JP2010157519A - Method of manufacturing positive electrode active material - Google Patents

Method of manufacturing positive electrode active material Download PDF

Info

Publication number
JP2010157519A
JP2010157519A JP2010031612A JP2010031612A JP2010157519A JP 2010157519 A JP2010157519 A JP 2010157519A JP 2010031612 A JP2010031612 A JP 2010031612A JP 2010031612 A JP2010031612 A JP 2010031612A JP 2010157519 A JP2010157519 A JP 2010157519A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010031612A
Other languages
Japanese (ja)
Inventor
Akihiko Shirakawa
彰彦 白川
Takao Noda
孝男 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010031612A priority Critical patent/JP2010157519A/en
Publication of JP2010157519A publication Critical patent/JP2010157519A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing positive electrode active material for a nonaqueous secondary battery of which electrical capacitance after a lapse of 100 cycles is as large as 100 mAh/g ore more, and of which a capacity maintenance rate after a lapse of 100 cycles is maintained at 90% or higher and capacity reduction is held little. <P>SOLUTION: A lithium compound, manganese carbonate of which a specific surface area is 10-100 m<SP>2</SP>/g, and an aluminum compound are mixed, and are subjected to firing reaction at a temperature 350-680°C for one hour or longer. Then after cracking, the product are heated at a temperature 730-900°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水二次電池用正極活物質、その製造方法、該正極活物質を含んだ電極用ペースト、該ペーストから作製した正極及び該正極活物質を用いた非水二次電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous secondary battery, a manufacturing method thereof, an electrode paste containing the positive electrode active material, a positive electrode produced from the paste, and a non-aqueous secondary battery using the positive electrode active material.

非水二次電池の正極活物質として高エネルギー密度化への期待から、LiCoO2、LiNiO2、LiMn24が検討されている。しかしながら、LiCoO2はコバルトが高価で資源的な制約があり、LiNiO2はその合成が難しい等の問題点がある。そのため、低コストで高性能なリチウムマンガン酸化物系正極活物質への期待が高く、その開発が進められている。しかしながら、スピネル型LiMn24を正極活物質として用いた非水二次電池では、充放電を繰り返すと短期間に容量低下が起こり、正極活物質の組成から予想される電気容量より実際の電気容量がかなり小さいという問題点がある。 LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 have been studied from the expectation for higher energy density as a positive electrode active material for non-aqueous secondary batteries. However, LiCoO 2 has a problem that cobalt is expensive and has resource limitations, and LiNiO 2 is difficult to synthesize. For this reason, expectations are high for a low-cost and high-performance lithium-manganese oxide-based positive electrode active material, and its development is underway. However, in a non-aqueous secondary battery using spinel-type LiMn 2 O 4 as a positive electrode active material, capacity reduction occurs in a short time when charging and discharging are repeated, and the actual electric capacity is expected from the electric capacity expected from the composition of the positive electrode active material. There is a problem that the capacity is quite small.

特許文献1には、スピネル型LiMn24にLiを過剰に添加することで充放電を繰り返しても容量の低下が少ないスピネル構造を有する複合酸化物を開示している。しかし、この場合Liを過剰に加えるため初期容量が小さくなってしまうという問題点がある。特許文献2には、低温で合成したスピネル型LiMn24を正極活物質に用いた初期容量の大きな二次電池が開示されているが、正極活物質の結晶性が低く、また比表面積が大きいために充放電の繰り返しによる容量低下が大きくなってしまうという問題点がある。 Patent Document 1 discloses a composite oxide having a spinel structure in which a decrease in capacity is small even when charging and discharging are repeated by adding Li excessively to spinel-type LiMn 2 O 4 . However, in this case, since Li is excessively added, there is a problem that the initial capacity becomes small. Patent Document 2 discloses a secondary battery having a large initial capacity using spinel-type LiMn 2 O 4 synthesized at a low temperature as a positive electrode active material. However, the crystallinity of the positive electrode active material is low and the specific surface area is low. Due to the large size, there is a problem that the capacity drop due to repeated charge and discharge increases.

特許文献3には、LixyMn2-yZ(Mは周期表IIIa又はIIIbから選ばれた元素)において、0<x≦1、0<y≦1、4≦Z<4.5で示される正極活物質はサイクル特性に優れていることを開示している。しかし、x≦1であるため、MがAlである該酸化物の場合、容量維持率はたかだか70%程度に留まっている。さらに、本公報ではMがYである場合二次電池の容量維持率が90%近くなるが、原子量の大きいYを添加しているために放電容量が小さくなるという問題がある。 Patent Document 3, Li x M y Mn 2 -y O Z (M is an element selected from the Periodic Table IIIa or IIIb) in, 0 <x ≦ 1,0 <y ≦ 1,4 ≦ Z <4. It discloses that the positive electrode active material indicated by 5 is excellent in cycle characteristics. However, since x ≦ 1, in the case of the oxide in which M is Al, the capacity retention rate is only about 70%. Further, in this publication, when M is Y, the capacity retention rate of the secondary battery is close to 90%, but there is a problem that the discharge capacity is reduced because Y having a large atomic weight is added.

特許文献4には、LiMn2-yy4(Mは1価から6価のMn以外の元素)を正極活物質として用いることで、サイクル特性に優れた非水電解質電池が開示されている。しかし、この技術も特許文献3に記載の発明と同様に、Liが過剰でないため二次電池の容量維持率が低くなっている。特許文献5には、LixAlyMn2-y4において、0.85<x≦1.15かつ0.02≦y≦0.5の範囲で示される正極活物質が、過放電特性に優れていることを開示している。しかし、このような化合物の場合、電気化学的に不活性なAl化合物をy≧0.02になるように添加するため、放電容量が小さくなるという問題点がある。 Patent Document 4, (M is an element other than a hexavalent Mn from monovalent) LiMn 2-y M y O 4 by using as the positive electrode active material, it is disclosed a nonaqueous electrolyte battery excellent in cycle characteristics Yes. However, this technique also has a low capacity retention rate of the secondary battery because Li is not excessive as in the invention described in Patent Document 3. Patent Document 5, Li x Al y In Mn 2-y O 4, 0.85 < positive electrode active substance represented by the range of x ≦ 1.15 and 0.02 ≦ y ≦ 0.5 is, over discharge characteristics It is disclosed that it is excellent. However, in the case of such a compound, since an electrochemically inactive Al compound is added so that y ≧ 0.02, there is a problem that the discharge capacity is reduced.

特開平2−270268号公報JP-A-2-270268 英国公開公報2221213A号British Publication No. 2221213A 特開平2−278661号公報JP-A-2-278661 特開平5−21067号公報Japanese Patent Laid-Open No. 5-21067 特開平4−289662号公報JP-A-4-28962

本発明の課題は、非水二次電池における上記問題を解決するものであって、100サイクル経過後の電気容量が100mAh/g以上と大きく、かつ100サイクル経過後の容量維持率を90%以上に維持できる、容量の低下の少ない非水二次電池、該電池用正極活物質及びその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problem in a non-aqueous secondary battery, wherein the electric capacity after 100 cycles has a large value of 100 mAh / g or more, and the capacity retention rate after 100 cycles has passed is 90% or more. It is an object of the present invention to provide a non-aqueous secondary battery with low capacity reduction, a positive electrode active material for the battery, and a method for producing the same.

本発明者らは、上記課題に対し鋭意検討した結果、Li、Mn、Al及びOからなるスピネル構造を有する複合酸化物LixAlyMn3-x-yzにおいて、その組成式が1.0<x≦1.1かつ0<y<0.02かつ3.5<z≦4.5の範囲の正極活物質を非水二次電池に用いることによって、その容量低下が殆ど起こらない非水二次電池を提供できることを見い出した。 The present inventors have made intensive studies with respect to the problem, Li, Mn, in the composite oxide Li x Al y Mn 3-xy O z having a spinel structure consisting of Al and O, the composition formula is 1.0 By using a positive electrode active material in the range of <x ≦ 1.1 and 0 <y <0.02 and 3.5 <z ≦ 4.5 for a non-aqueous secondary battery, the capacity is hardly reduced. It was found that a secondary battery can be provided.

すなわち、本発明は、(1)Li、Mn、Al及びOからなるスピネル構造を有する複合酸化物が、LixAlyMn3-x-yzにおいて、1.0<x≦1.1、0<y<0.02、3.5<z≦4.5の範囲であることを特徴とする非水二次電池用正極活物質、(2)スピネル構造を有する複合酸化物の格子定数(Å)が、−0.24x−0.28y+8.481より小さく、−0.24x−0.72y+8.481以上であることを特徴とする前項1に記載の非水二次電池用正極活物質、(3)スピネル構造を有する複合酸化物の結晶子サイズが、400Å以上かつ950Å以下であることを特徴とする前項1又は2に記載の非水二次電池用正極活物質、 That is, the present invention is, (1) Li, Mn, complex oxide having a spinel structure consisting of Al and O, in Li x Al y Mn 3-xy O z, 1.0 <x ≦ 1.1,0 <Y <0.02, 3.5 <z ≦ 4.5, positive electrode active material for non-aqueous secondary battery, (2) lattice constant of composite oxide having spinel structure (Å ) Is less than −0.24x−0.28y + 8.481 and is −0.24x−0.72y + 8.481 or more, the positive electrode active material for nonaqueous secondary batteries according to item 1 above, 3) The positive electrode active material for a non-aqueous secondary battery according to 1 or 2 above, wherein the crystallite size of the composite oxide having a spinel structure is 400 to 950 mm

(4)スピネル構造を有する複合酸化物が、平均粒子径2μm以下の粒子である前項1乃至3のいずれか1項に記載の非水二次電池用正極活物質、(5)スピネル構造を有する複合酸化物が、粒子径3μm〜50μmの造粒焼成された粒子である前項1乃至3のいずれか1項に記載の非水二次電池用正極活物質、(6)前項1乃至5のいずれか1項に記載の非水二次電池用正極活物質を含んだ電極用ペースト、(7)ペーストが、正極活物質又はその造粒物、導電性付与剤、バインダー及び溶媒を含んでいることを特徴とする前項6に記載の電極用ペースト、   (4) The positive electrode active material for a non-aqueous secondary battery according to any one of items 1 to 3, wherein the composite oxide having a spinel structure is a particle having an average particle diameter of 2 μm or less, and (5) having a spinel structure. 4. The positive electrode active material for a non-aqueous secondary battery according to any one of items 1 to 3, wherein the composite oxide is a granulated and fired particle having a particle diameter of 3 μm to 50 μm, (6) any one of items 1 to 5 The electrode paste containing the positive electrode active material for non-aqueous secondary battery according to claim 1, (7) the paste contains a positive electrode active material or a granulated product thereof, a conductivity imparting agent, a binder and a solvent. The electrode paste according to item 6, characterized by:

(8)ペースト中の正極活物質又はその造粒物、導電性付与剤及びバインダーの全固形分濃度が、30質量%〜70質量%の範囲であることを特徴とする前項7に記載の電極用ペースト、(9)前項1乃至5のいずれか1項に記載の非水二次電池用正極活物質を含んだ正極、(10)リチウム化合物と、比表面積が10m2/g以上100m2/g以下の炭酸マンガン、及びアルミニウム化合物を混合し、これを350℃以上680℃以下の温度で1時間以上焼成反応させ、次いで解砕後、生成物を730℃以上900℃以下の温度で加熱処理することを特徴とする非水二次電池用正極活物質の製造方法、(11)アルミニウム化合物が、比表面積50m2/g以上200m2/g以下の化合物であることを特徴とする前項10に記載の非水二次電池用正極活物質の製造方法、 (8) The electrode according to item 7 above, wherein the total solid concentration of the positive electrode active material or the granulated product, the conductivity-imparting agent and the binder in the paste is in the range of 30% by mass to 70% by mass. Paste, (9) a positive electrode containing the positive electrode active material for a non-aqueous secondary battery according to any one of 1 to 5 above, (10) a lithium compound, and a specific surface area of 10 m 2 / g or more and 100 m 2 / g or less manganese carbonate and an aluminum compound are mixed, and this is subjected to a calcination reaction at a temperature of 350 ° C. or more and 680 ° C. or less for 1 hour or more. After pulverization, the product is heated at a temperature of 730 ° C. or more and 900 ° C. or less (10) The method for producing a positive electrode active material for a non-aqueous secondary battery, wherein the aluminum compound is a compound having a specific surface area of 50 m 2 / g or more and 200 m 2 / g or less. Non-water listed A method of manufacturing a positive electrode active material for the next battery,

(12)アルミニウム化合物が、酸化アルミニウム(α、β、γ、δ、ζ、η、θ、κ、χ、ρ等のアルミナ等)、Al(OH)3、Al(NO33、Al2(SO43(アルミナイト等)、酢酸アルミニウム及びそれらの水和物からなる群より選ばれた少なくとも1種の化合物である前項10又は11に記載の非水二次電池用正極活物質の製造方法、(13)リチウムイオンを可逆的に吸蔵放出可能な活物質を含む負極と、非水系電解液又はポリマー電解質と、Li、Mn、Al及びOからなるスピネル構造を有する複合酸化物の活物質を含む正極を備えた非水二次電池において、該複合酸化物が前項1乃至5のいずれか1項に記載の非水二次電池用正極活物質であることを特徴とする非水二次電池、(14)前項13に記載の非水二次電池が、コイン型電池又は円筒型電池、角型電池、ポリマー電池である非水二次電池を提供することにより、前記目的を達成した。 (12) The aluminum compound is aluminum oxide (alumina such as α, β, γ, δ, ζ, η, θ, κ, χ, ρ, etc.), Al (OH) 3 , Al (NO 3 ) 3 , Al 2 (SO 4 ) 3 (aluminite or the like), aluminum acetate and a positive electrode active material for a non-aqueous secondary battery according to item 10 or 11, which is at least one compound selected from the group consisting of hydrates thereof. (13) Active of composite oxide having negative electrode containing active material capable of reversibly occluding and releasing lithium ions, non-aqueous electrolyte or polymer electrolyte, and spinel structure made of Li, Mn, Al and O 6. A nonaqueous secondary battery comprising a positive electrode containing a substance, wherein the composite oxide is the positive electrode active material for a nonaqueous secondary battery according to any one of items 1 to 5 above. (14) The nonaqueous secondary battery according to item 13 above A coin-type battery or a cylindrical battery, prismatic battery, by providing a non-aqueous secondary battery polymer battery, to achieve the above object.

従来のLi、Mn、Al及びOからなるスピネル構造を有する複合酸化物LixAlyMn3-x-yzの製造において、その固溶化が進みにくいためにAlを多く添加する必要があり、その結果二次電池を製作した時の電池の初期容量が小さくなってしまう欠点があったが、本発明の正極活物質は、Al添加比を0<y<0.02の低濃度範囲にすることで、その製造時の固溶化が予想外に進むことを見出した。 Conventional Li, Mn, in the production of the composite oxide Li x Al y Mn 3-xy O z having a spinel structure consisting of Al and O, it is necessary to add a large amount of Al to the solid solution is difficult advances, its As a result, there was a drawback that the initial capacity of the battery when the secondary battery was manufactured was reduced, but the positive electrode active material of the present invention had an Al addition ratio in the low concentration range of 0 <y <0.02. Thus, it was found that the solid solution at the time of production proceeds unexpectedly.

また、組成範囲が1.0<x≦1.1、0<y<0.02、3.5<z≦4.5の範囲のLixAlyMn3-x-yz構造を有する複合酸化物において、その格子定数(Å)は、L1(x,y)=−0.24x−0.28y+8.481で表される値より小さく、L2(x,y)=−0.24x−0.72y+8.481で表される値よりも大きいものが好ましい。また、前記組成範囲において、完全に固溶体を作るときには格子定数(Å)は、L2(x,y)の関係式(−0.24x−0.72y+8.481)で表される面内にあることをはじめて見出した。本発明において、前記正極活物質を非水二次電池に用いることで、従来のマンガン酸化物系を用いた電池に比べ、高容量で容量低下の殆ど起こらない、実用性の高い非水二次電池が得られることを見出した。 Further, the composite oxide having a Li x A y Mn 3 -xy O z structure with composition ranges of 1.0 <x ≦ 1.1, 0 <y <0.02, and 3.5 <z ≦ 4.5. In the object, the lattice constant (Å) is smaller than the value represented by L1 (x, y) = − 0.24x−0.28y + 8.481, and L2 (x, y) = − 0.24x-0. A value larger than the value represented by 72y + 8.481 is preferable. In the composition range, when a solid solution is completely formed, the lattice constant (Å) is in the plane represented by the relational expression (−0.24x−0.72y + 8.481) of L2 (x, y). For the first time. In the present invention, by using the positive electrode active material for a non-aqueous secondary battery, the non-aqueous secondary battery has a high practicality and almost no decrease in capacity compared to a conventional battery using a manganese oxide system. It has been found that a battery can be obtained.

本発明において有効な格子定数の範囲を表す。It represents the range of lattice constants effective in the present invention.

以下、本発明について詳細に説明する。本発明は、Li、Mn、Al及びOからなるスピネル構造を有する複合酸化物の正極活物質に関し、LixAlyMn3-x-yzにおいてxの組成範囲が1.0<x≦1.1、yの組成範囲が0<y<0.02、zの組成範囲が3.5<z≦4.5の複合酸化物を提供する。前記組成範囲は、好ましくは1.005≦x≦1.080、0.005≦y≦0.018、3.7<z≦4.3であり、またその格子定数L(Å)は、前記示成式の組成において、L1(x,y)=−0.24x−0.28y+8.481で表される値より小さく、L2(x,y)=−0.24x−0.72y+8.481で表される値よりも大きいものが好ましい。すなわち、図1において示される範囲の格子定数がよい。 Hereinafter, the present invention will be described in detail. The present invention, Li, Mn, relates positive electrode active material of a composite oxide having a spinel structure consisting of Al and O, Li x Al y Mn 3 -xy O composition range of x in z is 1.0 <x ≦ 1. Provided is a composite oxide in which the composition range of 1 and y is 0 <y <0.02 and the composition range of z is 3.5 <z ≦ 4.5. The composition range is preferably 1.005 ≦ x ≦ 1.080, 0.005 ≦ y ≦ 0.018, 3.7 <z ≦ 4.3, and the lattice constant L (Å) is In the composition of the formula, L1 (x, y) = − 0.24x−0.28y + 8.481 is smaller than the value represented by L2 (x, y) = − 0.24x−0.72y + 8.481 Those greater than the value represented are preferred. That is, the lattice constant in the range shown in FIG. 1 is good.

一般に、セラミックスでは固溶体を作るとき、ベガード則に従い格子定数が変化することが知られている。LixAlyMn3-x-yzに対しては、結晶中のMn3+が歪みを持つため、ベガード則での格子定数の予測はできないが、本発明者らが検討したところ、完全に固溶体を作るときには格子定数(Å)が上記L2(x,y)の関係式(−0.24x−0.72y+8.481)で表される面内にあることがわかった。これに対して、Alの固溶体が進まない時にはこの面よりも格子定数(Å)が大きくなり、L1(x,y)の関係式(−0.24x−0.28y+8.481)の値以上になると、Liイオン電池の正極としたときの電気特性が悪くなることを見出した(図1参照)。今までに、このような範囲の格子定数を有する、スピネル構造を有する複合酸化物はこれまでには見出されていない。 In general, it is known that when a solid solution is formed in ceramics, the lattice constant changes according to Vegard's law. For Li x Al y Mn 3-xy O z, since Mn 3+ in the crystal has a distortion, can not predict the lattice constant in the Vegard's law, the present inventors have studied, complete It was found that when a solid solution was made, the lattice constant (Å) was in the plane represented by the relational expression (−0.24x−0.72y + 8.481) of L2 (x, y). On the other hand, when the solid solution of Al does not advance, the lattice constant (Å) becomes larger than this surface, and it is greater than the value of the relational expression (−0.24x−0.28y + 8.481) of L1 (x, y). Then, it discovered that the electrical property when it was set as the positive electrode of a Li ion battery worsened (refer FIG. 1). To date, no complex oxide having a spinel structure having a lattice constant in such a range has been found so far.

格子定数が前記範囲より大きくなると、容量低下が大きくなる。この容量低下を防ぐためには、xを1.1より大きくする必要がある。また、容量低下を防ぐためにyを0.02以上にする等の試みができるが、結果的に放電容量が小さくなってしまい、目的とする容量が大きくかつ容量低下が小さい非水二次電池用正極活物質を得ることはできない。前記正極活物質は、その結晶子サイズが400Å以上950Å以下が好ましく、さらには600Å〜850Åの範囲が好ましい。結晶子サイズが400Åより小さい場合には二次電池の放電容量が小さくなり、950Åより大きい場合には充放電サイクルにおける放電容量の劣化が大きくなる。   When the lattice constant is larger than the above range, the capacity reduction is increased. In order to prevent this capacity reduction, it is necessary to make x larger than 1.1. In addition, attempts can be made to increase y to 0.02 or more in order to prevent a decrease in capacity, but as a result, the discharge capacity becomes small, the target capacity is large, and the capacity decrease is small. A positive electrode active material cannot be obtained. The positive electrode active material preferably has a crystallite size of 400 to 950, more preferably 600 to 850. When the crystallite size is smaller than 400 Å, the discharge capacity of the secondary battery is reduced, and when larger than 950 Å, the deterioration of the discharge capacity in the charge / discharge cycle is increased.

本発明の正極活物質の製造方法として、例えば、リチウム化合物と、比表面積が10m2/g以上100m2/g以下の炭酸マンガン、及びアルミニウム化合物を混合し、これを350℃以上680℃以下の温度で1時間以上焼成反応させ、次いで生成物を730℃以上900℃以下の温度で加熱処理して、前記正極活物質を製造することができる。特に、本製造方法において上記原料を予め350℃以上680℃以下の温度で焼成反応し、次いで解砕することにより未反応物を再分散させた後、さらに730℃以上900℃以下の温度で加熱すると反応を完結させることができる。また、この低温での焼成工程を行うことによって、730℃以上900℃以下の温度での焼成時に結晶格子中のLiサイトにMnの混入が起こらず、結晶化できる利点がある。本発明においては、このような製造方法により電池特性の優れた正極活物質用の複合酸化体が得られる。 As a method for producing the positive electrode active material of the present invention, for example, a lithium compound, manganese carbonate having a specific surface area of 10 m 2 / g or more and 100 m 2 / g or less, and an aluminum compound are mixed, and this is mixed at 350 ° C. or more and 680 ° C. or less. The positive electrode active material can be manufactured by performing a baking reaction at a temperature for 1 hour or more and then heat-treating the product at a temperature of 730 ° C. or higher and 900 ° C. or lower. In particular, in this production method, the raw material is preliminarily reacted at a temperature of 350 ° C. or higher and 680 ° C. or lower, and then re-dispersed by pulverization, and then heated at a temperature of 730 ° C. or higher and 900 ° C. or lower. Then the reaction can be completed. In addition, by performing this low-temperature baking step, there is an advantage that Mn is not mixed in the Li site in the crystal lattice at the time of baking at a temperature of 730 ° C. or higher and 900 ° C. or lower so that it can be crystallized. In the present invention, a composite oxide for a positive electrode active material having excellent battery characteristics can be obtained by such a production method.

前記製造方法において、原料のリチウム化合物には特に制限はなく、炭酸リチウム、水酸化リチウム、硝酸リチウム等が好ましく用いられる。また、前記製造方法において、原料のアルミニウム化合物は特に制限はなく、350℃以上680℃以下の温度下での反応性の点から、比表面積が50m2/g以上200m2/g以下のアルミニウム化合物なら何でもよい。このようなアルミニウム化合物として、例えば、酸化アルミニウム(α、β、γ、δ、ζ、η、θ、κ、χ、ρ等のアルミナ等)、Al(OH)3、Al(NO33、Al2(SO43(アルミナイト等)、酢酸アルミニウム及びそれらの水和物等が挙げることができる。好ましくは酸化アルミニウム、特に好ましくは気相法から得られたアルミナ(例えばγ型)が使用される。 In the production method, the raw material lithium compound is not particularly limited, and lithium carbonate, lithium hydroxide, lithium nitrate and the like are preferably used. In the production method, the aluminum compound as a raw material is not particularly limited, and an aluminum compound having a specific surface area of 50 m 2 / g or more and 200 m 2 / g or less from the viewpoint of reactivity at a temperature of 350 ° C. or more and 680 ° C. or less. Anything is fine. Examples of such aluminum compounds include aluminum oxide (alumina such as α, β, γ, δ, ζ, η, θ, κ, χ, and ρ), Al (OH) 3 , Al (NO 3 ) 3 , Al 2 (SO 4 ) 3 (aluminite, etc.), aluminum acetate and hydrates thereof can be mentioned. Preferably aluminum oxide, particularly preferably alumina obtained from a gas phase process (eg γ-type) is used.

また、本発明においては、前記LixAlyMn3-x-yz(但し、1.0<x≦1.1、0<y<0.02、3.5<z≦4.5の範囲である。)で表される複合酸化物は、その焼成品を解砕後、得られた粉砕粒子(これは1次粒子または1次粒子の集合した二次粒子であり、その平均粒子径は2μm以下、好ましくは0.1μm〜1.0μm、さらに好ましくは0.2μm〜0.5μmの範囲がよい。)を正極用活物質に用いることができる。また、本発明においては、前記平均粒子径を有する粉砕粒子に焼結促進助剤(造粒促進剤)を添加混合して造粒焼成された緻密な造粒粒子(粒子径は3μm〜50μm、好ましくは5μm〜30μmの範囲がよい)を正極活物質として使用してもよい。ここで、緻密な造粒粒子とは、該酸化物の1次粒子間に空隙がないまたは少ないことを意味し、焼結促進助剤を使用した以下の方法で製造することができる。 In the present invention, the Li x Al y Mn 3-xy O z ( where, 1.0 <x ≦ 1.1,0 <y <0.02,3.5 < range of z ≦ 4.5 The composite oxide represented by) is a pulverized particle obtained after pulverization of the fired product (this is a primary particle or a secondary particle in which primary particles are aggregated, and an average particle size thereof is 2 [mu] m or less, preferably 0.1 [mu] m to 1.0 [mu] m, more preferably 0.2 [mu] m to 0.5 [mu] m. Further, in the present invention, dense granulated particles (particle diameters of 3 μm to 50 μm, which are obtained by adding and mixing a sintering acceleration aid (granulation accelerator) to the pulverized particles having the average particle diameter and mixing and granulating them. (The range of 5 to 30 μm is preferable) may be used as the positive electrode active material. Here, the dense granulated particles mean that there are no or few voids between the primary particles of the oxide, and can be produced by the following method using a sintering accelerator.

解砕・粉砕した前記LixAlyMn3-x-yz(但し、1.0<x≦1.1、0<y<0.02、3.5<z≦4.5の範囲である。)で表される複合酸化物粒子と焼結促進助剤との混合方法は、特に限定はなく、例えば媒体攪拌式粉砕機、ボールミル、ペイントシェーカー、混合ミキサーなどが使用できる。混合方式についても乾式、湿式どちらでもよい。該複合酸化物を解砕・粉砕する際に焼結促進助剤を添加して混合を同時に行ってもよい。 Wherein the crushing and pulverizing Li x Al y Mn 3-xy O z ( where in the range of 1.0 <x ≦ 1.1,0 <y < 0.02,3.5 <z ≦ 4.5 .) Is not particularly limited, and for example, a medium stirring pulverizer, a ball mill, a paint shaker, a mixing mixer and the like can be used. The mixing method may be either dry or wet. When the composite oxide is pulverized and pulverized, a sintering accelerator aid may be added and mixed at the same time.

使用できる焼結促進助剤は、該LixAlyMn3-x-yz(但し、1.0<x≦1.1、0<y<0.02、3.5<z≦4.5の範囲である。)で表される複合酸化物粒子の解砕・粉砕粒子を造粒のために焼結できるものであればよく、より好ましくは、900℃以下の温度で溶融する化合物、例えば、550℃〜900℃の温度で溶融可能な酸化物またはその酸化物になりうる前駆体もしくはリチウムまたはマンガンと固溶または反応して溶融する酸化物またはその酸化物になりうる化合物であれば良い。例えば、焼結促進助剤には、Bi、B、W、Mo、Pbなどの元素を含む化合物が挙げられ、またこれらの化合物を任意に組み合わせて使用しても良く、またB23とLiFを組み合わせた化合物もしくはMnF2とLiFを組み合わせた化合物も使用される。中でも、Bi、B、Wの元素を含む化合物は焼結収縮効果が大きいので特に好ましい。 Sintering accelerating agents that can be used are Li x A y Mn 3 -xy O z (where 1.0 <x ≦ 1.1, 0 <y <0.02, 3.5 <z ≦ 4.5). It is sufficient that the pulverized / pulverized particles of the composite oxide particles represented by (2) can be sintered for granulation, and more preferably a compound that melts at a temperature of 900 ° C. or less, for example, Any oxide that can be melted at a temperature of 550 ° C. to 900 ° C., a precursor that can be converted to the oxide, or an oxide that can be dissolved or reacted with lithium or manganese to be melted or a compound that can be converted to the oxide. . For example, the sintering acceleration aid includes compounds containing elements such as Bi, B, W, Mo, Pb, etc., and these compounds may be used in any combination, and B 2 O 3 and A compound combining LiF or a compound combining MnF 2 and LiF is also used. Among these, compounds containing Bi, B, and W elements are particularly preferable because they have a large sintering shrinkage effect.

例えば、Bi化合物としては三酸化ビスマス、硝酸ビスマス、安息臭酸ビスマス、オキシ酢酸ビスマス、オキシ炭酸ビスマス、クエン酸ビスマス、水酸化ビスマスなどが挙げられる。またB化合物としては、三二酸化硼素、炭化硼素、窒化硼素、硼酸などが挙げられる。W化合物としては、二酸化タングステン、三酸化タングステンなどが挙げられる。   Examples of Bi compounds include bismuth trioxide, bismuth nitrate, bismuth benzoate, bismuth oxyacetate, bismuth oxycarbonate, bismuth citrate, and bismuth hydroxide. Examples of the B compound include boron trioxide, boron carbide, boron nitride, and boric acid. Examples of the W compound include tungsten dioxide and tungsten trioxide.

焼結促進助剤の添加量は、添加金属元素換算で該複合酸化物中のMn1モルに対して0.0001〜0.05モルの範囲内が好ましい。添加金属元素換算での添加量が、0.0001モル未満では焼結収縮効果がないし、0.05モルを越えると活物質の初期容量が小さくなりすぎるからである。好ましいのは、0.005〜0.03モルである。焼結促進助剤は粉末状態でも溶媒に溶解した液体状態で使用しても構わない。粉末状態で添加する場合、焼結促進助剤の平均粒子径は50μm以下が好ましく、さらに好ましくは10μm以下であり、さらに好ましくは3μm以下である。焼結促進助剤は造粒/焼結前に添加した方が好ましいが、造粒後焼結促進助剤が溶融できる温度下で造粒物に含浸させ、焼結させても構わない。   The addition amount of the sintering accelerating aid is preferably in the range of 0.0001 to 0.05 mol with respect to 1 mol of Mn in the composite oxide in terms of added metal element. This is because there is no sintering shrinkage effect if the amount added in terms of added metal element is less than 0.0001 mol, and the initial capacity of the active material becomes too small if it exceeds 0.05 mol. Preference is given to 0.005 to 0.03 mol. The sintering promoting aid may be used in a powder state or in a liquid state dissolved in a solvent. When added in a powder state, the average particle diameter of the sintering accelerator aid is preferably 50 μm or less, more preferably 10 μm or less, and further preferably 3 μm or less. Although it is preferable to add the sintering promoting aid before granulation / sintering, the granulated product may be impregnated and sintered at a temperature at which the sintering promoting aid can be melted after granulation.

次に造粒方法について説明する。造粒方法としては、前記焼結促進助剤を使用して噴霧造粒方法、流動造粒方法、圧縮造粒方法、撹拌造粒方法などが挙げられ、また媒体流動乾燥や媒体振動乾燥などの併用をしてもよい。撹拌造粒と圧縮造粒は、二次粒子の密度が高くなるので、また噴霧造粒は造粒粒子形状が真球状となるので特に好ましい。撹拌造粒器の例としては、パウレック(株)社製バーチィカルグラニュレーターや不二パウダル(株)社製スパルタンリューザーなどが挙げられ、圧縮造粒器の例としては、栗本鉄工(株)製ローラーコンパクターMRCP−200型などが挙げられる。噴霧造粒器の例としては、アシザワニロアトマイザー(株)モービルマイナー型スプレードライヤーなどが挙げられる。   Next, the granulation method will be described. Examples of the granulation method include spray granulation method, fluidized granulation method, compression granulation method, stirring granulation method and the like using the above-mentioned sintering acceleration aid, and also include medium fluidized drying and medium vibration drying. You may use together. Agitation granulation and compression granulation are particularly preferred because the density of secondary particles is increased, and spray granulation is particularly preferred because the granulated particle shape is a perfect sphere. Examples of the agitation granulator include a vertical granulator manufactured by Paulek Co., Ltd. and a Spartan Luther manufactured by Fuji Paudal Co., Ltd. Examples of the compression granulator include Kurimoto Tekko Co., Ltd. Examples thereof include a roller compactor MRCP-200 type. As an example of a spray granulator, Ashizawairo atomizer Co., Ltd. Mobile minor type spray dryer etc. are mentioned.

本発明において、正極に使用される造粒した粒子のサイズには特に制約はない。造粒した粒子の平均粒子径が大きすぎる場合には、造粒直後または焼結後に軽く解砕・粉砕し分級・整粒し希望する粒度にすればよい。造粒効率を高めるためには、有機物系の造粒助剤を添加してもよい。造粒助剤としては、アクリル系樹脂、イソブチレンと無水マレイン酸との共重合体、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリデン、ハイドロキシプロピルセルロース、メチルセルロース、コーンスターチ、ゼラチン、リグニンなどが挙げられる。   In the present invention, the size of the granulated particles used for the positive electrode is not particularly limited. When the average particle size of the granulated particles is too large, it may be crushed and pulverized lightly immediately after granulation or after sintering, and classified and sized to obtain the desired particle size. In order to increase the granulation efficiency, an organic granulation aid may be added. Examples of the granulation aid include acrylic resins, copolymers of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropyl cellulose, methyl cellulose, corn starch, gelatin, and lignin.

造粒助剤の添加量としては、該LixAlyMn3-x-yz(但し、1.0<x≦1.1、0<y<0.02、3.5<z≦4.5の範囲である。)で表される複合酸化物及び焼結促進助剤100重量部に対して5重量部以下が好ましく、さらに好ましくは2重量部以下である。 The amount of granulating aid, said Li x Al y Mn 3-xy O z ( where, 1.0 <x ≦ 1.1,0 <y <0.02,3.5 <z ≦ 4. The amount is preferably 5 parts by weight or less, more preferably 2 parts by weight or less, based on 100 parts by weight of the composite oxide represented by (2) and the sintering promoting aid.

次に造粒した粒子の焼成方法について説明する。造粒した粒子の脱脂方法は、大気中または酸素を含有するガス雰囲気中で300℃から550℃の温度範囲で10分以上保持することにより行う。脱脂した造粒物のカーボン残留量としては0.1%以下であることが好ましい。脱脂後の造粒粒子は、大気または酸素を含有する雰囲気中で550℃〜900℃の温度範囲で1分以上保持することにより焼結させる。また、前述の有機物系の造粒助剤を使用しない造粒物の粒子の焼成も、大気中または酸素を含有するガス雰囲気中で同様に焼結収縮させ、二次粒子の緻密化をはかることができる。   Next, a method for firing the granulated particles will be described. The granulated particles are degreased by holding them in the air or in a gas atmosphere containing oxygen at a temperature range of 300 ° C. to 550 ° C. for 10 minutes or more. The carbon residue in the defatted granulated product is preferably 0.1% or less. The granulated particles after degreasing are sintered by being held for 1 minute or more in a temperature range of 550 ° C. to 900 ° C. in an atmosphere containing air or oxygen. In addition, the firing of the granulated particles without using the above-mentioned organic-based granulation aids is similarly performed in the air or in a gas atmosphere containing oxygen to sinter and shrink, thereby densifying the secondary particles. Can do.

次に、本発明の前記正極活物質を非水二次電池の正極材料として使用する方法を説明する。正極は、前記正極活物質又はその造粒物と導電性付与剤(導電材)、及びバインダー(結合材)を所定割合でペースト用溶媒と混練して電極用ペーストを準備し、これを集電体に塗布し、次いで乾燥後にロールプレスなどで加圧して製造する。前記導電性付与剤には、一般にキャボット製バルカンXC−72のようなカーボンブラックや黒鉛などの炭素粉、Al粉、Ag粉等の金属粉、SnO2等の導電性金属酸化物、及びこれらの混合物が用いられる。 Next, a method for using the positive electrode active material of the present invention as a positive electrode material for a non-aqueous secondary battery will be described. The positive electrode is prepared by mixing the positive electrode active material or a granulated product thereof, a conductivity-imparting agent (conductive material), and a binder (binding material) with a paste solvent in a predetermined ratio to prepare an electrode paste. It is applied to the body, and then dried and pressurized with a roll press or the like. Examples of the conductivity-imparting agent generally include carbon powder such as carbon black and graphite such as Vulcan XC-72 manufactured by Cabot, metal powder such as Al powder and Ag powder, conductive metal oxide such as SnO 2 , and the like. A mixture is used.

前記バインダーには、一般にポリフッ化ビニリデン(PVDF)、テフロン(登録商標)、エチレン−プロピレン−ジエン−共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが使用される。前記電極用ペーストに使用できる溶媒は、前記バインダーを溶解又は膨潤できる溶媒なら何でも良く、例えば、N−メチル−2−ピロリドン(NMP)、ベンゼン、キシレン、トルエン等の芳香族系溶媒、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、メチルエチルケトン等のケトン類、ジオキサンなどのエーテル類が例示され、好ましくは、NMP、キシレン、トルエン等が使用される。   As the binder, polyvinylidene fluoride (PVDF), Teflon (registered trademark), ethylene-propylene-diene-copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC) or the like is generally used. . The solvent that can be used for the electrode paste is any solvent that can dissolve or swell the binder. For example, aromatic solvents such as N-methyl-2-pyrrolidone (NMP), benzene, xylene, and toluene, methanol, ethanol And alcohols such as propanol and butanol; ketones such as methyl ethyl ketone; and ethers such as dioxane. NMP, xylene, toluene and the like are preferably used.

前記集電体には、アルミニウム、ステンレス(SUS)、チタン等から成る箔もしくはメッシュ体の公知な金属製集電体が使用される。電極用ペーストの固形成分の割合は、本発明の活物質の特性及び電気容量を考慮して、正極活物質は全固形成分質量の50〜95質量%、好ましくは60〜90質量%、導電性付与剤は49〜4質量%、好ましくは39〜4質量%、バインダー(結合材)は1〜46質量%、好ましくは1〜36質量%において使用される。電極用ペーストの溶媒量は塗布性から任意に決められ、その固形分濃度が30〜70質量%、好ましくは40〜60質量%に自由に設定される。   As the current collector, a known metal current collector of foil or mesh made of aluminum, stainless steel (SUS), titanium or the like is used. The ratio of the solid component of the electrode paste is 50 to 95% by mass of the total solid component mass, preferably 60 to 90% by mass, considering the characteristics of the active material and the electric capacity of the present invention. The imparting agent is 49 to 4% by mass, preferably 39 to 4% by mass, and the binder (binding material) is 1 to 46% by mass, preferably 1 to 36% by mass. The solvent amount of the electrode paste is arbitrarily determined from the applicability, and the solid content concentration is freely set to 30 to 70% by mass, preferably 40 to 60% by mass.

本発明の非水二次電池において使用される負極には、リチウムイオンを可逆的に吸蔵放出可能な活物質であれば特に制限はなく、例えば、リチウム金属、リチウム合金、炭素材料(黒鉛を含む)、金属カルコゲン等が使用できる。本発明の非水二次電池において使用される非水系電解液中の電解質塩としては、例えば、LiPF6、LiBF4、LiN(CF3SO22、LiAsF6、LiCF3SO3、LiC49SO3、LiI、LiClO4、LiSCN等が挙げられ、好ましくはフッ素を含有する前記リチウム塩が使用される。 The negative electrode used in the nonaqueous secondary battery of the present invention is not particularly limited as long as it is an active material capable of reversibly occluding and releasing lithium ions. For example, lithium metal, lithium alloy, carbon material (including graphite) ), Metal chalcogen, etc. can be used. Examples of the electrolyte salt in the nonaqueous electrolytic solution used in the nonaqueous secondary battery of the present invention include LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiAsF 6 , LiCF 3 SO 3 , and LiC 4. Examples thereof include F 9 SO 3 , LiI, LiClO 4 , LiSCN, and the like. Preferably, the lithium salt containing fluorine is used.

または、本発明の非水二次電池において非水系電解液の代わりにポリマー固体電解質を使用してもよく、材料には限定されない。ポリマー固体電解質は、通常オリゴオキシエチレン基又はオリゴプロピルオキシ基を含む高分子固体電解質(SPEと略する)であり、そのイオン伝導度は10-6〜10-3S/cm程度のものが知られている(例えば、特開平4−211412号公報)。例えば、このSPEには、ポリエチレンオキサイドやポリプロピレンオキサイド、又はポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリブタジエン、ポリメタクリル酸エステル類、、ポリアクリル酸エステル類、ポリスチレン、ポリホスファゼン類、ポリシロキサン類あるいはポリシラン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のベースポリマーに、オリゴオキシエチレン基もしくはオリゴプロピルオキシ基が化学的に結合された高分子が挙げられる。 Alternatively, in the non-aqueous secondary battery of the present invention, a polymer solid electrolyte may be used instead of the non-aqueous electrolyte, and the material is not limited. The polymer solid electrolyte is usually a polymer solid electrolyte (abbreviated as SPE) containing an oligooxyethylene group or an oligopropyloxy group, and has an ionic conductivity of about 10 −6 to 10 −3 S / cm. (For example, JP-A-4-211212). For example, this SPE includes polyethylene oxide, polypropylene oxide, polyethylene, polypropylene, polyacrylonitrile, polybutadiene, polymethacrylates, polyacrylates, polystyrene, polyphosphazenes, polysiloxanes or polysilanes, polyfluorides, Examples include polymers in which an oligooxyethylene group or an oligopropyloxy group is chemically bonded to a base polymer such as vinylidene or polytetrafluoroethylene.

非水二次電池の非水系電解液は、前記リチウムイオンを含む電解質を少なくとも1種を非水系電解液に溶解して用いる。前記非水系電解液の非水溶媒には、化学的及び電気化学的に安定で非プロトン性であれば限定されず使用できる。例えば、炭酸ジメチル、炭酸プロピレン、炭酸エチレン、炭酸メチルエチル、炭酸メチルプロピル、炭酸メチルイソプロピル、炭酸メチルブチル、炭酸ジエチル、炭酸エチルプロピル、炭酸ジイソプロピル、炭酸ジブチル、炭酸1,2−ブチレン、炭酸エチルイソプロピル、炭酸エチルブチル等の炭酸エステル類が例示される。また、トリエチレングリコールメチルエーテル、テトラエチレングリコールジメチルエーテル等のオリゴエーテル類、プロピオン酸メチル、蟻酸メチル等の脂肪族エステル類、ベンゾニトリル、トルニトリル等の芳香族ニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、γーブチロラクトン等のラクトン類、スルホラン等の硫黄化合物、Nービニルピロリドン、Nーメチルピロリドン、リン酸エステル類等も例示できる。なかでも、本発明では炭酸エステル類、脂肪族エステル類、エーテル類が好ましい。   As the non-aqueous electrolyte solution of the non-aqueous secondary battery, at least one electrolyte containing lithium ions is dissolved in the non-aqueous electrolyte solution. The non-aqueous solvent of the non-aqueous electrolyte solution can be used without limitation as long as it is chemically and electrochemically stable and aprotic. For example, dimethyl carbonate, propylene carbonate, ethylene carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, diethyl carbonate, ethyl propyl carbonate, diisopropyl carbonate, dibutyl carbonate, 1,2-butylene carbonate, ethyl isopropyl carbonate, Examples thereof include carbonates such as ethylbutyl carbonate. Also, oligoethers such as triethylene glycol methyl ether and tetraethylene glycol dimethyl ether, aliphatic esters such as methyl propionate and methyl formate, aromatic nitriles such as benzonitrile and tolunitrile, amides such as dimethylformamide, dimethyl Examples include sulfoxides such as sulfoxide, lactones such as γ-butyrolactone, sulfur compounds such as sulfolane, N-vinylpyrrolidone, N-methylpyrrolidone, and phosphate esters. Of these, in the present invention, carbonates, aliphatic esters and ethers are preferred.

次に、電極特性の評価方法について説明する。前記方法により作製した正極、負極、非水電解液又はポリマー電解質、セパレーター(例えば、ポリプロピレン製、ポリエチレン性や共重合系を含む他のポリオレフィン製が用いられる。)、及び必要に応じて、負極のデンドライト生成が原因のマイクロショートを防止する目的で補強材としてアドバンテック東洋(株)製のシリカ繊維濾紙QR−100も併用して、コイン電池(例えば2016型)、円筒型電池、角型電池、ポリマー電池を作製する。そして、この電池に対して100回の充電・放電サイクル試験を、例えば、定電流定電圧充電−定電流放電、充電及び放電レート1C(充電開始から2.5時間で充電休止)、走査電圧3.1V〜4.3Vで行われる。   Next, a method for evaluating electrode characteristics will be described. Positive electrode, negative electrode, non-aqueous electrolyte or polymer electrolyte prepared by the above method, separator (for example, made of polypropylene, other polyolefins including polyethylene and copolymer), and, if necessary, negative electrode In order to prevent micro-shorts caused by dendritic generation, silica fiber filter paper QR-100 manufactured by Advantech Toyo Co., Ltd. is also used as a reinforcing material, coin battery (for example, 2016 type), cylindrical battery, prismatic battery, polymer A battery is produced. Then, 100 charge / discharge cycle tests were performed on this battery, for example, constant current constant voltage charge-constant current discharge, charge and discharge rate 1C (charge suspend in 2.5 hours from the start of charge), scan voltage 3 Performed at 1V to 4.3V.

以下実施例および比較例によって、本発明を具体的に説明するが、本発明はこれらにより何ら制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

(実施例1) 正極活物質の製造炭酸マンガン(BET法比表面積:30m2/g)0.492モルと炭酸リチウム(BET法比表面積:1m2/g)0.128モルと酸化アルミニウム(BET法比表面積:100m2/g)0.0016モルを容量0.7リットルのボールミルにて1時間混合した後、大気中で650℃の反応温度で4時間反応を行った。この生成物をボールミルで1時間解砕した後、大気中で750℃の熱処理温度で20時間熱処理を行った。 (Example 1) Production of cathode active material Manganese carbonate (BET specific surface area: 30 m 2 / g) 0.492 mol, lithium carbonate (BET specific surface area: 1 m 2 / g) 0.128 mol and aluminum oxide (BET (Method specific surface area: 100 m 2 / g) 0.0016 mol was mixed in a ball mill having a capacity of 0.7 liter for 1 hour, and then reacted in the atmosphere at a reaction temperature of 650 ° C. for 4 hours. This product was crushed with a ball mill for 1 hour and then heat-treated in the atmosphere at a heat treatment temperature of 750 ° C. for 20 hours.

正極活物質の組成は試料を塩酸で分解後、Liを炎光光度法で、AlをICP法で、Mnを電位差滴定法でそれぞれ求め、混合比と変化していないことを確認した。格子定数はJ.B.Nelson,D.P.Rileyの方法(Proc.Phys.Soc.,57,160(1945))で求めた。結晶子サイズは、マンガン酸リチウムの(111)面のX線回折ピークから以下の条件にて測定し、Scherrerの式を用いて算出した。結晶子の外形が立方体で大きさの分布を持たないと仮定して、結晶子の大きさによる回折線の広がりを半価幅より算出した値を使用した。なお、単結晶シリコンを炭化タングステン製サンプルミルで粉砕後、44μm以下にふるい分けした粉末を外部標準として、装置定数校正曲線を作成した。但し、測定装置は、理学電機(株)製Radタイプゴニオメーター、測定モードとして連続測定、解析ソフトには理学電機(株)RINT2000シリーズのアプリケーションソフトを使用し、結晶子の大きさの解析を行った。測定条件は、X線(CuKα線)、出力50kV、180mA、スリット幅(3ヶ所)は1/2°、1/2°、0.15mm、スキャン方法は2θ/θ法、スキャン速度は1°/min、測定範囲(2θ)は17〜20°、ステップは0.004°である。この方法での結晶子サイズの精度は±30Åであった。   The composition of the positive electrode active material was determined by decomposing the sample with hydrochloric acid, determining Li with a flame photometric method, Al with an ICP method, and Mn with a potentiometric titration method. The lattice constant was determined by the method of J.B.Nelson and D.P.Riley (Proc. Phys. Soc., 57, 160 (1945)). The crystallite size was measured from the X-ray diffraction peak of the (111) plane of lithium manganate under the following conditions and calculated using the Scherrer equation. Assuming that the outer shape of the crystallite is a cube and does not have a size distribution, a value obtained by calculating the spread of the diffraction line due to the size of the crystallite from the half width was used. A device constant calibration curve was prepared using a powder obtained by pulverizing single crystal silicon with a tungsten carbide sample mill and then screening to 44 μm or less as an external standard. However, the measurement device is a Rad type goniometer manufactured by Rigaku Corporation, continuous measurement is used as the measurement mode, and the RINT2000 series application software is used as the analysis software to analyze the crystallite size. It was. Measurement conditions are: X-ray (CuKα ray), output 50 kV, 180 mA, slit width (3 locations) 1/2 °, 1/2 °, 0.15 mm, scanning method 2θ / θ method, scanning speed 1 ° / Min, the measurement range (2θ) is 17 to 20 °, and the step is 0.004 °. The accuracy of the crystallite size by this method was ± 30 mm.

次に、この正極活物質を用いてコイン型電池を次のような方法で作製した。正極活物質と導電剤であるカーボンブラック及びN−メチル−2−ピロリドンに溶解(又は膨潤)した四フッ化エチレンを質量比で80対10対10の割合で混練し、このペーストをアルミニウムエキスパンドメタルから成る集電体上に2t/cm2で加圧成形し正極とした。一方負極として所定の厚さのリチウム箔を用いた。電解液として炭酸エチレンと炭酸ジメチルを体積比で1:2の割合で混合した混合液にLiPF6を1モル/リットルの濃度で溶解したものを用いた。これらの正極と負極、ポリプロピレン製のセパレーター、電解液を用い、2016型のコイン型電池を作製した。上記方法で作製した電池を用いて、充放電速度1C、電圧範囲4.2V〜3.0Vで充放電を繰り返し、充放電サイクル試験を行なった。複合酸化物の組成、格子定数、結晶サイズ、放電容量、容量維持率を表1にまとめた。 Next, a coin-type battery was produced by the following method using this positive electrode active material. A positive electrode active material, carbon black as a conductive agent, and ethylene tetrafluoride dissolved (or swollen) in N-methyl-2-pyrrolidone are kneaded at a mass ratio of 80:10:10, and this paste is made of aluminum expanded metal. A positive electrode was formed by pressure molding at 2 t / cm 2 on a current collector comprising: On the other hand, a lithium foil having a predetermined thickness was used as the negative electrode. As an electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixed solution in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2 was used. Using these positive and negative electrodes, a polypropylene separator, and an electrolytic solution, a 2016 coin-type battery was produced. Using the battery produced by the above method, charge / discharge was repeated at a charge / discharge rate of 1 C and a voltage range of 4.2 V to 3.0 V, and a charge / discharge cycle test was performed. Table 1 summarizes the composition, lattice constant, crystal size, discharge capacity, and capacity retention rate of the composite oxide.

(実施例2〜14) 実施例1を参考に、炭酸マンガン、炭酸リチウム、酸化アルミニウムの混合比が異なる以外は実施例1と同様にして正極活物質を製造し、その格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表1にまとめた。   (Examples 2 to 14) With reference to Example 1, a positive electrode active material was produced in the same manner as in Example 1 except that the mixing ratio of manganese carbonate, lithium carbonate, and aluminum oxide was different. The discharge capacity and the capacity retention rate were examined, and the results are summarized in Table 1.

(実施例15)Li/Mn/Alのモル比が1.03:1.957:0.013の組成となるように炭酸リチウムと炭酸マンガンと150m2/gの気相法アルミナをボールミルで混合し、大気中650℃で4時間反応させた。得られた反応粉に酸化硼素0.4質量%を添加して、水を分散媒にボールミルで湿式粉砕して、平均粒子径0.3μmにした。スラリーを乾燥した後、不二パウダル(株)社製スパルタンリューザーRMO−6Hで造粒した。該粉砕粉に造粒バインダーとして水溶液としたポリビニルアルコールを1.5質量%添加して造粒した。得られた造粒粉をミキサーで軽く粉砕・解砕し、風力分級で20μmに整粒した。整粒した造粒粉を大気中500℃で2時間保持して脱脂処理後、750℃で30分焼成して、複合酸化物を得た。 (Example 15) Lithium carbonate, manganese carbonate, and 150 m 2 / g of vapor phase alumina were mixed by a ball mill so that the molar ratio of Li / Mn / Al was 1.03: 1.957: 0.013. And reacted at 650 ° C. for 4 hours in the atmosphere. Boron oxide (0.4% by mass) was added to the obtained reaction powder, and wet milled with a ball mill using water as a dispersion medium to obtain an average particle size of 0.3 μm. After drying the slurry, the slurry was granulated with a Spartan Luser RMO-6H manufactured by Fuji Powder Corporation. The pulverized powder was granulated by adding 1.5% by weight of polyvinyl alcohol as an aqueous solution as a granulating binder. The obtained granulated powder was lightly pulverized and pulverized with a mixer and sized to 20 μm by air classification. The sized granulated powder was kept in the atmosphere at 500 ° C. for 2 hours, degreased, and then baked at 750 ° C. for 30 minutes to obtain a composite oxide.

得られた複合酸化物に純水を添加して固形分濃度20%のスラリーとし、5分間超音波処理し、上澄み液を除去するまでの工程を10回繰り返して洗浄し、100℃で乾燥した。得られたスピネル構造の該複合酸化物に対して5モル%の硝酸を含有する水溶液に投入し、水溶液のpHが中性付近で一定になったことを確認後、濾過・洗浄して100℃で真空乾燥した。そして300℃で4時間加熱処理し、本発明の正極活物質を得た。得られた正極活物質を実施例1に記載の方法と同様にして電池評価を実施した。前記複合酸化物の組成、格子定数、結晶子サイズ、放電容量、容量維持率の結果を表1にまとめた。   Pure water was added to the resulting composite oxide to form a slurry with a solid content concentration of 20%, ultrasonic treatment was performed for 5 minutes, and the process until the supernatant was removed was washed 10 times and dried at 100 ° C. . The solution was added to an aqueous solution containing 5 mol% of nitric acid with respect to the obtained composite oxide having a spinel structure, and after confirming that the pH of the aqueous solution became constant near neutrality, the solution was filtered and washed to 100 ° C And dried in vacuum. And it heat-processed at 300 degreeC for 4 hours, and obtained the positive electrode active material of this invention. The obtained positive electrode active material was subjected to battery evaluation in the same manner as described in Example 1. Table 1 summarizes the results of the composition, lattice constant, crystallite size, discharge capacity, and capacity retention rate of the composite oxide.

(比較例1〜10) 実施例1を参考に、炭酸マンガン、炭酸リチウム、酸化アルミニウムの混合比が異なる以外は実施例1と同様にして正極活物質を製造し、その格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表2にまとめた。   (Comparative Examples 1 to 10) With reference to Example 1, a positive electrode active material was produced in the same manner as in Example 1 except that the mixing ratio of manganese carbonate, lithium carbonate, and aluminum oxide was different. The discharge capacity and capacity retention rate were examined, and the results are summarized in Table 2.

(比較例11、12) 実施例1を参考に、焼成温度が異なる以外は実施例1と同様にして正極活物質を製造し、その格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表2にまとめた。   (Comparative Examples 11 and 12) With reference to Example 1, a positive electrode active material was produced in the same manner as in Example 1 except that the firing temperature was different, and the lattice constant, crystallite size, discharge capacity, and capacity retention rate were examined. The results are summarized in Table 2.

(比較例13) 実施例1を参考に、マンガン原料としてBET比表面積が8m2/gの炭酸マンガンを用いる以外は実施例1と同様にして正極活物質を製造し、その格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表2にまとめた。 Comparative Example 13 With reference to Example 1, a positive electrode active material was produced in the same manner as in Example 1 except that manganese carbonate having a BET specific surface area of 8 m 2 / g was used as the manganese raw material. The size, discharge capacity, and capacity retention rate were examined, and the results are summarized in Table 2.

(比較例14) 実施例1を参考に、マンガン原料としてBET比表面積が15m2/gの電解二酸化マンガンを用いる以外は実施例1と同様にして正極活物質の格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表2にまとめた。 (Comparative Example 14) With reference to Example 1, except that electrolytic manganese dioxide having a BET specific surface area of 15 m 2 / g was used as a manganese raw material, the positive electrode active material lattice constant, crystallite size, and discharge were the same as in Example 1. The capacity and capacity retention rate were examined, and the results are summarized in Table 2.

(比較例15) 実施例1を参考に、マンガン原料としてBET比表面積が80m2/gの電解二酸化マンガンを用いる以外は実施例1と同様にして正極活物質の格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表2にまとめた。 (Comparative Example 15) With reference to Example 1, except that electrolytic manganese dioxide having a BET specific surface area of 80 m 2 / g was used as a manganese material, the lattice constant, crystallite size, and discharge of the positive electrode active material were the same as in Example 1. The capacity and capacity retention rate were examined, and the results are summarized in Table 2.

(比較例16) 実施例1を参考に、マンガン原料としてBET比表面積が5m2/gの三二酸化マンガンを用いる以外は実施例1と同様にして正極活物質の格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表2にまとめた。 (Comparative Example 16) With reference to Example 1, except that manganese trioxide having a BET specific surface area of 5 m 2 / g was used as a manganese raw material, the lattice constant, crystallite size, and discharge of the positive electrode active material were the same as in Example 1. The capacity and capacity retention rate were examined, and the results are summarized in Table 2.

(比較例17) 実施例1を参考に、アルミニウム原料としてBET比表面積が10m2/gの酸化アルミニウムを用いる以外は実施例1と同様にして正極活物質の格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表2にまとめた。 (Comparative Example 17) With reference to Example 1, except that aluminum oxide having a BET specific surface area of 10 m 2 / g was used as the aluminum raw material, the lattice constant, crystallite size, and discharge capacity of the positive electrode active material were the same as in Example 1. The capacity retention rate was examined, and the results are summarized in Table 2.

(比較例18) 実施例1を参考に、アルミニウム原料としてBET比表面積が10m2/gの酸化アルミニウムを用いる以外は実施例12と同様にして正極活物質の格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表2にまとめた。 (Comparative Example 18) With reference to Example 1, except that aluminum oxide having a BET specific surface area of 10 m 2 / g was used as the aluminum raw material, the lattice constant, crystallite size, and discharge capacity of the positive electrode active material were the same as in Example 12. The capacity retention rate was examined, and the results are summarized in Table 2.

(比較例19) 実施例1を参考に、炭酸マンガン、炭酸リチウム、酸化アルミニウムの混合比が異なる以外は実施例1と同様にして正極活物質を製造し、その格子定数、結晶子サイズ、放電容量、容量維持率を調べ、その結果を表2にまとめた。但し、本比較例では酸化アルミニウムの添加をなしとした。   Comparative Example 19 With reference to Example 1, a positive electrode active material was produced in the same manner as in Example 1 except that the mixing ratio of manganese carbonate, lithium carbonate, and aluminum oxide was different, and its lattice constant, crystallite size, discharge The capacity and capacity retention rate were examined, and the results are summarized in Table 2. However, in this comparative example, no aluminum oxide was added.

以上、前記実施例1〜15及び比較例1〜19で得られた結果として、LiXAlYMn3-X-YZにおけるX、Y、格子定数(Å)、結晶子サイズ(Å)、初期の放電容量(mAh/g)、100サイクル経過後の放電容量(mAh/g)、100サイクル経過後の容量維持率をまとめ、表1又は表2に示した。組成比Zを示す酸素量は、正確に分析するのが難しく、また酸素欠陥もあるが、通常3.5<z≦4.5の範囲である。容量維持率は、(100サイクル経過後の放電容量÷初期サイクルの放電容量)×100の計算から求めた。

As described above, as the results obtained in Examples 1 to 15 and Comparative Examples 1 to 19, X, Y, lattice constant (Å), crystallite size (Å), initial value in Li X Al Y Mn 3 -XYO Z Table 1 or Table 2 summarizes the discharge capacity (mAh / g), discharge capacity after 100 cycles (mAh / g), and capacity retention after 100 cycles. The amount of oxygen indicating the composition ratio Z is difficult to accurately analyze and has oxygen defects, but is usually in the range of 3.5 <z ≦ 4.5. The capacity retention rate was obtained from the calculation of (discharge capacity after 100 cycles / discharge capacity of initial cycle) × 100.

Claims (3)

リチウム化合物と、比表面積が10m2/g以上100m2/g以下の炭酸マンガン、及びアルミニウム化合物を混合し、これを350℃以上680℃以下の温度で1時間以上焼成反応させ、次いで解砕後、生成物を730℃以上900℃以下の温度で加熱処理することを特徴とする非水二次電池用正極活物質の製造方法。 A lithium compound, manganese carbonate having a specific surface area of 10 m 2 / g or more and 100 m 2 / g or less, and an aluminum compound are mixed, and this is subjected to a firing reaction at a temperature of 350 ° C. or more and 680 ° C. or less for 1 hour or more. The method for producing a positive electrode active material for a non-aqueous secondary battery, wherein the product is heat-treated at a temperature of 730 ° C. or higher and 900 ° C. or lower. アルミニウム化合物が、比表面積50m2/g以上200m2/g以下の化合物であることを特徴とする請求項1に記載の非水二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a non-aqueous secondary battery according to claim 1, wherein the aluminum compound is a compound having a specific surface area of 50 m 2 / g or more and 200 m 2 / g or less. アルミニウム化合物が、酸化アルミニウム(α、β、γ、δ、ζ、η、θ、κ、χ、ρ等のアルミナ等)、Al(OH)3、Al(NO33、Al2(SO43(アルミナイト等)、酢酸アルミニウム及びそれらの水和物からなる群より選ばれた少なくとも1種の化合物である請求項1又は2に記載の非水二次電池用正極活物質の製造方法。

The aluminum compound is aluminum oxide (alumina such as α, β, γ, δ, ζ, η, θ, κ, χ, ρ, etc.), Al (OH) 3 , Al (NO 3 ) 3 , Al 2 (SO 4 3 ) The method for producing a positive electrode active material for a non-aqueous secondary battery according to claim 1 or 2, which is at least one compound selected from the group consisting of 3 (aluminite, etc.), aluminum acetate and hydrates thereof. .

JP2010031612A 2010-02-16 2010-02-16 Method of manufacturing positive electrode active material Pending JP2010157519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031612A JP2010157519A (en) 2010-02-16 2010-02-16 Method of manufacturing positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031612A JP2010157519A (en) 2010-02-16 2010-02-16 Method of manufacturing positive electrode active material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000032692A Division JP4543474B2 (en) 2000-02-03 2000-02-03 Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2010157519A true JP2010157519A (en) 2010-07-15

Family

ID=42575234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031612A Pending JP2010157519A (en) 2010-02-16 2010-02-16 Method of manufacturing positive electrode active material

Country Status (1)

Country Link
JP (1) JP2010157519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226213A (en) * 2001-01-25 2002-08-14 Nippon Chem Ind Co Ltd Lithium manganese complex oxide powder, its production method, cathode active material for lithium secondary cell, and lithium secondary cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199509A (en) * 1997-01-17 1998-07-31 Ricoh Co Ltd Solid electrolyte battery
JPH1145711A (en) * 1997-05-28 1999-02-16 Showa Denko Kk Positive electrode active material and nonaqueous secondary battery using same
JPH11307096A (en) * 1998-04-27 1999-11-05 Dainippon Toryo Co Ltd Manufacture of lithium-manganese composite oxide for nonaqueous lithium secondary battery and its use
JP2000012023A (en) * 1998-06-24 2000-01-14 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199509A (en) * 1997-01-17 1998-07-31 Ricoh Co Ltd Solid electrolyte battery
JPH1145711A (en) * 1997-05-28 1999-02-16 Showa Denko Kk Positive electrode active material and nonaqueous secondary battery using same
JPH11307096A (en) * 1998-04-27 1999-11-05 Dainippon Toryo Co Ltd Manufacture of lithium-manganese composite oxide for nonaqueous lithium secondary battery and its use
JP2000012023A (en) * 1998-06-24 2000-01-14 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226213A (en) * 2001-01-25 2002-08-14 Nippon Chem Ind Co Ltd Lithium manganese complex oxide powder, its production method, cathode active material for lithium secondary cell, and lithium secondary cell

Similar Documents

Publication Publication Date Title
KR100653170B1 (en) Positive plate active material, method for producing the same, and secondary cell
JP6260535B2 (en) Method for producing carbon composite lithium manganese iron phosphate particle powder, and method for producing a non-aqueous electrolyte secondary battery using the particle powder
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
WO2007034823A1 (en) Method for producing positive electrode active material and nonaqueous electrolyte battery using same
KR20160083227A (en) Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same
TW201417380A (en) Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP4919147B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
KR101566155B1 (en) Positive composition for Lithium secondary battery using spherical mixed metal carbonate with nano-titanate and manufacturing method thereof
KR102426251B1 (en) Cobalt oxide for lithium secondary battery, lithium cobalt oxide for lithium secondary battery formed from the same, preparing method of the lithium cobalt oxide, and lithium secondary battery including positive electrode comprising the lithium cobalt oxide
JP2006151707A (en) Anhydride of lithium hydroxide for manufacturing lithium transition metal complex oxide and its manufacturing method, and method for manufacturing lithium transition metal complex oxide using it
JP2004311297A (en) Powdered lithium secondary battery positive electrode material, lithium secondary battery positive electrode, and lithium secondary battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP2007258187A (en) Cathode material and lithium secondary battery using the same
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2002326818A (en) Production method of slurry and production method of lithium transition metal compound oxide
JP2006273620A (en) Lithium transition metal complex oxide, its manufacturing method, fired precursor for lithium transition metal complex oxide and lithium secondary battery
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP2002068747A (en) Lithium manganese complex oxide, positive electrode material for lithium secondary battery, positive electrode, and lithium secondary battery
JP4654488B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode and battery using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130125