JP2010151427A - Heat exchange device - Google Patents

Heat exchange device Download PDF

Info

Publication number
JP2010151427A
JP2010151427A JP2008332789A JP2008332789A JP2010151427A JP 2010151427 A JP2010151427 A JP 2010151427A JP 2008332789 A JP2008332789 A JP 2008332789A JP 2008332789 A JP2008332789 A JP 2008332789A JP 2010151427 A JP2010151427 A JP 2010151427A
Authority
JP
Japan
Prior art keywords
heat exchange
flow path
path pattern
pattern
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008332789A
Other languages
Japanese (ja)
Other versions
JP5403583B2 (en
Inventor
Fumihiko Koyama
文彦 小山
Hiroyuki Muraishi
浩幸 村石
Yoshinori Ushinagare
義範 牛流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2008332789A priority Critical patent/JP5403583B2/en
Publication of JP2010151427A publication Critical patent/JP2010151427A/en
Application granted granted Critical
Publication of JP5403583B2 publication Critical patent/JP5403583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent unnecessary expansive strain and heat loss by further reducing temperature difference (unevenness in temperature) as a whole. <P>SOLUTION: A partitioning wall 5 is disposed inside of a heat exchange chamber 3 to divide the heat exchange chamber 3 into two at a right angle to heat exchange faces 2f, 2r to form a pair of heat exchange compartment sections 3f, 3r, the heat exchange compartment sections 3f, 3r are respectively provided with prescribed flow channel patterns Rf, Rr, a through-hole Ro is formed on the partitioning wall 5 to connect one end sections of the flow channel patterns Rf, Rr of the heat exchange compartment sections 3f, 3r in series, and at least one heat exchange section C, applying the other end section of one of flow channel patterns Rf of the pair of heat exchange compartment sections 3f, 3r as an inflow end of fluid L, and applying the other end section of the other flow channel pattern Rr as an outflow end of the fluid L, is disposed. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、熱交換される流体を流通させる所定の流路パターンを内部に設けた熱交換室を有する熱交換ブロックを備える熱交換装置に関する。   The present invention relates to a heat exchanging apparatus including a heat exchanging block having a heat exchanging chamber provided therein with a predetermined flow path pattern for circulating a fluid to be heat exchanged.

従来、熱交換される流体を流通させる所定の流路パターンを内部に設けた熱交換室を有する所定の厚さの熱交換ブロック部と、この熱交換ブロック部の厚さ方向における一対の熱交換面にそれぞれ付設して流体に対して熱交換を行う一対の温調部とを備える熱交換装置としては、特許文献1で開示される熱交換器が知られている。   Conventionally, a heat exchange block part having a predetermined thickness having a heat exchange chamber provided therein with a predetermined flow path pattern for circulating a fluid to be heat exchanged, and a pair of heat exchanges in the thickness direction of the heat exchange block part A heat exchanger disclosed in Patent Document 1 is known as a heat exchange device that includes a pair of temperature control units that are attached to the surfaces and perform heat exchange with respect to a fluid.

ところで、この種の熱交換装置(熱交換器)では、熱交換室に設ける流路パターンの実質長を長くすることが熱交換効率を高める上で必要となるため、特許文献1の熱交換器では、本体ブロックの内部に、独立した複数の流通空間を配列させて設けるとともに、外部より一端に位置する流通空間から他端に位置する流通空間まで貫通する往路形成孔と復路形成孔をそれぞれ異なる位置に設け、他端に位置する流通空間(折返流通空間)を除く他の流通空間(共有流通空間)を往路空間と復路空間に仕切ることにより、当該往路空間と復路空間の内部にそれぞれジグザグ流路を形成するとともに、折返流通空間に、往路形成孔から復路形成孔に至るジグザグ流路を形成している。   By the way, in this type of heat exchange device (heat exchanger), it is necessary to increase the substantial length of the flow path pattern provided in the heat exchange chamber in order to increase the heat exchange efficiency. In the body block, a plurality of independent circulation spaces are arranged and arranged, and the forward path formation hole and the return path formation hole penetrating from the circulation space located at one end to the circulation space located at the other end are different from each other. A zigzag flow is provided in each of the forward space and the return space by partitioning the distribution space (shared distribution space) other than the distribution space (turnback distribution space) located at the other end into the forward space and the return space. In addition to forming a path, a zigzag flow path from the forward path forming hole to the return path forming hole is formed in the folded flow space.

このような熱交換室に設ける流路パターンとしては、従来より様々な流路パターンが知られている。特に、流体の良好な流通を確保しつつ実質長をより長くできる流路パターンとしては、渦巻流路パターンが知られており、例えば、特許文献2には、内部に、その中心部から外縁部に向けて渦巻き状をなす媒体流路を形成することにより、この媒体流路の一側端部を給水ポンプに接続し、他側端部を排水タンクに接続するとともに、媒体流路の内部に冷却水を流し、この冷却水との熱交換により試料の温度を制御するようにした熱交換構造が開示されている。
特開2002−5590号公報 特開2000−15562号公報
Conventionally, various flow path patterns are known as flow path patterns provided in such a heat exchange chamber. In particular, a spiral flow path pattern is known as a flow path pattern that can make the substantial length longer while ensuring a good flow of fluid. For example, Patent Document 2 discloses an inner edge from the center to an outer edge. By forming a spiral medium flow path toward the side, one end of this medium flow path is connected to the water supply pump, the other end is connected to the drainage tank, and the medium flow path is formed inside the medium flow path. A heat exchange structure is disclosed in which cooling water is supplied and the temperature of the sample is controlled by heat exchange with the cooling water.
Japanese Patent Laid-Open No. 2002-5590 JP 2000-15562 A

しかし、上述した従来における流路パターンを用いた熱交換構造は、次のような問題点があった。   However, the heat exchange structure using the conventional flow path pattern described above has the following problems.

第一に、全体の温度分布が流路パターンに対応した分布となるため、無用な膨張歪や熱損失を生じやすい。特に、渦巻流路パターンの場合には、中心部側から外縁部側の放射方向に温度勾配を有するため、これに伴う膨張歪や熱損失が無視できない。また、流路パターンに対してペルチェ素子を用いたサーモモジュールによる温調部を付設する場合、流路パターンに対応した負荷がサーモモジュールに付加されるため、負荷の格差により複数のサーモモジュールの一部が劣化しやすくなる。   First, since the entire temperature distribution is a distribution corresponding to the flow path pattern, unnecessary expansion distortion and heat loss are likely to occur. In particular, in the case of the spiral flow path pattern, since there is a temperature gradient in the radial direction from the center side to the outer edge side, the expansion strain and heat loss associated therewith cannot be ignored. In addition, when a temperature control unit using a thermo module using a Peltier element is attached to the flow path pattern, a load corresponding to the flow path pattern is added to the thermo module. The part tends to deteriorate.

第二に、流路パターンの流入口又は流出口の一方の位置が流路パターンの形状に影響されやすく、設計自由度を高められない。特に、渦巻流路パターンの場合、流路パターンの流入口又は流出口の一方がパターン中心部に位置してしまうため、流路パターンに対して両面側から温調部(又は被温調部)を付設する場合には、流入口又は流出口に接続する配管等が邪魔となり、温調部(又は被温調部)のレイアウト設計等が大変になるとともに、熱交換効率を低下させる要因になる。   Second, the position of one of the inlet or outlet of the flow path pattern is easily affected by the shape of the flow path pattern, and the degree of freedom in design cannot be increased. In particular, in the case of a spiral channel pattern, one of the inlet or outlet of the channel pattern is located at the center of the pattern, so the temperature control unit (or temperature control unit) from both sides with respect to the channel pattern. In the case of installing an air outlet, the piping connected to the inlet or outlet becomes a hindrance, and the layout design of the temperature control section (or temperature control section) becomes difficult, and the heat exchange efficiency is reduced. .

本発明は、このような背景技術に存在する課題を解決した熱交換装置の提供を目的とするものである。   The object of the present invention is to provide a heat exchange device that solves such problems in the background art.

本発明は、上述した課題を解決するため、少なくとも、熱交換される流体Lを流通させる所定の流路パターンを内部に設けた熱交換室3を有する所定の厚さの熱交換ブロック部2と、この熱交換ブロック部2の厚さ方向における一対の熱交換面2f,2rにそれぞれ付設して流体Lに対して熱交換を行う一対の温調部4f,4rとを備える熱交換装置1であって、熱交換室3の内部に仕切壁5を設けることにより、熱交換室3を熱交換面2f,2rに対して直角方向に二分して一対の熱交換分室部3f,3rに形成するとともに、各熱交換分室部3f,3rに所定の流路パターンRf,Rrをそれぞれ設け、かつ仕切壁5に貫通孔Roを設けて各熱交換分室部3f,3rの流路パターンRf,Rrの一端部同士を直列接続するとともに、一対の熱交換分室部3f,3rにおける一方の流路パターンRfの他端部を流体Lの流入端とし、かつ他方の流路パターンRrの他端部を流体Lの流出端とした少なくとも一つの熱交換部C…を備えることを特徴とする。   In order to solve the above-described problems, the present invention includes at least a heat exchange block unit 2 having a predetermined thickness having a heat exchange chamber 3 provided therein with a predetermined flow path pattern through which the fluid L to be heat exchanged flows. The heat exchange device 1 includes a pair of temperature control portions 4f and 4r that are attached to the pair of heat exchange surfaces 2f and 2r in the thickness direction of the heat exchange block portion 2 and perform heat exchange with the fluid L, respectively. Then, by providing the partition wall 5 inside the heat exchange chamber 3, the heat exchange chamber 3 is divided into two in the direction perpendicular to the heat exchange surfaces 2f and 2r to form a pair of heat exchange compartment portions 3f and 3r. In addition, predetermined flow path patterns Rf and Rr are provided in the heat exchange compartments 3f and 3r, respectively, and a through hole Ro is provided in the partition wall 5 so that the flow path patterns Rf and Rr of the heat exchange compartments 3f and 3r are provided. Connect one end to each other in series and At least one heat exchange in which the other end of one flow path pattern Rf in the heat exchange compartments 3f and 3r is an inflow end of the fluid L and the other end of the other flow path pattern Rr is an outflow end of the fluid L. Part C is provided.

この場合、発明の好適な態様により、一対の熱交換分室部3f,3rに設ける一方又は双方の流路パターンRf,Rrは、渦巻状となる渦巻流路パターンRfw,Rrwにより形成することが望ましい。この際、渦巻流路パターンRfw,Rrwは、当該渦巻流路パターンRfw,Rrwにより形成される流路の一部又は全部の流路幅を外周側から中心側へ行くに従って漸次広くすることができる。また、貫通孔Roは、流路パターンRf,Rrの中心側端部を接続する位置に設けることができ、この際、一対の熱交換分室部3f,3rに設ける各流路パターンRf,Rrは、流体Lの流通する周回方向を同じ方向に設定することが望ましい。さらに、流路パターンRf,Rrには、当該流路パターンRf,Rrにより形成される流路の内部に当該流路に沿った一又は二以上の補助パターンRs…を設けることができる。一方、熱交換ブロック部2は、表裏面11f,11rに流路パターンRf,Rrをそれぞれ設けたインナプレート部11を、伝熱性を有する一対のアウタプレート部12f,12rにより挟んで構成できる。また、インナプレート部11の側面11s又は当該インナプレート部11の内部に、流入路Siと流出路Seを設け、流路パターンRfの流入端を、傾斜面Sisを有する流路を介して流入路Siに接続できるとともに、流路パターンRrの流出端を、傾斜面Sesを有する流路を介して流出路Seに接続できる。他方、温調部4f,4rは、ペルチェ素子を用いたサーモモジュールMt…を備えるとともに、当該サーモモジュールMt…における流路パターンRf,Rr側の面に対する反対側の面に当該サーモモジュールMt…の放熱又は放冷を行うウォータジャケット部13f,13rを付設して構成できる。この際、一対の温調部4f,4rにおけるウォータジャケット部13f,13r同士を直列に接続するとともに、ウォータジャケット部13f,13rに流通させる液体Wの流出入口14i,14e側と熱交換ブロック部2における流体Lの流出入口15i,15e側を反対の位置関係で配することが望ましい。   In this case, according to a preferred aspect of the invention, it is desirable that one or both of the flow path patterns Rf and Rr provided in the pair of heat exchange chambers 3f and 3r are formed by spiral flow path patterns Rfw and Rrw having a spiral shape. . At this time, the spiral flow path patterns Rfw and Rrw can gradually increase the width of part or all of the flow paths formed by the spiral flow path patterns Rfw and Rrw from the outer peripheral side toward the center side. . Further, the through hole Ro can be provided at a position where the center side end portions of the flow path patterns Rf and Rr are connected. At this time, the flow path patterns Rf and Rr provided in the pair of heat exchange chamber portions 3f and 3r are It is desirable to set the circulation direction in which the fluid L flows in the same direction. Furthermore, the flow path patterns Rf, Rr can be provided with one or more auxiliary patterns Rs... Along the flow path inside the flow path formed by the flow path patterns Rf, Rr. On the other hand, the heat exchange block portion 2 can be configured by sandwiching the inner plate portion 11 provided with the flow path patterns Rf and Rr on the front and back surfaces 11f and 11r between the pair of outer plate portions 12f and 12r having heat conductivity. An inflow path Si and an outflow path Se are provided in the side surface 11s of the inner plate portion 11 or in the inner plate portion 11, and the inflow end of the flow path pattern Rf is connected to the inflow path through the flow path having the inclined surface Sis. In addition to being able to connect to Si, the outflow end of the flow path pattern Rr can be connected to the outflow path Se via a flow path having an inclined surface Ses. On the other hand, the temperature control units 4f, 4r include thermo modules Mt ... using Peltier elements, and the thermo modules Mt ... are provided on the opposite surface of the thermo modules Mt ... to the flow path patterns Rf, Rr side. Water jacket portions 13f and 13r for performing heat radiation or cooling can be provided. At this time, the water jacket portions 13f and 13r in the pair of temperature control portions 4f and 4r are connected in series, and the outflow inlets 14i and 14e side of the liquid W flowing through the water jacket portions 13f and 13r and the heat exchange block portion 2 are connected. It is desirable to arrange the outflow inlets 15i and 15e of the fluid L in the opposite positional relationship.

このような構成を有する本発明に係る熱交換装置1によれば、次のような顕著な効果を奏する。   According to the heat exchanging device 1 according to the present invention having such a configuration, the following remarkable effects can be obtained.

(1) 熱交換室3の内部に仕切壁5を設けることにより、熱交換室3を熱交換面2f,2rに対して直角方向に二分して一対の熱交換分室部3f,3rに形成するとともに、各熱交換分室部3f,3rに所定の流路パターンRf,Rrをそれぞれ設け、かつ仕切壁5に貫通孔Roを設けて各熱交換分室部3f,3rの流路パターンRf,Rrの一端部同士を直列接続するようにしたため、熱交換ブロック部2における全体の温度分布を、仕切壁5を介した一対の流路パターンRfとRrの流体Lにより平均化できる。したがって、全体の温度格差(温度ムラ)をより小さくすることが可能となり、無用な膨張歪や熱損失を回避できる。なお、流路パターンRf,Rr同士を並列接続する場合には、このような効果を得れないとともに、温度格差はより強調されてしまう。   (1) By providing the partition wall 5 inside the heat exchange chamber 3, the heat exchange chamber 3 is divided into two in the direction perpendicular to the heat exchange surfaces 2f and 2r to form a pair of heat exchange compartment portions 3f and 3r. In addition, predetermined flow path patterns Rf and Rr are provided in the heat exchange compartments 3f and 3r, respectively, and a through hole Ro is provided in the partition wall 5 so that the flow path patterns Rf and Rr of the heat exchange compartments 3f and 3r are provided. Since the one end portions are connected in series, the entire temperature distribution in the heat exchange block portion 2 can be averaged by the fluid L of the pair of flow path patterns Rf and Rr via the partition wall 5. Therefore, the overall temperature difference (temperature unevenness) can be further reduced, and unnecessary expansion strain and heat loss can be avoided. When the flow path patterns Rf and Rr are connected in parallel, such an effect cannot be obtained and the temperature difference is more emphasized.

(2) 好適な態様により、一対の熱交換分室部3f,3rに設ける一方又は双方の流路パターンRf,Rrを、渦巻状となる渦巻流路パターンRfw,Rrwにより形成すれば、熱交換ブロック部2における中心側と外周側における温度分布を平均化(均一化)できるため、特に、中心側と外周側の間で生じる無用な膨張歪や熱損失を回避することができる。   (2) According to a preferred embodiment, if one or both of the flow path patterns Rf, Rr provided in the pair of heat exchange chambers 3f, 3r are formed by spiral spiral flow path patterns Rfw, Rrw, a heat exchange block Since the temperature distribution on the center side and the outer peripheral side in the portion 2 can be averaged (uniformized), unnecessary expansion strain and heat loss that occur between the center side and the outer peripheral side can be avoided.

(3) 好適な態様により、渦巻流路パターンRfw,Rrwにより形成される流路の一部又は全部の流路幅を外周側から中心側へ行くに従って漸次広くすれば、曲率が小さくなる中心側の相対的な流速を下げることができるため、流体Lが流れる際の圧損を小さくできるとともに、淀みや泡などの発生を防止することができる。   (3) If the width of a part or all of the flow paths formed by the spiral flow path patterns Rfw and Rrw is gradually increased from the outer peripheral side toward the central side according to a preferred embodiment, the curvature becomes smaller on the central side. Therefore, it is possible to reduce the pressure loss when the fluid L flows and to prevent the occurrence of stagnation and bubbles.

(4) 好適な態様により、貫通孔Roを、渦巻流路パターンRfw,Rrwの中心側端部を接続する位置に設ければ、渦巻流路パターンRfw,Rrwを設ける場合であっても、流入口15i及び流出口15eを各渦巻流路パターンRfw,Rrwの外周側、即ち、熱交換ブロック部2の側面に配することができるため、熱交換面2f,2rに影響を与えることはない。したがって、温調部4f,4rのレイアウト設計等が容易となり、設計自由度を高めることができるとともに、実質的な熱交換面積を広げることができ、熱交換効率をより高めることができる。   (4) According to a preferred embodiment, if the through hole Ro is provided at a position connecting the center side ends of the spiral flow path patterns Rfw, Rrw, even if the spiral flow path patterns Rfw, Rrw are provided, Since the inlet 15i and the outlet 15e can be arranged on the outer peripheral side of each of the spiral flow path patterns Rfw and Rrw, that is, on the side of the heat exchange block unit 2, the heat exchange surfaces 2f and 2r are not affected. Therefore, the layout design and the like of the temperature control parts 4f and 4r can be facilitated, the design freedom can be increased, the substantial heat exchange area can be expanded, and the heat exchange efficiency can be further increased.

(5) 好適な態様により、一対の熱交換分室部3f,3rに設ける各渦巻流路パターンRfw,Rrwを、流体Lの流通する周回方向を同じ方向に設定すれば、一方の渦巻流路パターンRfwから貫通孔Roへの流出方向と貫通孔Roから他方の渦巻流路パターンRrwへの流入方向を同じ方向に設定することができる。したがって、貫通孔Roにおける流体Lの流れが急変することなくスムーズな流れとなり、圧力損失を低減することができる。また、流入口15i及び流出口15eを同じ方向に向けた状態で離間させることができる。   (5) If each spiral flow path pattern Rfw, Rrw provided in the pair of heat exchange chambers 3f, 3r is set in the same direction according to a preferred embodiment, one spiral flow path pattern is set. The outflow direction from Rfw to the through hole Ro and the inflow direction from the through hole Ro to the other spiral flow path pattern Rrw can be set in the same direction. Therefore, the flow of the fluid L in the through hole Ro becomes a smooth flow without sudden change, and the pressure loss can be reduced. Moreover, the inflow port 15i and the outflow port 15e can be separated in the state which orient | assigned to the same direction.

(6) 好適な態様により、流路パターンRf,Rrにより形成される流路の内部に当該流路に沿った一又は二以上の補助パターンRs…を設ければ、流れる液体Lに対する整流作用により、液体Lをより円滑に流すことができるとともに、液体Lに対する接触面積の拡大により熱交換効率の向上に寄与できる。   (6) According to a preferred embodiment, if one or more auxiliary patterns Rs... Along the flow path are provided in the flow path formed by the flow path patterns Rf and Rr, the flow of liquid L is rectified. The liquid L can be made to flow more smoothly, and the expansion of the contact area with the liquid L can contribute to the improvement of the heat exchange efficiency.

(7) 好適な態様により、熱交換ブロック部2を、表裏面11f,11rに流路パターンRf,Rrをそれぞれ設けたインナプレート部11を、伝熱性を有する一対のアウタプレート部12f,12rにより挟んで構成すれば、本発明に係る熱交換装置1を少ない部品点数により容易に製造することができる。   (7) According to a preferred embodiment, the heat exchange block portion 2 is replaced by the inner plate portion 11 provided with the flow path patterns Rf and Rr on the front and back surfaces 11f and 11r, respectively, by a pair of outer plate portions 12f and 12r having heat conductivity. If sandwiched, the heat exchange device 1 according to the present invention can be easily manufactured with a small number of parts.

(8) 好適な態様により、インナプレート部11の側面11s又は当該インナプレート部11の内部に、流入路Siと流出路Seを設け、流路パターンRfの流入端を、傾斜面Sisを有する流路を介して流入路Siに接続するとともに、流路パターンRrの流出端を、傾斜面Sesを有する流路を介して流出路Seに接続すれば、流体Lが流れる際の流路抵抗を低減してスムースな流通を確保できるとともに、泡や淀みの発生を防止して熱交換効率をより向上させることができる。   (8) According to a preferred embodiment, an inflow path Si and an outflow path Se are provided in the side surface 11s of the inner plate portion 11 or in the inner plate portion 11, and the inflow end of the flow path pattern Rf is provided with a flow having an inclined surface Sis. The flow path resistance when the fluid L flows can be reduced by connecting to the inflow path Si through the path and connecting the outflow end of the flow path pattern Rr to the outflow path Se through the flow path having the inclined surface Ses. As a result, smooth distribution can be ensured, and generation of bubbles and stagnation can be prevented to further improve heat exchange efficiency.

(9) 好適な態様により、温調部4f,4rを、ペルチェ素子を用いた少なくとも一つ以上のサーモモジュールMt…を備えるとともに、当該サーモモジュールMt…における流路パターンRf,Rr側の面に対する反対側の面に当該サーモモジュールMt…の放熱又は放冷を行うウォータジャケット部13f,13rを付設して構成すれば、ペルチェ素子を用いたサーモモジュールMt…により温調部4f,4rを構成する場合であっても、熱交換ブロック部2におけるサーモモジュールMt…の負荷度合の格差を小さくできるため、サーモモジュールMt…における全体の劣化防止及び長寿命化に寄与できる。   (9) According to a preferred embodiment, the temperature control units 4f and 4r are provided with at least one or more thermo modules Mt... Using Peltier elements, and with respect to the surfaces on the flow path patterns Rf and Rr side in the thermo modules Mt. If water jacket portions 13f, 13r for radiating or cooling the thermo modules Mt ... are attached to the opposite surface, the temperature control portions 4f, 4r are constituted by the thermo modules Mt ... using Peltier elements. Even in this case, since the difference in the degree of load of the thermo modules Mt... In the heat exchange block unit 2 can be reduced, it is possible to contribute to the overall prevention of deterioration and the extension of the life of the thermo modules Mt.

(10) 好適な態様により、一対の温調部4f,4rにおけるウォータジャケット部13f,13r同士を直列に接続するとともに、ウォータジャケット部13f,13rに流通させる液体Wの流出入口14i,14e側と熱交換ブロック部2における流体Lの流出入口15i,15e側を反対の位置関係で配すれば、各流路パターンRf,Rrと対応する各ウォータジャケット部13f,13r間における温度勾配が大きくなり、サーモモジュールMt…における放熱効果又は放冷効果をより高めることができる。   (10) According to a preferred embodiment, the water jacket portions 13f and 13r in the pair of temperature control portions 4f and 4r are connected in series, and the liquid W inflow / outflow inlets 14i and 14e are circulated through the water jacket portions 13f and 13r. If the flow inlet / outlet ports 15i and 15e of the fluid L in the heat exchange block portion 2 are arranged in the opposite positional relationship, the temperature gradient between the water jacket portions 13f and 13r corresponding to the flow path patterns Rf and Rr increases. The heat dissipation effect or the cooling effect in the thermo modules Mt... Can be further enhanced.

次に、本発明に係る最良の実施形態を挙げ、図面に基づき詳細に説明する。   Next, the best embodiment according to the present invention will be given and described in detail with reference to the drawings.

まず、本実施形態に係る熱交換装置1の構成について、図1〜図6を参照して具体的に説明する。   First, the configuration of the heat exchange device 1 according to the present embodiment will be specifically described with reference to FIGS.

例示の熱交換装置1は流体Lとして薬液を用いる薬液用熱交換装置を示す。熱交換装置1は、一定の厚さを有し、厚さ方向の両面に一対の熱交換面2f,2rを有する熱交換ブロック部2を備え、この熱交換ブロック部2は、矩形に形成した一定の厚さを有するインナプレート部11と、このインナプレート部11の両側、即ち、表面11f及び裏面11rを挟む伝熱性を有する一対のアウタプレート部12f,12rを備える。   The illustrated heat exchange device 1 is a chemical heat exchange device that uses a chemical as the fluid L. The heat exchanging device 1 includes a heat exchanging block portion 2 having a certain thickness and having a pair of heat exchanging surfaces 2f and 2r on both sides in the thickness direction. The heat exchanging block portion 2 is formed in a rectangular shape. An inner plate portion 11 having a constant thickness and a pair of outer plate portions 12f and 12r having heat conductivity sandwiching both sides of the inner plate portion 11, that is, the front surface 11f and the back surface 11r are provided.

インナプレート部11は、PTFE等の耐薬品性に優れたフッ素系樹脂素材により一体形成する。図1及び図3に示すように、インナプレート部11の一方の片面となる表面11fには、熱交換分室部3fとなる円形の凹部21fを形成し、この凹部21f内に、一本の連続する仕切条22fを渦巻状に形成することにより、流路パターンRfを構成する渦巻状となる渦巻流路パターンRfwを設けるとともに、図2及び図3に示すように、インナプレート部11の他方の片面となる裏面11rにも熱交換分室部3rとなる円形の凹部21rを形成し、この凹部21r内に、一本の連続する仕切条22rを渦巻状に形成することにより、流路パターンRrを構成する渦巻状となる渦巻流路パターンRrwを設ける。したがって、凹部21fと21r間は、熱交換分室部3fと3rを分ける仕切壁5になる。この場合、一対の熱交換分室部3f,3rが、熱交換される流体Lを流通させる流路を設けた熱交換室3となり、換言すれば、熱交換室3の内部に設けた仕切壁5により、熱交換面2f,2rに対して直角方向に二分した一対の熱交換分室部3f,3rが構成される。   The inner plate portion 11 is integrally formed of a fluorine resin material having excellent chemical resistance such as PTFE. As shown in FIGS. 1 and 3, a circular recess 21 f serving as a heat exchange chamber portion 3 f is formed on the surface 11 f serving as one surface of the inner plate portion 11, and a single continuous portion is formed in the recess 21 f. By forming the partition 22f to be spiral, a spiral flow path pattern Rfw that forms the flow path pattern Rf is provided, and as shown in FIGS. 2 and 3, the other of the inner plate portion 11 is provided. A circular recess 21r to be the heat exchange chamber 3r is also formed on the back surface 11r which is a single side, and a continuous partition 22r is formed in a spiral shape in the recess 21r, thereby forming the flow path pattern Rr. A spiral flow path pattern Rrw having a spiral shape is provided. Accordingly, the partition wall 5 that divides the heat exchange compartments 3f and 3r is formed between the recesses 21f and 21r. In this case, the pair of heat exchange compartments 3f and 3r becomes the heat exchange chamber 3 provided with a flow path for circulating the fluid L to be heat exchanged. In other words, the partition wall 5 provided inside the heat exchange chamber 3 Thus, a pair of heat exchange compartments 3f and 3r divided into two in the direction perpendicular to the heat exchange surfaces 2f and 2r is formed.

そして、仕切壁5の中心部には貫通孔Roを形成する。これにより、各熱交換分室部3f,3rの渦巻流路パターンRfw,Rrwの中心側端部(一端部)同士が直列接続されるとともに、一方の渦巻流路パターンRfwの外周側端部(他端部)が流体Lの流入端となり、かつ他方の渦巻流路パターンRrwの外周側端部(他端部)が流体Lの流出端となる。このように、貫通孔Roを、渦巻流路パターンRfw,Rrwの中心側端部を接続する位置に設ければ、渦巻流路パターンRfw,Rrwを設ける場合であっても、流入口15i及び流出口15eを各渦巻流路パターンRfw,Rrwの外周側、即ち、熱交換ブロック部2の側面に配することができるため、後述する熱交換面2f,2rに影響を与えることはない。したがって、温調部4f,4rのレイアウト設計等が容易となり、設計自由度を高めることができるとともに、実質的な熱交換面積を広げることができるため、熱交換効率をより高めることができる。   A through hole Ro is formed at the center of the partition wall 5. As a result, the center-side ends (one end portions) of the spiral flow path patterns Rfw and Rrw of the heat exchange chamber portions 3f and 3r are connected in series, and the outer peripheral side end portions (the others) of the one spiral flow path pattern Rfw The end portion) becomes the inflow end of the fluid L, and the outer peripheral side end portion (the other end portion) of the other spiral flow path pattern Rrw becomes the outflow end of the fluid L. In this way, if the through hole Ro is provided at a position where the center side end portions of the spiral flow path patterns Rfw and Rrw are connected, even if the spiral flow path patterns Rfw and Rrw are provided, the inlet 15i and the flow Since the outlet 15e can be disposed on the outer peripheral side of each of the spiral flow path patterns Rfw and Rrw, that is, on the side surface of the heat exchange block 2, the heat exchange surfaces 2f and 2r described later are not affected. Therefore, the layout design and the like of the temperature control units 4f and 4r are facilitated, the degree of freedom in design can be increased, and the substantial heat exchange area can be expanded, so that the heat exchange efficiency can be further increased.

また、一対の熱交換分室部3f,3rに設ける各渦巻流路パターンRfw,Rrwにおける流体Lの流通する周回方向は同じ方向に設定する。これにより、図1に示すように、一方の渦巻流路パターンRfwから貫通孔Roへの流出方向と貫通孔Roから他方の渦巻流路パターンRrwへの流入方向を同じ方向に設定できる。したがって、貫通孔Roにおける流体Lの流れが急変することなくスムーズな流れとなり、圧力損失を低減することができる。しかも、流入口15i及び流出口15eを同じ方向に向けた状態で離間させることが可能となる。   Further, the circulation direction of the fluid L in each of the spiral flow path patterns Rfw and Rrw provided in the pair of heat exchange compartments 3f and 3r is set to the same direction. Thereby, as shown in FIG. 1, the outflow direction from one spiral channel pattern Rfw to the through hole Ro and the inflow direction from the through hole Ro to the other spiral channel pattern Rrw can be set in the same direction. Therefore, the flow of the fluid L in the through hole Ro becomes a smooth flow without sudden change, and the pressure loss can be reduced. In addition, the inflow port 15i and the outflow port 15e can be separated in a state in which they are directed in the same direction.

一方、インナプレート部11の側面部11sには、流入口15iと流出口15eをそれぞれ離間して設け、この流入口15iと流出口15eに、フッ素系樹脂素材等により形成した流入管Piと流出管Peをそれぞれ接続する。さらに、流入口15iはインナプレート部11の内部に形成した流入路Siを介して熱交換分室部3fにおける渦巻流路パターンRfwの外周側端部に接続するとともに、流出口15eはインナプレート部11の内部に形成した流出路Seを介して熱交換分室部3rにおける渦巻流路パターンRrwの外周側端部に接続する。この場合、図4に示すように、流入路Siは傾斜面Sisを有する流路を介して渦巻流路パターンRfwの流入端に接続するとともに、図2に示すように、流出路Seも同様に、傾斜面Sesを有する流路を介して渦巻流路パターンRrwの流出端に接続する。このような傾斜面Sis及びSesを有する流路を設けることにより、流体Lが流れる際の流路抵抗を低減してスムースな流通を確保できるとともに、泡や淀みの発生を防止して熱交換効率をより向上させることができる。   On the other hand, in the side surface portion 11s of the inner plate portion 11, an inlet 15i and an outlet 15e are provided separately from each other. The inlet 15i and the outlet 15e are provided with an inlet pipe Pi and an outlet made of a fluorine-based resin material or the like. Each pipe Pe is connected. Furthermore, the inflow port 15i is connected to the outer peripheral side end portion of the spiral flow path pattern Rfw in the heat exchange chamber portion 3f through an inflow passage Si formed in the inner plate portion 11, and the outflow port 15e is connected to the inner plate portion 11. It connects with the outer peripheral side edge part of the spiral flow path pattern Rrw in the heat exchange compartment 3r via the outflow channel Se formed inside. In this case, as shown in FIG. 4, the inflow path Si is connected to the inflow end of the spiral flow path pattern Rfw through a flow path having an inclined surface Sis, and the outflow path Se is similarly formed as shown in FIG. And connected to the outflow end of the spiral flow path pattern Rrw via a flow path having an inclined surface Ses. By providing such a flow path having the inclined surfaces Sis and Ses, the flow resistance when the fluid L flows can be reduced to ensure a smooth flow, and the occurrence of bubbles and stagnation can be prevented and heat exchange efficiency can be prevented. Can be further improved.

なお、熱交換装置1は、通常、縦置にして使用するため、使用状態におけるインナプレート部11は、図1に示す位置が正面位置となる。したがって、この位置において非使用時の残留した流体Lを各熱交換分室部3f,3rから抜くことができるように、仕切条22f,22rには残留した流体Lが下方に流れ落ちる小孔,切欠き,スリット等により形成した複数の液抜孔24f…,24r…を設けるとともに、仕切壁5の下端には落下した流体Lを流入管Piに戻す液抜孔25を設ける。また、26f,26rは各仕切条22f,22rに設けた淀み防止孔を示す。   In addition, since the heat exchange apparatus 1 is usually used in a vertical position, the position shown in FIG. Accordingly, small holes and notches are provided in the partition strips 22f and 22r so that the fluid L remaining when not in use at this position can be extracted from the heat exchange compartments 3f and 3r. Are provided with a plurality of liquid drain holes 24f formed by slits, etc., and a liquid drain hole 25 is provided at the lower end of the partition wall 5 for returning the dropped fluid L to the inlet pipe Pi. Reference numerals 26f and 26r denote stagnation prevention holes provided in the respective dividing strips 22f and 22r.

これにより、図1(図2)に示すように、流入口15iに流入した流体Lは、流入路Si,傾斜面Sis,表面11fの渦巻流路パターンRfwの順に流れて貫通孔Roに至るとともに、この貫通孔Roから裏面11rの渦巻流路パターンRrwに流入し、この渦巻流路パターンRrw,傾斜面Ses,流出路Seの順に流れて流出口15eに至る。この際、渦巻流路パターンRfwにおける流体Lの周回方向と渦巻流路パターンRrwにおける流体Lの周回方向は同じ方向となるが、渦巻流路パターンRfwでは外周側から中心側に流れ、渦巻流路パターンRrwでは中心側から外周側に流れる。   As a result, as shown in FIG. 1 (FIG. 2), the fluid L flowing into the inflow port 15i flows in the order of the inflow path Si, the inclined surface Sis, and the spiral flow path pattern Rfw of the surface 11f and reaches the through hole Ro. Then, it flows into the spiral flow path pattern Rrw on the back surface 11r from the through hole Ro, flows in this order of the spiral flow path pattern Rrw, the inclined surface Ses, and the outflow path Se to reach the outlet 15e. At this time, the circulation direction of the fluid L in the spiral flow path pattern Rfw and the circulation direction of the fluid L in the spiral flow path pattern Rrw are the same direction, but the spiral flow path pattern Rfw flows from the outer peripheral side to the center side, The pattern Rrw flows from the center side to the outer periphery side.

他方、一方のアウタプレート部12fは、アルミニウムや銅等の熱伝導性の良好な素材により形成した外側プレート31fと、PTFE等のフッ素系樹脂素材により形成した内側プレート(内側シート)32fの二層構造により構成するとともに、アウタプレート部12rも同様に構成する。なお、アウタプレート部12rにおいて、31rは外側プレート、32rは内側プレートを示す。したがって、アウタプレート部12fを二つ用意し、一方をアウタプレート部12fに、他方をアウタプレート部12rに用いればよい。   On the other hand, one outer plate portion 12f has two layers of an outer plate 31f formed of a material having good thermal conductivity such as aluminum and copper, and an inner plate (inner sheet) 32f formed of a fluorine resin material such as PTFE. The outer plate portion 12r is configured in the same manner as well as the structure. In the outer plate portion 12r, 31r indicates an outer plate, and 32r indicates an inner plate. Therefore, it is only necessary to prepare two outer plate portions 12f, one for the outer plate portion 12f and the other for the outer plate portion 12r.

このような構成部材を用いるため、図5に示すように、インナプレート部11の両面(表面11f,裏面11r)を、内側プレート32f,32rが対面するようにアウタプレート部12f,12rによりそれぞれ挟むとともに、複数のボルトナット33…により固定すれば、インナプレート部11に形成した一対の熱交換分室部3f,3rが一対のアウタプレート部12f,12rに挟まれることにより密閉される一つの熱交換部Cを有する熱交換ブロック部2を得ることができる。これにより、熱交換ブロック部2の厚さ方向における両面が一対の熱交換面2f,2rとなる。なお、図3において、34…はシールリングを示す。このように、熱交換ブロック部2を構成するに際し、表面11f及び裏面11rに渦巻流路パターンRfw,Rrwをそれぞれ設けたインナプレート部11を、伝熱性を有する一対のアウタプレート部12f,12rにより挟んで構成すれば、本発明に係る熱交換装置1を少ない部品点数により容易に製造することができる。   Since such a component is used, as shown in FIG. 5, both surfaces (front surface 11f, back surface 11r) of the inner plate portion 11 are sandwiched between the outer plate portions 12f and 12r so that the inner plates 32f and 32r face each other. If a plurality of bolts and nuts 33 are fixed, a pair of heat exchange chamber portions 3f and 3r formed in the inner plate portion 11 is sealed by being sandwiched between the pair of outer plate portions 12f and 12r. The heat exchange block part 2 which has the part C can be obtained. Thereby, both surfaces in the thickness direction of the heat exchange block portion 2 become a pair of heat exchange surfaces 2f and 2r. In FIG. 3, 34 denotes a seal ring. As described above, when the heat exchange block unit 2 is configured, the inner plate unit 11 provided with the spiral flow path patterns Rfw and Rrw on the front surface 11f and the back surface 11r is formed by the pair of outer plate units 12f and 12r having heat conductivity. If sandwiched, the heat exchange device 1 according to the present invention can be easily manufactured with a small number of parts.

さらに、熱交換ブロック部2における一対の熱交換面2f,2rには、図5及び図6に示すように、流体Lに対して熱交換を行う一対の温調部4f,4rをそれぞれ付設する。一方の温調部4fは、ペルチェ素子を用いた複数のサーモモジュールMt…を備え、このサーモモジュールMt…の内面側を、一方の熱交換面2fとなる外側プレート31fの外面に取付けるとともに、このサーモモジュールMt…の外面側、即ち、渦巻流路パターンRfw側の面に対する反対側の面にサーモモジュールMt…の放熱又は放冷を行うウォータジャケット部13fを取付けて構成する。他方の温調部4rも同様であり、複数のサーモモジュールMt…の内面側を、他方の熱交換面2rとなる外側プレート31rの外面に取付けるとともに、このサーモモジュールMt…の外面側にウォータジャケット部13rを取付けて構成する。なお、サーモモジュールMt…は、図示を省略した制御部に接続され、温度センサにより検出される流体Lの温度に対するフィードバック制御が行われる。この場合、一対の温調部4fと4rに対して同時に制御を行ってもよいし、それぞれ独立した制御を行ってもよい。独立した制御を行う際には、温調部4f側に対しては粗い制御を行い、温調部4r側に対しては高精度の制御を行うなど、各種制御モードを設定することができる。   Furthermore, as shown in FIGS. 5 and 6, a pair of temperature control parts 4 f and 4 r for exchanging heat with the fluid L are attached to the pair of heat exchange surfaces 2 f and 2 r in the heat exchange block part 2, respectively. . One temperature control section 4f includes a plurality of thermo modules Mt ... using Peltier elements, and the inner surface side of the thermo modules Mt ... is attached to the outer surface of the outer plate 31f serving as one heat exchange surface 2f. A water jacket portion 13f that radiates or cools the thermo modules Mt... Is attached to the outer surface side of the thermo modules Mt..., That is, the surface opposite to the surface on the spiral flow path pattern Rfw side. The other temperature control unit 4r is the same, and the inner surface side of the plurality of thermo modules Mt... Is attached to the outer surface of the outer plate 31r serving as the other heat exchange surface 2r, and the water jacket is formed on the outer surface side of the thermo modules Mt. The part 13r is attached and configured. The thermo modules Mt... Are connected to a control unit (not shown) and perform feedback control on the temperature of the fluid L detected by the temperature sensor. In this case, the pair of temperature control units 4f and 4r may be controlled simultaneously or independently. When performing independent control, various control modes can be set such that rough control is performed on the temperature control unit 4f side and high-precision control is performed on the temperature control unit 4r side.

また、一方のウォータジャケット部13fは液体(冷却水又は温水)Wの流入口14fi及び流出口14feを有するとともに、他方のウォータジャケット部13rは液体Wの流入口14ri及び流出口14reを有し、各流入口14fi,14ri及び流出口14fe,14reは、前述した熱交換ブロック部2の流入口15i及び流出口15eと同じ向きに配する。そして、一方のウォータジャケット部13fの流入口14fiと他方のウォータジャケット部13rの流出口14reを接続することにより、ウォータジャケット部13f,13r同士を直列に接続するとともに、直列に接続したウォータジャケット部13f,13rに対する流入口14ri側(流出口14fe側)の位置と熱交換ブロック部2における流入口15i側(流出口15e側)の位置を反対の位置関係で配する。なお、反対の位置関係とは、熱交換ブロック部2の場合、厚さ方向に一対の熱交換分室部3f,3rが配され、一方の熱交換分室部3f側に流入口15iが、他方の熱交換分室部3r側に流出口15eがそれぞれ接続されるため、各熱交換分室部3f,3rにそれぞれ付設する直列接続したウォータジャケット部13f,13rの流入口14ri側と流出口14fe側を反対の位置関係にすることを意味する。例示の場合、一方の熱交換分室部3f側に、流出口14feを有するウォータジャケット部13fを付設し、他方の熱交換分室部3r側に、流入口14riを有するウォータジャケット部13rを付設する。したがって、図5において、上下方向の位置関係で見た場合には、流入口15iに対して、流入口14riは同じ側に位置する場合と反対側に位置する場合が発生する。   One water jacket portion 13f has an inlet 14fi and an outlet 14fe for the liquid (cooling water or hot water) W, and the other water jacket portion 13r has an inlet 14ri and an outlet 14re for the liquid W. The inflow ports 14fi and 14ri and the outflow ports 14fe and 14re are arranged in the same direction as the inflow port 15i and the outflow port 15e of the heat exchange block unit 2 described above. Then, by connecting the inlet 14fi of one water jacket portion 13f and the outlet 14re of the other water jacket portion 13r, the water jacket portions 13f and 13r are connected in series, and the water jacket portion connected in series is connected. The position on the inlet 14ri side (outlet 14fe side) with respect to 13f and 13r and the position on the inlet 15i side (outlet 15e side) in the heat exchange block 2 are arranged in an opposite positional relationship. In the case of the heat exchange block 2, the opposite positional relationship is that a pair of heat exchange compartments 3f and 3r are arranged in the thickness direction, and the inlet 15i is provided on the side of one heat exchange compartment 3f and the other Since the outlet 15e is connected to the heat exchange compartment 3r side, the inlet 14ri side and the outlet 14fe side of the series-connected water jacket portions 13f and 13r respectively attached to the heat exchange compartments 3f and 3r are opposite to each other. This means that the positional relationship is. In the case of illustration, a water jacket portion 13f having an outlet 14fe is attached to one heat exchange compartment 3f side, and a water jacket portion 13r having an inlet 14ri is attached to the other heat exchange compartment 3r side. Therefore, in FIG. 5, when viewed in the positional relationship in the vertical direction, the case where the inlet 14ri is located on the opposite side to the inlet 15i occurs.

次に、本実施形態に係る熱交換装置1の動作(作用)について、図1〜図6を参照して説明する。   Next, the operation (action) of the heat exchange device 1 according to the present embodiment will be described with reference to FIGS.

例示は、熱交換装置1により流体(薬液)Lを冷却する際の動作(作用)である。まず、不図示の送液ポンプにより流体(薬液)Lを、流入管Piから流入口15iに供給すれば、流体Lは、図1及び図4に実線矢印で示すように、流入路Si,傾斜面Sisを有する流路を流れて一方の熱交換分室部3fの渦巻流路パターンRfwに外周側端部から流入する。そして、図1に示すように、渦巻流路パターンRfwに沿った周回方向に流れ、渦巻流路パターンRfwの中心側端部に至る。渦巻流路パターンRfwの中心側端部に至った流体Lは、貫通孔Roを通して他方の熱交換分室部3rの渦巻流路パターンRrwの中心側端部に流入し、図2に実線矢印(図1に点線矢印)で示すように、渦巻流路パターンRrwに沿った周回方向に流れ、渦巻流路パターンRrwの外周側端部に至る。渦巻流路パターンRrwの外周側端部に至った流体Lは、傾斜面Sesを有する流路,流出路Seを流れて流出口15eに至り、流出管Peから送出される。   An example is an operation (action) when the fluid (chemical solution) L is cooled by the heat exchange device 1. First, when a fluid (chemical solution) L is supplied from an inflow pipe Pi to an inflow port 15i by a liquid feed pump (not shown), the fluid L is inclined to an inflow path Si, as shown by solid arrows in FIGS. It flows through the flow path having the surface Sis and flows into the spiral flow path pattern Rfw of one heat exchange chamber 3f from the outer peripheral side end. And as shown in FIG. 1, it flows to the circumference direction along spiral flow path pattern Rfw, and reaches the center side edge part of spiral flow path pattern Rfw. The fluid L reaching the center side end of the spiral flow path pattern Rfw flows into the center end of the spiral flow path pattern Rrw of the other heat exchange compartment 3r through the through hole Ro, and a solid line arrow (FIG. 2) As indicated by a dotted arrow in FIG. 1, it flows in the circumferential direction along the spiral flow path pattern Rrw and reaches the outer peripheral side end of the spiral flow path pattern Rrw. The fluid L reaching the outer peripheral side end of the spiral flow path pattern Rrw flows through the flow path having the inclined surface Ses, the outflow path Se, reaches the outflow port 15e, and is sent out from the outflow pipe Pe.

この際、流体Lは、流入路Siからオフセットした位置の渦巻流路パターンRfwに流入するとともに、渦巻流路パターンRrwからオフセットした位置の流出路Seに流出するが、流入路Siと渦巻流路パターンRfw間には傾斜面Sisを有する流路を設けるとともに、渦巻流路パターンRrwと流出路Se間には傾斜面Sesを有する流路を設けているため、流体Lが流れる際の流路抵抗を低減してスムースな流通を確保できるとともに、泡や淀みの発生を防止して熱交換効率をより向上させることができる。   At this time, the fluid L flows into the spiral flow path pattern Rfw at a position offset from the inflow path Si and flows out to the outflow path Se at a position offset from the spiral flow path pattern Rrw. Since the flow path having the inclined surface Sis is provided between the patterns Rfw and the flow path having the inclined surface Ses is provided between the spiral flow path pattern Rrw and the outflow path Se, the flow resistance when the fluid L flows is provided. As well as ensuring smooth distribution, it is possible to prevent the generation of bubbles and stagnation and to further improve the heat exchange efficiency.

一方、温調部4f,4rのサーモモジュールMt…に対しては冷却モードによる通電制御を行う。したがって、熱交換ブロック部2の熱交換面2f,2rはサーモモジュールMt…の冷却作用によりそれぞれ冷却され、各渦巻流路パターンRfw,Rrwを流れる流体Lに対する熱交換が行われる。即ち、流体Lに対する冷却が行われる。この際、一方の渦巻流路パターンRfwにおいては、流体Lが外周側から中心側に流れるため、流体Lは、外周側における温度が相対的に高くなるとともに、中心側における温度が相対的に低くなる。また、他方の渦巻流路パターンRrwにおいては、流体Lが中心側から外周側に流れるため、流体Lは、中心側における温度が相対的に高くなるとともに、外周側における温度が相対的に低くなる。この結果、熱交換ブロック部2における中心側から外周側の温度分布が、渦巻流路パターンRfw側の流体Lの温度と渦巻流路パターンRrw側の流体Lの温度により平均化(均一化)されるため、熱交換ブロック部2の全体における中心側と外周側の温度格差(温度ムラ)をより小さくすることが可能となり、中心側と外周側の間で生じる無用な膨張歪や熱損失を回避することができる。なお、流路パターンRf,Rr同士を並列接続する場合には、このような効果を得れないとともに、温度格差はより強調されてしまう。特に、ペルチェ素子を用いたサーモモジュールMt…により温調部4f,4rを構成する場合には、熱交換ブロック部2の中心側と外周側におけるサーモモジュールMt…の負荷度合の格差が小さくなるため、サーモモジュールMt…における全体の劣化防止及び長寿命化に寄与できる。   On the other hand, energization control in the cooling mode is performed on the thermo modules Mt of the temperature control units 4f and 4r. Therefore, the heat exchange surfaces 2f and 2r of the heat exchange block 2 are cooled by the cooling action of the thermo modules Mt... And heat exchange is performed on the fluid L flowing through the spiral flow path patterns Rfw and Rrw. That is, the fluid L is cooled. At this time, in one spiral flow path pattern Rfw, since the fluid L flows from the outer peripheral side to the central side, the fluid L has a relatively high temperature on the outer peripheral side and a relatively low temperature on the central side. Become. Further, in the other spiral flow path pattern Rrw, since the fluid L flows from the center side to the outer periphery side, the fluid L has a relatively high temperature on the center side and a relatively low temperature on the outer periphery side. . As a result, the temperature distribution from the center side to the outer periphery side in the heat exchange block unit 2 is averaged (homogenized) by the temperature of the fluid L on the spiral flow path pattern Rfw side and the temperature of the fluid L on the spiral flow path pattern Rrw side. Therefore, it is possible to further reduce the temperature difference (temperature unevenness) between the center side and the outer peripheral side of the entire heat exchange block portion 2, and avoid unnecessary expansion strain and heat loss that occur between the center side and the outer peripheral side. can do. When the flow path patterns Rf and Rr are connected in parallel, such an effect cannot be obtained and the temperature difference is more emphasized. In particular, when the temperature control units 4f and 4r are configured by the thermo modules Mt using Peltier elements, the difference in the degree of load between the thermo modules Mt on the center side and the outer peripheral side of the heat exchange block unit 2 is reduced. , It is possible to contribute to the prevention of the entire deterioration and the extension of the life of the thermo modules Mt.

他方、ウォータジャケット部13rの流入口14riには、冷却水を用いた液体Wを供給する。これにより、流入口14riに供給された液体Wは、一方のウォータジャケット部13rを流通することによりサーモモジュールMt…の発熱側を冷却し、流出口14reに至る。この後、流出口14reに至った液体Wは、他方のウォータジャケット部13fの流入口14fiに供給され、この流入口14fiに供給された液体Wは、他方のウォータジャケット部13fを流通することによりサーモモジュールMt…の発熱側を冷却し、流出口14feに至る。この場合、ウォータジャケット部13f,13r同士を直列に接続し、かつウォータジャケット部13f,13rに流通させる液体Wの流出入口14i,14eと熱交換ブロック部2における流体Lの流出入口15i,15eを反対の位置関係で配してあるため、各渦巻流路パターンRfw,Rrwと対応する各ウォータジャケット部13f,13r間における温度勾配が大きくなり、サーモモジュールMt…における放熱効果(又は放冷効果)をより高めることができる。   On the other hand, the liquid W using cooling water is supplied to the inlet 14ri of the water jacket portion 13r. Thereby, the liquid W supplied to the inflow port 14ri cools the heat generating side of the thermo modules Mt... Through the one water jacket portion 13r, and reaches the outflow port 14re. Thereafter, the liquid W reaching the outlet 14re is supplied to the inlet 14fi of the other water jacket portion 13f, and the liquid W supplied to the inlet 14fi flows through the other water jacket portion 13f. The heat generating side of the thermo modules Mt... Is cooled down to the outlet 14fe. In this case, the water jacket portions 13f and 13r are connected in series, and the liquid W outflow ports 14i and 14e that flow through the water jacket portions 13f and 13r and the outflow ports 15i and 15e of the fluid L in the heat exchange block unit 2 are provided. Since they are arranged in the opposite positional relationship, the temperature gradient between the water jacket portions 13f and 13r corresponding to the spiral flow path patterns Rfw and Rrw is increased, and the heat radiation effect (or the cooling effect) in the thermo modules Mt. Can be further enhanced.

次に、本発明の各種変更実施形態に係る熱交換装置1について、図7〜図13を参照して説明する。   Next, the heat exchange device 1 according to various modified embodiments of the present invention will be described with reference to FIGS.

図7は、渦巻流路パターンRfw(Rrw側も同様)により形成される流路の一部又は全部の流路幅を外周側から中心側へ行くに従って漸次広くしたものである。即ち、図7において、流入口15i付近の流路幅をBa、貫通孔Ro付近の流路幅をBc、流入口15iと貫通孔Ro間の中間付近における流路幅をBbとした場合、Ba<Bb<Bcの関係を満たすように形成する。これにより、曲率が小さくなる中心側(貫通孔Ro側)の相対的な流速を下げることができ、流体Lが流れる際の圧損を小さくできるとともに、淀みや泡などの発生を有効に防止することができる。なお、このような流路幅の変更は、渦巻流路パターンRfwにより形成される流路の一部であってもよいし全部であってもよい。一部の場合としては、外周側から中心側へ行くに従って途中までは同一の流路幅とし、これより中心側は、流路幅を漸次広くするなどの形態を採用できる。以上の点を除き、他の細部の構成及び機能は、図1に示したインナプレート部11と同じになる。このため、図7において、図1と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   FIG. 7 shows that the width of a part or all of the flow path formed by the spiral flow path pattern Rfw (also on the Rrw side) is gradually increased from the outer peripheral side toward the center side. That is, in FIG. 7, when the channel width near the inlet 15i is Ba, the channel width near the through hole Ro is Bc, and the channel width near the middle between the inlet 15i and the through hole Ro is Bb, Ba It is formed so as to satisfy the relationship of <Bb <Bc. As a result, the relative flow velocity on the center side (through hole Ro side) where the curvature is reduced can be lowered, the pressure loss when the fluid L flows can be reduced, and the occurrence of stagnation and bubbles is effectively prevented. Can do. Note that such a change in the channel width may be part or all of the channel formed by the spiral channel pattern Rfw. In some cases, it is possible to adopt a form in which, for example, the same flow path width is made partway from the outer peripheral side toward the center side, and the flow path width is gradually increased on the center side. Except for the above points, the configuration and functions of other details are the same as those of the inner plate portion 11 shown in FIG. Therefore, in FIG. 7, the same parts as those in FIG. 1 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.

図8は、流路パターンRf(Rr側も同様)により形成される流路の内部に当該流路に沿った一又は二以上の補助パターンRs…を設けたものである。図8は一つの補助パターンRsを追加したものであり、この補助パターンRsにより分割された二つの並行する流路を設けることができる。したがって、この補助パターンRsの数を増やすことにより、並行する流路数を増やすことができる。これにより、流れる液体Lに対する整流作用により、液体Lをより円滑に流すことができるとともに、液体Lに対する接触面積の拡大により熱交換効率の向上に寄与できる。以上の点を除き、他の細部の構成及び機能は、図1に示したインナプレート部11と同じになる。このため、図8において、図1と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   8 is provided with one or more auxiliary patterns Rs... Along the flow path inside the flow path formed by the flow path pattern Rf (the same applies to the Rr side). In FIG. 8, one auxiliary pattern Rs is added, and two parallel flow paths divided by the auxiliary pattern Rs can be provided. Therefore, the number of parallel flow paths can be increased by increasing the number of auxiliary patterns Rs. As a result, the liquid L can flow more smoothly due to the rectifying action on the flowing liquid L, and it is possible to contribute to the improvement of heat exchange efficiency by increasing the contact area with the liquid L. Except for the above points, the configuration and functions of other details are the same as those of the inner plate portion 11 shown in FIG. Therefore, in FIG. 8, the same parts as those in FIG. 1 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.

図9は、直列に接続した二つの熱交換部C,Cを含む熱交換ブロック部2を用いる熱交換装置1の変更実施形態であり、インナプレート部11のみを示す。図9に示すインナプレート部11は、図1に示したインナプレート部11を二つ連結して一体化したタイプとして構成したものである。なお、図1に示したインナプレート部11と異なる点は、各熱交換部Cにおける流入路Siと流出路Seの向きを180〔゜〕異ならせるとともに、一方の熱交換部Cの流出路Seと他方の熱交換部Cの流入路Siをインナプレート部11の内部で連続させ、また、他方の熱交換部Cを一方の熱交換部Cに対し、厚さ方向において180〔゜〕反転させた点が異なる。したがって、この場合、各熱交換部C…における流路パターンRfwとRrwにおける流体Lの周回方向は逆方向となる。以上の点を除き、他の細部の構成及び機能は、図1に示したインナプレート部11と同じになる。このため、図9において、図1と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。なお、例示は、二つの熱交換部C,Cを連結したタイプを示したが、三つ以上の熱交換部C…であっても同様に実施できる。   FIG. 9 is a modified embodiment of the heat exchanging device 1 using the heat exchanging block portion 2 including two heat exchanging portions C and C connected in series, and shows only the inner plate portion 11. The inner plate portion 11 shown in FIG. 9 is configured as a type in which two inner plate portions 11 shown in FIG. 1 are connected and integrated. 1 differs from the inner plate part 11 shown in FIG. 1 in that the direction of the inflow path Si and the outflow path Se in each heat exchange section C is different by 180 [°], and the outflow path Se of one heat exchange section C. And the inflow channel Si of the other heat exchanging part C is made continuous inside the inner plate part 11, and the other heat exchanging part C is reversed 180 ° in the thickness direction with respect to the one heat exchanging part C. Different points. Therefore, in this case, the circulation direction of the fluid L in the flow path patterns Rfw and Rrw in each heat exchange part C. Except for the above points, the configuration and functions of other details are the same as those of the inner plate portion 11 shown in FIG. Therefore, in FIG. 9, the same parts as those in FIG. 1 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted. In addition, although the illustration showed the type which connected two heat exchange parts C and C, even if it is three or more heat exchange parts C ..., it can implement similarly.

図10は、渦巻流路パターンRfw…のパターン形状を、矩形に沿った渦巻形状に形成した熱交換装置1の変更実施形態であり、インナプレート部11のみを示す。図1に示したインナプレート部11に対して異なる点は、この点のみであり、他の細部の構成及び機能は、図1に示したインナプレート部11と同じになる。このため、図10において、図1と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   FIG. 10 shows a modified embodiment of the heat exchange apparatus 1 in which the pattern shape of the spiral flow path pattern Rfw... Is formed into a spiral shape along a rectangle, and only the inner plate portion 11 is shown. This is the only difference from the inner plate portion 11 shown in FIG. 1, and the configuration and function of other details are the same as those of the inner plate portion 11 shown in FIG. Therefore, in FIG. 10, the same parts as those in FIG. 1 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.

図11は、貫通孔Roの形態に係わる熱交換装置1の変更実施形態であり、インナプレート部11のみを示す。図3に示したインナプレート部11では、各熱交換分室部3fと3r間において同一径となる貫通孔Roを形成したが、図11に示す貫通孔Roは、各熱交換分室部3f,3rの双方に臨む貫通孔Roにおける内周面の半部をそれぞれ外広がりのテーパ面Ros…により形成したものである。これにより、前述した傾斜面Sis,Sesと同様に、貫通孔Roにおける流路抵抗を低減できるため、流体Lのスムースな流通を確保できるとともに、泡や淀みの発生を防止することが可能となる。以上の点を除き、他の構成及び機能は、図3に示したインナプレート部11と同じになる。このため、図11において、図3と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   FIG. 11 is a modified embodiment of the heat exchange device 1 according to the form of the through hole Ro, and shows only the inner plate portion 11. In the inner plate portion 11 shown in FIG. 3, the through holes Ro having the same diameter are formed between the heat exchange chamber portions 3f and 3r. However, the through holes Ro shown in FIG. 11 are formed in the heat exchange chamber portions 3f and 3r. The half part of the inner peripheral surface of the through hole Ro facing both of these is formed by a taper surface Ros ... spreading outward. Thereby, since the flow path resistance in the through-hole Ro can be reduced similarly to the inclined surfaces Sis and Ses described above, it is possible to ensure a smooth flow of the fluid L and to prevent generation of bubbles and stagnation. . Except for the above points, the other configurations and functions are the same as those of the inner plate portion 11 shown in FIG. Therefore, in FIG. 11, the same parts as those in FIG. 3 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.

図12は、流入口15iと流出口15eの向きを異ならせた熱交換装置1の変更実施形態であり、インナプレート部11のみを示す。図1に示した流入口15iと流出口15eは同じ向きに設けたが、図12に示す流入口15iと流出口15eは、相互の向き(相互間の角度)を90〔゜〕に設定した。したがって、図12の場合には、図1の場合に比べて渦巻流路パターンRrwの長さが短くなる。このため、補助仕切条22rsを追加して渦巻流路パターンRrwの外周側端部を形成した。以上の点を除き、他の細部の構成及び機能は、図1に示したインナプレート部11と同じになる。このため、図12において、図1と同一部分には同一符号を付してその構成を明確にするとともにその、詳細な説明は省略する。   FIG. 12 shows a modified embodiment of the heat exchanging device 1 in which the directions of the inflow port 15i and the outflow port 15e are different, and only the inner plate portion 11 is shown. The inflow port 15i and the outflow port 15e shown in FIG. 1 are provided in the same direction, but the inflow port 15i and the outflow port 15e shown in FIG. 12 are set to have a mutual orientation (angle between them) of 90 °. . Therefore, in the case of FIG. 12, the length of the spiral flow path pattern Rrw is shorter than that in the case of FIG. For this reason, the auxiliary partition 22rs was added to form the outer peripheral side end of the spiral flow path pattern Rrw. Except for the above points, the configuration and functions of other details are the same as those of the inner plate portion 11 shown in FIG. Therefore, in FIG. 12, the same parts as those in FIG. 1 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.

図13は、流路パターンRfのパターン形状を変更した熱交換装置1の変更実施形態であり、インナプレート部11のみを示す。図1に示したインナプレート部11では流路パターンRfとして渦巻流路パターンRfwを示したが、図13に示す流路パターンRfは、複数の仕切条22f…を設けてジグザグ状の流路を形成した流路パターンRfを示す。したがって、図13に示す流路パターンRfでは、図1に示したインナプレート部11に対して、貫通孔Roの位置がインナプレート部11の中心部とはならないとともに、流入口15iと流出口15eは、同一直線上において反対方向の向きに設けることができる。なお、他方の流路パターンRrも流路パターンRfと同様に構成する。以上の点を除き、他の細部における基本的な構成及び機能は、図1のインナプレート部11と同じになる。このため、図13において、図1と同一部分には同一符号を付してその構成を明確にするとともに、その詳細な説明は省略する。   FIG. 13 is a modified embodiment of the heat exchange device 1 in which the pattern shape of the flow path pattern Rf is changed, and only the inner plate portion 11 is shown. In the inner plate portion 11 shown in FIG. 1, the spiral flow path pattern Rfw is shown as the flow path pattern Rf. However, the flow path pattern Rf shown in FIG. 13 is provided with a plurality of partitioning strips 22f. The formed flow path pattern Rf is shown. Therefore, in the flow path pattern Rf shown in FIG. 13, the position of the through hole Ro does not become the center of the inner plate portion 11 with respect to the inner plate portion 11 shown in FIG. 1, and the inlet 15i and the outlet 15e. Can be provided in the opposite direction on the same straight line. The other flow path pattern Rr is configured similarly to the flow path pattern Rf. Except for the above points, the basic configuration and functions in other details are the same as those of the inner plate portion 11 of FIG. For this reason, in FIG. 13, the same parts as those in FIG. 1 are denoted by the same reference numerals to clarify the configuration, and detailed description thereof is omitted.

以上、各種実施形態(変更実施形態)について詳細に説明したが、本発明はこのような実施形態に限定されるものではなく、細部の構成,形状,数量,素材等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。例えば、流路パターンRf,Rrとして、渦巻流路パターンRfw,Rrwとジグザグ状の流路パターンRf,Rrを例示したが、このような流路パターンの形状は例示に限定されるものではなく、各種形状の流路パターンRf,Rrを適用できる。また、貫通孔Roの位置は流路パターンRf,Rrに対応して任意の位置に設けることができるとともに、その数量も一つであってもよいし、二つ以上であってもよい。さらに、温調部4f,4rをサーモモジュールMt…とウォータジャケット部13f,13rの組合わせにより構成した場合を示したが、同様の機能を有する他の温調手段により構成する場合を排除するものではない。なお、ウォータジャケット部13f,13rに流す液体Wとして、冷却水又は温水を例示したが不凍液等の他の各種液体Wを適用できる。また、本発明に係る熱交換装置1は、流体Lとして薬液を使用する薬液用熱交換装置に用いて最適であるが、洗浄液や水等の液体、更には空気や不活性ガス等の気体を含む各種流体を適用できるとともに、用途として、半導体製造装置や液晶ガラス基板処理装置等の各種装置における熱交換装置1として利用できる。   As mentioned above, although various embodiment (change embodiment) was demonstrated in detail, this invention is not limited to such embodiment, The summary of this invention is shown in a detailed structure, shape, quantity, material, etc. Any change, addition, or deletion can be made without departing from the scope. For example, as the flow path patterns Rf and Rr, the spiral flow path patterns Rfw and Rrw and the zigzag flow path patterns Rf and Rr are illustrated, but the shape of such a flow path pattern is not limited to the example, Various shapes of flow path patterns Rf and Rr can be applied. Further, the position of the through hole Ro can be provided at an arbitrary position corresponding to the flow path patterns Rf and Rr, and the number thereof may be one or two or more. Furthermore, although the case where the temperature control parts 4f and 4r are configured by the combination of the thermo module Mt... And the water jacket parts 13f and 13r is shown, the case where the temperature control parts 4f and 4r are configured by other temperature control means having the same function is excluded. is not. In addition, although the cooling water or the warm water was illustrated as the liquid W flowing to the water jacket parts 13f and 13r, other various liquids W, such as an antifreeze liquid, are applicable. The heat exchange apparatus 1 according to the present invention is optimal for use in a chemical liquid heat exchange apparatus that uses a chemical liquid as the fluid L. However, a liquid such as a cleaning liquid or water, and a gas such as air or an inert gas may be used. In addition to being able to apply various fluids, it can be used as a heat exchange device 1 in various devices such as semiconductor manufacturing devices and liquid crystal glass substrate processing devices.

本発明の最良の実施形態に係る熱交換装置におけるインナプレート部を示す一部断面正面図、The partial cross section front view which shows the inner plate part in the heat exchange apparatus which concerns on the best embodiment of this invention, 同熱交換装置におけるインナプレート部を示す背面図、The rear view which shows the inner plate part in the heat exchanger, 同熱交換装置における熱交換ブロック部を示す図1中X−X線断面図、XX sectional drawing in FIG. 1 which shows the heat exchange block part in the same heat exchange apparatus, 同熱交換装置におけるインナプレート部を示す図1中Y−Y線断面図、The YY sectional view taken on the line in FIG. 1 which shows the inner plate part in the heat exchanger, 同熱交換装置の外観右側面図、Appearance right side view of the heat exchange device, 同熱交換装置の外観正面図、External front view of the heat exchange device, 本発明の変更実施形態に係る熱交換装置におけるインナプレート部を示す正面図、The front view which shows the inner plate part in the heat exchange apparatus which concerns on the modified embodiment of this invention, 本発明の他の変更実施形態に係る熱交換装置におけるインナプレート部を示す正面図、The front view which shows the inner plate part in the heat exchange apparatus which concerns on other modified embodiment of this invention, 本発明の他の変更実施形態に係る熱交換装置におけるインナプレート部を示す正面図、The front view which shows the inner plate part in the heat exchange apparatus which concerns on other modified embodiment of this invention, 本発明の他の変更実施形態に係る熱交換装置におけるインナプレート部を示す正面図、The front view which shows the inner plate part in the heat exchange apparatus which concerns on other modified embodiment of this invention, 本発明の他の変更実施形態に係る熱交換装置におけるインナプレート部を示す断面側面図、Sectional side view which shows the inner plate part in the heat exchange apparatus which concerns on other modified embodiment of this invention, 本発明の他の変更実施形態に係る熱交換装置におけるインナプレート部を示す正面図、The front view which shows the inner plate part in the heat exchange apparatus which concerns on other modified embodiment of this invention, 本発明の他の変更実施形態に係る熱交換装置におけるインナプレート部を示す正面図、The front view which shows the inner plate part in the heat exchange apparatus which concerns on other modified embodiment of this invention,

符号の説明Explanation of symbols

1:熱交換装置,2:熱交換ブロック部,2f:熱交換面,2r:熱交換面,3:熱交換室,3f:熱交換分室部,3r:熱交換分室部,4f:温調部,4r:温調部,5:仕切壁,11:インナプレート部,11f:インナプレート部の表面,11r:インナプレート部の裏面,11s:インナプレート部の側面,12f:アウタプレート部,12r:アウタプレート部,13f:ウォータジャケット部,13r:ウォータジャケット部,14i:流入口,14e:流出口,15i:流入口,15e:流出口,L:流体,Rf:流路パターン,Rr:流路パターン,Ro:貫通孔,Rfw:渦巻流路パターン,Rrw:渦巻流路パターン,C…:熱交換部,Si:流入路,Se:流出路,Sis:傾斜面,Ses:傾斜面,Rs…:補助パターン,Mt…:サーモモジュール   1: heat exchange device, 2: heat exchange block, 2f: heat exchange surface, 2r: heat exchange surface, 3: heat exchange chamber, 3f: heat exchange compartment, 3r: heat exchange compartment, 4f: temperature controller , 4r: temperature control section, 5: partition wall, 11: inner plate section, 11f: surface of inner plate section, 11r: back surface of inner plate section, 11s: side surface of inner plate section, 12f: outer plate section, 12r: Outer plate part, 13f: Water jacket part, 13r: Water jacket part, 14i: Inlet, 14e: Outlet, 15i: Inlet, 15e: Outlet, L: Fluid, Rf: Channel pattern, Rr: Channel Pattern, Ro: Through hole, Rfw: Swirl channel pattern, Rrw: Swirl channel pattern, C ...: Heat exchange part, Si: Inflow channel, Se: Outflow channel, Sis: Slope, Ses: Slope, Rs ... : Auxiliary pad Over emissions, Mt ...: thermo-module

Claims (10)

少なくとも、熱交換される流体を流通させる所定の流路パターンを内部に設けた熱交換室を有する所定の厚さの熱交換ブロック部と、この熱交換ブロック部の厚さ方向における一対の熱交換面にそれぞれ付設して前記流体に対して熱交換を行う一対の温調部とを備える熱交換装置であって、前記熱交換室の内部に仕切壁を設けることにより、前記熱交換室を前記熱交換面に対して直角方向に二分して一対の熱交換分室部に形成するとともに、各熱交換分室部に所定の流路パターンをそれぞれ設け、かつ前記仕切壁に貫通孔を設けて各熱交換分室部の流路パターンの一端部同士を直列接続するとともに、一対の熱交換分室部における一方の流路パターンの他端部を流体の流入端とし、かつ他方の流路パターンの他端部を流体の流出端とした少なくとも一つの熱交換部を備えることを特徴とする熱交換装置。   At least a heat exchange block part having a predetermined thickness having a heat exchange chamber provided therein with a predetermined flow path pattern for circulating a fluid to be heat exchanged, and a pair of heat exchanges in the thickness direction of the heat exchange block part A heat exchange device provided with a pair of temperature control units respectively attached to a surface and performing heat exchange with respect to the fluid, and by providing a partition wall inside the heat exchange chamber, the heat exchange chamber is The heat exchange surface is divided into two at right angles to form a pair of heat exchange compartments, and each heat exchange compartment is provided with a predetermined flow path pattern, and a through-hole is provided in the partition wall to provide each heat exchange compartment. One end portions of the flow path patterns of the exchange chamber portion are connected in series, the other end portion of one flow path pattern in the pair of heat exchange chamber portions is an inflow end of the fluid, and the other end portion of the other flow path pattern Is the small outflow end of the fluid Heat exchanger, characterized in that it comprises a single heat exchanger both. 前記一対の熱交換分室部に設ける一方又は双方の流路パターンは、渦巻状となる渦巻流路パターンにより形成することを特徴とする請求項1記載の熱交換装置。   2. The heat exchange apparatus according to claim 1, wherein one or both of the flow path patterns provided in the pair of heat exchange compartments are formed by a spiral flow path pattern having a spiral shape. 前記渦巻流路パターンは、当該渦巻流路パターンにより形成される流路の一部又は全部の流路幅を外周側から中心側へ行くに従って漸次広くすることを特徴とする請求項2記載の熱交換装置。   3. The heat according to claim 2, wherein the spiral flow path pattern gradually increases the width of a part or all of the flow path formed by the spiral flow path pattern from the outer peripheral side toward the center side. Exchange device. 前記貫通孔は、前記流路パターンの中心側端部を接続する位置に設けることを特徴とする請求項1,2又は3記載の熱交換装置。   The heat exchange device according to claim 1, 2 or 3, wherein the through hole is provided at a position where a center side end of the flow path pattern is connected. 前記一対の熱交換分室部に設ける各流路パターンは、流体の流通する周回方向を同じ方向に設定することを特徴とする請求項1〜4のいずれかに記載の熱交換装置。   The heat exchange device according to any one of claims 1 to 4, wherein each flow path pattern provided in the pair of heat exchange compartments sets a circulation direction in which the fluid flows in the same direction. 前記流路パターンは、当該流路パターンにより形成される流路の内部に当該流路に沿った一又は二以上の補助パターンを有することを特徴とする請求項1〜5のいずれかに記載の熱交換装置。   The said flow path pattern has the 1 or 2 or more auxiliary pattern along the said flow path inside the flow path formed with the said flow path pattern, The Claim 1 characterized by the above-mentioned. Heat exchange device. 前記熱交換ブロック部は、表裏面に前記流路パターンをそれぞれ設けたインナプレート部を、伝熱性を有する一対のアウタプレート部により挟んで構成することを特徴とする請求項1記載の熱交換装置。   2. The heat exchange device according to claim 1, wherein the heat exchange block part is configured by sandwiching an inner plate part provided with the flow path pattern on each of the front and back surfaces with a pair of outer plate parts having heat conductivity. . 前記インナプレート部の側面又は当該インナプレート部の内部に、流入路と流出路を設け、前記流路パターンの流入端を、傾斜面を有する流路を介して前記流入路に接続するとともに、前記流路パターンの流出端を、傾斜面を有する流路を介して前記流出路に接続することを特徴とする請求項7記載の熱交換装置。   An inflow path and an outflow path are provided in a side surface of the inner plate portion or in the inner plate portion, and an inflow end of the flow path pattern is connected to the inflow path through a flow path having an inclined surface, and The heat exchange device according to claim 7, wherein an outflow end of the flow path pattern is connected to the outflow path through a flow path having an inclined surface. 前記温調部は、ペルチェ素子を用いたサーモモジュールを備えるとともに、当該サーモモジュールにおける前記流路パターン側の面に対する反対側の面に当該サーモモジュールの放熱又は放冷を行うウォータジャケット部を付設してなることを特徴とする請求項1記載の熱交換装置。   The temperature control unit includes a thermo module using a Peltier element, and a water jacket unit that radiates or cools the thermo module is attached to a surface of the thermo module opposite to the surface on the flow path pattern side. The heat exchange device according to claim 1, wherein 一対の温調部におけるウォータジャケット部同士を直列に接続するとともに、ウォータジャケット部に流通させる液体の流出入口側と前記熱交換ブロック部における流体の流出入口側を反対の位置関係で配することを特徴とする請求項9記載の熱交換装置。   The water jacket parts in the pair of temperature control parts are connected in series, and the liquid outlet / inlet side to be circulated through the water jacket part and the fluid outlet / inlet side in the heat exchange block part are arranged in an opposite positional relationship. The heat exchange apparatus according to claim 9, wherein
JP2008332789A 2008-12-26 2008-12-26 Heat exchanger Active JP5403583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332789A JP5403583B2 (en) 2008-12-26 2008-12-26 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332789A JP5403583B2 (en) 2008-12-26 2008-12-26 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2010151427A true JP2010151427A (en) 2010-07-08
JP5403583B2 JP5403583B2 (en) 2014-01-29

Family

ID=42570723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332789A Active JP5403583B2 (en) 2008-12-26 2008-12-26 Heat exchanger

Country Status (1)

Country Link
JP (1) JP5403583B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073018A (en) * 2010-09-29 2012-04-12 Ind Technol Res Inst Thermoelectric drinking apparatus, and thermoelectric heat pump
JP2014005960A (en) * 2012-06-22 2014-01-16 Orion Mach Co Ltd Heat exchange device
JP2016200316A (en) * 2015-04-08 2016-12-01 セイコーエプソン株式会社 Heat exchange device, cooling device and projector
KR101842619B1 (en) * 2017-08-07 2018-04-12 (주)에코쿨링시스템 The cooling and heating apparatus using vacuum chamber
KR101930867B1 (en) * 2016-09-21 2018-12-20 한국기계연구원 Thermoelectric module for heat recovery attachable to refrigerating and air conditioning apparatus
WO2020100596A1 (en) * 2018-11-15 2020-05-22 株式会社Kelk Temperature control device
WO2020100597A1 (en) * 2018-11-15 2020-05-22 株式会社Kelk Temperature control device and production method for temperature control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277678A (en) * 1997-04-03 1998-10-20 Matsukueito:Kk Heat exchanger
JP2002005590A (en) * 2000-06-23 2002-01-09 Orion Mach Co Ltd Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277678A (en) * 1997-04-03 1998-10-20 Matsukueito:Kk Heat exchanger
JP2002005590A (en) * 2000-06-23 2002-01-09 Orion Mach Co Ltd Heat exchanger

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073018A (en) * 2010-09-29 2012-04-12 Ind Technol Res Inst Thermoelectric drinking apparatus, and thermoelectric heat pump
US9310110B2 (en) 2010-09-29 2016-04-12 Industrial Technology Research Institute Thermoelectric drinking apparatus and thermoelectric heat pump
JP2014005960A (en) * 2012-06-22 2014-01-16 Orion Mach Co Ltd Heat exchange device
JP2016200316A (en) * 2015-04-08 2016-12-01 セイコーエプソン株式会社 Heat exchange device, cooling device and projector
KR101930867B1 (en) * 2016-09-21 2018-12-20 한국기계연구원 Thermoelectric module for heat recovery attachable to refrigerating and air conditioning apparatus
KR101842619B1 (en) * 2017-08-07 2018-04-12 (주)에코쿨링시스템 The cooling and heating apparatus using vacuum chamber
JP2020085260A (en) * 2018-11-15 2020-06-04 株式会社Kelk Temperature control device and method for manufacturing temperature control device
WO2020100597A1 (en) * 2018-11-15 2020-05-22 株式会社Kelk Temperature control device and production method for temperature control device
WO2020100596A1 (en) * 2018-11-15 2020-05-22 株式会社Kelk Temperature control device
JP2020087979A (en) * 2018-11-15 2020-06-04 株式会社Kelk Temperature controller
CN112912992A (en) * 2018-11-15 2021-06-04 株式会社Kelk Temperature control device and method for manufacturing temperature control device
CN113039629A (en) * 2018-11-15 2021-06-25 株式会社Kelk Temperature adjusting device
TWI757653B (en) * 2018-11-15 2022-03-11 日商科理克股份有限公司 Temperature regulating device and manufacturing method of temperature regulating device
JP7236846B2 (en) 2018-11-15 2023-03-10 株式会社Kelk TEMPERATURE CONTROLLER AND METHOD FOR MANUFACTURING TEMPERATURE CONTROLLER
JP7236845B2 (en) 2018-11-15 2023-03-10 株式会社Kelk Temperature controller
US11955353B2 (en) 2018-11-15 2024-04-09 Kelk Ltd. Temperature adjustment device and method for manufacturing temperature adjustment device
CN113039629B (en) * 2018-11-15 2024-04-12 株式会社Kelk Temperature adjusting device
CN112912992B (en) * 2018-11-15 2024-04-16 株式会社Kelk Temperature control device and method for manufacturing temperature control device
US11978621B2 (en) 2018-11-15 2024-05-07 Kelk Ltd. Temperature adjustment device with spacers

Also Published As

Publication number Publication date
JP5403583B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5403583B2 (en) Heat exchanger
JP4675283B2 (en) Heat sink and cooler
JPWO2019043801A1 (en) heatsink
JP2008542672A (en) Multiple fluid heat exchanger
WO2013118809A1 (en) Semiconductor cooling device
JPWO2019211889A1 (en) Semiconductor device
GB2552956A (en) Heat exchanger device
TWM612914U (en) Liquid-cooling heat dissipation structure
JP4619387B2 (en) Semiconductor device cooling device
JP2008186913A (en) Fluid-temperature controller
US11414202B2 (en) Plate cooler for aircraft electronic components
JP4544187B2 (en) Cooler
CN110446394A (en) Liquid cooling heat transfer unit (HTU)
TWI470181B (en) Heat exchanger
KR20190033929A (en) Oil Cooler
CN210112516U (en) Double-sided friction stir welding cold plate
JP6306901B2 (en) Plate heat exchanger
JP2013145830A (en) Radiator in liquid cooled system for electronic apparatus
WO2017195588A1 (en) Stack type heat exchanger
JP2008235572A (en) Electronic component cooling device
KR101372303B1 (en) Heat Exchanger
JP7031524B2 (en) Cooler
JP5982232B2 (en) Cooling system
KR20220035301A (en) Cooling-heating apparatus of semi-conductor liquid
CN111256494A (en) Heat exchanger, thermal management system of vehicle and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5403583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250