JP2010154727A - Drive method of starting brushless dc motor having no position detector and electric bicycle using the same - Google Patents

Drive method of starting brushless dc motor having no position detector and electric bicycle using the same Download PDF

Info

Publication number
JP2010154727A
JP2010154727A JP2008336165A JP2008336165A JP2010154727A JP 2010154727 A JP2010154727 A JP 2010154727A JP 2008336165 A JP2008336165 A JP 2008336165A JP 2008336165 A JP2008336165 A JP 2008336165A JP 2010154727 A JP2010154727 A JP 2010154727A
Authority
JP
Japan
Prior art keywords
energization
rotor
detection step
measured
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008336165A
Other languages
Japanese (ja)
Other versions
JP5378785B2 (en
Inventor
Taaki Ichise
多章 市瀬
Takeji Tokumaru
武治 得丸
Tsuneji Tsukuni
恒二 津国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIKE CORP E
E-BIKE CORP
Original Assignee
BIKE CORP E
E-BIKE CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIKE CORP E, E-BIKE CORP filed Critical BIKE CORP E
Priority to JP2008336165A priority Critical patent/JP5378785B2/en
Publication of JP2010154727A publication Critical patent/JP2010154727A/en
Application granted granted Critical
Publication of JP5378785B2 publication Critical patent/JP5378785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a conventional brushless motor rotor position detection method cannot be used when the rotor positions fluctuate during measurement due to much time taken for measurements, an actual application of the conventional method to an electric bicycle is not possible because it involves a risk due to an error of the rotor which fluctuates on a hill or the like even when the electric bicycle is stopping, and it is necessary to find out a means that can correctly detect the position even if the rotor fluctuates a little. <P>SOLUTION: Normally, rotor position measurement is carried out to a three-phase coil by measuring current in six types of energization modes. The new method can detect the position in substantiality two or three times of measurements by developing a flow that selectively eliminates insignificant, unnecessary measurements from the six types of energization modes. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明の位置検知器を有しないブラシレスモータの起動駆動方法は固定ディスクなどの各種データ記録装置、冷蔵庫などの家電機器、電動自転車など電動車両など、小型、低コスト、低消費電力、高効率なモータが必要とされる装置または機器に広く用いられる。The start driving method of the brushless motor without the position detector of the present invention is small, low cost, low power consumption, high efficiency such as various data recording devices such as fixed disks, household appliances such as refrigerators, electric vehicles such as electric bicycles, etc. Widely used in equipment or equipment where a motor is required.

ブラシレス直流モータにおいては各相のモータ巻線に対して所定の転流動作のタイミングで各相のモータ巻線へ順次に駆動電流を切換え供給するために、モータ巻線と回転子の相対的な位置情報を示す信号が必要とされる。それで、従来からブラシレス直流モータは、回転子の回転位相情報を例えばホール素子や光学的な素子などを含んで構成される位置検知器によって検出して、所定の転流動作のタイミングでモータの各巻線へ順次に駆動電流が供給されるようにするか、あるいは、回転子の回転中に各モータ巻線に発生する逆起電圧を測定して回転子の回転位相情報を示す信号を得て、所定の転流動作のタイミングでモータの各巻線へ順次に駆動電流が供給されるようにしている。
前記した後者の構成形態のブラシレス直流モータ、すなわち位置検知器を有しないブラシレス直流モータは位置検知器が不要なために、モータの構成が簡単化できるとともに、位置検知器自体の信頼性が低いことによって生じる問題もなく、また、位置検知器を所定の取付け位置に正確に取付けるための組立製作上の困難さもないなどの利点があり、特に小型なブラシレス直流モータを構成させる場合に有利である。
In a brushless DC motor, the drive current is sequentially switched and supplied to the motor winding of each phase at a predetermined commutation operation timing with respect to the motor winding of each phase. A signal indicating position information is required. Therefore, conventionally, a brushless DC motor detects rotation phase information of a rotor by a position detector configured to include, for example, a Hall element or an optical element, and each winding of the motor at a predetermined commutation operation timing. The drive current is sequentially supplied to the wire, or the counter electromotive voltage generated in each motor winding during the rotation of the rotor is measured to obtain a signal indicating the rotation phase information of the rotor, A drive current is sequentially supplied to each winding of the motor at a predetermined commutation operation timing.
The brushless DC motor having the latter configuration described above, that is, the brushless DC motor having no position detector does not require a position detector, so that the configuration of the motor can be simplified and the reliability of the position detector itself is low. There is no problem caused by the above-mentioned, and there is an advantage that there is no difficulty in assembly for accurately mounting the position detector at a predetermined mounting position, which is particularly advantageous when a small brushless DC motor is configured.

ところで、モータの起動時には停止状態の回転子が所定の回転方向で回転を開始することができるように各相の巻線に対する転流の制御が行なわれる必要があるが、前記した位置検知器を有しないブラシレス直流モータには位置検知器を備えていないから、起動時に前記の所望の転流の態様で各相の巻線に対して駆動電流が順次に供給されるようにするためには、停止時における回転子の磁極と巻線の相対位置を検出し、その検出された回転子の磁極と巻線の相対位置に基づいて所望の回転方向に回転子が回転を開始できるように各相に対する転流の制御が行なわれるようにしなければならない。
この手段として従来、回転子が停止している状態で3相巻線の各相に適切な電流を流し、その電流値の大小を相対比較することにより、回転子と3相巻線の相対的な停止位置を検出する手段が特開昭63−69489号公報に開示されている。
図1、図2、図3を用いてその動作を説明する。図1はモータの3相巻線を示しそれぞれU相、V相、W相とする。図2の(a)は測定のための各相に対する通電態様の一例で、U→(V+W)はU端からVおよびW端へ、U←(V+W)はVおよびW端からU端に電流を流すことを示す。図2の(b)も同じ目的の他の例だが、ここでは(a)の方法で説明する。図3は各通電態様で測定される電流値を示し、横軸は3相巻線に対する回転子の位置を電気角で示している。測定される電流値は回転子の磁極が各巻線に与える磁束によって影響を受け、たとえば通電1はU相が回転子に対向する面がNに励磁されるとき、回転子のS極が対向する位置にあれば通電電流は大きく、対向位置から離れると小さくなる。通電4は通電1と電流方向が反対の例でU相はSに励磁され、回転子のN極が対向する位置にあるときに電流値は大きくなる。このように通電1から通電6を実行して電流値の大小を求めれば、各回転子の電気角の位置、すなわち3相巻線と回転子の相対位置が求められる。
By the way, when the motor is started, it is necessary to control the commutation for the windings of each phase so that the rotor in the stopped state can start rotating in a predetermined rotation direction. Since the brushless DC motor that does not have a position detector is not provided, in order to sequentially supply drive current to the windings of each phase in the desired commutation mode at the time of startup, Each phase is detected so that the rotor can start rotating in the desired rotation direction based on the detected relative position between the rotor magnetic pole and the winding. Must be controlled for commutation.
Conventionally, as a means for this, an appropriate current is supplied to each phase of the three-phase winding while the rotor is stopped, and the relative values of the current values are compared, thereby making the relative relationship between the rotor and the three-phase winding. Japanese Patent Application Laid-Open No. 63-69489 discloses a means for detecting a correct stop position.
The operation will be described with reference to FIGS. FIG. 1 shows three-phase windings of the motor, which are U-phase, V-phase, and W-phase, respectively. FIG. 2A shows an example of a conduction mode for each phase for measurement. U → (V + W) is a current from the U end to the V and W ends, U ← (V + W) is a current from the V and the W end to the U end. Indicates to flow. FIG. 2B is another example of the same purpose, but here, the method of FIG. FIG. 3 shows the current value measured in each energization mode, and the horizontal axis shows the position of the rotor with respect to the three-phase winding in electrical angle. The current value to be measured is affected by the magnetic flux applied to each winding by the magnetic pole of the rotor. For example, in the energization 1, when the surface of the U phase facing the rotor is excited to N, the S pole of the rotor faces. If it is in the position, the energization current is large, and it is small when it is away from the facing position. The energization 4 is an example in which the current direction is opposite to that of the energization 1, and the U phase is excited by S, and the current value increases when the N pole of the rotor is at a position facing it. When the energization 1 to the energization 6 are executed in this way to determine the magnitude of the current value, the position of the electrical angle of each rotor, that is, the relative position between the three-phase winding and the rotor can be obtained.

特開昭63−69489号公報  Japanese Unexamined Patent Publication No. 63-69489

ところが前記した従来の回転子の停止位置の検出手段では、通電1から通電6の六回の電流測定をおこなうので一定の測定時間を必要とし、測定時間中に回転子が変動している応用の場合には、測定した時の回転子の位置と測定後の実際の回転子の位置が異なってしまうことがあった。駆動トルクの不足や、逆回転動作などの誤動作を起こす危険が避けられない。たとえば図2(a)の通電1から通電6の順序で測定した時、通電1で通電電流が大きいとすでにここで回転子の位置が推定されるが、測定値の大小比較のために続けて通電2から通電6の測定をおこなうために、この時間の間に回転子が変動してしまう。換気扇が停止状態でも大気の風で回転子が揺れているような場合、あるいは電動自転車の応用で停止状態であっても道路の傾斜によって回転子が移動してしまう場合などで問題となる。電動自転車ではこのような誤動作は安全上致命的で、実際の応用はきわめて困難であった。However, in the conventional means for detecting the stop position of the rotor, current measurement is performed six times from energization 1 to energization 6, so that a certain measurement time is required, and the rotor fluctuates during the measurement time. In some cases, the position of the rotor when measured may be different from the actual position of the rotor after measurement. There is an unavoidable risk of drive torque shortages and malfunctions such as reverse rotation. For example, when measurement is performed in the order of energization 1 to energization 6 in FIG. 2A, if the energization current is large in energization 1, the position of the rotor is already estimated here. Since the energization 2 to the energization 6 are measured, the rotor fluctuates during this time. This may be a problem when the rotor is swayed by the wind of the atmosphere even when the ventilation fan is stopped, or when the rotor moves due to the inclination of the road even when it is stopped due to the application of an electric bicycle. In an electric bicycle, such a malfunction is fatal for safety and actual application is extremely difficult.

回転子の位置が誤動作を起すほど変動する前に高速に位置検出を行い、かつ直ちに駆動電力を与えることができれば上記の問題は回避できる。本発明はこのための手段を与えるために以下の構成を備える。
ブラシレスモータの駆動制御で、回転子が停止もしくは小変動している状態で、3相巻線に順方向と逆方向の全6方向への通電態様でパルス通電を行い、通電電流の大小を比較して回転子位置を検出するセンサーレスのモータ駆動装置にあって、該6方向への通電態様の測定を回転子の位置を示す電気角の順番に通電1、通電2、通電3、通電4、通電5、通電6として測定する手段を設け、測定される各通電電流の中の3方向の値より大きく、かつ残る3方向の測定値の中の1箇以上の通電電流の値が大きい値として検出される基準電流値を設け、各測定電流と該基準電流値の大小を比較する手段を備え、該基準電流値を超えて測定される最初の通電態様を検出ステップ1とし、続けて次の通電態様の測定を行って検出ステップ2とし、さらにすでに検出が済んでいる検出ステップ1の前の通電態様をステップ0とし、ただし検出ステップ1が上記の通電1の場合は通電6をステップ0として追加測定し、検出ステップ0と検出ステップ1と検出ステップ2の連続測定された通電電流値の大小から回転子の磁極の位置と3相巻線との相対位置を決定する手段とを備え、この位置情報から最大トルクを与える励磁を選択して供給するブラシレスモータの起動駆動方法である。
The above problem can be avoided if the position of the rotor can be detected at a high speed before the position of the rotor fluctuates to cause a malfunction, and the driving power can be applied immediately. The present invention has the following configuration to provide means for this purpose.
With brushless motor drive control, with the rotor stopped or slightly fluctuating, pulse energization is applied to the three-phase winding in all six directions in the forward and reverse directions, and the magnitudes of the energization currents are compared. In the sensorless motor driving apparatus for detecting the rotor position, the energization mode is measured in the six directions in the order of the electrical angle indicating the position of the rotor, energizing 1, energizing 2, energizing 3, and energizing 4 A means for measuring as energization 5 and energization 6 is provided, and a value that is larger than the value in three directions in each of the measured energization currents and one or more of the current values in the remaining three directions is large Is provided with a reference current value to be detected, and includes means for comparing each measured current with the magnitude of the reference current value. The first energization mode measured exceeding the reference current value is set as a detection step 1, and subsequently Measurement step 2 is performed to make detection step 2, and The current-carrying mode before the detection step 1 that has already been detected is set to step 0. However, when the detection step 1 is the current-carrying 1 described above, the current-carrying 6 is additionally measured as step 0. Means for determining the position of the magnetic pole of the rotor and the relative position of the three-phase winding from the magnitude of the continuously measured energization current value of the detection step 2, and selecting the excitation that gives the maximum torque from this position information; It is a starting drive method of the brushless motor to supply.

さらに、第二の技術は、電源変動など外部環境によって通電1から通電6の通電電流値が変動することに対処する方法を提供するもので、モータ起動を行う前の工程であらかじめ全6種類の通電ステップの通電測定を実行して得られる6個の電流値を参照して、小さいほうの値から3番目より大きい値で、かつ必ず1つ以上のステップの通電電流値が大きい値として判定される条件のもとで最適化して新たな該基準電流値としてセットする手段を追加する。Further, the second technique provides a method for dealing with fluctuations in the energization current value from energization 1 to energization 6 depending on the external environment such as power supply fluctuations. With reference to six current values obtained by conducting energization measurement of the energization step, it is determined that the energization current value of one or more steps is always a large value from the smaller value to the third value. A means for optimizing under the conditions to be set as the new reference current value is added.

また第三の技術は、回転子が時間とともに順方向か逆方向かどちらかに変動している場合にその変化方向を検出して適切な起動の励磁力を選定する手段を与えるもので、検出ステップ0、検出ステップ1、検出ステップ2の測定後、さらに検出ステップ0,1,2の中の最大の電流値、或いは二番目に大きい電流値のステップと同じ通電態様で検出ステップ3の通電測定を実行して、すでに測定される電流値の時間的変化から回転子の位置の変動方向を予測する手段を備える。The third technique provides a means to detect the direction of change when the rotor changes in either the forward direction or the reverse direction with time, and to select an appropriate starting excitation force. After the measurement in step 0, detection step 1 and detection step 2, the energization measurement in detection step 3 in the same energization mode as the step of the maximum current value in detection steps 0, 1 and 2 or the second largest current value. And a means for predicting the direction of fluctuation of the rotor position from the temporal change in the current value already measured.

第四の技術は検出ステップ0、検出ステップ1、検出ステップ2から回転子の位置が特定のピーク電流を与える位置の近傍にあることが判断されたところで、さらにこのピーク位置に相当する通電態様で通電を与えて回転子がこのピーク位置に制動されるよう駆動力を与えて測定後の回転子の変動を押さえ込むことによって、位置検出の確度をさらに高めるものである。位置検出後に瞬時に与えられるため誤動作のリスクなく大きな制動力を与えることができる。In the fourth technique, when it is determined from the detection step 0, the detection step 1, and the detection step 2 that the position of the rotor is in the vicinity of a position that gives a specific peak current, an energization mode corresponding to this peak position is further provided. By applying energization and applying a driving force so that the rotor is braked to this peak position and suppressing fluctuations in the rotor after measurement, the accuracy of position detection is further increased. Since it is applied instantaneously after position detection, a large braking force can be applied without risk of malfunction.

作用Action

図3のグラフから、回転子のそれぞれの電気角で測定される六個の通電電流値は、1から2個のデータが大きな値を示して特定の相の巻線が回転子の特定の磁極に近いことを示す有意なデータであるが、残る4個から5個の測定値は小さい値を示し測定値の大小の順番を決める参照値として使われるに過ぎないことがわかる。
本発明はこの特性に着目して考案されたもので、ある一定の基準電流値を設けて、基準電流値より大きな通電電流が測定される場合、すなわち有意なデータの得られる通電態様だけが検出されるようにし、これを検出ステップ1として、この前後の通電態様の通電測定情報をそれぞれ検出ステップ0、検出ステップ2として加えるだけで回転子位置を確定するものである。
From the graph of FIG. 3, the six energization current values measured at each electrical angle of the rotor are 1 to 2 data showing a large value, and the winding of a specific phase is a specific magnetic pole of the rotor. However, it can be seen that the remaining four to five measured values are small values and are only used as reference values for determining the order of the measured values.
The present invention has been devised by paying attention to this characteristic, and when a certain reference current value is provided and an energization current larger than the reference current value is measured, that is, only an energization mode in which significant data is obtained is detected. As described above, this is used as detection step 1, and the energization measurement information of the energization modes before and after this is added as detection step 0 and detection step 2, respectively, to determine the rotor position.

本手段の必要条件として第一に、通電測定の測定順序を、図2に示す通電1、通電2、通電3、通電4、通電5、通電6の通電態様の順番で行うことが望ましい。従来法ではこの順序は任意であるが、図2の説明では本発明の順序としている。この順序を逆にすること、あるいは測定の開始をどの通電態様から行ってもよいが、それぞれ隣り合う測定はこの順番でなければならない。この順番に測定することによって、大きな通電電流の有意なデータの得られる通電態様とその前後の通電態様が有意なデータの得られる測定点で、それ以外は最小値近傍の値になることがわかる。第二の必要条件は、各通電態様から得られる6個の通電電流の最小値から三番目の値より大きく、かつ残る3個の通電態様のうちの1箇以上の通電電流が大きい値として検出される値に設定した基準電流値を設けて各通電電流と比較することにより、有意な大きさの通電電流のステップを検出することである。図3に示す測定から基準電流値を決めることができる。回転子がどの位置にいても必ず最小値から3番目の電流値より大きく、かつどれかの通電電流は必ずこの基準電流値より上回る値とすればよい。一例を図示した。As a necessary condition of this means, first, it is desirable that the measurement sequence of the energization measurement is performed in the order of energization modes of energization 1, energization 2, energization 3, energization 4, energization 5, and energization 6 shown in FIG. In the conventional method, this order is arbitrary, but in the description of FIG. 2, the order is the present invention. The order may be reversed, or the measurement may be started from any energization mode, but the adjacent measurements must be in this order. By measuring in this order, it can be seen that the energization mode in which significant data of a large energization current is obtained and the energization modes before and after that are measurement points at which significant data is obtained, and other values are near the minimum value. . The second necessary condition is detected as a value that is larger than the third value from the minimum value of the six energization currents obtained from each energization mode and one or more of the remaining three energization modes is large. A step of a significant current is detected by providing a reference current value set to a value to be compared and comparing with each current. The reference current value can be determined from the measurement shown in FIG. Whatever the position of the rotor is always larger than the third current value from the minimum value, and any of the energization currents is necessarily higher than the reference current value. An example is shown.

ところで、今まで述べてきた各通電態様で測定される通電電流は適用する電源や環境条件の変化で変動することが考えられるので、この変化に対応して該基準電流値も適正化することが望ましい。このためには、回転子の位置測定を行うまえに、通電1から通電6の測定を行い、この測定値は環境の変化を反映しているので、測定値が大きければ該基準電流値を一定量上げ、小さければ一定量下げる変更を行い、新たな基準電流値とする。あるいは通電1から通電6を実施して基準電流値を超える通電態様のステップが検出されなければ、一定量だけ基準電流値をさげ、基準電流値を超える通電態様のステップが3個以上検出されれば、一定量だけ基準電流値を上げる手段も好便で有効である。By the way, since the energization current measured in each energization mode described so far may vary due to changes in the applied power supply and environmental conditions, the reference current value may be optimized in response to this change. desirable. For this purpose, the energization 1 to the energization 6 are measured before the rotor position is measured, and this measured value reflects the change in the environment. If the measured value is large, the reference current value is kept constant. The amount is increased, and if it is smaller, the amount is decreased by a certain amount to obtain a new reference current value. Alternatively, if energization 1 to energization 6 is performed and no step of energization mode exceeding the reference current value is detected, the reference current value is reduced by a certain amount, and three or more energization mode steps exceeding the reference current value are detected. For example, a means for increasing the reference current value by a certain amount is convenient and effective.

本発明はセンサーレスのブラシレスモータ駆動に広く応用できる。以下に好適な応用として電動自転車への応用を説明する。モータは車軸に直結された直接駆動で、三相巻線のステーターは車軸に固定され、永久磁石のローターは車輪の一部として構成される。モータはステーターの巻線が51極、ローターの磁極が48極の24ポールペアである。車輪が一回転、即ち機械角で360度回転するとき、ローターの電気角はポールペア数だけ繰り返されるので、電気角の360度は機械角で15度(=360度/24)に相当する。また車輪の直径を50cmとすると車輪円周は50*3.14≒150cmだから、電気角の360度の変化は、電気自転車が約6.25cm(≒150cm*(15度/360度))移動することに相当する。図4は実施例で適用したモータ駆動回路のブロック図で、よく知られた標準的な構成である。電源Vccからの電流を11で示すQ1からQ6のトランジスタで切り替えてモータ巻線に流し、ローター(図示せず)に回転力を与える。たとえばQ1とQ6をONにして他をOFFにするとU相からV相(U→V)に電流は流れて、U相とV相が励磁される。巻線への通電電流は12で示す抵抗Rsの両端に発生する電圧でモニターする。13で示すローター位置検出回路1はあとで詳述するように巻線の通電電流をモニターしてローターが停止している時の位置測定を行う。ローターが回転している時は標準的な方法として、巻線に生じる逆起電力を使い、これを14に示すローター位置検出回路2に入力して位置測定を行う。15に示すセンサーレス駆動演算回路はローターの位置情報から3相巻線への通電態様を決定してQ1からQ6のON,OFF制御を行う制御信号を出力するとともに、ローター位置検出器1とローター位置検出器2へ測定の制御情報を与える。本例では電源をVcc=48Vとし、モータの動作電流が10Aから15Aなので抵抗Rsを0.005オームとして、Rsの両端で0.5Vから1.5Vが得られるようにしている。The present invention can be widely applied to sensorless brushless motor driving. An application to an electric bicycle will be described below as a suitable application. The motor is a direct drive directly connected to the axle, the three-phase winding stator is fixed to the axle, and the permanent magnet rotor is configured as part of the wheel. The motor is a 24 pole pair with 51 poles of the stator and 48 poles of the rotor. When the wheel rotates once, i.e., 360 degrees in mechanical angle, the electrical angle of the rotor is repeated by the number of pole pairs, so 360 degrees in electrical angle corresponds to 15 degrees (= 360 degrees / 24) in mechanical angle. Also, if the wheel diameter is 50 cm, the wheel circumference is 50 * 3.14≈150 cm, so the change in electrical angle of 360 degrees moves the electric bicycle by approximately 6.25 cm (≈150 cm * (15 degrees / 360 degrees)). It corresponds to doing. FIG. 4 is a block diagram of a motor drive circuit applied in the embodiment, which has a well-known standard configuration. The current from the power supply Vcc is switched by the transistors Q1 to Q6 indicated by 11, and is supplied to the motor windings to give a rotational force to the rotor (not shown). For example, when Q1 and Q6 are turned on and the others are turned off, current flows from the U phase to the V phase (U → V), and the U phase and the V phase are excited. The energization current to the winding is monitored by the voltage generated at both ends of the resistor Rs indicated by 12. A rotor position detection circuit 1 indicated by 13 monitors the energization current of the winding and measures the position when the rotor is stopped as will be described in detail later. When the rotor is rotating, the back electromotive force generated in the winding is used as a standard method, and this is input to the rotor position detection circuit 2 shown in 14 for position measurement. The sensorless drive arithmetic circuit shown in FIG. 15 determines the energization mode to the three-phase winding from the rotor position information and outputs a control signal for performing ON / OFF control of Q1 to Q6, and the rotor position detector 1 and the rotor Measurement control information is given to the position detector 2. In this example, the power supply is Vcc = 48V, and the motor operating current is 10A to 15A, so that the resistance Rs is 0.005 ohms, and 0.5V to 1.5V can be obtained at both ends of Rs.

本発明の技術はローター位置検出器1に適用される。該基準電流値を設定するために、図3と同様のデータを測定しなければならない。図5に示したデータがその結果で、図4の13に示すローター位置検出回路1で12に示す抵抗Rsに生じる電圧を測定した。図2(a)と同様の通電1、通電2、通電3、通電4、通電5、通電6の順番で、個々の電流測定は図6に示す4段階で行った。即ち、▲1▼でQ4,Q5,Q6をONにして接地電位を確認し、▲3▼で所定のトランジスタをONにして通電測定する。▲2▼と▲4▼はQ1とQ4あるいはQ2とQ5あるいはQ3とQ6が同時にONして貫通電流がながれてトランジスタを破壊する危険をさけるために挿入した。▲3▼の通電時間は150マイクロ秒である。一つの通電電流の測定は800マイクロ秒としている。図7は一定のローター位置でおこなった通電1から通電6の測波形の例である。図5の測定結果から基準電流値を13Aに設定した。
ローター位置検出器1で制御しているローター位置決定の測定フローを図8(a)に示す。通電1を▲1▼から▲4▼の順番でおこない基準電流値と比較し、基準値を超えなければ通電2で同様の測定をおこない、どれかの通電態様で基準電流値を超えたところでその通電を検出ステップ1としてループをでて、次の通電の検出ステップ2を測定してロータ停止位置判定が行われる。比較のために図8(b)に従来法の測定フローを示すが、常に6回の測定が必要なのにたいし、実施例では基準電流値をこえる通電態様の測定の時点が位置測定の開始となるから概略2回の測定で結果を出せていることがわかる。一回の通電測定を800マイクロ秒としたので、従来法で4.8ミリ秒かかるのに対して実施例では1.6ミリ秒に短縮できている。
本実施例では図8(a)に示すように位置検出後直ちに、検出位置に強制的に復帰させる制動駆動を与える、すなわち位置検出した以降の回転子の変動を押さえ込む、また検出後に微小変動していても検出位置に戻す駆動力を与えるフローとしている。ここではローター位置が確度よく検出されており、ローター位置は制動位置近傍にあるので慣性による振動の危険もなく強い駆動力の制動駆動を与えることができる。制動時間は目的の条件によって変えるが、実施例では50ミリ秒の通電パルスを5回与えている。
The technique of the present invention is applied to the rotor position detector 1. In order to set the reference current value, the same data as in FIG. 3 must be measured. The data shown in FIG. 5 is the result, and the voltage generated in the resistor Rs indicated by 12 is measured by the rotor position detecting circuit 1 indicated by 13 shown in FIG. Each current measurement was performed in the four steps shown in FIG. 6 in the order of energization 1, energization 2, energization 3, energization 4, energization 5, and energization 6 as in FIG. That is, Q4, Q5, and Q6 are turned on in (1) to check the ground potential, and a predetermined transistor is turned on in (3) to measure energization. (2) and (4) were inserted in order to avoid the risk of Q1 and Q4, Q2 and Q5, or Q3 and Q6 being turned on at the same time and causing a through current to break down the transistor. The energization time of (3) is 150 microseconds. One energization current is measured at 800 microseconds. FIG. 7 is an example of a measured waveform from energization 1 to energization 6 performed at a fixed rotor position. The reference current value was set to 13A from the measurement result of FIG.
FIG. 8A shows a measurement flow for determining the rotor position controlled by the rotor position detector 1. Energization 1 is performed in order of (1) to (4) and compared with the reference current value. If the reference value is not exceeded, the same measurement is performed with energization 2, and when the reference current value is exceeded in any of the energization modes The energization is detected as step 1 and a loop is performed, and the next energization detection step 2 is measured to determine the rotor stop position. For comparison, the measurement flow of the conventional method is shown in FIG. 8B. In contrast to the case where six measurements are always required, in the embodiment, the time of measurement of the energization mode exceeding the reference current value is the start of position measurement. Therefore, it can be seen that the result can be obtained by approximately two measurements. Since one energization measurement is 800 microseconds, the conventional method takes 4.8 milliseconds, whereas in the embodiment, it can be shortened to 1.6 milliseconds.
In this embodiment, as shown in FIG. 8 (a), immediately after the position detection, a braking drive for forcibly returning to the detection position is given, that is, the fluctuation of the rotor after the position detection is suppressed, and a minute fluctuation occurs after the detection. Even if it is, it is set as the flow which gives the driving force which returns to a detection position. Here, the rotor position is detected with high accuracy, and the rotor position is in the vicinity of the braking position, so that it is possible to apply a braking drive with a strong driving force without risk of vibration due to inertia. Although the braking time varies depending on the target condition, in the embodiment, the energization pulse of 50 milliseconds is given five times.

電動自転車が停止時であっても坂道などにいて変動して動く場合がある。
この変動を人間の歩く速度程度の約5km/時と想定すると、これは1ミリ秒あたり0.144cmの変動である。本例の電動自転車はさきに説明したように、電気角360度が6.25cmの移動に相当するから、0.144cmの変動はモータの電気角で約8度(360度*(0.144/6.25))に相当する。
本実施例では位置測定に1.6ミリ秒かかっているから測定中に電気角で±13度(=1.6*8)ずれて測定誤差になることが考えられる。一方、従来法ではこの3倍かかっているので、測定中に±40度弱の測定誤差が想定される。
モータの駆動は電気角で60度毎に転流しておこなうが、本実施例での測定誤差はこの範囲に十分入っており、さらに強制制動で変動をおさえているので転流タイミングを外す危険は非常似小さくなっている。実際に従来法では坂道でバックしている状態では適切な駆動力をあたえられないばかりかバック方向に加速される場合を防げなかったが、実施例ではこれをほぼ根絶でき、前身に強い加速駆動を与えることが可能になった。
Even when the electric bicycle is stopped, it may move on a slope and move.
Assuming this fluctuation is about 5 km / hour, which is about the speed of human walking, this is a fluctuation of 0.144 cm per millisecond. As described above, the electric bicycle of this example corresponds to a movement of 360 degrees in electrical angle of 6.25 cm. Therefore, the fluctuation of 0.144 cm is about 8 degrees (360 degrees * (0.144 in electrical angle) of the motor. /6.25)).
In this embodiment, since the position measurement takes 1.6 milliseconds, it is considered that a measurement error is caused by a deviation of ± 13 degrees (= 1.6 * 8) in electrical angle during the measurement. On the other hand, since the conventional method takes three times this, a measurement error of slightly less than ± 40 degrees is assumed during measurement.
The motor is driven by commutation every 60 degrees in electrical angle, but the measurement error in this example is well within this range, and furthermore, since fluctuation is suppressed by forced braking, there is no danger of removing the commutation timing. It is very small. Actually, in the conventional method, when backing up on a slope, it was not possible to give an appropriate driving force, but it was not possible to prevent acceleration in the back direction, but in the embodiment, this can be almost eradicated, and acceleration driving strong against the predecessor It became possible to give.

は3相ブラシレスモータの励磁巻線を示し、電気角で120°間隔でU相、V相、W相の3つの巻線で構成される。Indicates an excitation winding of a three-phase brushless motor, which is composed of three windings of U phase, V phase, and W phase at 120 ° electrical angles. は回転子位置検出のための3相巻線への通電方法を示す。(a)、(b)に二種類の方法を示すが、ここでは(a)で説明する。Indicates a method of energizing the three-phase winding for detecting the rotor position. Two types of methods are shown in (a) and (b). Here, (a) will be described. は回転子の各電気角での通電電流の測定結果である。Is the measurement result of the energization current at each electrical angle of the rotor. は位置検出器を持たないブラシレスモータの駆動回路ブロック図である。よく知られた標準的な構成であっる。FIG. 3 is a drive circuit block diagram of a brushless motor without a position detector. It is a well-known standard configuration. は実施例のモータ駆動回路装置で、回転子の各電気角の通電電流を測定した結果である。基準電流値はこのデータから作成する。These are the result of having measured the energization current of each electrical angle of a rotor with the motor drive circuit apparatus of an Example. The reference current value is created from this data. は実施例の通電電流測定方法を示す。Shows the method for measuring the energization current of the example. は通電電流測定の実測波形を示す。Indicates an actual measurement waveform of the energization current measurement. ローター位置検出の測定フローを示し、(a)は本発明の方法で、(b)は従来法であるThe measurement flow of rotor position detection is shown, (a) is the method of the present invention, and (b) is the conventional method.

Claims (5)

ブラシレスモータの駆動制御で、回転子が停止もしくは小変動している状態で、3相巻線に順方向と逆方向の6方向への通電ステップでパルス通電を行い、通電電流の大小を比較して回転子位置を検出するセンサーレスのモータ駆動装置にあって、該6方向への通電ステップの測定を回転子の位置を示す電気角の順番に通電1、通電2、通電3、通電4、通電5、通電6の通電態様として測定する手段を設け、6方向で測定される各通電電流値の3方向の測定値より大きく、残る3方向の測定値の中の1箇以上の通電態様の通電電流が大きい値として検出される基準電流値を設けてそれぞれ測定される各通電電流を該基準電流値と大小比較する手段を備え、該基準電流値を超えて測定される最初の通電態様を検出ステップ1とし、続けて次の通電態様の測定を検出ステップ2としておこない、すでに測定が済んでいる検出ステップ1の前の通電態様をステップ0とし、ただし検出ステップ1が通電1の場合で検出ステップ0がないときは通電6をステップ0として追加測定して、検出ステップ0と検出ステップ1と検出ステップ2の連続測定された通電電流値の大小から回転子の磁極の3相巻線との相対位置を決定する手段とを備え、この位置情報から最大トルクを与える励磁を選択して供給するブラシレスモータの起動駆動方法。With the drive control of the brushless motor, with the rotor stopped or slightly fluctuating, pulse energization is performed on the three-phase winding in the energizing step in six directions, forward and reverse, and the magnitude of the energizing current is compared. In the sensorless motor driving apparatus for detecting the rotor position, the energization step measurement in the six directions is conducted in the order of the electrical angle indicating the rotor position, energization 1, energization 2, energization 3, energization 4, Means for measuring the energization modes of energization 5 and energization 6 are provided, and each energization current value measured in 6 directions is larger than the measured value in 3 directions, and one or more energization modes of the remaining 3 directions are measured. A means for providing a reference current value detected as a large value of the energizing current and comparing each energized current measured with the reference current value is provided, and the first energization mode measured exceeding the reference current value is provided. Detection step 1 is followed by the next The measurement of the electric mode is performed as the detection step 2, and the energization mode before the detection step 1 that has already been measured is set to step 0. However, when the detection step 1 is the energization 1 and there is no detection step 0, the energization 6 is performed. Means for additionally measuring as step 0 and determining the relative position of the rotor magnetic poles with the three-phase winding from the magnitudes of the energization current values continuously measured in detection step 0, detection step 1 and detection step 2; , A brushless motor start-up drive method that selects and supplies excitation that gives the maximum torque from this position information 請求項1のモータ起動を行う前の工程として、あらかじめ通電1から通電6の通電測定を実行して得られる6個の電流値を参照して、該基準電流値を最適化して再設定する手段を備えた請求項1のブラシレスモータの起動駆動方法。As a step before starting the motor according to claim 1, means for optimizing and resetting the reference current value with reference to six current values obtained by executing energization measurement of energization 1 to energization 6 in advance The start-up drive method of the brushless motor of Claim 1 provided with these. 請求項1、あるいは請求項2において、検出ステップ0、検出ステップ1、検出ステップ2の測定後、さらに検出ステップ0、1,2の中の最大の電流値、或いは二番目に大きい電流値のステップと同じ通電態様で検出ステップ3の通電測定をおこない、検出ステップ0,1,2とその後に測定された検出ステップ3の通電電流値の時間的変化から回転子の位置の変動方向を予測する手段を備え、回転子位置情報に加えて変動方向の情報から適切な励磁態様を選択して起動を行うモータ駆動方法。3. The step according to claim 1 or claim 2, wherein after the measurement at detection step 0, detection step 1 and detection step 2, the maximum current value among detection steps 0, 1 and 2, or the second largest current value step Means for conducting the energization measurement in the detection step 3 in the same energization mode, and predicting the fluctuation direction of the rotor position from the detection steps 0, 1, 2 and the temporal change in the energization current value of the detection step 3 measured thereafter. And a motor driving method for starting by selecting an appropriate excitation mode from information on the changing direction in addition to the rotor position information. 請求項1、あるいは請求項2の手段で回転子位置を検出して、回転子を検出された回転子位置に制動駆動する通電態様の電力を一定期間あたえてから所定の回転駆動電力をあたえる手段としたブラシレスモータの起動駆動方法。A means for detecting a rotor position by means of claim 1 or claim 2 and giving a predetermined rotational drive power after applying a predetermined period of electric power for applying braking to the detected rotor position. The starting drive method of the brushless motor. 請求項1、あるいは請求項2、あるいは請求項3、あるいは請求項4のブラシレスモータの起動駆動法を適用した電動自転車。An electric bicycle to which the brushless motor activation driving method according to claim 1, claim 2, claim 3, or claim 4 is applied.
JP2008336165A 2008-12-24 2008-12-24 Start-up driving method of brushless DC motor without position detector and electric bicycle using the same Expired - Fee Related JP5378785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008336165A JP5378785B2 (en) 2008-12-24 2008-12-24 Start-up driving method of brushless DC motor without position detector and electric bicycle using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008336165A JP5378785B2 (en) 2008-12-24 2008-12-24 Start-up driving method of brushless DC motor without position detector and electric bicycle using the same

Publications (2)

Publication Number Publication Date
JP2010154727A true JP2010154727A (en) 2010-07-08
JP5378785B2 JP5378785B2 (en) 2013-12-25

Family

ID=42573140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008336165A Expired - Fee Related JP5378785B2 (en) 2008-12-24 2008-12-24 Start-up driving method of brushless DC motor without position detector and electric bicycle using the same

Country Status (1)

Country Link
JP (1) JP5378785B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607620A (en) * 2015-12-31 2016-05-25 天津金米特电子有限公司 Intelligent diagnosis method for electric moped
JP2020120468A (en) * 2019-01-22 2020-08-06 キヤノン株式会社 Motor control unit and image forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369489A (en) * 1986-07-01 1988-03-29 コナ− ペリフエラルズ インコ−ポレ−テツド Brushless dc motor and control of the motor
JPH07327393A (en) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd Starter of motor
JPH1175394A (en) * 1997-06-30 1999-03-16 Fuji Electric Co Ltd Ac dynamoelectric machine power converter
JPH11356088A (en) * 1998-06-08 1999-12-24 Matsushita Electric Ind Co Ltd Driver of brushless motor
JP2006109579A (en) * 2004-10-04 2006-04-20 Matsushita Electric Ind Co Ltd Motor drive unit and drive method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369489A (en) * 1986-07-01 1988-03-29 コナ− ペリフエラルズ インコ−ポレ−テツド Brushless dc motor and control of the motor
JPH07327393A (en) * 1994-05-31 1995-12-12 Sanyo Electric Co Ltd Starter of motor
JPH1175394A (en) * 1997-06-30 1999-03-16 Fuji Electric Co Ltd Ac dynamoelectric machine power converter
JPH11356088A (en) * 1998-06-08 1999-12-24 Matsushita Electric Ind Co Ltd Driver of brushless motor
JP2006109579A (en) * 2004-10-04 2006-04-20 Matsushita Electric Ind Co Ltd Motor drive unit and drive method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607620A (en) * 2015-12-31 2016-05-25 天津金米特电子有限公司 Intelligent diagnosis method for electric moped
JP2020120468A (en) * 2019-01-22 2020-08-06 キヤノン株式会社 Motor control unit and image forming apparatus
JP7296733B2 (en) 2019-01-22 2023-06-23 キヤノン株式会社 Motor control device and image forming device

Also Published As

Publication number Publication date
JP5378785B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP4100442B2 (en) Motor drive control device and motor drive control system
JPH06113585A (en) Position detection device for brushless dc motor using time-difference method without hall-effect device
JP5643496B2 (en) Brushless motor drive device and electric vehicle using brushless motor
KR101336472B1 (en) A method for discriminating the malfuncition of bldc motor control system
US8278861B2 (en) External disturbance detection system and method for two-phase motor control systems
JP2004040943A (en) Method and device for detecting rotor stop position of sensorless motor, and method and device for starting
US20140097777A1 (en) Driving a rotating device based on a combination of speed detection by a sensor and sensor-less speed detection
US20160373048A1 (en) Method for controlling a motor
KR101561254B1 (en) Method and apparatus for controlling the failure of hall sensor using sun-roof installed brushless direct current electric motor
US11101754B2 (en) Stall detection in stepper motors using differential back-EMF between rising and falling commutation phase of motor current
US8466648B2 (en) Motor control device and out-of-step detecting method
US20200395876A1 (en) Method for starting and operating a bldc motor and bldc motor
JP5378785B2 (en) Start-up driving method of brushless DC motor without position detector and electric bicycle using the same
JP2008271698A (en) Motor drive
JP7349321B2 (en) Motor field position detection method
JP2013220007A (en) Control method of sensorless motor, control device of sensorless motor and electric device
JP2018191497A (en) Electric motor, gear motor, wiping system, and associated control method
JP2007252058A (en) Motor controller, motor control method and process for fabricating storage device
JP2005057922A (en) Brushless motor and driving method for brushless motor
JPH09294354A (en) Permanent-magnet motor
KR101224635B1 (en) Method and appartus for diagnosising short of motor driving system
JP2008029115A (en) Single-phase position sensorless permanent magnet motor controller
JP2007074834A (en) Starter for sensorless motors
JP2007195313A (en) Driving device for brushless motors
JP5330728B2 (en) Brushless motor drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees