JP2010155919A - Method for producing polyimide thin film - Google Patents

Method for producing polyimide thin film Download PDF

Info

Publication number
JP2010155919A
JP2010155919A JP2008334699A JP2008334699A JP2010155919A JP 2010155919 A JP2010155919 A JP 2010155919A JP 2008334699 A JP2008334699 A JP 2008334699A JP 2008334699 A JP2008334699 A JP 2008334699A JP 2010155919 A JP2010155919 A JP 2010155919A
Authority
JP
Japan
Prior art keywords
film
polyimide
substrate
thin film
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008334699A
Other languages
Japanese (ja)
Other versions
JP5004193B2 (en
Inventor
Fumito Imura
史人 居村
Tokihiko Yokoshima
時彦 横島
Hiroshi Nakagawa
博 仲川
Masahiro Aoyanagi
昌宏 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008334699A priority Critical patent/JP5004193B2/en
Publication of JP2010155919A publication Critical patent/JP2010155919A/en
Application granted granted Critical
Publication of JP5004193B2 publication Critical patent/JP5004193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polyimide thin film wherein a large-area and tough ultra-thin film can be prepared while floating on a solution for ease of handling of such an ultra-thin polyimide film, then the film is skimmed from the solution to obtain a self supporting polyimide film. <P>SOLUTION: The method for producing a polyimide film includes the following steps of: forming a film of a solvent-soluble block copolymerizable polyimide film on a substrate by spin-coating; removing a solvent from the polyimide film by baking the substrate after film formation; stripping the polyimide film off from the substrate by immersing in a stripping solution; and skimming the polyimide film which is stripped from the substrate and floating on the solution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、極薄膜の自立性ポリイミド膜に関するものである。   The present invention relates to an ultrathin self-supporting polyimide film.

[ポリイミド薄膜の利用分野]
以下にポリイミド薄膜が利用される様々な技術について説明する。
[Application fields of polyimide thin films]
Hereinafter, various techniques in which the polyimide thin film is used will be described.

1.MEMS(Micro Electro Mechanical System)デバイス
MEMS技術で作製したピエゾ方式の圧力センサでは、Siをエッチングし、メンブレンという膜厚1μm以下の圧力に対する応答膜を作製する必要がある。このタイプの圧力センサにおいては、圧力の検出感度はメンブレン膜厚の2乗で増加し、メンブレンに加えられる応力が大きければ大きいほど感度は高くなる。しかし、メンブレンを薄くしたことによって機械的強度が低下し、メンブレンが破壊されないまでの最大検出圧力値が小さくなる恐れがある。いかにして機械的強度が高く極薄のメンブレン構造を作製するかが課題である。
1. A MEMS (Micro Electro Mechanical System) device In a piezo-type pressure sensor manufactured by MEMS technology, it is necessary to etch Si and prepare a response film against a pressure of 1 μm or less, called a membrane. In this type of pressure sensor, the pressure detection sensitivity increases with the square of the membrane thickness, and the greater the stress applied to the membrane, the higher the sensitivity. However, when the membrane is thinned, the mechanical strength is lowered, and the maximum detected pressure value until the membrane is not broken may be reduced. The challenge is how to make a membrane structure with high mechanical strength and very thin thickness.

また、加速度センサにおいても圧力センサと同様にメンブレン構造が用いられ、加速度によって変位するおもりをメンブレン上に作製する必要がある。おもりを支え、加速度が加えられても破壊されない機械的強度の高いメンブレン構造が必要である。   Also, the acceleration sensor uses a membrane structure in the same manner as the pressure sensor, and a weight that is displaced by the acceleration needs to be formed on the membrane. There is a need for a membrane structure with high mechanical strength that supports the weight and does not break even when acceleration is applied.

さらに、ガスセンサ、においセンサ、味覚センサにおいては、特定の物質を検出するための単一の分子膜構造体をもつメンブレン膜が必要であり、主にこのメンブレンは溶液中のプロセスで作製されることが多い。このメンブレン膜をいろいろな電極などに修飾し実装しなければいけないのでこのメンブレン作製技術のみならず、転写、修飾など一連の実装プロセスも要求される。   Furthermore, in gas sensors, odor sensors, and taste sensors, a membrane film having a single molecular film structure for detecting a specific substance is required, and this membrane is mainly produced by a process in solution. There are many. Since this membrane film must be modified and mounted on various electrodes, a series of mounting processes such as transfer and modification are required as well as this membrane manufacturing technology.

このようなMEMSセンサは、環境、ひと、自動車、あらゆる機器に搭載され、高温・多湿・高圧・低圧などの過酷環境下においても確実に動作させなければならない。このためにもMEMS技術で作製されたセンサが破壊されず機能するためには極薄でも強靭なメンブレン膜が必須である。   Such a MEMS sensor is mounted on the environment, a person, an automobile, and any device, and must be reliably operated even in a severe environment such as high temperature, high humidity, high pressure, and low pressure. For this reason, in order for a sensor manufactured by the MEMS technology to function without being destroyed, an extremely thin but strong membrane film is essential.

また、MEMSデバイスは他のデバイスにはない中空構造を持った特有の3次元構造をしているため、デバイス製造工程と併せてデバイスを保護する封止技術が必要であり、現在、MEMSデバイスの製造とともに封止までをダイシングしないで一貫してウェハの状態のままでパッケージングするWLP(ウェハレベルパッケージ)が行われている。ウェハ径はφ200mmと大口径であり、中空状態で自らを支え、デバイスを保護できる強靭で大面積のシート作製と封止技術が求められている。   In addition, since the MEMS device has a unique three-dimensional structure with a hollow structure not found in other devices, a sealing technique for protecting the device is required in conjunction with the device manufacturing process. WLP (wafer level package) is performed in which the wafer is packaged in a consistent state without dicing from manufacturing to sealing. The wafer diameter is as large as φ200 mm, and a strong and large-area sheet production and sealing technology that can support the device in a hollow state and protect the device is required.

2.表示デバイス
曲げたり丸めたりしてコンパクトに携帯可能なフレキシブルディスプレイ(ペーパーライクディスプレイ)の開発が進められている。これには、A4サイズ程度の大面積で柔軟で機能性をもつ樹脂膜が必要である。この機能性をもつ樹脂膜は、ディスプレイに代表される大面積エレクトロニクスにおけるRGBのカラーフィルタ、偏光フィルタ、保護膜、配向膜、さらに、トランジスタを構成する材料まで多用されている。また、現在、ポリイミド膜はフレキシブル基板や配線間の絶縁膜などに用いられており、さらに薄膜化とともに柔軟性、耐久性などが要求される。
2. Display devices Flexible displays (paper-like displays) that can be bent and rolled up and carried compactly are being developed. For this purpose, a flexible and functional resin film having a large area of about A4 size is required. The resin film having this functionality is widely used for RGB color filters, polarizing filters, protective films, alignment films, and materials constituting transistors in large area electronics typified by displays. At present, polyimide films are used for flexible substrates, insulating films between wirings, and the like, and further, flexibility and durability are required as the thickness is reduced.

3.光学デバイス(ミラー、偏光、フィルタなど)
MEMS技術を用いた代表的な光学デバイスとしてDMD(Digital Mirror Device)が挙げられる。これは、自立し中空構造である微小なミラーをその下部に配置されているトランジスタによってミラーの角度を変化させることができる。このような光学デバイスをトランジスタ、CMOSイメージセンサなどの素子とともに大面積で作製することができれば、分解能、検出感度が高く、検出レンジの大きい天体観測望遠鏡などが期待できる。
3. Optical device (mirror, polarization, filter, etc.)
A DMD (Digital Mirror Device) is a typical optical device using the MEMS technology. In this case, the angle of the mirror can be changed by a transistor that is arranged in a lower part of a small mirror that is self-supporting and has a hollow structure. If such an optical device can be manufactured in a large area together with elements such as transistors and CMOS image sensors, an astronomical observation telescope with high resolution and detection sensitivity and a wide detection range can be expected.

4.環境改善(光触媒)
光触媒を用いて環境を浄化する機能をもつデバイスの開発が進められている。光触媒の機能性をもつ、大面積で、柔軟性に富み、暴風雨などの過酷環境下でも動作する環境浄化大面積シートの開発が強く望まれている。
4). Environmental improvement (photocatalyst)
Development of a device having a function of purifying the environment using a photocatalyst is in progress. There is a strong demand for the development of a large-area sheet that has the functionality of a photocatalyst, has a large area, is flexible, and operates even in harsh environments such as storms.

5.燃料電池
個体高分子型の燃料電池には、個体高分子膜をはじめ電極などの薄膜で1つのセルを構成しており、これを数十層に積層して大容量としている。この膜には穴など1つでも欠陥があれば安全性が問題となるので、大面積で欠陥のない薄膜が必要である。さらに、薄膜の厚みをさらに薄くすることによって、同じ体積でも多くの薄膜を積層化すれば大容量化が望める。
5). Fuel cell In a solid polymer type fuel cell, a single cell is composed of a thin film such as an individual polymer membrane and an electrode, and this is laminated into several tens of layers to increase the capacity. If there is even one defect such as a hole in this film, safety becomes a problem, so a thin film having a large area and no defect is required. Furthermore, by further reducing the thickness of the thin film, it is possible to increase the capacity by stacking many thin films even in the same volume.

6.生体材料
強靭で柔軟性を同時に達成する大面積の生体適合膜を作製できれば、収縮した状態で保存、搬送し、必要なときに再度、膜を広げ、移植などの治療を行うこと可能となる。
6). Biomaterial If a large-area biocompatible membrane capable of simultaneously achieving toughness and flexibility can be produced, it can be stored and transported in a contracted state, and when necessary, the membrane can be expanded again, and treatment such as transplantation can be performed.

7.昆虫ロボット
防災、人命救助などでレスキュー隊が事故現場の状況を予め把握し、安全で迅速なレスキュー活動をするために、小型で過酷環境下にも耐え、現場の状況(カメラ画像、音、温度、危険物質の検出など)を調査可能な昆虫ロボットが期待されている。例えば、トンボなどの空中を飛んで調査する昆虫ロボットには軽く強靭な羽やボディを再現する必要ある。
7). Insect robots Rescue teams know the situation of the accident site in advance for disaster prevention, lifesaving, etc., and are able to withstand a severe and harsh environment in order to conduct a safe and prompt rescue operation. The situation of the site (camera image, sound, temperature) Insect robots that can investigate the detection of dangerous substances) are expected. For example, insect robots that fly in the air, such as dragonflies, need to reproduce light and strong wings and bodies.

8.その他
2次電池、海水淡水化、貴重資源の回収などにおいても使用されている膜が薄ければ薄いほど基本的に性能は向上すると考えられる。
8). Others It is considered that the thinner the membrane used in secondary batteries, desalination of seawater, recovery of valuable resources, etc., the better the performance.

[ポリイミド薄膜の定義及び作製方法]
このようなポリイミド薄膜について、非特許文献1には次のことが記載されている。
[Definition and production method of polyimide thin film]
Regarding such a polyimide thin film, Non-Patent Document 1 describes the following.

まず、巨大ナノ薄膜の定義として、
・膜としての自己支持性があること
・100nm以下の膜厚であること
・サイズと厚みが106以上のアスペクト比であること
が記載されており、この3つの条件が達成されて“分子的な機能を直接利用した人工材料”となるとされている。
First, as the definition of giant nano thin film,
It is described that the film has a self-supporting property, a film thickness of 100 nm or less, a size and a thickness of 10 6 or more in aspect ratio, and these three conditions are achieved. It is said that it will be an “artificial material that directly uses various functions”.

巨大ナノ薄膜に必要な条件としては、
・マクロスコピックな機械的強度を有する(薄くても強いという構造的な安定性を持つ)
・均一で欠陥のないこと
が必要であるとしている。
As a necessary condition for a giant nano thin film,
・ Has macroscopic mechanical strength (with structural stability that it is strong even if it is thin)
・ It is necessary to be uniform and free of defects.

このような巨大ナノ薄膜の作製方法としては以下のものが例示されている。
・ポリマーLB膜:LB素材としてアクリルアミド系の長鎖のポリマーを使用したことで、一般のLB法に比べて非常に丈夫な自己支持性の分子膜を作製。
・ポリイオン交互吸着法:個体基板に負電荷を持たせることにより、正電荷を持つポリマー(ポリカチオン)が水溶液中から基板へ吸着される。表面には過剰の電荷が残るので、それに対しては負電荷を持つポリマー(ポリアニオン)が吸着できる。この操作を繰り返すことによりポリマー層が積層される。
・表面ゾル−ゲル法:まず表面に水酸基を持つ基板を用い、それに金属アルコキシド反応させる。その後、水と接触させて加水分解を行うことにより、得られた金属酸化物層表面に水酸基が再生される。そこにさらにゾルゲル反応を行わせ、次の金属酸化物層を作る、という手法。
・スピンコート法:平滑な基板の上に塗布溶液を垂らし、その後、基板を高速回転させることにより遠心力で薄膜を作製する方法。
・スピンコート+熱硬化:エポキシ樹脂、メラミン樹脂、フタル酸樹脂、ウレタン樹脂をスピンコートし、加熱して固化させ熱硬化させる。いずれの材料も加熱により固化して不溶不融となる熱硬化性樹脂。
Examples of methods for producing such a giant nano thin film include the following.
-Polymer LB film: By using an acrylamide-based long-chain polymer as the LB material, a very strong self-supporting molecular film is produced compared to the general LB method.
Polyion alternating adsorption method: By giving a negative charge to the solid substrate, a positively charged polymer (polycation) is adsorbed from the aqueous solution to the substrate. Since an excessive charge remains on the surface, a negatively charged polymer (polyanion) can be adsorbed thereto. By repeating this operation, the polymer layer is laminated.
Surface sol-gel method: First, a substrate having a hydroxyl group on the surface is used, and a metal alkoxide is reacted therewith. Thereafter, the hydroxyl group is regenerated on the surface of the obtained metal oxide layer by hydrolysis with contact with water. A technique in which a sol-gel reaction is further performed to form the next metal oxide layer.
Spin coating method: A method of producing a thin film by centrifugal force by dropping a coating solution on a smooth substrate and then rotating the substrate at a high speed.
Spin coating + thermosetting: Spin coating epoxy resin, melamine resin, phthalic acid resin, urethane resin, solidify by heating and heat cure. A thermosetting resin that solidifies by heating and becomes insoluble and infusible.

また、非特許文献1には、巨大ナノ膜に期待される機能として以下のものを挙げている。
・ナノ厚に由来する光学特性の発現:薄膜化に伴いその光学特性は古典場では記述できない量子場的な特性が期待できる。
・機能性ユニットの埋め込みによる機能性の発現:厚みが生体膜の厚みに近づきつつある。分子厚みであるナノ膜をマトリックスとし、その中にタンパクなどの機能性分子を貫通して埋め込むことにより、分子的な機能を得ることができる。
・積層による機能性の発現:ナノ薄膜を積み重ねたときに、厚い膜を積み重ねるのとはまったく違う状況、機能が生まれる可能性があり、また、その空間的な配置を利用した機能性が期待される。
Non-Patent Document 1 lists the following functions expected for a giant nanofilm.
・ Development of optical properties derived from nano-thickness: As the film becomes thinner, the optical properties can be expected to be quantum field-like, which cannot be described by classical fields.
-Functional expression by embedding functional units: The thickness is approaching the thickness of the biological membrane. A molecular function can be obtained by using a nanofilm having a molecular thickness as a matrix and penetrating and embedding functional molecules such as proteins therein.
・ Development of functionality by stacking: When nano thin films are stacked, the situation and function may be completely different from stacking thick films, and functionality utilizing the spatial arrangement is expected. The

またさらに、巨大ナノ膜と界面活性剤との関係として次のことを記載している。薄膜の表面が疎水性であるとき、水中では水との接触をできるだけ減らそうとするので、水中ではたちまち収縮して球状になる。ある種の界面活性剤を溶かした水溶液中ではナノ膜は大きく広がる。さらに一度広がった薄膜は、純水中に移し替えても同様に広がる。膜の表面に吸着した界面活性剤は安定に留まっていることが窺い知れる。   Furthermore, the following is described as the relationship between the giant nanofilm and the surfactant. When the surface of the thin film is hydrophobic, in water it tries to reduce contact with water as much as possible, so in water it shrinks quickly and becomes spherical. In an aqueous solution in which a certain type of surfactant is dissolved, the nanofilm spreads greatly. Furthermore, the thin film that has spread once spreads in the same way even if it is transferred to pure water. It is well known that the surfactant adsorbed on the surface of the membrane remains stable.

なお、上記自己支持性を持つ膜つまり自立膜の各作製方法については以下のとおりである。
・スピンコート: 高速に回転させた基板に膜となる溶液をたらし、溶液を均一のばして成膜する方法。
・キャスト法: 溶液を基板上に乗せ、溶媒を蒸発させて膜を得る方法。
・LB膜:予め両親媒性分子で形成された膜を水面上に形成し、平面基板上に転写する方法。
In addition, each production method of the self-supporting film, that is, the self-supporting film is as follows.
Spin coating: A method in which a film solution is deposited on a substrate rotated at high speed, and the solution is uniformly spread to form a film.
Cast method: A method of obtaining a film by placing a solution on a substrate and evaporating the solvent.
LB film: A method in which a film previously formed of amphiphilic molecules is formed on a water surface and transferred onto a flat substrate.

この自立膜の作製について、たとえば非特許文献2、3では、Cu板内にメッシュ状に規則的に配列した7μm角のホールに双生イオン型の界面活性分子を用いてシャボン膜を形成し、乾燥させて膜厚3nm(2分子の厚み)の有機自立膜を形成している。また、その膜上にスパッタや真空蒸着で無機材料のC,Si,Pt,Fe,In,Te,CdSeを膜厚1〜100nmで成膜している。有機自立膜は水で洗浄して除去し、無機自立膜のみを形成している。双生イオン型とは、アミノ酸のように正に荷電した官能基(アミノ基など)と負に荷電した官能基(カルボキシル基など)を併せ持つ分子のタイプである。これは、シャボン膜を有機自立膜として形成した犠牲膜+無機材料の成膜ということができる。   Regarding the production of this free-standing film, for example, in Non-Patent Documents 2 and 3, a soap film is formed using zwitterionic surfactant molecules in 7 μm square holes regularly arranged in a mesh shape in a Cu plate, and then dried. Thus, an organic free-standing film having a film thickness of 3 nm (bimolecular thickness) is formed. In addition, inorganic materials such as C, Si, Pt, Fe, In, Te, and CdSe are formed on the film in a thickness of 1 to 100 nm by sputtering or vacuum deposition. The organic free-standing film is removed by washing with water to form only an inorganic free-standing film. The zwitterionic type is a type of molecule having both a positively charged functional group (such as an amino group) and a negatively charged functional group (such as a carboxyl group) such as an amino acid. This can be said to be a sacrificial film + an inorganic material film formed by using a soap film as an organic self-supporting film.

非特許文献4には、高分子ナノシートを基盤とした自己支持性ナノ薄膜について記載されている。まず基板に有機犠牲層となるCA(Cellulose Acetate)膜をスピンコートによって形成し、pDDA(N-Dodecylacrylamide polymer)膜をLB(Langmuir-Blodgett)法により2〜701層分、この基板に転写している。その後アセトンに浸漬し、基板の端部から徐々に剥離し、アセトン水面上にpDDA膜を浮遊させている。この浮遊した膜を283μm角のホールがあるメッシュ状のCu板に19層分(膜厚32.3nm)のpDDA膜を転写し、自立膜としている。さらに、φ7mmのホールのあるガラス基板に701層分(膜厚1194nm)のpDDA膜を転写し、自立膜としている。これは、スピンコートによる有機犠牲層+LB法によるポリマー膜の成膜ということができる。   Non-Patent Document 4 describes a self-supporting nanothin film based on a polymer nanosheet. First, a CA (Cellulose Acetate) film as an organic sacrificial layer is formed on a substrate by spin coating, and a pDDA (N-Dodecylacrylamide polymer) film is transferred to this substrate by 2 to 701 layers by an LB (Langmuir-Blodgett) method. Yes. Thereafter, the substrate is immersed in acetone, gradually peeled off from the edge of the substrate, and the pDDA film is suspended on the acetone water surface. This floating film is transferred to a mesh-like Cu plate having 283 μm square holes, and a pDDA film of 19 layers (film thickness 32.3 nm) is transferred to form a self-supporting film. Further, a pDDA film of 701 layers (film thickness 1194 nm) is transferred to a glass substrate having a hole of φ7 mm to form a self-supporting film. This can be said to be an organic sacrificial layer by spin coating + polymer film formation by the LB method.

非特許文献5には、ナノの厚みとマクロの面積をもつ巨大ナノ薄膜について記載されている。Siやガラス基板にスピンコートによって膜厚100nmの有機犠牲層を形成し、その上に重ねてスピンコートによって膜厚5nmのPVA膜を形成している。さらに重ねてアクリルモノマーとジルコニウムアルコキシドの混合液を、紫外光を照射しながらスピンコートすることで入れ子型ポリマーネットワーク(IPN: interpenetrating polymer network)薄膜を形成している。エタノール溶液中で有機犠牲層を除去し、IPN膜をエタノール水面中に浮遊させている。この浮遊させたIPN膜のサイズは、膜厚35nmで4cm角である。φ320μmのピペットで膜全体を吸引すると自然に折りたたまれて吸い込まれ、排出すると元のサイズを失うことなく出てくる柔軟性がある。さらにφ8mm程度のワイヤーループですくいとり自立膜としている。IPN膜とは、2個以上の網目が分子スケールで少なくとも部分的に織り交ざっており、互いに共有結合でつながっているわけではないが化学結合を切ることなしに分けることのできないポリマーである。ここでは、原料としてジルコニアと架橋アクリルポリマーを使用している。これは、スピンコートによる有機犠牲層+IPN薄膜の形成ということができる。   Non-Patent Document 5 describes a giant nano thin film having a nano thickness and a macro area. An organic sacrificial layer having a film thickness of 100 nm is formed on Si or a glass substrate by spin coating, and a PVA film having a film thickness of 5 nm is formed thereon by spin coating. Further, a mixed liquid of acrylic monomer and zirconium alkoxide is spin-coated while irradiating with ultraviolet light, thereby forming an interpenetrating polymer network (IPN) thin film. The organic sacrificial layer is removed in the ethanol solution, and the IPN film is suspended in the ethanol water surface. The size of the suspended IPN film is 4 cm square with a film thickness of 35 nm. When the entire membrane is sucked with a pipette of φ320 μm, it is folded and sucked naturally, and when discharged, it has the flexibility to come out without losing its original size. In addition, a self-standing film is scraped with a wire loop of about φ8mm. An IPN film is a polymer in which two or more networks are at least partially interwoven on a molecular scale, and are not covalently connected to each other but cannot be separated without breaking chemical bonds. Here, zirconia and a crosslinked acrylic polymer are used as raw materials. This can be said to be the formation of an organic sacrificial layer + IPN thin film by spin coating.

[ポリイミド膜と基板との分離方法]
上記自立膜と基板との分離方法については次のものが知られている。
・基板と樹脂膜の間に犠牲層を形成し、この溶解性の高い犠牲層を溶解して、基板と樹脂膜を分離する方法。この犠牲層は、金属、半導体、有機犠牲膜、水溶性接着剤、粘着テープなどが考えられる。犠牲層とは、後工程で除去することを前提に形成した層である。
・基板に親水性処理を行い、基板と樹脂膜との間に容易に溶液を侵入させ、基板と樹脂膜を分離する方法。一般的に、Si基板にポリイミド膜をスピンコートする場合は、密着力を向上させるために、予めSi基板に疎水性処理を行っている。Si基板やガラス基板の表面は親水性であるので、ポリイミド膜は基板に対してぬれ性は悪く密着力は小さい。
[Separation method of polyimide film and substrate]
The following are known methods for separating the self-supporting film from the substrate.
A method in which a sacrificial layer is formed between the substrate and the resin film, and the highly soluble sacrificial layer is dissolved to separate the substrate and the resin film. The sacrificial layer may be a metal, a semiconductor, an organic sacrificial film, a water-soluble adhesive, an adhesive tape, or the like. A sacrificial layer is a layer formed on the assumption that it will be removed in a later step.
A method of separating the substrate and the resin film by performing a hydrophilic treatment on the substrate and allowing the solution to easily enter between the substrate and the resin film. In general, when a polyimide film is spin-coated on a Si substrate, the Si substrate is previously subjected to hydrophobic treatment in order to improve adhesion. Since the surface of the Si substrate or the glass substrate is hydrophilic, the polyimide film has poor wettability with respect to the substrate and low adhesion.

前者の犠牲層を用いた例としては以下のものがある。
・粘着テープ:UV光照射や加熱することによって接着力を低減し、基板と樹脂膜を剥離することができる。犠牲層を粘着テープとした例である。
・Zero Newton:サポート板にスピンコートによって接着剤を塗布し、その上にウェハを貼り合わせる。このサポート板はウェハを薄片化する際にウェハに応力を与えない目的で用いられている。サポート板とウェハを剥離するには、有機溶媒に浸漬させて接着剤を溶解し、剥離する。サポート板には全面に無数の貫通孔があり、この貫通孔から有機溶媒が侵入しやすい構造としている。犠牲層を有機膜とした例である。
・回路基板転写技術SUFTLA(Surface Free Technology by laser Annealing/Ablation):まずガラス基板上に、通常のプロセスでシリコンTFT回路を形成、その後エキシマレーザーを照射して、回路層をガラス面から剥ぎ取り、プラスチックなどの基板の上に転写する技術。犠牲層をアモルファスシリコンとした例である。
国武豊喜, 渡邊宏臣, "巨大ナノ膜の進歩," 膜, vol. 33, pp. 130-138, 2008. J. Jin, Y. Sugiyama, K. Mitsui, H. ArakawaI, Ichinose, "Nanomechanical Properties of Reversed Surfactant Bilayers Formed in Micrometre-Sized Holes," Chem. Commun., vol. 47, pp. 954-956, 2008. J. Jin, Y. Wakayama, X. Peng, I. Ichinose, "ASurfactant-AsSisted Fabrication of Free-Standing Inorganic Sheets Covering an Array of Micrometer-Sized Holes," Nature Mater., vol. 6, pp. 686-691, 2007. H. Endo et al., "Free-Standing Ultrathin Films with Universal Thickness from Nanometer to Micrometer by Polymer Nanosheet Assembly," J. Mater. Chem., vol. 18, pp. 1302-1308, 2008. R. Vendamme at el.,"Robust free-standing nano membranes of organic/inorganic interpenetrating networks," Nature Mater., vol. 5, pp. 494-501, 2006.
Examples of using the former sacrificial layer include the following.
-Adhesive tape: Adhesive strength can be reduced by UV light irradiation or heating, and the substrate and the resin film can be peeled off. This is an example in which the sacrificial layer is an adhesive tape.
-Zero Newton: Apply an adhesive to the support plate by spin coating, and attach the wafer on it. This support plate is used for the purpose of applying no stress to the wafer when the wafer is thinned. In order to peel off the support plate and the wafer, the adhesive is dissolved by immersing in an organic solvent and then peeled off. The support plate has an infinite number of through holes on the entire surface, and has a structure in which an organic solvent easily enters from the through holes. In this example, the sacrificial layer is an organic film.
-Circuit board transfer technology SUFTLA (Surface Free Technology by Laser Annealing / Ablation): First, a silicon TFT circuit is formed on a glass substrate by a normal process, and then an excimer laser is irradiated to peel off the circuit layer from the glass surface. Technology to transfer onto a substrate such as plastic. In this example, the sacrificial layer is amorphous silicon.
Toyoki Kunitake and Hiroomi Watanabe, "Progress of giant nanofilms," Films, vol. 33, pp. 130-138, 2008. J. Jin, Y. Sugiyama, K. Mitsui, H. ArakawaI, Ichinose, "Nanomechanical Properties of Reversed Surfactant Bilayers Formed in Micrometre-Sized Holes," Chem. Commun., Vol. 47, pp. 954-956, 2008. J. Jin, Y. Wakayama, X. Peng, I. Ichinose, "ASurfactant-AsSisted Fabrication of Free-Standing Inorganic Sheets Covering an Array of Micrometer-Sized Holes," Nature Mater., Vol. 6, pp. 686-691 , 2007. H. Endo et al., "Free-Standing Ultrathin Films with Universal Thickness from Nanometer to Micrometer by Polymer Nanosheet Assembly," J. Mater. Chem., Vol. 18, pp. 1302-1308, 2008. R. Vendamme at el., "Robust free-standing nano membranes of organic / inorganic interpenetrating networks," Nature Mater., Vol. 5, pp. 494-501, 2006.

本発明は、上述した従来とは異なる、ポリイミドの極薄膜を容易にハンドリングできるように、溶液中に浮いた状態の大面積且つ丈夫な極薄膜を作製でき、さらにこれを溶液中からすくい取ってポリイミドの自立膜を実現できる、ポリイミド膜作製方法を提供することを課題としている。   The present invention can produce a large-area and strong ultrathin film floating in a solution so that the polyimide ultrathin film, which is different from the conventional ones, can be easily handled. An object of the present invention is to provide a polyimide film manufacturing method capable of realizing a polyimide self-supporting film.

上記の課題を解決するため、本発明のポリイミド膜作製方法は、溶媒可溶ブロック共重合型ポリイミド膜を基板にスピンコート成膜するステップ、成膜後、基板をベークしてポリイミド膜中の溶媒を脱離させるステップ、 剥離溶液に浸漬してポリイミド膜を基板から剥離させるステップ、基板から剥離して溶液上に浮遊したポリイミド膜をすくい取るステップを含むことを特徴とする。   In order to solve the above problems, the polyimide film production method of the present invention includes a step of spin-coating a solvent-soluble block copolymerization type polyimide film on a substrate, and after the film formation, the substrate is baked to form a solvent in the polyimide film. And a step of detaching the polyimide film from the substrate by dipping in a peeling solution, and a step of scooping off the polyimide film which has been peeled off from the substrate and floated on the solution.

この特徴を有する本発明によれば、ポリイミドの極薄膜を容易にハンドリングできるように、溶液中に浮いた状態の大面積且つ丈夫な極薄膜を作製することができ、さらにこれを溶液中からすくい取ってポリイミドの自立膜を実現することができる。より具体的には、前述した各種従来技術に比べ、以下のとおりの優れたポリイミド極薄自立膜が得られる。   According to the present invention having this feature, it is possible to produce a large area and strong ultrathin film floating in a solution so that the ultrathin film of polyimide can be easily handled. A polyimide self-supporting film can be realized. More specifically, an excellent polyimide ultrathin self-supporting film as described below can be obtained as compared with the various conventional techniques described above.

[自立膜]
・膜厚100nmレベル(厚みとサイズのアスペクト比が105以上)の膜の1辺を1本の棒で、あるいは2辺を2本の棒で支えて自立させることができる。なお、自立とは、膜の端部のみが支持体に支えられ、膜自身は自己支持性を有し、中空状態となっていることをいう。自己支持性とは、膜の自重によって発生する鉛直下向きの力に対抗して膜の機械強度によって膜構造を保持できる鉛直上向きの抗力を保っている状態をいう。中空状態とは、膜が上記自己支持性を持ち、支柱なしで独立している状態をいう。
[Self-standing film]
A film having a film thickness level of 100 nm (a thickness / size aspect ratio of 10 5 or more) can be supported by supporting one side with one bar or two sides with two bars. In addition, self-supporting means that only the edge part of a film | membrane is supported by the support body, and the film | membrane itself has a self-supporting property and is a hollow state. Self-supporting means a state in which a vertical upward force that can maintain the membrane structure by the mechanical strength of the membrane is maintained against the vertical downward force generated by the weight of the membrane. The hollow state means a state in which the membrane has the above-mentioned self-supporting property and is independent without a support.

・自立している膜のサイズは10mm以上、さらには100mm以上もの大面積化が可能である。   -The size of the self-supporting membrane can be increased to 10 mm or more, and further to 100 mm or more.

・ポリイミド膜であるので機械的強度が非常に高い。   -Since it is a polyimide film, its mechanical strength is very high.

・耐熱性がある。ポリイミド膜を固化する際に電気炉内でたとえば200℃以上の温度の空気中に暴露しても、膜が破れることがないからである。   -Has heat resistance. This is because, when the polyimide film is solidified, the film will not be broken even if it is exposed to air at a temperature of, for example, 200 ° C. or higher in an electric furnace.

・溶媒からポリイミド膜をすくい取る際に使うフレームつまり支持体との密着性が良い。ポリイミド膜とフレームとの間には、水分子があり、水の自由エネルギーが最小となるように水の表面積を減少させようとポリイミド膜とフレーム間に表面張力が働く。このため、おのずとポリイミド膜がフレームにまとわりつくように付着する。その後、自然乾燥するとポリイミド膜はフレームと密着したままフレームと同じ形状を維持する。   -Good adhesion to the frame, that is, the support used when skimming the polyimide film from the solvent. There are water molecules between the polyimide film and the frame, and surface tension acts between the polyimide film and the frame to reduce the surface area of the water so that the free energy of water is minimized. For this reason, the polyimide film naturally adheres to the frame. Thereafter, when naturally dried, the polyimide film maintains the same shape as the frame while keeping in close contact with the frame.

・分離したり、裂けたりしない。剥離前にベークしてある程度溶媒を揮発させ、ポリイミド分子内の芳香環の分子間力が強く働くことによって膜として機械的強度が高くなるためである。   ・ Do not separate or tear. This is because the solvent is volatilized to some extent by baking before peeling, and the intermolecular force of the aromatic ring in the polyimide molecule acts strongly, thereby increasing the mechanical strength of the film.

・水面に浮遊可能である。ポリイミド膜表面は疎水性であるためポリイミド分子末端の疎水基と水面の水分子の親和性が低いためである。   ・ Can float on the water surface. This is because the polyimide film surface is hydrophobic, so the affinity between the hydrophobic group at the end of the polyimide molecule and the water molecule on the water surface is low.

・折れ曲がって重なったりしても元の状態に戻れる。剥離前にベークしてある程度溶媒を揮発させ、ポリイミド分子内の芳香環の分子間力が強く働くことによって膜として機械的強度が高くなるためである。   ・ Even if it bends and overlaps, it can return to its original state. This is because the solvent is volatilized to some extent by baking before peeling, and the intermolecular force of the aromatic ring in the polyimide molecule acts strongly, thereby increasing the mechanical strength of the film.

・他の基板に転写可能である。剥離前にベークしてある程度溶媒を揮発させ、ポリイミド分子内の芳香環の分子間力が強く働くことによって膜として機械的強度が高くなるためである。   ・ Can be transferred to another substrate. This is because the solvent is volatilized to some extent by baking before peeling, and the intermolecular force of the aromatic ring in the polyimide molecule acts strongly, thereby increasing the mechanical strength of the film.

・膜の全面に付着し全面で支持しなくても、少なくとも1辺を支持すれば自立できる。剥離前にベークしてある程度溶媒を揮発させ、ポリイミド分子内の芳香環の分子間力が強く働くことによって膜として機械的強度が高くなるためである。   ・ Even if it adheres to the entire surface of the film and does not support it, it can support itself if it supports at least one side. This is because the solvent is volatilized to some extent by baking before peeling, and the intermolecular force of the aromatic ring in the polyimide molecule acts strongly, thereby increasing the mechanical strength of the film.

・水面上で浮遊しているときは柔軟性がある。柔軟性があるのは、剥離前にベークしてある程度溶媒を揮発させ、ポリイミド分子内の芳香環の分子間力が強く働くことによって膜として機械的強度が高くなるためである。水面上でなくても水中においても柔軟性がある。さらに、空中でもポリイミド膜をベークして固化していない状態であれば、自由自在にポリイミド膜の形状を変えることができる。   ・ Flexible when floating on water. The reason for flexibility is that the mechanical strength of the film is increased by baking before peeling to volatilize the solvent to some extent, and the intermolecular force of the aromatic ring in the polyimide molecule acts strongly. It is flexible not only on the surface of the water but also in the water. Furthermore, if the polyimide film is not baked and solidified even in the air, the shape of the polyimide film can be freely changed.

・機械強度が高い。剥離前にベークしてある程度溶媒を揮発させ、ポリイミド分子内の芳香環の分子間力が強く働くためである。   ・ High mechanical strength. This is because the solvent is volatilized to some extent by baking before peeling, and the intermolecular force of the aromatic ring in the polyimide molecule works strongly.

・膜厚が100nm程度である。膜厚が100nm程度であると、従来のポリマーの膜では自立するほど機械的強度を持たないが、本願発明では、100nm程度の膜厚であってもポリマー膜は自立する。   -The film thickness is about 100 nm. When the film thickness is about 100 nm, the conventional polymer film does not have enough mechanical strength to stand alone, but in the present invention, the polymer film is self-supporting even with a film thickness of about 100 nm.

・大きさが10mm角以上である。100mm角に拡大も可能である。   -The size is 10 mm square or more. Expansion to 100 mm square is also possible.

・溶剤可溶ブロック共重合ポリイミド膜などといった、溶媒可溶性のあるポリイミド分子を含んだ溶液をスピンコートして形成したポリイミド膜である。   A polyimide film formed by spin-coating a solution containing solvent-soluble polyimide molecules, such as a solvent-soluble block copolymerized polyimide film.

ここで、実際に本発明に従ってポリイミドの自立膜を作製した一実施例について説明する。図1〜図4は作製フローを示したものであり、ポリイミド溶液、自立膜、基板、作製工程の詳細はそれぞれ以下のとおりである。   Here, an example of actually producing a self-supporting film of polyimide according to the present invention will be described. 1 to 4 show a production flow, and details of the polyimide solution, the self-supporting film, the substrate, and the production process are as follows.

[ポリイミド溶液]
材料:ポリイミド膜(有機樹脂膜)
種類:ブロック共重合型ポリイミド
社名:株式会社ピーアイ技術研究所
成分:ポリイミドワニスQ-VR-X0719(重量比:25%)
ビス[2-(2-メトキシエトキシ)エチル]エーテル(重量比:30%)
安息香酸メチル(重量比:45%)
本実施例では、ポリイミドワニスQ-VR-X0719をさらに、ビス[2-(2-メトキシエトキシ)エチル]エーテルおよび安息香酸メチルの追加により上記混合比で希釈した。
[Polyimide solution]
Material: Polyimide film (organic resin film)
Type: Block copolymer type polyimide Company name: PI Technical Research Institute Co., Ltd. Component: Polyimide varnish Q-VR-X0719 (weight ratio: 25%)
Bis [2- (2-methoxyethoxy) ethyl] ether (weight ratio: 30%)
Methyl benzoate (weight ratio: 45%)
In this example, polyimide varnish Q-VR-X0719 was further diluted at the above mixing ratio by adding bis [2- (2-methoxyethoxy) ethyl] ether and methyl benzoate.

なお、本願発明で使用できるポリイミド溶液は、溶媒可溶型のポリイミド分子を含む溶液であれば良く、上記の他にたとえばフェノール、有機極性溶媒(ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなど)などがある。   The polyimide solution that can be used in the present invention may be a solution containing a solvent-soluble polyimide molecule. In addition to the above, for example, phenol, organic polar solvents (dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.), etc. There is.

[自立膜サイズ]
厚さ:100nm厚(スピンコート時の回転数、成分の重量比(粘度)で決定)
大きさ:10mm角以上(基板サイズで決定)
本実施例では、この極薄膜かつ大面積のポリイミド自立膜を作製する。
[Free-standing film size]
Thickness: 100 nm thickness (determined by the number of rotations during spin coating and the weight ratio (viscosity) of components)
Size: 10mm square or more (determined by substrate size)
In this embodiment, this ultra-thin and large-area polyimide free-standing film is produced.

[基板サイズ]
材料:ガラス
サイズ:26mm角
本実施例では、このガラス基板上に上記ポリイミド膜を成膜する。これ以外にも、RFスパッタ法で成膜されたSiO2膜を表面に堆積したSi基板(15mm角)を利用することもできる。
[Substrate size]
Material: Glass Size: 26 mm square In this example, the polyimide film is formed on this glass substrate. In addition to this, a Si substrate (15 mm square) on which a SiO 2 film formed by RF sputtering is deposited can be used.

なお、基板は、後述のポリイミド溶液を均等にスピンコートできる平滑性を持つ基板であれば良く、上記以外にもサファイアやステンレスを採用でき、あるいは各種金属膜(Au,Al,Cuなど)上にポリイミド溶液をスピンコートしてもよい。   In addition, the board | substrate should just be a board | substrate with the smoothness which can spin-coat the polyimide solution mentioned later equally, In addition to the above, sapphire and stainless steel can be adopted, or on various metal films (Au, Al, Cu, etc.) A polyimide solution may be spin coated.

[作製工程]
1.基板表面処理(洗浄)
ポリイミド膜を成膜させる基板については、基板表面上にポリイミドを塗布でき、且つ溶媒中に浸漬させた際(後述のステップ6参照)にポリイミドと基板表面との間に該溶媒が浸入できるような基板表面特性を持たせるべく、まず表面洗浄する。本実施例では超音波洗浄を10分間施す。これ以外にもアセトン、IPA、純水による洗浄処理も適用可能である。なお、洗浄手段や洗浄時間等は、基板表面の有機物等の表面堆積物を除去することができれば特に限定されない。
[Production process]
1. Substrate surface treatment (cleaning)
With respect to the substrate on which the polyimide film is formed, the polyimide can be applied on the substrate surface, and the solvent can enter between the polyimide and the substrate surface when immersed in the solvent (see Step 6 described later). First, the surface is cleaned to give the substrate surface characteristics. In this embodiment, ultrasonic cleaning is performed for 10 minutes. In addition, a cleaning process using acetone, IPA, or pure water is also applicable. The cleaning means and the cleaning time are not particularly limited as long as surface deposits such as organic substances on the substrate surface can be removed.

2.基板表面処理(親水性化処理)
基板についてはさらに、後述の剥離処理をより容易ならしめるべく、基板表面に親水性化処理を施すことが好ましい。本実施例では何も親水性化処理を施さなかったが、水酸化ナトリウム水溶液(例えば濃度1wt%)への浸漬(例えば浸漬時間90秒)、O2プラズマ照射(例えばO2ガス流量100ml/min、電力300W、照射時間5分)、UVオゾン処理などによる処理が可能である。
2. Substrate surface treatment (hydrophilization treatment)
Further, it is preferable that the substrate surface is subjected to a hydrophilic treatment so as to make the peeling treatment described later easier. In this example, no hydrophilic treatment was performed, but immersion in an aqueous sodium hydroxide solution (for example, concentration 1 wt%) (for example, immersion time 90 seconds), O 2 plasma irradiation (for example, O 2 gas flow rate 100 ml / min) , Power 300 W, irradiation time 5 minutes), UV ozone treatment, etc. are possible.

3.ベーク(基板乾燥)
上記表面処理が施された基板をプレベーキングする。具体的には、図1に示したように、ホットプレート10を用いて100℃、10分のベークを施し、基板1表面の水分を蒸発させる。電気炉を用いても良い。表面水分を蒸発することができれば、具体的な乾燥手段や感想時間等は特に限定されない。
3. Bake (substrate drying)
The substrate subjected to the surface treatment is pre-baked. Specifically, as shown in FIG. 1, baking is performed at 100 ° C. for 10 minutes using a hot plate 10 to evaporate moisture on the surface of the substrate 1. An electric furnace may be used. As long as the surface moisture can be evaporated, specific drying means, impression time, and the like are not particularly limited.

4.スピンコート(ポリイミド成膜)
続いて、この基板1上にポリイミド膜2を成膜させる。具体的には、図1に示したように、上述したポリイミド溶液3をスポイト30等の溶液供給手段から供給し、スピンコータ20を用いて基板1を回転させて、表面にポリイミド膜2をコーティングする。本実施例では、回転数5000rpm/膜厚140nm、回転数7000rpm/膜厚100nmの条件とした。膜厚は触針式段差計にて測定する。尚、ポリイミドは疎水性であるのに対し、親水性のSiやガラス基板にそのまま塗布できるのは、本実施例で用いたポリイミド溶液の疎水性の度合いが低いためである。したがって、単純なスピンコートで基板1上にポリイミド膜2を成膜できる。なお、膜厚と回転数との関係は、溶液の粘度と希釈量を変化させて取得することができる。
4). Spin coating (polyimide film formation)
Subsequently, a polyimide film 2 is formed on the substrate 1. Specifically, as shown in FIG. 1, the polyimide solution 3 described above is supplied from a solution supply means such as a dropper 30, and the substrate 1 is rotated using a spin coater 20 to coat the polyimide film 2 on the surface. . In this example, the conditions were a rotational speed of 5000 rpm / film thickness of 140 nm and a rotational speed of 7000 rpm / film thickness of 100 nm. The film thickness is measured with a stylus type step gauge. Polyimide is hydrophobic, but it can be directly applied to hydrophilic Si or glass substrate because the degree of hydrophobicity of the polyimide solution used in this example is low. Therefore, the polyimide film 2 can be formed on the substrate 1 by simple spin coating. The relationship between the film thickness and the number of rotations can be obtained by changing the viscosity and dilution amount of the solution.

5.ベーク(ポリイミド膜溶媒脱離)
次に、成膜されたポリイミド膜2中の溶媒を脱離させるべくベーキング処理を施す。具体的には、図1に示したように、ホットプレート10を用いて、60℃にて10分のベークを施し、溶媒を揮発させる。もちろん、ベーキングによってポリイミド膜2が基板1に焼き付けられて剥離できない状態になってはいけないので、次術の剥離処理でポリイミド膜2が水面に浮遊し自立可能となるまでベーキングする。本実施例では、70℃、80℃、90℃の温度設定でもそれぞれ同様に10分ベークによる溶媒揮発を行った。いずれの場合でも同様な効果が得られた。
5). Bake (polyimide membrane solvent desorption)
Next, a baking process is performed to desorb the solvent in the formed polyimide film 2. Specifically, as shown in FIG. 1, baking is performed at 60 ° C. for 10 minutes using a hot plate 10 to volatilize the solvent. Of course, the polyimide film 2 must not be baked onto the substrate 1 by baking so that the polyimide film 2 cannot be peeled off. Therefore, the polyimide film 2 is baked until the polyimide film 2 floats on the water surface and becomes self-supporting in the next peeling process. In this example, the solvent volatilization was performed by baking for 10 minutes in the same manner even at temperature settings of 70 ° C., 80 ° C., and 90 ° C. In either case, similar effects were obtained.

6.剥離(ポリイミド膜分離)
そして、ポリイミド膜2を基板1から剥離させる。具体的には、図1及び図2に示したように、溶媒可溶型ポリイミドを溶解しない剥離溶媒として70度の純水4を用い、シャーレ40等の剥離溶液容器内の純粋4に浸漬させて、基板2表面とポリイミド膜1との界面への純水4の浸入を促し、基板1上のポリイミド膜2の角の部分をめくりあがらせる。続いて、めくりあがった部分を水面に浮かせた状態で、基板1を傾斜させて下方向につまり純水4中に移動させる。すると、徐々にめくりあがった面積が大きくなり、ポリイミド2膜が基板1から完全に剥離し、水面上に浮遊する。剥離は10分以内で完了する。なお、基板から剥離を実現することができれば、剥離時間は特に限定されない。
6). Peeling (polyimide membrane separation)
Then, the polyimide film 2 is peeled from the substrate 1. Specifically, as shown in FIGS. 1 and 2, pure water 4 at 70 degrees is used as a peeling solvent that does not dissolve the solvent-soluble polyimide, and is immersed in pure 4 in a peeling solution container such as a petri dish 40. Thus, the entry of pure water 4 into the interface between the surface of the substrate 2 and the polyimide film 1 is promoted, and the corner portions of the polyimide film 2 on the substrate 1 are turned up. Subsequently, the substrate 1 is tilted and moved downward, that is, into the pure water 4 in a state where the turned-up portion is floated on the water surface. Then, the area gradually turned up becomes larger, and the polyimide 2 film completely peels off from the substrate 1 and floats on the water surface. Stripping is completed within 10 minutes. Note that the peeling time is not particularly limited as long as peeling can be realized from the substrate.

以上により、溶液への浸漬並びに表面張力と膜の浮力を利用した剥離が可能になる。   As described above, immersion in a solution and peeling using surface tension and buoyancy of a film become possible.

尚、本発明ではこの剥離処理のために、基板1を強酸あるいは強アルカリ溶液に浸漬する必要がなく、純水で剥離可能である。水の表面張力が72mN/mと大きく、基板とポリイミド間に働くこの水の表面張力による力が剥離を引き起こすためである。また、ポリイミド膜2は疎水性なので、剥離後に溶媒に浮遊する。   In the present invention, it is not necessary to immerse the substrate 1 in a strong acid or strong alkaline solution for this peeling treatment, and the substrate 1 can be peeled off with pure water. This is because the surface tension of water is as large as 72 mN / m, and the force due to the surface tension of water acting between the substrate and the polyimide causes peeling. Moreover, since the polyimide film 2 is hydrophobic, it floats in the solvent after peeling.

7.すくいとり(ポリイミド膜自立)
後は、浮遊したポリイミド膜2をすくい取る。具体的には、図1及び図3に示したように、まず水面に浮遊したポリイミド膜2の1辺を2本のフレーム50の各1点に接触させ、そこから徐々にフレーム50を上昇させてフレーム50にポリイミド膜2の2辺を付着させる。以上により、フレーム50間に自立したポリイミド膜2が得られる。
7). Rake (polyimide film self-supporting)
After that, the floating polyimide film 2 is scraped off. Specifically, as shown in FIGS. 1 and 3, first, one side of the polyimide film 2 floating on the water surface is brought into contact with each point of the two frames 50, and then the frame 50 is gradually raised from there. Then, two sides of the polyimide film 2 are attached to the frame 50. In this way, the polyimide film 2 that is self-supporting between the frames 50 is obtained.

フレーム50は、ポリイミド膜2をすくい取った後そのまま、自立膜の支持体とすることができ、例えば、銅ワイヤを曲げて作製したフレーム(φ1mm)やアルミ棒を曲げて作製したフレーム(角型1mm×4mm)を用いることができる。本実施例でのフレーム間隔は10mmである。もちろん、フレーム50は銅製、アルミ製以外でも良く、またその間隔が10mm以上でも、直径が1mmでなくても、ポリイミド膜2は壊れず安定して自立することができる。   The frame 50 can be used as a support for a self-supporting film as it is after the polyimide film 2 is skimmed. For example, a frame (φ1 mm) made by bending a copper wire or a frame (square type) made by bending an aluminum rod. 1 mm × 4 mm) can be used. In this embodiment, the frame interval is 10 mm. Of course, the frame 50 may be made of a material other than copper or aluminum, and even if the interval is 10 mm or more and the diameter is not 1 mm, the polyimide film 2 can be stably supported without being broken.

尚、本実施例では図3に示したように2本のフレーム50を用いたが、例えば図4に示したように、1本の水平方向に延びたフレーム51、具体的には逆L字形のフレーム51における水平方向部分に、ポリイミド膜2を付着させてすくい取り、自立膜を得ることも可能である。これらフレーム50、51の形状や寸法は、ポリイミド膜2をすくい取ることが可能な限り特に限定されない。   In this embodiment, two frames 50 are used as shown in FIG. 3. However, for example, as shown in FIG. 4, one frame 51 extending in the horizontal direction, specifically, an inverted L-shape is used. It is also possible to obtain a self-supporting film by scooping the polyimide film 2 attached to the horizontal portion of the frame 51. The shapes and dimensions of the frames 50 and 51 are not particularly limited as long as the polyimide film 2 can be scraped off.

また、ポリイミド膜2が伸縮して少々重なってもピンセットなどで広げてもとに戻すことが可能である。ポリイミド膜2の機械的強度が高いためである。   Moreover, even if the polyimide film 2 expands and contracts and overlaps a little, it can be restored even if it is spread with tweezers. This is because the mechanical strength of the polyimide film 2 is high.

8.ポリイミド膜の重縮合
後は、ポイリイミド膜2を重縮合化させるべく、例えば図5に示したように、電気炉60を用いて加熱し、剥離溶液つまり溶媒を蒸発させる。加熱条件は例えば220℃/15分または280℃/30分である。このようにポリイミド膜の分子構造を重縮合化させることで、さらに機械的強度を高めることが可能になる。また、200℃以上で加熱しても自立しているので、このポリイミド膜2は耐熱性があり、この後の真空環境下などの成膜プロセスに耐え得る。
8). After the polycondensation of the polyimide film, in order to polycondense the polyimide film 2, for example, as shown in FIG. 5, heating is performed using an electric furnace 60 to evaporate the stripping solution, that is, the solvent. The heating condition is, for example, 220 ° C./15 minutes or 280 ° C./30 minutes. Thus, it is possible to further increase the mechanical strength by polycondensing the molecular structure of the polyimide film. Moreover, since it is self-supporting even when heated at 200 ° C. or higher, the polyimide film 2 has heat resistance and can withstand a subsequent film formation process such as in a vacuum environment.

尚、1本のフレーム51ですくいとった場合、200℃以上で加熱して溶媒を揮発させ固化させることで、つり下げなくても形状が変化しないほど強度を高くすることができる。つまり、フレーム51を上下左右に振りまわしてもポリイミド膜の形状は変化しない。   In addition, when scooping with one flame | frame 51, it can raise intensity | strength so that a shape does not change by heating at 200 degreeC or more and volatilizing and solidifying a solvent, even if it does not suspend. That is, the shape of the polyimide film does not change even if the frame 51 is swung up, down, left and right.

9.金属成膜(Au)
本実施例では、ポリイミド膜2の上にさらに金属膜を成膜した。
9. Metal deposition (Au)
In this example, a metal film was further formed on the polyimide film 2.

・Au真空蒸着。   ・ Au vacuum deposition.

・Alのシャドウマスクを通して一部分に膜厚1.3μmのAu膜を成膜させる。   An Au film having a thickness of 1.3 μm is formed in part through an Al shadow mask.

これにより、金属膜を成膜した後、ポリイミド膜2を除去すれば、Au膜の自立膜が得られる。   Thus, if the polyimide film 2 is removed after forming the metal film, a free-standing film of Au film can be obtained.

10.金属成膜(Pt)
・Ptコート
・イオンコータ(スパッタ)で膜厚1nmのPt膜を成膜させる。
10. Metal film formation (Pt)
Pt coating A 1 nm thick Pt film is formed by ion coater (sputtering).

同様にPt膜をポリイミド膜2上に成膜した場合でも、ポリイミド膜2を後から除去することで、Pt膜の自立膜が得られる。 ところで、自立強度については、前述したようなたとえばMEMS技術で作製されたセンサに必要な強度を有するメンブレン膜として利用できるポリイミド膜、中空構造を持った3次元構造のMEMSデバイスを保護できるシートとして利用できるポリイミド膜、フレキシブルディスプレイのフレキシブル基板や配線間絶縁膜として利用できるポリイミド膜、DMDに利用できるポリイミド膜、光触媒浄化シートとして利用できるポリイミド膜、個体高分子型燃料電池に利用できるポリイミド膜、生体適合膜として利用できるポリイミド膜、といった様々な応用分野において利用可能な強度を持つポリイミド膜を本発明により実現することができる。   Similarly, even when the Pt film is formed on the polyimide film 2, the polyimide film 2 can be removed later to obtain a self-supporting film of the Pt film. By the way, as for the self-supporting strength, it is used as a sheet that can protect a MEMS film having a strength required for a sensor manufactured by, for example, the MEMS technology as described above, or a three-dimensional structure MEMS device having a hollow structure. Polyimide film, polyimide film that can be used as a flexible display flexible substrate and insulating film between wires, polyimide film that can be used for DMD, polyimide film that can be used as a photocatalytic purification sheet, polyimide film that can be used for solid polymer fuel cells, biocompatible A polyimide film having strength that can be used in various application fields such as a polyimide film that can be used as a film can be realized by the present invention.

また、以上の説明から明らかなように、本発明によれば、成膜、エッチングを繰り返すフォトリソグラフィ法は用いる必要なく、上述したとおりの大面積且つ高強度のポリイミド極薄膜を容易に作製することができる。尚、有機膜を成膜し、100nmレベルまでエッチングして自立膜を形成するのは困難である。また、本発明によれば、従来用いられていた犠牲層を形成する必要がない。   Further, as is clear from the above description, according to the present invention, it is not necessary to use a photolithography method in which film formation and etching are repeated, and a large-area and high-strength polyimide ultrathin film as described above can be easily produced. Can do. It is difficult to form an organic film and etch it to the 100 nm level to form a free-standing film. In addition, according to the present invention, it is not necessary to form a sacrificial layer that has been conventionally used.

本発明の作製フローについて説明するための概念図。The conceptual diagram for demonstrating the preparation flow of this invention. 本発明の剥離処理について説明するための概念図。The conceptual diagram for demonstrating the peeling process of this invention. 本発明のすくい取り処理について説明するための概念図。The conceptual diagram for demonstrating the scooping process of this invention. 本発明のすくい取り処理について説明するための別の概念図。The another conceptual diagram for demonstrating the scooping process of this invention. 本発明の重縮合処理について説明するための概念図。The conceptual diagram for demonstrating the polycondensation process of this invention.

符号の説明Explanation of symbols

1 基板
2 ポリイミド膜
3 ポリイミド溶媒
4 純水
10 ホットプレート
20 スピンコータ
30 スポイト
40 シャーレ
50,51 フレーム
60 電気炉
1 Substrate 2 Polyimide film 3 Polyimide solvent 4 Pure water 10 Hot plate 20 Spin coater 30 Dropper 40 Petri dish 50, 51 Frame 60 Electric furnace

Claims (17)

溶媒可溶性のあるポリイミド分子を含む溶液を基板にスピンコート成膜するステップ、
成膜後、基板をベークしてポリイミド膜中の溶媒を脱離させるステップ、および
剥離溶液に浸漬してポリイミド膜を基板から剥離させるステップ
を含むポリイミド薄膜作製方法。
Spin-coating a solution containing a solvent-soluble polyimide molecule on a substrate;
A method for producing a polyimide thin film, comprising: baking a substrate to desorb a solvent in the polyimide film after film formation; and detaching the polyimide film from the substrate by immersion in a stripping solution.
基板から剥離して溶液上に浮遊したポリイミド膜をすくい取るステップをさらに含む、請求項1記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to claim 1, further comprising a step of scooping off the polyimide film that has been peeled off from the substrate and floated on the solution. 基板が平滑基板である、請求項1または2記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to claim 1 or 2, wherein the substrate is a smooth substrate. ポリイミド膜が自己支持性を持つ膜である、請求項1ないし3のいずれかに記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to claim 1, wherein the polyimide film is a film having self-supporting properties. 剥離ステップにて、剥離溶液中への浸漬によりポリイミド膜のめくりあがった部分を溶液水面に浮かせた状態で、基板を溶液中に移動させる、請求項1ないし4のいずれかに記載のポリイミド薄膜作製方法。   The polyimide thin film production according to any one of claims 1 to 4, wherein in the peeling step, the substrate is moved into the solution in a state where the portion of the polyimide film turned up by immersion in the peeling solution is floated on the surface of the solution water. Method. すくい取りステップにて、ポリイミド膜をすくい取った後そのまま支持体となるフレームを用いる、請求項2ないし5のいずれかに記載のポリイミド薄膜作製方法。   6. The method for producing a polyimide thin film according to claim 2, wherein a frame that is used as a support after the polyimide film is skimmed in the scooping step is used. フレームが金属フレームである、請求項6記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to claim 6, wherein the frame is a metal frame. フレームが1本または2本である、請求項6または7記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to claim 6 or 7, wherein the number of the frames is one or two. 成膜前に、基板の表面を洗浄処理するステップをさらに含む、請求項1ないし8のいずれかに記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to claim 1, further comprising a step of cleaning the surface of the substrate before the film formation. 表面洗浄処理が、超音波洗浄、アセトン洗浄、IPA洗浄、または純水洗浄である、請求項9に記載のポリイミド薄膜作製方法。   The polyimide thin film production method according to claim 9, wherein the surface cleaning treatment is ultrasonic cleaning, acetone cleaning, IPA cleaning, or pure water cleaning. 成膜前に、基板の表面を親水性化処理するステップをさらに含む、請求項1ないし10のいずれかに記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to any one of claims 1 to 10, further comprising a step of hydrophilizing the surface of the substrate before film formation. 表面親水性化処理が、水酸化ナトリウム水溶液処理、O2プラズマ照射処理、またはUVオゾン処理である、請求項11に記載のポリイミド薄膜作製方法。 The method for producing a polyimide thin film according to claim 11, wherein the surface hydrophilization treatment is a sodium hydroxide aqueous solution treatment, an O 2 plasma irradiation treatment, or a UV ozone treatment. 前記表面処理後の基板をベークして表面の水分を蒸発させるステップをさらに含む、請求項9ないし12のいずれかに記載のポリイミド薄膜作製方法。   The polyimide thin film manufacturing method according to claim 9, further comprising a step of baking the surface-treated substrate to evaporate surface moisture. すくい取ったポリイミド膜を加熱して剥離溶液を蒸発させ、ポリイミド膜を重縮合化させるステップをさらに含む、請求項1ないし13のいずれかに記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to claim 1, further comprising a step of heating the scooped polyimide film to evaporate the stripping solution and polycondensing the polyimide film. すくい取ったポリイミド膜上に金属膜を成膜するステップをさらに含む、請求項1ないし14のいずれかに記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to any one of claims 1 to 14, further comprising a step of forming a metal film on the scooped polyimide film. 金属膜がAuまたはAlである、請求項15記載のポリイミド薄膜作製方法。   The method for producing a polyimide thin film according to claim 15, wherein the metal film is Au or Al. 請求項1ないし16のいずれかに記載のポリイミド薄膜作製方法により作製されたポリイミド薄膜。   A polyimide thin film produced by the polyimide thin film production method according to claim 1.
JP2008334699A 2008-12-26 2008-12-26 Preparation method of polyimide thin film Expired - Fee Related JP5004193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334699A JP5004193B2 (en) 2008-12-26 2008-12-26 Preparation method of polyimide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334699A JP5004193B2 (en) 2008-12-26 2008-12-26 Preparation method of polyimide thin film

Publications (2)

Publication Number Publication Date
JP2010155919A true JP2010155919A (en) 2010-07-15
JP5004193B2 JP5004193B2 (en) 2012-08-22

Family

ID=42574069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334699A Expired - Fee Related JP5004193B2 (en) 2008-12-26 2008-12-26 Preparation method of polyimide thin film

Country Status (1)

Country Link
JP (1) JP5004193B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171126A (en) * 2010-02-18 2011-09-01 National Institute Of Advanced Industrial Science & Technology Method of manufacturing x-ray target
JP2013121894A (en) * 2011-12-12 2013-06-20 Tokai Carbon Co Ltd Graphite film and method for producing graphite film
CN104241448A (en) * 2014-09-10 2014-12-24 华南理工大学 Thin polymer film preparation process
US9193835B1 (en) 2014-05-30 2015-11-24 Pall Corporation Self-assembling polymers—IV
US9328206B2 (en) 2014-05-30 2016-05-03 Pall Corporation Self-assembling polymers—III
US9441078B2 (en) 2014-05-30 2016-09-13 Pall Corporation Self-assembling polymers—I
US9469733B2 (en) 2014-05-30 2016-10-18 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IVa)
WO2016181958A1 (en) * 2015-05-11 2016-11-17 学校法人早稲田大学 Electronic device and method for manufacturing same
US9593219B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (IIa)
US9593217B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (Va)
US9593218B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IIIa)
US9592477B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (Ib)
US9592476B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (IIb)
US9598543B2 (en) 2014-05-30 2017-03-21 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (VIa)
US9604181B2 (en) 2014-05-30 2017-03-28 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (IIc)
US9616395B2 (en) 2014-05-30 2017-04-11 Pall Corportaion Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (Ic)
US9765171B2 (en) 2014-05-30 2017-09-19 Pall Corporation Self-assembling polymers—V
CN113372591A (en) * 2021-06-17 2021-09-10 武汉理工大学 Method for rapidly preparing ultrathin polyimide film
CN115142021A (en) * 2022-09-05 2022-10-04 苏州浪潮智能科技有限公司 Composite PI film, preparation method thereof and optical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236822A (en) * 1994-02-28 1995-09-12 Dainippon Ink & Chem Inc Gas-separation membrane using surface modified polyimide resin, and its production
JP2001345464A (en) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd Method for fabricating photovoltaic device
JP2003172837A (en) * 2001-12-05 2003-06-20 Mitsui Chemicals Inc Optical waveguide element with lens and method of manufacturing the same
JP2006008932A (en) * 2004-06-29 2006-01-12 Sanyo Chem Ind Ltd Alkali detergent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236822A (en) * 1994-02-28 1995-09-12 Dainippon Ink & Chem Inc Gas-separation membrane using surface modified polyimide resin, and its production
JP2001345464A (en) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd Method for fabricating photovoltaic device
JP2003172837A (en) * 2001-12-05 2003-06-20 Mitsui Chemicals Inc Optical waveguide element with lens and method of manufacturing the same
JP2006008932A (en) * 2004-06-29 2006-01-12 Sanyo Chem Ind Ltd Alkali detergent

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171126A (en) * 2010-02-18 2011-09-01 National Institute Of Advanced Industrial Science & Technology Method of manufacturing x-ray target
JP2013121894A (en) * 2011-12-12 2013-06-20 Tokai Carbon Co Ltd Graphite film and method for producing graphite film
US9593218B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IIIa)
US9616395B2 (en) 2014-05-30 2017-04-11 Pall Corportaion Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (Ic)
US9328206B2 (en) 2014-05-30 2016-05-03 Pall Corporation Self-assembling polymers—III
US9441078B2 (en) 2014-05-30 2016-09-13 Pall Corporation Self-assembling polymers—I
US9469733B2 (en) 2014-05-30 2016-10-18 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IVa)
US9765171B2 (en) 2014-05-30 2017-09-19 Pall Corporation Self-assembling polymers—V
US9593219B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (IIa)
US9593217B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (Va)
US9193835B1 (en) 2014-05-30 2015-11-24 Pall Corporation Self-assembling polymers—IV
US9592477B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (Ib)
US9592476B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (IIb)
US9598543B2 (en) 2014-05-30 2017-03-21 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (VIa)
US9604181B2 (en) 2014-05-30 2017-03-28 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (IIc)
CN104241448A (en) * 2014-09-10 2014-12-24 华南理工大学 Thin polymer film preparation process
WO2016181958A1 (en) * 2015-05-11 2016-11-17 学校法人早稲田大学 Electronic device and method for manufacturing same
US10474188B2 (en) 2015-05-11 2019-11-12 Waseda University Flexible electronic device containing electronic element and polymer nanosheet and method for manufacturing same
CN113372591A (en) * 2021-06-17 2021-09-10 武汉理工大学 Method for rapidly preparing ultrathin polyimide film
CN113372591B (en) * 2021-06-17 2022-09-02 武汉理工大学 Method for rapidly preparing ultrathin polyimide film
CN115142021A (en) * 2022-09-05 2022-10-04 苏州浪潮智能科技有限公司 Composite PI film, preparation method thereof and optical device
CN115142021B (en) * 2022-09-05 2023-01-24 苏州浪潮智能科技有限公司 Composite PI film, preparation method thereof and optical device

Also Published As

Publication number Publication date
JP5004193B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5004193B2 (en) Preparation method of polyimide thin film
Torun et al. Water impact resistant and antireflective superhydrophobic surfaces fabricated by spray coating of nanoparticles: interface engineering via end-grafted polymers
JP4740874B2 (en) LAMINATE CONTAINING MULTILAYER FILM BONDED BY HYDROGEN BOND, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING SELF-SUPPORTING THIN FILM OBTAINED FROM THE LAMINATE
Zhang et al. Patterning colloidal crystals and nanostructure arrays by soft lithography
US8431034B2 (en) Manufacturing of nanopores
JP6496732B2 (en) Nanoporous silicon nitride membranes and methods for making and using such membranes
CN108754418B (en) Self-supporting chiral nano hollow cone array film with chiral optical rotation property and preparation method thereof
Heng et al. Bioinspired design of honeycomb structure interfaces with controllable water adhesion
KR20180019066A (en) Flexible Conductive Diaphragm, Flexible Vibration Sensor, and Its Manufacturing Method and Application
Buck et al. Free-standing and reactive thin films fabricated by covalent layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers
CN103261923B (en) Optical element comprising a crack-free aerogel
TW200424805A (en) Inorganic nanoporous membranes and methods to form same
KR101332306B1 (en) Method for manufacturing nano freestanding nano thin-film
JPWO2004048064A1 (en) Fine protrusion structure and manufacturing method thereof
CN106199775A (en) A kind of porous hemispherical array films with broadband, comprehensive its antireflective properties and preparation method thereof
KR20090102406A (en) Packaging method of micro electro mechanical systems devices and package thereof
US10570005B2 (en) Method and apparatus for release-assisted microcontact printing of MEMS
Watanabe Wrinkles with a well-ordered checkerboard pattern, created using dip-coating of poly (methyl methacrylate) on a UV–ozone-treated poly (dimethylsiloxane) substrate
Hashizume et al. Preparation of self-supporting ultrathin films of titania by spin coating
KR101651108B1 (en) Fabrication method for electrode using sensor and the sensor thereby
CN103113613B (en) Preparation method of self-supporting through-type polyelectrolyte ordered porous membrane
JP6420092B2 (en) Polymer spherical array and manufacturing method thereof
KR101274125B1 (en) Forming method of graphene pattern layer, fabrication method of structure having graphene pattern layer
Zhang et al. Patterned polymer surfaces with wetting contrast prepared by polydopamine modification
JP4830104B2 (en) Method for producing patterned honeycomb porous body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees