no limitation in the base material of this coating | coated member, Resin may be sufficient and glass may be sufficient. When the covering member has a multilayer structure, the base material may be different for each layer. The resin material is preferably a silicone resin that is less likely to be deteriorated by short-wavelength light than an epoxy resin or the like. In this covering member, colorless and transparent metal oxide fine particles such as silica fine particles, zirconia fine particles, and titania fine particles can be dispersed for the purpose of increasing the amount and adjusting the refractive index. There is no limitation on the method of forming the covering member, and for example, molding or potting may be used. When the covering member has a multilayer structure, the layers may be formed by different methods.
The phosphor can be immobilized in any layer of the covering member. All phosphors can be mixed and fixed in one layer, or red phosphor layer with dispersed red phosphor, blue phosphor layer with dispersed blue phosphor, and green phosphor dispersed A green phosphor layer and a yellow phosphor layer in which a yellow phosphor is dispersed can also be provided.
It is also possible to separately form a plate-like or film-like fluorescent member in which the phosphor is dispersed and fixed in a transparent resin or glass, and install this on the outside of the covering member. A part of the phosphor can be fixed inside the covering member, and the other part can be fixed in the external fluorescent member. When a fluorescent member is installed outside the covering member, all or part of the space formed between the covering member and the fluorescent member can be filled with a transparent material (resin, glass, polymer liquid, etc.). .

本発明の半導体発光装置は、また、パッケージ、リードフレーム、ユニット基板等に固定された1つ以上の半導体発光素子と、半導体発光素子の固定部位から離れた位置に固定化された蛍光体と、半導体発光素子が放出する光をこの蛍光体に導くための導光板あるいは導波路(例えば、光ファイバ)と、を含むものであってもよい。   The semiconductor light-emitting device of the present invention also includes one or more semiconductor light-emitting elements fixed to a package, a lead frame, a unit substrate, and the like, and a phosphor fixed at a position away from a fixing portion of the semiconductor light-emitting element, A light guide plate or a waveguide (for example, an optical fiber) for guiding the light emitted from the semiconductor light emitting element to the phosphor may be included.

図4に本発明の一実施形態に係る半導体発光装置の模式断面図を示す。この図に示す発光装置100は、SMD(表面実装)型LEDであり、パッケージ10に設けられたキャビティ(カップ状部分)の底面上にGaN系発光素子20が接着剤(図示せず)を用いて固定されている。
パッケージ10は、セラミック(アルミナ、AlNなど)、白色樹脂などで形成されたパッケージ基板11と、二つのパッケージ電極12と、リフレクタ13とから構成されている。この図ではパッケージ基板11とリフレクタ13とを別個の部材のように示しているが、これらは一体的に形成されていてもよい。
パッケージ基板11上に固定されたGaN系発光素子20は400nm付近に主発光波長を有するものである。このGaN系発光素子は、サファイア、SiC、GaNなどからなる素子基板21と、その上に形成された、ダブルヘテロPN接合型のLED構造を備えたGaN系半導体膜22とを有しており、そのGaN系半導体膜22上に、正負の電極が形成されている。正電極は、透明導電性酸化物(TCO:Transparent Conductive Oxide)からなる透明電極23aと、その一部上に形成された金属製のボンディングパッド23bとから構成されている。負電極も、TCOからなる透明電極24aと、その一部上に形成された金属製のボンディングパッド24bとから構成されている。素子基板21の下面には金属製の反射膜25が形成されている。
GaN系発光素子20の正電極および負電極のそれぞれは、AuまたはCuからなるボンディングワイヤ30により、2つのパッケージ電極12のそれぞれに接続されている。
GaN系発光素子20は透光性の被覆部材40により埋め込まれている。被覆部材40は内層部41と外層部42とを有しており、2本のボンディングワイヤ30は内層部41に埋め込まれている。
蛍光体(図示せず)は被覆部材40中に固定化されており、とりわけ、赤色蛍光体は内層部41に固定化されており、青色蛍光体および緑色蛍光体は外層部42に固定化されている。黄色蛍光体を用いる場合には外層部42に固定化することが望ましい。
FIG. 4 is a schematic cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention. The light emitting device 100 shown in this figure is an SMD (surface mounted) LED, and the GaN-based light emitting element 20 uses an adhesive (not shown) on the bottom surface of a cavity (cup-shaped portion) provided in the package 10. Is fixed.
The package 10 includes a package substrate 11 formed of ceramic (alumina, AlN, etc.), white resin, etc., two package electrodes 12, and a reflector 13. In this figure, the package substrate 11 and the reflector 13 are shown as separate members, but they may be integrally formed.
The GaN-based light emitting device 20 fixed on the package substrate 11 has a main emission wavelength in the vicinity of 400 nm. This GaN-based light emitting device has an element substrate 21 made of sapphire, SiC, GaN, and the like, and a GaN-based semiconductor film 22 having a double hetero PN junction type LED structure formed thereon, Positive and negative electrodes are formed on the GaN-based semiconductor film 22. The positive electrode is composed of a transparent electrode 23a made of transparent conductive oxide (TCO) and a metal bonding pad 23b formed on a part thereof. The negative electrode is also composed of a transparent electrode 24a made of TCO and a metal bonding pad 24b formed on a part thereof. A metal reflective film 25 is formed on the lower surface of the element substrate 21.
Each of the positive electrode and the negative electrode of the GaN-based light emitting element 20 is connected to each of the two package electrodes 12 by a bonding wire 30 made of Au or Cu.
The GaN-based light emitting element 20 is embedded with a translucent covering member 40. The covering member 40 has an inner layer portion 41 and an outer layer portion 42, and the two bonding wires 30 are embedded in the inner layer portion 41.
A phosphor (not shown) is fixed in the covering member 40. In particular, the red phosphor is fixed to the inner layer portion 41, and the blue phosphor and the green phosphor are fixed to the outer layer portion 42. ing. When using a yellow phosphor, it is desirable to fix it to the outer layer portion 42.

発光装置100において、GaN系発光素子20から放出される波長400nm付近の光は、被覆部材40の内層部41に固定化された赤色蛍光体によっては実質的に吸収されることなく外層部42に達し、そこで青色蛍光体および緑色蛍光体を励起させる。青色蛍光体から生じる青色光は方向性を有さないので、その一部は内層部41側に向かって進み、赤色蛍光体を励起させることになる。赤色蛍光体から生じる赤色光は直接、あるいはパッケージ基板11、パッケージ電極12、リフレクタ13またはボンディングワイヤ30の表面で反射されて、外層部42側に向かって進み、これを透過して発光装置100の外部に放射される。   In the light emitting device 100, light having a wavelength of about 400 nm emitted from the GaN-based light emitting element 20 is not substantially absorbed by the red phosphor fixed on the inner layer portion 41 of the covering member 40 and is not absorbed by the outer layer portion 42. Where the blue and green phosphors are excited. Since the blue light generated from the blue phosphor does not have directionality, a part of the blue light proceeds toward the inner layer portion 41 and excites the red phosphor. The red light generated from the red phosphor is reflected directly or on the surface of the package substrate 11, the package electrode 12, the reflector 13, or the bonding wire 30, travels toward the outer layer portion 42 side, passes through this, and passes through the light emitting device 100. Radiated to the outside.

発光装置100において、被覆部材40の内層部41に赤色蛍光体を、外層部42に青色蛍光体を固定化しているのは、ボンディングワイヤ30の近傍では青色光を発生させないで、赤色光を発生させるようにするためである。その理由は、ボンディングワイヤ30の材料であるAuまたはCuは青色光を強く吸収するのに対し、赤色光に対しては強い吸収を示さないからである。外層部42に固定化した青色蛍光体から生じる青色光のうち、内層部41に入射するのはその一部であり、更に内層部41に入射すると青色光は赤色蛍光体によって赤色光に変換されるので、青色光がボンディングワイヤ30に吸収されることによる損失が減少することになる。なお、このような損失低減効果の発生に必要な条件は、赤色蛍光体が青色蛍光体により励起され得ることである(蛍光体の種類にはよらない)。このことは、本技術分野における当業者であれば理解されよう。   In the light emitting device 100, the red phosphor is fixed to the inner layer portion 41 of the covering member 40 and the blue phosphor is fixed to the outer layer portion 42. The red light is generated in the vicinity of the bonding wire 30 without generating blue light. This is to make it happen. The reason is that Au or Cu as the material of the bonding wire 30 strongly absorbs blue light, but does not exhibit strong absorption for red light. Of the blue light generated from the blue phosphor immobilized on the outer layer portion 42, only a portion of the blue light is incident on the inner layer portion 41. When the blue light is further incident on the inner layer portion 41, the blue light is converted into red light by the red phosphor. Therefore, the loss due to the blue light being absorbed by the bonding wire 30 is reduced. Note that a necessary condition for generating such a loss reduction effect is that the red phosphor can be excited by the blue phosphor (regardless of the type of phosphor). This will be appreciated by those skilled in the art.

発光装置100において、被覆部材40の内層部41に赤色蛍光体を固定化するにあたっては、内層部41の全体にわたって赤色蛍光体を分散させてもよいし、あるいは、内層部41の中でも外層部42に隣接する部分に、赤色蛍光体を分散させた領域を層状に形成してもよい。また、被覆部材40の外層部42には青色蛍光体と緑色蛍光体を混合した状態で分散させてもよいし、あるいは、青色蛍光体を分散させた層状領域と緑色蛍光体を分散させた層状領域とをそれぞれ外層部42内に設けてもよい。   In the light emitting device 100, when fixing the red phosphor to the inner layer portion 41 of the covering member 40, the red phosphor may be dispersed throughout the inner layer portion 41, or the outer layer portion 42 in the inner layer portion 41. A region in which the red phosphor is dispersed may be formed in a layered manner in a portion adjacent to. Further, the outer layer portion 42 of the covering member 40 may be dispersed in a state where the blue phosphor and the green phosphor are mixed, or alternatively, a layered region in which the blue phosphor is dispersed and a layered state in which the green phosphor is dispersed. Each region may be provided in the outer layer portion 42.

ドミナント発光波長390nm〜400nmで発光する近紫外LEDとして、Cree社製の290μm角チップC395MB290を用い、それをシリコーン樹脂ベースの透明ダイボンドペーストで、3528SMD型PPA樹脂パッケージの凹部の底の端子に接着した。その後に、150℃で2時間加熱し、透明ダイボンドペーストを硬化させた後、近紫外LEDとパッケージの電極とを直径25μmの金線を用いてワイヤーボンディングした。   As a near-ultraviolet LED that emits light with a dominant emission wavelength of 390 nm to 400 nm, a 290 μm square chip C395MB290 manufactured by Cree was used, and this was bonded to a terminal at the bottom of a recess of a 3528 SMD type PPA resin package with a silicone resin-based transparent die bond paste. . Then, after heating at 150 degreeC for 2 hours and hardening a transparent die-bonding paste, near ultraviolet LED and the electrode of the package were wire-bonded using the gold wire with a diameter of 25 micrometers.

一方、発光ピーク波長455mm、発光ピーク半値幅51nmのBa0.7Eu0.3MgAl1017 (青色蛍光体)0.135gと、発光ピーク波長517nm、発光ピーク半値幅が27nmのBaMgAl1017:Eu,Mn(緑色蛍光体)0.096gと、K2SiF6:Mn(赤色蛍光体)0.331gと、東レ・ダウコーニング社製シリコーン樹脂(JCR6101up)1.083gとを秤量し、シンキー社製攪拌脱泡装置AR−100にて混合し、蛍光体含有組成物を得た。 On the other hand, 0.135 g of Ba 0.7 Eu 0.3 MgAl 10 O 17 (blue phosphor) having an emission peak wavelength of 455 mm and an emission peak half width of 51 nm, and BaMgAl 10 O 17 : Eu, having an emission peak wavelength of 517 nm and an emission peak half width of 27 nm. Weigh 0.096 g of Mn (green phosphor), 0.331 g of K 2 SiF 6 : Mn (red phosphor), and 1.083 g of silicone resin (JCR6101up) manufactured by Toray Dow Corning Co., Ltd. The phosphor-containing composition was obtained by mixing with a defoaming device AR-100.

次に、ディスペンサーを用いて上記のように得られた蛍光体含有組成物4μlを、前記近紫外LEDを設置したSMD型樹脂パッケージの凹部に注液した。この後、70℃で1時間、次いで150℃で5時間加熱して蛍光体含有組成物を硬化させ、半導体発光装置を得た。   Next, 4 μl of the phosphor-containing composition obtained as described above using a dispenser was injected into the concave portion of the SMD type resin package in which the near ultraviolet LED was installed. Thereafter, the phosphor-containing composition was cured by heating at 70 ° C. for 1 hour and then at 150 ° C. for 5 hours to obtain a semiconductor light emitting device.

上記作製した半導体発光装置の近紫外LEDに20mAの電流を供給して発光させた。その発光のCIE色度座標値を測定したところ、x/y=0.277/0.315であった。得られた発光スペクトルを図5に示す。近紫外LEDからの光出力に対する、半導体発光装置からの白色の光束は227ルーメン/Wだった。   A current of 20 mA was supplied to the near-ultraviolet LED of the semiconductor light-emitting device produced above to emit light. The CIE chromaticity coordinate value of the emitted light was measured and found to be x / y = 0.277 / 0.315. The obtained emission spectrum is shown in FIG. The white luminous flux from the semiconductor light emitting device with respect to the light output from the near ultraviolet LED was 227 lumen / W.

上記作製した半導体発光装置を液晶バックライト用のカラーフィルターと組み合わせて得たカラー画像表示装置について色度(x、y、Y)、色再現性(NTSC比)、および色調(色温度)を算出したところ、それぞれ、(0.311,0.347,27.9%)、110%および6493Kであった。   Calculation of chromaticity (x, y, Y), color reproducibility (NTSC ratio), and color tone (color temperature) for a color image display device obtained by combining the semiconductor light-emitting device produced above with a color filter for a liquid crystal backlight. As a result, they were (0.311, 0.347, 27.9%), 110%, and 6493K, respectively.

2SiF6:Mnの励起スペクトルおよび発光スペクトルを示す図である。K 2 SiF 6: a diagram showing the excitation and emission spectra of Mn. BaMgAl1017:Euの励起スペクトルおよび発光スペクトルを示す図である。BaMgAl 10 O 17: a diagram showing the excitation and emission spectra of Eu. BaMgAl1017:Eu,Mnの励起スペクトルおよび発光スペクトルを示す図である。BaMgAl 10 O 17: Eu, is a diagram showing the excitation and emission spectra of Mn. 本発明の一実施形態に係る半導体発光装置の模式断面図である。1 is a schematic cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention. 本発明の一実施形態に係る半導体発光装置の発光スペクトルを示すチャートである。It is a chart which shows the emission spectrum of the semiconductor light-emitting device concerning one Embodiment of this invention.

符号の説明Explanation of symbols

100 半導体発光装置
10 パッケージ
20 GaN系発光素子
30 ボンディングワイヤ
40 被覆部材
41 内層部
42 外層部
DESCRIPTION OF SYMBOLS 100 Semiconductor light-emitting device 10 Package 20 GaN-type light emitting element 30 Bonding wire 40 Cover member 41 Inner layer part 42 Outer layer part

Claims (6)

赤色蛍光体から生じる赤色光と、青色蛍光体から生じる青色光と、緑色蛍光体から生じる緑色光と、を同時に放射する発光装置であって、
前記赤色蛍光体がMn付活フルオロ錯体塩系蛍光体であり、
前記青色蛍光体がEu付活アルミン酸塩系蛍光体であり、
前記緑色蛍光体がEuおよびMn付活アルミン酸塩系蛍光体であり、
前記青色蛍光体および前記緑色蛍光体を励起するための、前記赤色蛍光体を実質的に励起しない光を放出する半導体発光素子を備え、
前記半導体発光素子が放出する光で励起されて前記青色蛍光体が放出する青色光の一部により前記赤色蛍光体が励起されるように構成した、
ことを特徴とする半導体発光装置。
A light emitting device that simultaneously emits red light generated from a red phosphor, blue light generated from a blue phosphor, and green light generated from a green phosphor,
The red phosphor is a Mn-activated fluoro complex salt phosphor,
The blue phosphor is an Eu activated aluminate phosphor,
The green phosphor is Eu and Mn activated aluminate phosphor,
A semiconductor light emitting device for emitting light that does not substantially excite the red phosphor for exciting the blue phosphor and the green phosphor;
The red phosphor is excited by a part of blue light that is excited by light emitted from the semiconductor light emitting device and emitted from the blue phosphor.
A semiconductor light-emitting device.
赤色蛍光体から生じる赤色光と、青色蛍光体から生じる青色光と、緑色蛍光体から生じる緑色光と、黄色蛍光体から生じる黄色光と、を同時に放射する発光装置であって、
前記赤色蛍光体がMn付活フルオロ錯体塩系蛍光体であり、
前記青色蛍光体がEu付活アルミン酸塩系蛍光体であり、
前記緑色蛍光体がEuおよびMn付活アルミン酸塩系蛍光体であり、
前記黄色蛍光体がCe付活YAG系蛍光体であり、
前記青色蛍光体および緑色蛍光体を励起するための、前記赤色蛍光体および黄色蛍光体を実質的に励起しない光を放出する半導体発光素子を備え、
前記半導体発光素子が放出する光で励起されて前記青色蛍光体が放出する青色光の一部により前記赤色蛍光体および黄色蛍光体が励起されるように構成した、
ことを特徴とする半導体発光装置。
A light emitting device that simultaneously emits red light generated from a red phosphor, blue light generated from a blue phosphor, green light generated from a green phosphor, and yellow light generated from a yellow phosphor,
The red phosphor is a Mn-activated fluoro complex salt phosphor,
The blue phosphor is an Eu activated aluminate phosphor,
The green phosphor is Eu and Mn activated aluminate phosphor,
The yellow phosphor is a Ce-activated YAG phosphor,
A semiconductor light emitting device for emitting light that does not substantially excite the red phosphor and the yellow phosphor for exciting the blue phosphor and the green phosphor;
The red phosphor and the yellow phosphor are configured to be excited by a part of blue light that is excited by light emitted from the semiconductor light emitting device and emitted from the blue phosphor.
A semiconductor light-emitting device.
前記赤色蛍光体がM2SiF6:Mn(ここで、MはNaおよびKからなる群から選ばれる一種以上を含有する)である、請求項1または2に記載の半導体発光装置。 3. The semiconductor light emitting device according to claim 1, wherein the red phosphor is M 2 SiF 6 : Mn (where M contains one or more selected from the group consisting of Na and K). 前記青色蛍光体がBaMgAl1017:Euであり、前記緑色蛍光体がBaMgAl1017:Eu,Mnである、請求項1〜3のいずれかに記載の半導体発光装置。 The semiconductor light-emitting device according to claim 1, wherein the blue phosphor is BaMgAl 10 O 17 : Eu, and the green phosphor is BaMgAl 10 O 17 : Eu, Mn. 前記半導体発光素子の発光波長が380nm〜400nmである、請求項1〜4のいずれかに記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein an emission wavelength of the semiconductor light-emitting element is 380 nm to 400 nm. 前記半導体発光素子がAlおよびInを含む多重量子井戸構造の発光層を備えたGaN系発光素子である、請求項5に記載の半導体発光装置。   6. The semiconductor light emitting device according to claim 5, wherein the semiconductor light emitting element is a GaN-based light emitting element including a light emitting layer having a multiple quantum well structure containing Al and In.
JP2008334992A 2008-12-26 2008-12-26 Semiconductor light emitting device Expired - Fee Related JP5195415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334992A JP5195415B2 (en) 2008-12-26 2008-12-26 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334992A JP5195415B2 (en) 2008-12-26 2008-12-26 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2010157608A true JP2010157608A (en) 2010-07-15
JP5195415B2 JP5195415B2 (en) 2013-05-08

Family

ID=42575301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334992A Expired - Fee Related JP5195415B2 (en) 2008-12-26 2008-12-26 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5195415B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147611A1 (en) * 2011-04-26 2012-11-01 サンユレック株式会社 Method and apparatus for manufacturing optical device
JP2014022508A (en) * 2012-07-17 2014-02-03 Konica Minolta Inc Led device and manufacturing method of the same
JP2017126743A (en) * 2016-01-12 2017-07-20 シチズン電子株式会社 LED package
JP2017531324A (en) * 2014-10-08 2017-10-19 ソウル セミコンダクター カンパニー リミテッド Light emitting device
US9806236B2 (en) 2013-10-15 2017-10-31 Sharp Kabushiki Kaisha Light-emitting device and method for producing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031531A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Light emitter
WO2003032407A1 (en) * 2001-10-01 2003-04-17 Matsushita Electric Industrial Co.,Ltd. Semiconductor light emitting element and light emitting device using this
JP2005232305A (en) * 2004-02-19 2005-09-02 Nichia Chem Ind Ltd Fluorescent substance of alkaline earth metal aluminate, and light-emitting device using the same
JP2007165728A (en) * 2005-12-15 2007-06-28 Toshiba Discrete Technology Kk Light-emitting device and lighting device for visible light communication
JP2007201301A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Electronics Devices Inc Light emitting device using white led
JP2008071806A (en) * 2006-09-12 2008-03-27 C I Kasei Co Ltd Light emitting device
JP2008208238A (en) * 2007-02-27 2008-09-11 Showa Denko Kk Fluorescent substance and method for producing the same and lighting apparatus and image display device equipped with the same
JP2009528429A (en) * 2006-02-28 2009-08-06 ルミネイション リミテッド ライアビリティ カンパニー Red line emitting phosphors for use in light emitting diode applications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031531A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Light emitter
WO2003032407A1 (en) * 2001-10-01 2003-04-17 Matsushita Electric Industrial Co.,Ltd. Semiconductor light emitting element and light emitting device using this
JP2005232305A (en) * 2004-02-19 2005-09-02 Nichia Chem Ind Ltd Fluorescent substance of alkaline earth metal aluminate, and light-emitting device using the same
JP2007165728A (en) * 2005-12-15 2007-06-28 Toshiba Discrete Technology Kk Light-emitting device and lighting device for visible light communication
JP2007201301A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Electronics Devices Inc Light emitting device using white led
JP2009528429A (en) * 2006-02-28 2009-08-06 ルミネイション リミテッド ライアビリティ カンパニー Red line emitting phosphors for use in light emitting diode applications
JP2008071806A (en) * 2006-09-12 2008-03-27 C I Kasei Co Ltd Light emitting device
JP2008208238A (en) * 2007-02-27 2008-09-11 Showa Denko Kk Fluorescent substance and method for producing the same and lighting apparatus and image display device equipped with the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147611A1 (en) * 2011-04-26 2012-11-01 サンユレック株式会社 Method and apparatus for manufacturing optical device
JPWO2012147611A1 (en) * 2011-04-26 2014-07-28 サンユレック株式会社 Opto device manufacturing method and manufacturing apparatus
US9373730B2 (en) 2011-04-26 2016-06-21 Sanyu Rec Co., Ltd. Method and apparatus for manufacturing optical device
US10050158B2 (en) 2011-04-26 2018-08-14 Sanyu Rec Co., Ltd. Method and apparatus for manufacturing optical device
JP2014022508A (en) * 2012-07-17 2014-02-03 Konica Minolta Inc Led device and manufacturing method of the same
US9806236B2 (en) 2013-10-15 2017-10-31 Sharp Kabushiki Kaisha Light-emitting device and method for producing the same
JP2017531324A (en) * 2014-10-08 2017-10-19 ソウル セミコンダクター カンパニー リミテッド Light emitting device
JP7073102B2 (en) 2014-10-08 2022-05-23 ソウル セミコンダクター カンパニー リミテッド Light emitting device
US11545599B2 (en) 2014-10-08 2023-01-03 Seoul Semiconductor Co., Ltd. Light emitting device
JP2017126743A (en) * 2016-01-12 2017-07-20 シチズン電子株式会社 LED package
JP7101455B2 (en) 2016-01-12 2022-07-15 シチズン電子株式会社 LED package

Also Published As

Publication number Publication date
JP5195415B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP3809760B2 (en) Light emitting diode
JP5151002B2 (en) Light emitting device
JP4280038B2 (en) Light emitting device
JP5032043B2 (en) Ferrous metal alkaline earth metal silicate mixed crystal phosphor and light emitting device using the same
JP4656816B2 (en) Light emitting device
JP5066786B2 (en) Nitride phosphor and light emitting device using the same
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
JP2007273562A (en) Semiconductor light-emitting device
KR20120025367A (en) Light emitting device
JP2002252372A (en) Light-emitting diode
JP4929413B2 (en) Light emitting device
JP2008135725A (en) Semiconductor light emitting device
JP2010287680A (en) Light-emitting device
JP2011249476A (en) Semiconductor light-emitting device
JP5195415B2 (en) Semiconductor light emitting device
JP4017015B2 (en) Light emitting device
JP2011071333A (en) Color rendering property-improving method for white light-emitting device, and white light-emitting device
JP5606342B2 (en) Light emitting device
JP5125039B2 (en) Rare earth oxynitride phosphor and light emitting device using the same
JP2006222297A (en) White light-emitting device
JP2006269448A (en) Led
JP4899431B2 (en) Nitride-based phosphor and light-emitting device using the same
JP2008013592A (en) White light-emitting phosphor and light-emitting module comprised of the same
WO2013164978A1 (en) Uv-excited red-light emitting material, and light emitting diode
JP2002050800A (en) Light-emitting device and forming method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees