JP2010148284A - Protective relay system - Google Patents

Protective relay system Download PDF

Info

Publication number
JP2010148284A
JP2010148284A JP2008324429A JP2008324429A JP2010148284A JP 2010148284 A JP2010148284 A JP 2010148284A JP 2008324429 A JP2008324429 A JP 2008324429A JP 2008324429 A JP2008324429 A JP 2008324429A JP 2010148284 A JP2010148284 A JP 2010148284A
Authority
JP
Japan
Prior art keywords
phase
change rate
current
voltage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008324429A
Other languages
Japanese (ja)
Inventor
Yoshiaki Date
義明 伊達
Masami Takenaka
正実 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008324429A priority Critical patent/JP2010148284A/en
Publication of JP2010148284A publication Critical patent/JP2010148284A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protective relay system capable of reducing the number of current transformers and determining overload and short circuit and determining phase loss and disconnection in a three-element protective relay. <P>SOLUTION: The protective relay system includes: a cross through current transformer 11 in which an R-phase and an S-phase of a three-phase power supply line cross and penetrate through a circular core having a secondary coil wound therearound in a reverse direction and at an arbitrary angle; a current transformer 12 for gauge provided between the R-phase and a T-phase of the three-phase power supply line; and a three E relay 20 for detecting the generation of overload, short circuit, inverse phase, phase loss and disconnection in the three-phase power supply line based on a composite current I<SB>R-S</SB>inputted from the cross through current transformer 11 and a TR phase line voltage V<SB>TR</SB>inputted from the current transformer 12 for gauge. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、保護継電システムに関し、特に、三要素保護継電器を用いて三相交流回路における過負荷、短絡、反相、欠相および断線の発生を検出するのに好適な保護継電システムに関する。   The present invention relates to a protective relay system, and more particularly, to a protective relay system suitable for detecting occurrence of overload, short circuit, reverse phase, phase loss, and disconnection in a three-phase AC circuit using a three-element protective relay. .

従来、たとえば図41に示すように、三要素保護継電器である三相誘導電動機用3Eリレー110(以下、「3Eリレー110」と称する。)は、三相電源線(三相交流回路)のR相、S相およびT相にそれぞれ設けられた第1乃至第3の変流器(CT)11〜13から入力されるR相、S相およびT相電流IR,IS,ITの値と三相電源線に設けられた計器用変成器(VT)2から入力されるR相、S相およびT相電圧VR,VS,VTの値とに基づいて以下に示すようにして過負荷、反相および欠相を検出すると、三相電源線のR相、S相およびT相にそれぞれ設けられた第1乃至第3の遮断器31〜33を遮断するための第1乃至第3のトリップ信号T1〜T3を第1乃至第3の遮断器31〜33にそれぞれ出力する。
(1)過負荷検出
R相、S相およびT相電流IR,IS,ITの最大値が設定値以上であるか否か。
(2)反相検出
(a)電流反相検出タイプ:R相、S相およびT相電流IR,IS,ITの値が設定値以下であるか否か。
(b)電圧反相検出タイプ:R相、S相およびT相電圧VR,VS,VTの値が設定値以下であるか否か。
(3)欠相検出
R相、S相およびT相電流IR,IS,ITの最小値が設定値以上であるか否か。
Conventionally, as shown in FIG. 41, for example, a 3E relay 110 for a three-phase induction motor (hereinafter referred to as “3E relay 110”), which is a three-element protective relay, is an R of a three-phase power line (three-phase AC circuit). R, S, and T phase currents I R , I S , I T input from first to third current transformers (CT) 11 to 13 provided in the phase, S phase, and T phase, respectively. And the values of the R-phase, S-phase, and T-phase voltages V R , V S , and V T input from the instrument transformer (VT) 2 provided on the three-phase power line as shown below When overload, anti-phase, and open phase are detected, the first to third circuit breakers 3 1 to 3 3 provided in the R phase, S phase, and T phase of the three-phase power supply line are shut off. The first to third trip signals T 1 to T 3 are output to the first to third circuit breakers 3 1 to 3 3 , respectively.
(1) Overload detection Whether or not the maximum values of the R-phase, S-phase, and T-phase currents I R , I S , and I T are equal to or greater than a set value.
(2) Anti-phase detection (a) Current anti-phase detection type: Whether the R-phase, S-phase, and T-phase currents I R , I S , I T are less than or equal to the set value.
(B) Voltage anti-phase detection type: Whether or not the values of the R-phase, S-phase, and T-phase voltages V R , V S , and V T are less than or equal to the set value.
(3) Missing phase detection Whether or not the minimum values of the R-phase, S-phase, and T-phase currents I R , I S , I T are equal to or larger than the set value.

なお、下記の特許文献1には、三相交流入力を直流変換する機能を有した検出部を備え、検出部の出力の三相の平均実効値と過電流レベル整定回路の整定値を比較器で比較して過電流を判定するとともに、検出部の出力の三相の平均実効値と各相の実効値を3個の比較器で各々比較して欠相を判定する三相誘導電動機用2Eリレーにおいて、交流回路に高調波が含有し、そのピーク値が変動しても不要動作および動作遅延が起こらず、安定して動作できるようにするために、検出部を、熱電対を有し、周波数に関係無く交流入力の実効値に比例した直流起電力を得る熱電形変換器で構成した三相誘導電動機用2Eリレーが開示されている。
特開平9−298832号公報
The following Patent Document 1 includes a detector having a function of converting a three-phase alternating current input into a direct current, and compares the three-phase average effective value of the output of the detector with the set value of the overcurrent level settling circuit. 2E for the three-phase induction motor that determines the overcurrent by comparing the three-phase average effective value of the output of the detection unit and the effective value of each phase with three comparators. In the relay, harmonics are contained in the AC circuit, and unnecessary operation and operation delay do not occur even if the peak value fluctuates, so that the detection unit has a thermocouple, There is disclosed a 2E relay for a three-phase induction motor configured with a thermoelectric converter that obtains a DC electromotive force proportional to the effective value of the AC input regardless of the frequency.
Japanese Patent Application Laid-Open No. 9-299832

しかしながら、従来の3Eリレー110は、R相、S相およびT相電流IR,IS,ITの値およびR相、S相およびT相電圧VR,VS,VTの値に基づいて過負荷、反相および欠相を検出しているので、変流器が3つ必要であるという問題と、過負荷および短絡を判別することができないとともに欠相および断線を判別することができないという問題とがあった。 However, the conventional 3E relay 110 is based on the values of the R-phase, S-phase, and T-phase currents I R , I S , I T and the values of the R-phase, S-phase, and T-phase voltages V R , V S , V T. Since overload, anti-phase, and open phase are detected, the problem that three current transformers are necessary, overload and short circuit cannot be determined, and open phase and open circuit cannot be determined. There was a problem.

本発明の目的は、変流器の数を減らすことができるとともに、三要素保護継電器において過負荷および短絡の判別と欠相および断線の判別もすることができる保護継電システムを提供することにある。   An object of the present invention is to provide a protection relay system that can reduce the number of current transformers and can also determine overload and short circuit and phase loss and disconnection in a three-element protection relay. is there.

本発明の保護継電システムは、三相交流回路の第1および第2の相にそれぞれ流れる第1および第2の相電流(IR,IS)の差電流(IR-S)と、該三相交流回路の1つの線間電圧(VTR)または該三相交流回路の1つの線間電圧(VTR)および1つの相電圧(VT)または該三相交流回路の3つの線間電圧(VRS,VST,VTR)とに基づいて、該三相交流回路における過負荷、短絡、反相、欠相および断線の発生を検出する三要素保護継電器(20,50,70)を具備することを特徴とする。
ここで、2次コイルを巻装した環状鉄心に前記三相交流回路の前記第1および第2の相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器(11)と、
前記三相交流回路の前記第1および第3の相間に設けられた計器用変成器(12)とをさらに具備し、前記三要素保護継電器(20)が、前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)および位相差(α)と前記計器用変成器から入力される1つの線間電圧(VTR)の電圧変化率(LTR)および位相変化角(ΔθTR)とに基づいて、前記三相交流回路における過負荷および短絡の発生を検出し、前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)および位相差(α)と前記計器用変成器から入力される1つの線間電圧(VTR)の電圧変化率(LTR)とに基づいて、前記三相交流回路における反相、欠相および断線の発生を検出してもよい。
2次コイルを巻装した環状鉄心に前記三相交流回路の前記第1および第2の相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器(41)と、前記三相交流回路の前記第1および第3の相間に設けられた計器用変成器(42)とをさらに具備し、前記三要素保護継電器(50)が、前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)と前記計器用変成器から入力される1つの線間電圧(VTR)の電圧変化率(LTR)および位相変化角(ΔθTR)と該計器用変成器から入力される1つの相電圧(VT)の電圧変化率(LT)および位相変化角(ΔθT)とに基づいて、前記三相交流回路における過負荷および短絡の発生を検出し、前記合成電流の電流変化率と前記線間電圧の電圧変化率と前記相電圧の電圧変化率および位相差(β)とに基づいて、前記三相交流回路における反相の発生を検出し、前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)および位相差(α)と前記計器用変成器から入力される1つの線間電圧(VTR)の電圧変化率(LTR)と該計器用変成器から入力される1つの相電圧(VT)の電圧変化率(LT)とに基づいて、前記三相交流回路における欠相および断線の発生を検出してもよい。
2次コイルを巻装した環状鉄心に前記三相交流回路の前記第1および第2の相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器(61)と、前記三相交流回路に設けられた計器用変成器(62)とをさらに具備し、前記三要素保護継電器(70)が、前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)および2つの位相差(αST,αTR)と前記計器用変成器から入力される3つの線間電圧(VRS,VST,VTR)の電圧変化率(LRS,LST,LTR)とに基づいて、前記三相交流回路における過負荷および短絡の発生を検出し、前記合成電流の電流変化率と前記3つの線間電圧の電圧変化率と該3つの線間電圧のうちの1つの線間電圧の位相差(βRS)とに基づいて、前記三相交流回路における反相の発生を検出し、前記合成電流の電流変化率および1つの位相差(αTR)と前記3つの線間電圧(VRS,VST,VTR)の電圧変化率(LRS,LST,LTR)および位相差(βRS,βST,βTR)とに基づいて、前記三相交流回路における欠相および断線の発生を検出してもよい。
前記合成電流の2つの位相差が、前記三相交流回路の前記第2および第3の相間の第2の線間電圧(VST)の位相(θST)に対する該合成電流の位相差(αST)と、該三相交流回路の前記第3および第1の相間の第3の線間電圧(VTR)の位相(θTR)に対する該合成電流の位相差(αTR)とであり、前記3つの線間電圧の位相差が、前記第3の線間電圧(VTR)の位相(θTR)に対する前記三相交流回路の前記第1および第2の相間の第1の線間電圧(VRS)の位相差(βRS)と、該第1の線間電圧(VRS)の位相(θRS)に対する前記第2の線間電圧(VST)の位相差(βST)と、該第2の線間電圧(VST)の位相(θST)に対する前記第3の線間電圧(VTR)の位相差(βTR)とであってもよい。
The protection relay system of the present invention includes a difference current (I RS ) between first and second phase currents (I R , I S ) flowing in the first and second phases of a three-phase AC circuit, and the three One line voltage (V TR ) of the phase AC circuit or one line voltage (V TR ) and one phase voltage (V T ) of the three-phase AC circuit or three line voltages of the three-phase AC circuit Based on (V RS , V ST , V TR ), a three-element protection relay (20, 50, 70) for detecting occurrence of overload, short circuit, reverse phase, phase loss and disconnection in the three-phase AC circuit It is characterized by comprising.
Here, a cross-penetrating current transformer (11) in which the first and second phases of the three-phase AC circuit are crossed in an opposite direction and at an arbitrary angle through an annular core wound with a secondary coil. When,
An instrument transformer (12) provided between the first and third phases of the three-phase AC circuit, wherein the three-element protective relay (20) is input from the cross-through current transformer. The current change rate (K RS ) and phase difference (α) of the combined current (I RS ) and the voltage change rate (L TR ) and phase of one line voltage (V TR ) input from the instrument transformer Based on the change angle (Δθ TR ), the occurrence of overload and short circuit in the three-phase AC circuit is detected, and the current change rate (K RS ) of the combined current (I RS ) input from the cross-through current transformer ) And phase difference (α) and the voltage change rate (L TR ) of one line voltage (V TR ) input from the instrument transformer, the anti-phase and phase loss in the three-phase AC circuit In addition, occurrence of disconnection may be detected.
A cross-penetrating current transformer (41) in which the first and second phases of the three-phase AC circuit are crossed in a reverse direction and at an arbitrary angle through an annular core around which a secondary coil is wound; And an instrument transformer (42) provided between the first and third phases of a three-phase AC circuit, and the three-element protective relay (50) is input from the cross-through current transformer. The current change rate (K RS ) of the combined current (I RS ), the voltage change rate (L TR ) and the phase change angle (Δθ TR ) of one line voltage (V TR ) input from the instrument transformer Occurrence of overload and short circuit in the three-phase AC circuit based on the voltage change rate (L T ) and phase change angle (Δθ T ) of one phase voltage (V T ) input from the instrument transformer Detecting the current change rate of the combined current, the voltage change rate of the line voltage, and the phase current. Based on the voltage change rate and the phase difference (β) of the voltage, occurrence of antiphase in the three-phase AC circuit is detected, and the current change rate of the combined current (I RS ) input from the cross-through current transformer (K RS ), phase difference (α), voltage change rate (L TR ) of one line voltage (V TR ) input from the instrument transformer, and one phase input from the instrument transformer based on the voltage change rate of the voltage (V T) and (L T), the occurrence of phase loss and breakage in the three-phase alternating current circuit may be detected.
A cross-penetrating current transformer (61) in which the first and second phases of the three-phase AC circuit are crossed in an opposite direction and at an arbitrary angle through an annular core around which a secondary coil is wound; An instrument transformer (62) provided in a three-phase AC circuit, and the three-element protection relay (70) is a current change of the combined current (I RS ) input from the cross-through current transformer. Rate (K RS ) and two phase differences (α ST , α TR ) and the voltage change rate (L RS , V TR ) of three line voltages (V RS , V ST , V TR ) input from the instrument transformer. L ST , L TR ) to detect the occurrence of overload and short circuit in the three-phase AC circuit, the current change rate of the combined current, the voltage change rate of the three line voltages, and the three lines the phase difference between one of the line voltage of between voltage based on the (beta RS), Contact to the three-phase alternating current circuit That detects the occurrence of a reverse phase, the current change rate of the combined current and one phase difference (alpha TR) and the three line voltage (V RS, V ST, V TR) rate of change of voltage (L RS, Based on L ST , L TR ) and the phase difference (β RS , β ST , β TR ), the occurrence of phase loss and disconnection in the three-phase AC circuit may be detected.
The two phase differences of the combined current are the phase difference (α of the combined current with respect to the phase (θ ST ) of the second line voltage (V ST ) between the second and third phases of the three-phase AC circuit. ST ) and the phase difference (α TR ) of the combined current with respect to the phase (θ TR ) of the third line voltage (V TR ) between the third and first phases of the three-phase AC circuit, A phase difference between the three line voltages is a first line voltage between the first and second phases of the three-phase AC circuit with respect to a phase (θ TR ) of the third line voltage (V TR ). (V RS ) phase difference (β RS ) and phase difference (β ST ) of the second line voltage (V ST ) with respect to the phase (θ RS ) of the first line voltage (V RS ) The phase difference (β TR ) of the third line voltage (V TR ) with respect to the phase (θ ST ) of the second line voltage (V ST ).

本発明の保護継電システムは、以下に示す効果を奏する。
(1)2次コイルを巻装した環状鉄心に三相交流回路の第1および第2の相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器を用いることにより、三相交流回路に設ける変流器の数を1つに減らすことができる。
(2)合成電流の電流変化率および位相差と、線間電圧および相電圧の電圧変化率および位相差とに基づいて、三相交流回路における過負荷および短絡の発生を検出することにより、三要素保護継電器において過負荷および短絡の判別をすることができる。
(3)合成電流の電流変化率および位相差と、線間電圧および相電圧の電圧変化率および位相差とに基づいて、三相交流回路における欠相および断線の発生を検出することにより、三要素保護継電器において三相交流回路における欠相および断線の判別をすることができる。
The protection relay system of the present invention has the following effects.
(1) By using a cross-through current transformer in which a first and second phases of a three-phase AC circuit are crossed in opposite directions and penetrated through an annular core around which a secondary coil is wound, The number of current transformers provided in the three-phase AC circuit can be reduced to one.
(2) Based on the current change rate and phase difference of the combined current and the voltage change rate and phase difference of the line voltage and the phase voltage, the occurrence of overload and short circuit in the three-phase AC circuit is detected. Overload and short circuit can be distinguished in the element protection relay.
(3) Based on the current change rate and phase difference of the combined current, and the voltage change rate and phase difference of the line voltage and phase voltage, the occurrence of phase loss and disconnection in the three-phase AC circuit is detected. In the element protection relay, it is possible to determine the phase loss and disconnection in the three-phase AC circuit.

上記の目的を、三要素保護継電器が、2次コイルを巻装した環状鉄心に三相交流回路の第1および第2の相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器から入力される合成電流の電流変化率および位相差と、三相交流回路の第1の相および第3の相間に設けられた計器用変成器から入力される1つの線間電圧の電圧変化率および位相変化角とに基づいて、三相交流回路における過負荷、短絡、反相、欠相および断線の発生を検出することにより実現した。   A cross penetration in which the three-element protective relay penetrates the first and second phases of the three-phase AC circuit in the opposite direction and at an arbitrary angle through an annular iron core wound with a secondary coil. The current change rate and phase difference of the combined current input from the current transformer, and one line voltage input from the instrument transformer provided between the first phase and the third phase of the three-phase AC circuit. Based on the voltage change rate and the phase change angle, it was realized by detecting the occurrence of overload, short circuit, reverse phase, open phase and disconnection in the three-phase AC circuit.

以下、本発明の保護継電システムの実施例について図面を参照して説明する。
まず、本発明の第1の実施例による保護継電システムについて、図1乃至図16を参照して説明する。
本実施例による保護継電システムは、図1に示すように、三相電源線のR相およびS相がクロスするように貫通されたクロス貫通変流器11と、三相電源線のR相とT相との間に設けられた計器用変成器12と、クロス貫通変流器11から入力される合成電流IR-Sと計器用変成器12から入力されるTR相線間電圧VTR(T相とR相との間の線間電圧)とに基づいて三相電源線における過負荷、短絡、反相、欠相および断線を検出する三相誘導電動機用3Eリレー20(以下、「3Eリレー20」と称する。)とを具備する。
Embodiments of the protective relay system of the present invention will be described below with reference to the drawings.
First, a protection relay system according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the protection relay system according to the present embodiment includes a cross-through current transformer 11 that is penetrated so that the R phase and the S phase of the three-phase power supply line cross, and the R phase of the three-phase power supply line. Instrument transformer 12 provided between the T phase and the T phase, the combined current I RS inputted from the cross-through current transformer 11 and the TR phase line voltage V TR (T 3E relay 20 for a three-phase induction motor (hereinafter referred to as “3E relay”) that detects an overload, a short circuit, an opposite phase, an open phase, and a disconnection in a three-phase power source line based on the line voltage between the phase and the R phase) 20 ”).

ここで、クロス貫通変流器11は、2次コイルを巻装した環状鉄心に三相電源線のR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、三相電源線のR相はクロス貫通変流器11の極性方向(環状鉄心の第1の開口面から環状鉄心の第2の開口面への方向)に貫通されているが、三相電源線のS相はクロス貫通変流器11の反極性方向(環状鉄心の第2の開口面から環状鉄心の第1の開口面への方向)に貫通されている。
したがって、正常時におけるR相、S相およびT相電流IR,IS,IT並びに合成電流IR-SをIR0,IS0,IT0およびI(R-S)0で表すと、R相電流IR0およびS相電流IS0は図2(a)に示すように120°の位相差でクロス貫通変流器11の環状鉄心を逆向きに貫通して流れる(すなわち、R相電流IR0はクロス貫通変流器11の環状鉄心を極性方向に貫通して流れ、S相電流IS0はクロス貫通変流器11の環状鉄心を反極性方向に貫通して流れる)ため、クロス貫通変流器11から3Eリレー20に入力される合成電流I(R-S)0はR相電流IR0とS相電流IS0との差電流(ベクトル差)となり、合成電流I(R-S)0の値|I(R-S)0|はR相電流IR0の値|IR0|(S相電流IS0の値|IS0|)の31/2倍となり、合成電流I(R-S)0の位相θ(R-S)0は270°となる。
(R-S)0=IR0−IS0
|I(R-S)0|=|IR0−IS0|=31/2×|IR0|(=31/2×|IS0|)
θ(R-S)0=270°
Here, the cross-through current transformer 11 is a through-type current transformer in which an R-phase and an S-phase of a three-phase power supply line are crossed in an opposite direction and at an arbitrary angle through an annular core wound with a secondary coil. It is a vessel.
That is, the R phase of the three-phase power supply line is penetrated in the polarity direction of the cross-through current transformer 11 (direction from the first opening surface of the annular core to the second opening surface of the annular core). The S phase of the power supply line is penetrated in the opposite polarity direction of the cross through current transformer 11 (direction from the second opening surface of the annular core to the first opening surface of the annular core).
Therefore, when the R-phase, S-phase and T-phase currents I R , I S , I T and the combined current I RS in the normal state are expressed by I R0 , I S0 , I T0 and I (RS) 0 , the R-phase current I As shown in FIG. 2A, R0 and S-phase current I S0 flow through the annular core of cross-through current transformer 11 in the opposite direction with a phase difference of 120 ° (that is, R-phase current I R0 is crossed). Since the annular iron core of the through current transformer 11 flows in the polarity direction and the S-phase current I S0 flows through the annular iron core of the cross current transformer 11 in the opposite polarity), the cross current transformer 11 combined current is input to 3E relay 20 from I (RS) 0 is the difference between the R-phase current I R0 and S-phase current I S0 current (vector difference), and the combined current I (RS) 0 value | I (RS ) 0 | the value of R-phase current I R0 | I R0 | (the value of S-phase current I S0 | I S0 | becomes 31/2 times), the phase theta (RS) 0 of the combined current I (RS) 0 Is 2 0 a °.
I (RS) 0 = I R0 -I S0
| I (RS) 0 | = | I R0 −I S0 | = 3 1/2 × | I R0 | (= 3 1/2 × | I S0 |)
θ (RS) 0 = 270 °

また、正常時におけるR相電圧VRおよびT相電圧VTをVR0およびVT0で表すと、R相電圧VR0およびT相電圧VT0は図2(b)に示すように240°の位相差であるため、計器用変成器12から3Eリレー20に入力されるTR相線間電圧VTR0の値|VTR0|はT相電圧VT0の値|VT0|(R相電圧VR0の値|VR0|)の31/2倍となり、TR相線間電圧VTR0の位相θTR0は210°となる。
TR0=VT0−VR0
|VTR0|=|VT0−VR0|=31/2×|VT0|=31/2×|VR0
θTR0=210°
Further, when the R-phase voltage V R and the T-phase voltage V T at the normal time are expressed by V R0 and V T0 , the R-phase voltage V R0 and the T-phase voltage V T0 are 240 ° as shown in FIG. Because of the phase difference, the value | V TR0 | of the TR phase line voltage V TR0 input to the 3E relay 20 from the instrument transformer 12 is the value of the T phase voltage V T0 | V T0 | (R phase voltage V R0 value | V R0 |) of 3 to 1/2 times, the phase theta TR0 of TR-phase line voltage V TR0 becomes 210 °.
V TR0 = V T0 -V R0
| V TR0 | = | V T0 −V R0 | = 3 1/2 × | V T0 | = 3 1/2 × | V R0 |
θ TR0 = 210 °

3Eリレー20は、クロス貫通変流器11から入力される合成電流IR-Sの電流変化率KR-Sおよび位相差α(TR相線間電圧VTRの位相θTRに対する位相差であり、遅れ位相を正の値で進み位相を負の値で示す。以下同様)と計器用変成器12から入力されるTR相線間電圧VTRの電圧変化率LTRおよび位相変化角(ΔθTR)とに基づいて過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡を検出する。
また、3Eリレー20は、合成電流IR-Sの電流変化率KR-Sおよび位相差αとTR相線間電圧VTRの電圧変化率LTRとに基づいてR−S相反相、S−T相反相およびT−R相反相を検出する。
さらに、3Eリレー20は、合成電流IR-Sの電流変化率KR-Sおよび位相差αとTR相線間電圧VTRの電圧変化率LTRとに基づいて、スター結線された三相電源線におけるR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線を検出するとともに、デルタ結線された三相電源線におけるR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線を検出する。
3Eリレー20は、以上のようにして過負荷などを検出すると、第1乃至第3のトリップ信号T1〜T3を第1乃至第3の遮断器31〜33にそれぞれ出力する。
The 3E relay 20 is a current change rate K RS and a phase difference α (the phase difference with respect to the phase θ TR of the TR phase line voltage V TR) of the combined current I RS input from the cross-through current transformer 11, and the delay phase is Based on the positive value, the lead phase is indicated by a negative value (the same applies hereinafter) and the voltage change rate L TR and the phase change angle (Δθ TR ) of the TR phase line voltage V TR input from the instrument transformer 12. Overload, R-S phase short circuit, S-T phase short circuit, T-R phase short circuit and three-phase short circuit are detected.
Further, 3E relay 20, the composite current I RS of the current rate of change K RS and the phase difference α and TR-phase line voltage V TR RS reciprocal phase based on the voltage change rate L TR of, S-T-reciprocal phase And TR reciprocal phase is detected.
Furthermore, 3E relay 20, the composite current I RS on the basis of the voltage change rate L TR of the current rate of change K RS and the phase difference α and TR-phase line voltage V TR of, R in the star-connected three-phase power supply line Detects phase open phase, S phase open phase, T phase open phase, R phase open wire, S phase open wire and T phase open wire, as well as R phase open phase, S phase open phase, T Phase open phase, RS phase disconnection, ST phase disconnection and TR phase disconnection are detected.
When the 3E relay 20 detects an overload or the like as described above, the 3E relay 20 outputs the first to third trip signals T 1 to T 3 to the first to third circuit breakers 3 1 to 3 3 , respectively.

次に、3Eリレー20における過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出方法について、図3乃至図5を参照して詳しく説明する。
なお、以下では、説明の簡単のために、R相、S相およびT相電流IR,IS,ITの定格電流値を“1”とし、R相、S相およびT相電圧VR,VS,VTの定格電圧値を“1”とする。また、正常時のR相、S相およびT相電流IR0,IS0,IT0の値をR相、S相およびT相電流IR,IS,ITの定格電流値(すなわち、|IR0|=|IS0|=|IT0|=1)とし、正常時のR相、S相およびT相電圧VR0,VS0,VT0の値をR相、S相およびT相電圧VR,VS,VTの定格電圧値(すなわち、|VR0|=|VS0|=|VT0|=1)とし、正常時のR相電流IR0の位相θR0を0°とする。さらに、過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出値を定格電流の115%以上とする。
Next, a method for detecting overload, R-S phase short circuit, S-T phase short circuit, T-R phase short circuit, and three-phase short circuit in the 3E relay 20 will be described in detail with reference to FIGS.
In the following, for simplicity of explanation, the rated current values of the R-phase, S-phase, and T-phase currents I R , I S , I T are set to “1”, and the R-phase, S-phase, and T-phase voltages V R , V S , V T rated voltage value is “1”. Further, the values of the R-phase, S-phase and T-phase currents I R0 , I S0 and I T0 in the normal state are changed to the rated current values of the R-phase, S-phase and T-phase currents I R , I S and I T (that is, | I R0 | = | I S0 | = | I T0 | = 1), and the values of the R phase, S phase, and T phase voltages V R0 , V S0 , and V T0 in the normal state are the R phase, S phase, and T phase voltages. V R, V S, the rated voltage value of V T (i.e., | V R0 | = | V S0 | = | V T0 | = 1) and then, with the phase theta R0 of the normal time of R-phase current I R0 0 ° To do. Furthermore, the detected value of overload, RS phase short circuit, ST phase short circuit, TR phase short circuit, and three phase short circuit is set to 115% or more of the rated current.

(1)正常時の合成電流I(R-S)0およびTR相線間電圧VTR0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0と正常時の合成電流I(R-S)0の位相差α0とは(1−1)式から(1−5)式でそれぞれ表される(図2(a),(b)参照)。
|I(R-S)0|=|IR0−IS0|=31/2×|IR0|=31/2×1=31/2 (1−1)
θ(R-S)0=330° (1−2)
|VTR0|=|VT0−VR0|=31/2×|VT0|=31/2×1=31/2 (1−3)
θTR0=210° (1−4)
α0=θ(R-S)0−θTR0=330°−210°=120° (1−5)
(1) Combined current I (RS) 0 and TR phase line voltage V TR0 at normal time
Normal value of composite current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal value of TR phase line voltage V TR0 | V TR0 | and phase θ TR0 and normal value The phase difference α 0 of the combined current I (RS) 0 is expressed by the equations (1-1) to (1-5) (see FIGS. 2A and 2B).
| I (RS) 0 | = | I R0 −I S0 | = 3 1/2 × | I R0 | = 3 1/2 × 1 = 3 1/2 (1-1)
θ (RS) 0 = 330 ° (1-2)
| V TR0 | = | V T0 −V R0 | = 3 1/2 × | V T0 | = 3 1/2 × 1 = 3 1/2 (1-3)
θ TR0 = 210 ° (1-4)
α 0 = θ (RS) 0 −θ TR0 = 330 ° -210 ° = 120 ° (1-5)

(2)過負荷時の合成電流IR-SおよびTR相線間電圧VTR
過負荷が発生して定格電流値(この例では、正常時のR相、S相およびT相電流IR0,IS0,IT0)の1.15倍のR相、S相およびT相電流IR,IS,ITが三相電源線のR相、S相およびT相にそれぞれ流れたとすると、過負荷時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRとは(2−1)式から(2−7)式でそれぞれ表される(図3(a),(b)参照)。
|IR-S|=|IR−IS|=31/2×|IR|=31/2×(1.15×|IR0|)
=31/2×(1.15×1)=31/2×1.15 (2−1)
R-S=|IR-S|/|I(R-S)0|=(31/2×1.15)/31/2
=1.15 (2−2)
θR-S=330° (2−3)
|VTR|=|VT−VR|=31/2×|VT|=31/2×|VT0|=31/2×1
=31/2 (2−4)
TR=|VTR|/|VTR0|=31/2/31/2=1 (2−5)
θTR=210° (2−6)
ΔθTR=θTR−θTR0=210°−210°=0° (2−7)
(2) Combined current I RS and TR phase line voltage V TR during overload
R-phase, S-phase, and T-phase currents that are 1.15 times the rated current values (in this example, normal R-phase, S-phase, and T-phase currents I R0 , I S0 , I T0 ) due to overload I R, I S, R-phase of the I T is a three-phase power line, assuming that respectively flow into S phase and T-phase, the value of the composite current I RS during overload | I RS |, the current change rate K RS and phase The values of θ RS and TR phase line voltage V TR | V TR |, voltage change rate L TR , phase θ TR and phase change angle Δθ TR are expressed by equations (2-1) to (2-7), respectively. (See FIGS. 3A and 3B).
| I RS | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × (1.15 × | I R0 |)
= 3 1/2 × (1.15 × 1) = 3 1/2 × 1.15 (2-1)
K RS = | I RS | / | I (RS) 0 | = (3 1/2 × 1.15) / 3 1/2
= 1.15 (2-2)
θ RS = 330 ° (2-3)
| V TR | = | V T −V R | = 3 1/2 × | V T | = 3 1/2 × | V T0 | = 3 1/2 × 1
= 3 1/2 (2-4)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (2-5)
θ TR = 210 ° (2-6)
Δθ TR = θ TR −θ TR0 = 210 ° −210 ° = 0 ° (2-7)

(3)R−S相短絡時の合成電流IR-SおよびTR相線間電圧VTR
R相−S相間の短絡事故(R−S相短絡)が発生すると、三相電源線のR相およびS相にR相事故電流IFRおよびS相事故電流IFSが逆方向に流れるが、三相電源線のT相には正常時のT相電流IT0が流れたままとなる。
したがって、定格電流値(この例では、正常時のR相、S相およびT相電流IR0,IS0,IT0)の1.15倍のR相およびS相事故電流IFR,IFSが流れたとすると、R−S相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRと合成電流IR-Sの位相差αとは(3−1)式から(3−8)式でそれぞれ表される(図4(a−1),(a−2)参照)。なお、R相、S相およびT相事故電流IFR,IFS,IFTのインピーダンス角θ=75°とする。
|IR-S|=|IFR−IFS|=2×|IFR|=2×(1.15×|IR0|)
=2×(1.15×1)=2.3 (3−1)
R-S=|IR-S|/|I(R-S)0|=(2.3)/31/2(=1.328) (3−2)
θR-S=45° (3−3)
|VTR|={1.52+(0.8×31/2/2)21/2 (3−4)
TR=|VTR|/|VTR0|={1.52+(0.8×31/2/2)21/2/31/2
(=0.954) (3−5)
θTR=215.2° (3−6)
ΔθTR=θTR−θTR0=215.2°−210°=5.2° (3−7)
α=θR-S−θTR=45°−215.2°=−170.2° (3−8)
(3) Composite current I RS and TR phase line voltage V TR when RS phase is short-circuited
When a short-circuit accident between R-phase and S-phase (R-S-phase short-circuit) occurs, R-phase fault current I FR and S-phase fault current I FS flow in opposite directions in the R-phase and S-phase of the three-phase power line. A normal T-phase current I T0 still flows in the T-phase of the three-phase power line.
Therefore, the R-phase and S-phase fault currents I FR and I FS are 1.15 times the rated current value (in this example, the normal R-phase, S-phase and T-phase currents I R0 , I S0 and I T0 ). Assuming that the current flows, the value of the combined current I RS when the RS phase is short-circuited | I RS |, the current change rate K RS and the value of the phase θ RS and the TR phase line voltage V TR | V TR |, the voltage change rate L TR , phase θ TR, phase change angle Δθ TR and phase difference α of combined current I RS are expressed by equations (3-1) to (3-8), respectively (FIGS. 4A-1 and 4A-1). a-2)). It is assumed that the impedance angle θ of the R-phase, S-phase, and T-phase fault currents I FR , I FS , and I FT is 75 °.
| I RS | = | I FR −I FS | = 2 × | I FR | = 2 × (1.15 × | I R0 |)
= 2 × (1.15 × 1) = 2.3 (3-1)
K RS = | I RS | / | I (RS) 0 | = (2.3) / 3 1/2 (= 1.328) (3-2)
θ RS = 45 ° (3-3)
| V TR | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (3-4)
L TR = | V TR | / | V TR0 | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 3 1/2
(= 0.954) (3-5)
θ TR = 215.2 ° (3-6)
Δθ TR = θ TR −θ TR0 = 215.2 ° -210 ° = 5.2 ° (3-7)
α = θ RS −θ TR = 45 ° -215.2 ° = −170.2 ° (3-8)

(4)S−T相短絡時の合成電流IR-SおよびTR相線間電圧VTR
S相−T相間の短絡事故(S−T相短絡)が発生すると、三相電源線のS相およびT相にS相事故電流IFSおよびT相事故電流IFTが逆方向に流れるが、三相電源線のR相には正常時のR相電流IR0が流れたままとなる。
したがって、定格電流値(この例では、正常時のR相、S相およびT相電流IR0,IS0,IT0)の1.15倍のS相およびT相事故電流IFS,IFTが流れたとすると、S−T相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRと合成電流IR-Sの位相差αとは(4−1)式から(4−8)式でそれぞれ表される(図4(b−1),(b−2)参照)。
|IR-S|=|IR0−IFS|=|IR0−1.15IS0
=(|IR02+|1.15IS02−2×|IR0|×|1.15IS0|×cos165°)1/2
=(12+1.152−2×1×1.15×cos165°)1/2
=2.132 (4−1)
R-S=|IR-S|/|I(R-S)0|=2.132/31/2=1.231 (4−2)
θR-S=353° (4−3)
|VTR|={1.52+(0.8×31/2/2)21/2 (4−4)
TR=|VTR|/|VTR0|={1.52+(0.8×31/2/2)21/2/31/2
(=0.954) (4−5)
θTR=204.8° (4−6)
ΔθTR=θTR−θTR0=204.8°−210°=−5.2° (4−7)
α=θR-S−θTR=353°−204.8°=148.2° (4−8)
また、定格電流値よりも過大なS相およびT相事故電流IFS,IFTが流れたとすると、S−T相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sと合成電流IR-Sの位相差αとは(4−9)式から(4−12)式でそれぞれ表される(図4(b)の一点鎖線参照)。
|IR-S|=|−IFS|≫|1.15IS0|≫1.15 (4−9)
R-S=|IR-S|/|I(R-S)0|≫1.15/31/2(=0.664) (4−10)
θR-S=345° (4−11)
α=θR-S−θTR=345°−204.8°=140.2° (4−12)
(4) Composite current I RS and TR phase line voltage V TR when S-T phase is short-circuited
When a short-circuit accident between S-phase and T-phase (S-T phase short-circuit) occurs, S-phase fault current IFS and T-phase fault current IFT flow in the opposite directions in the S-phase and T-phase of the three-phase power line. The normal R-phase current I R0 still flows in the R-phase of the three-phase power line.
Therefore, the S-phase and T-phase fault currents I FS and I FT are 1.15 times the rated current value (in this example, the normal R-phase, S-phase and T-phase currents I R0 , I S0 and I T0 ). If the current flows, the value of the combined current I RS at the time of the S-T phase short circuit | I RS |, the current change rate K RS and the value of the phase θ RS and the TR phase line voltage V TR | V TR |, the voltage change rate L TR , phase θ TR, phase change angle Δθ TR and phase difference α of combined current I RS are expressed by equations (4-1) to (4-8), respectively (FIG. 4 (b-1), ( b-2)).
| I RS | = | I R0 −I FS | = | I R0 −1.15I S0 |
= (| I R0 | 2 + | 1.15I S0 | 2 −2 × | I R0 | × | 1.15I S0 | × cos 165 °) 1/2
= (1 2 +1.15 2 -2 × 1 × 1.15 × cos 165 °) 1/2
= 2.132 (4-1)
K RS = | I RS | / | I (RS) 0 | = 2.132 / 3 1/2 = 1.231 (4-2)
θ RS = 353 ° (4-3)
| V TR | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (4-4)
L TR = | V TR | / | V TR0 | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 3 1/2
(= 0.954) (4-5)
θ TR = 204.8 ° (4-6)
Δθ TR = θ TR −θ TR0 = 204.8 ° −210 ° = −5.2 ° (4-7)
α = θ RS −θ TR = 353 ° −204.8 ° = 148.2 ° (4-8)
Also, assuming that the S-phase and T-phase fault currents I FS and I FT exceeding the rated current value flow, the value of the combined current I RS at the time of the S-T phase short circuit | I RS |, the current change rate K RS and The phase difference α between the phase θ RS and the combined current I RS is expressed by the equations (4-9) to (4-12), respectively (see the dashed line in FIG. 4B).
| I RS | = | −I FS | >> | 1.15I S0 | >> 1.15 (4-9)
K RS = | I RS | / | I (RS) 0 | >> 1.15 / 3 1/2 (= 0.664) (4-10)
θ RS = 345 ° (4-11)
α = θ RS −θ TR = 345 ° −204.8 ° = 140.2 ° (4-12)

(5)T−R相短絡時の合成電流IR-SおよびTR相線間電圧VTR
T相−R相間の短絡事故(T−R相短絡)が発生すると、三相電源線のT相およびR相にT相事故電流IFTおよびR相事故電流IFRが逆方向に流れるが、三相電源線のS相には正常時のS相電流IS0が流れたままとなる。
したがって、定格電流値(この例では、正常時のR相、S相およびT相電流IR0,IS0,IT0)の1.15倍のT相およびR相事故電流IFT,IFRが流れたとすると、T−R相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRと合成電流IR-Sの位相差αとは(5−1)式から(5−8)式でそれぞれ表される(図5(a−1),(a−2)参照)。
|IR-S|=|IFR−IS0|=|1.15IR0−IS0
=(|1.15IR02+|IS02−2×|1.15IR0|×|IS0|×cos15°)1/2
=(1.152+12−2×1.15×1×cos15°)1/2
=0.318 (5−1)
R-S=|IR-S|/|I(R-S)0|=0.318/31/2=0.183 (5−2)
θR-S=50.4° (5−3)
|VTR|=0.8×31/2 (5−4)
TR=|VTR|/|VTR0|=(0.8×31/2)/31/2=0.8 (5−5)
θTR=210° (5−6)
ΔθTR=θTR−θTR0=210°−210°=0° (5−7)
α=θR-S−θTR=50.4°−210°=−159.6° (5−8)
また、定格電流値よりも過大なT相およびR相事故電流IFT,IFRが流れたとすると、T−R相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sと合成電流IR-Sの位相差αとは(5−9)式から(5−12)式でそれぞれ表される(図4(c)の一点鎖線参照)。
|IR-S|=|IFR|≫1.15×|IR0|≫1.15 (5−9)
R-S=|IR-S|/|I(R-S)0|≫1.15/31/2(=0.664) (5−10)
θR-S=105° (5−11)
α=θR-S−θTR=105°−210°=−105° (5−12)
(5) Composite current I RS and TR phase line voltage V TR when T-R phase is short-circuited
When a short-circuit accident between T-phase and R-phase (T-R phase short-circuit) occurs, T-phase fault current I FT and R-phase fault current I FR flow in opposite directions in T-phase and R-phase of the three-phase power line. The normal S-phase current I S0 still flows through the S-phase of the three-phase power supply line.
Therefore, the T-phase and R-phase fault currents I FT and I FR are 1.15 times the rated current value (in this example, normal R-phase, S-phase and T-phase currents I R0 , I S0 , I T0 ). If the current flows, the value of the combined current I RS at the time of the TR phase short circuit | I RS |, the current change rate K RS and the value of the phase θ RS and the TR phase line voltage V TR | V TR |, the voltage change rate L TR , phase θ TR, phase change angle Δθ TR, and phase difference α of combined current I RS are expressed by equations (5-1) to (5-8), respectively (FIGS. 5A-1 and 5A). a-2)).
| I RS | = | I FR −I S0 | = | 1.15 I R0 −I S0 |
= (| 1.15I R0 | 2 + | I S0 | 2 −2 × | 1.15I R0 | × | I S0 | × cos 15 °) 1/2
= (1.15 2 +1 2 -2 × 1.15 × 1 × cos 15 °) 1/2
= 0.318 (5-1)
K RS = | I RS | / | I (RS) 0 | = 0.318 / 3 1/2 = 0.183 (5-2)
θ RS = 50.4 ° (5-3)
| V TR | = 0.8 × 3 1/2 (5-4)
L TR = | V TR | / | V TR0 | = (0.8 × 3 1/2 ) / 3 1/2 = 0.8 (5-5)
θ TR = 210 ° (5-6)
Δθ TR = θ TR −θ TR0 = 210 ° −210 ° = 0 ° (5-7)
α = θ RS -θ TR = 50.4 ° -210 ° = -159.6 ° (5-8)
Also, assuming that the T-phase and R-phase fault currents I FT and I FR that are larger than the rated current value flow, the value of the combined current I RS when the TR phase is short-circuited | I RS |, the current change rate K RS and The phase difference α between the phase θ RS and the combined current I RS is expressed by the equations (5-9) to (5-12) (see the dashed line in FIG. 4C).
| I RS | = | I FR | >> 1.15 × | I R0 | >> 1.15 (5-9)
K RS = | I RS | / | I (RS) 0 | >> 1.15 / 3 1/2 (= 0.664) (5-10)
θ RS = 105 ° (5-11)
α = θ RS −θ TR = 105 ° −210 ° = −105 ° (5-12)

(6)三相短絡時の合成電流IR-SおよびTR相線間電圧VTR
三相短絡事故(三相短絡)が発生すると、三相電源線のR相、S相およびT相にR相事故電流IFR、S相事故電流IFSおよびT相事故電流IFTが位相差120°でそれぞれ流れる。
したがって、定格電流値(この例では、正常時のR相、S相およびT相電流IR0,IS0,IT0)の1.15倍のR相、S相およびT相事故電流IFR,IFS,IFTが流れたとすると、三相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRと合成電流IR-Sの位相差αとは(6−1)式から(6−8)式でそれぞれ表される(図5(b−1),(b−2)参照)。
|IR-S|=|IFR−IFS|=31/2×|IFR|=31/2×(|1.15IR0|)
=31/2×(1.15×1)=31/2×1.15
(=1.992) (6−1)
R-S=|IR-S|/|I(R-S)0|=(31/2×1.15)/31/2
=1.15 (6−2)
θR-S=45° (6−3)
|VTR|=0.8×31/2 (6−4)
TR=|VTR|/|VTR0|=(0.8×31/2)/31/2=0.8 (6−5)
θTR=210° (6−6)
ΔθTR=θTR−θTR0=210°−210°=0° (6−7)
α=θR-S−θTR=45°−210°=−165° (6−8)
(6) Combined current I RS and TR phase line voltage V TR during three-phase short circuit
When a three-phase short-circuit accident (three-phase short-circuit) occurs, the R-phase fault current I FR , the S-phase fault current I FS and the T-phase fault current I FT are phase-differences in the R-phase, S-phase and T-phase Each flows at 120 °.
Therefore, the R-phase, S-phase, and T-phase fault currents I FR , 1.15 times the rated current value (in this example, normal R-phase, S-phase, and T-phase currents I R0 , I S0 , I T0 ) If I FS and I FT flow, the value of the combined current I RS at the time of a three-phase short circuit | I RS |, the current change rate K RS and the value of the phase θ RS and the TR phase line voltage V TR | V TR | The voltage change rate L TR , the phase θ TR, the phase change angle Δθ TR, and the phase difference α of the combined current I RS are expressed by equations (6-1) to (6-8), respectively (FIG. 5 (b- 1) and (b-2)).
| I RS | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × (| 1.15I R0 |)
= 3 1/2 × (1.15 × 1) = 3 1/2 × 1.15
(= 1.992) (6-1)
K RS = | I RS | / | I (RS) 0 | = (3 1/2 × 1.15) / 3 1/2
= 1.15 (6-2)
θ RS = 45 ° (6-3)
| V TR | = 0.8 × 3 1/2 (6-4)
L TR = | V TR | / | V TR0 | = (0.8 × 3 1/2 ) / 3 1/2 = 0.8 (6-5)
θ TR = 210 ° (6-6)
Δθ TR = θ TR −θ TR0 = 210 ° −210 ° = 0 ° (6-7)
α = θ RS −θ TR = 45 ° −210 ° = −165 ° (6-8)

(7)過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出
合成電流IR-Sの位相θR-Sがアーク抵抗の影響により−45°〜15°の範囲で変動することを考慮する。
(a)過負荷の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=1.15)が所定の過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が所定の第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)よりも大きいと、「過負荷が発生した」と判定する。
(b)R−S相短絡の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=1.328)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.954)が第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)以下で所定の第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく、かつ、TR相線間電圧VTRの位相変化角ΔθTR(=5.2°)が第1の過負荷・短絡検出位相変化角範囲(たとえば、5.2°〜30°(短絡点までのインピーダンスを考慮))内の値であると、「R−S相短絡が発生した」と判定する。
(c)S−T相短絡の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=1.231)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.954)が第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)以下で第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく、かつ、TR相線間電圧VTRの位相変化角ΔθTR(=−5.2°)が第2の過負荷・短絡検出位相変化角範囲(たとえば、−5.2°〜−30°(短絡点までのインピーダンスを考慮))内の値であると、「S−T相短絡が発生した」と判定する。
また、3Eリレー20は、定格電流値よりも過大なS相およびT相事故電流IFS,IFTが流れたときのために、合成電流IR-Sの電流変化率KR-S(≫0.664)が過負荷・短絡検出電流変化率値(たとえば、1.15)未満であっても、TR相線間電圧VTRの電圧変化率LTR(=0.954)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)以下であり、かつ、TR相線間電圧VTRの位相変化角ΔθTR(=−5.2°)が第2の過負荷・短絡検出位相変化角範囲(たとえば、−5.2°〜−30°)内の値であると、「S−T相短絡が発生した」と判定する。
(d)T−R相短絡の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=0.183)が過負荷・短絡検出電流変化率値(たとえば、1.15)未満であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、合成電流IR-Sの位相差α(=−159.6°)が所定の第1の過負荷・短絡検出位相差範囲(たとえば、−203°〜−90°)内の値であると、「T−R相短絡が発生した」と判定する。
また、3Eリレー20は、定格電流値よりも過大なT相およびR相事故電流IFT,IFRが流れたときのために、合成電流IR-Sの電流変化率KR-S(≫0.664)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であっても、TR相線間電圧VTRの電圧変化率LTR(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、合成電流IR-Sの位相差(=−105°)が第2の過負荷・短絡検出位相差範囲(たとえば、−210°〜−150°)内の値でないと、「T−R相短絡が発生した」と判定する。
(e)三相短絡の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=1.15)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、合成電流IR-Sの位相差(=−165°)が第2の過負荷・短絡検出位相差範囲(たとえば、−210°〜−150°)内の値であると、「三相短絡が発生した」と判定する。
(7) overload, RS-phase short circuit, S-T phase short-circuit, T-R phase short-circuit and three-phase short circuit detecting the resultant current I RS phase theta RS is -45 ° to 15 ° due to the influence of the arc resistance Consider fluctuations in range.
(A) Overload detection In the 3E relay 20, the current change rate K RS (= 1.15) of the combined current I RS is equal to or greater than a predetermined overload / short-circuit detection current change rate value (eg, 1.15). When the voltage change rate L TR (= 1) of the TR phase line voltage V TR is larger than a predetermined first overload / short-circuit detection voltage change rate value (for example, 0.96), Is determined to occur.
(B) Detection of R-S phase short circuit The 3E relay 20 has a current change rate K RS (= 1.328) of the combined current I RS that is equal to or greater than an overload / short circuit detection current change rate value (eg, 1.15). Yes, and the voltage change rate L TR (= 0.954) of the TR phase line voltage V TR is equal to or less than a first overload / short-circuit detection voltage change rate value (for example, 0.96) The overload / short circuit detection voltage change rate value (for example, 0.8) is larger and the phase change angle Δθ TR (= 5.2 °) of the TR phase line voltage V TR is the first overload / short circuit. If it is a value within the detection phase change angle range (for example, 5.2 ° to 30 ° (considering impedance to the short circuit point)), it is determined that “the R-S phase short circuit has occurred”.
(C) Detection of S-T phase short circuit The 3E relay 20 has a current change rate K RS (= 1.231) of the combined current I RS equal to or higher than an overload / short circuit detection current change rate value (eg, 1.15). And the second overload when the voltage change rate L TR (= 0.954) of the TR phase line voltage V TR is equal to or less than the first overload / short-circuit detection voltage change rate value (for example, 0.96). The phase change angle Δθ TR (= −5.2 °) of the TR phase line voltage V TR is greater than the short circuit detection voltage change rate value (for example, 0.8), and the second overload / short circuit detection. If the value is within a phase change angle range (for example, -5.2 ° to -30 ° (considering impedance to the short-circuit point)), it is determined that “S-T phase short-circuit has occurred”.
Further, the 3E relay 20 has a current change rate K RS (>> 0.664) of the combined current I RS because the S-phase and T-phase fault currents I FS and I FT exceeding the rated current value flow. Is less than the overload / short-circuit detection current change rate value (for example, 1.15), the voltage change rate L TR (= 0.954) of the TR phase line voltage V TR is the second overload / short-circuit value. Phase change of TR phase-to-line voltage V TR that is greater than the detected voltage change rate value (eg, 0.8) and less than or equal to the first overload / short-circuit detected voltage change rate value (eg, 0.96) When the angle Δθ TR (= −5.2 °) is a value within the second overload / short-circuit detection phase change angle range (for example, −5.2 ° to −30 °), “ST phase short circuit” Is determined to occur.
(D) Detection of TR phase short circuit The 3E relay 20 has a current change rate K RS (= 0.183) of the combined current I RS that is less than an overload / short circuit detection current change rate value (eg, 1.15). Yes, and the voltage change rate L TR (= 0.8) of the TR phase line voltage V TR is equal to or less than the second overload / short-circuit detection voltage change rate value (for example, 0.8), and When the phase difference α (= −159.6 °) of the current I RS is a value within a predetermined first overload / short-circuit detection phase difference range (for example, −203 ° to −90 °), “T− It is determined that an R-phase short circuit has occurred.
Further, the 3E relay 20 has a current change rate K RS (>> 0.664) of the combined current I RS because the T-phase and R-phase fault currents I FT and I FR that are larger than the rated current value flow. Is the overload / short circuit detection current change rate value (eg, 1.15) or more, the voltage change rate L TR (= 0.8) of the TR phase line voltage V TR is the second overload / short circuit The detected voltage change rate value (for example, 0.8) or less and the phase difference (= −105 °) of the combined current I RS is the second overload / short-circuit detection phase difference range (for example, −210 ° to If the value is not within the range of −150 °, it is determined that “TR phase short circuit has occurred”.
(E) Three-phase short circuit detection The 3E relay 20 has a current change rate K RS (= 1.15) of the combined current I RS that is equal to or greater than an overload / short circuit detection current change rate value (eg, 1.15), Further, the voltage change rate L TR (= 0.8) of the TR phase line voltage V TR is equal to or less than the second overload / short-circuit detection voltage change rate value (for example, 0.8), and the combined current I If the RS phase difference (= −165 °) is within the second overload / short-circuit detection phase difference range (for example, −210 ° to −150 °), it is determined that “three-phase short-circuit has occurred”. To do.

次に、3Eリレー20におけるR−S相反相、S−T相反相およびT−R相反相の検出方法について、図6および図7を参照して詳しく説明する。   Next, a method for detecting the RS reciprocal phase, the ST reciprocal phase, and the TR reciprocal phase in the 3E relay 20 will be described in detail with reference to FIGS. 6 and 7.

(1)正常時の合成電流I(R-S)0およびTR相線間電圧VTR0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0と正常時の合成電流I(R-S)0の位相差α0とは上記(1−1)式から(1−5)式でそれぞれ表される(図6(a),(b)参照)。
(1) Combined current I (RS) 0 and TR phase line voltage V TR0 at normal time
Normal value of composite current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal value of TR phase line voltage V TR0 | V TR0 | and phase θ TR0 and normal value The phase difference α 0 of the combined current I (RS) 0 is expressed by the above equations (1-1) to (1-5) (see FIGS. 6A and 6B).

(2)R−S相反相時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のR相およびS相が逆になる(R−S相反相)と、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-Sの位相差αとは(7−1)式から(7−7)式でそれぞれ表される(図6(b−1),(b−2)参照)。
|IR-S|=|IR−IS|=31/2×|IR|=31/2×|IR0|=31/2×1
=31/2 (7−1)
R-S=|IR-S|/|I(R-S)0|=31/2/31/2=1 (7−2)
θR-S=150° (7−3)
|VTR|=|VT−VR|=31/2×|VT|=31/2×|VT0|=31/2×1
=31/2 (7−4)
TR=|VTR|/|VTR0|=31/2/31/2=1 (7−5)
θTR=270° (7−6)
α=θR-S−θTR=150°−270°=−120° (7−7)
(2) Composite current I RS and TR phase line voltage V TR during RS- phase reciprocal phase
When the R phase and S phase of the three-phase power supply line are reversed (R-S phase opposite phase), the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the TR phase line voltage V The value of TR | V TR |, the voltage change rate L TR, the phase θ TR, and the phase difference α of the combined current I RS are expressed by equations (7-1) to (7-7), respectively (FIG. 6 ( b-1) and (b-2)).
| I RS | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I R0 | = 3 1/2 × 1
= 3 1/2 (7-1)
K RS = | I RS | / | I (RS) 0 | = 3 1/2 / 3 1/2 = 1 (7-2)
θ RS = 150 ° (7-3)
| V TR | = | V T −V R | = 3 1/2 × | V T | = 3 1/2 × | V T0 | = 3 1/2 × 1
= 3 1/2 (7-4)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (7-5)
θ TR = 270 ° (7-6)
α = θ RS −θ TR = 150 ° -270 ° = −120 ° (7-7)

(3)S−T相反相時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のS相およびT相が逆になる(S−T相反相)と、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-Sの位相差αとは(8−1)式から(8−7)式でそれぞれ表される(図7(a−1),(a−2)参照)。
|IR-S|=|IR−IS|=31/2×|IR|=31/2×|IR0|=31/2×1
=31/2 (8−1)
R-S=|IR-S|/|I(R-S)0|=31/2/31/2=1 (8−2)
θR-S=30° (8−3)
|VTR|=|VT−VR|=31/2×|VT|=31/2×|VT0|=31/2×1
=31/2 (8−4)
TR=|VTR|/|VTR0|=31/2/31/2=1 (8−5)
θTR=150° (8−6)
α=θR-S−θTR=30°−150°=−120° (8−7)
(3) Composite current I RS and TR phase line voltage V TR during S-T phase opposite phase
When the S phase and T phase of the three-phase power supply line are reversed (ST phase opposite phase), the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the TR phase line voltage V The value of TR | V TR |, the voltage change rate L TR, the phase θ TR, and the phase difference α of the combined current I RS are expressed by equations (8-1) to (8-7), respectively (FIG. 7 ( a-1) and (a-2)).
| I RS | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I R0 | = 3 1/2 × 1
= 3 1/2 (8-1)
K RS = | I RS | / | I (RS) 0 | = 3 1/2 / 3 1/2 = 1 (8-2)
θ RS = 30 ° (8-3)
| V TR | = | V T −V R | = 3 1/2 × | V T | = 3 1/2 × | V T0 | = 3 1/2 × 1
= 3 1/2 (8-4)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (8-5)
θ TR = 150 ° (8-6)
α = θ RS −θ TR = 30 ° −150 ° = −120 ° (8-7)

(4)T−R相反相時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のT相およびR相が逆になる(T−R相反相)と、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-Sの位相差αとは(9−1)式から(9−7)式でそれぞれ表される(図7(b−1),(b−2)参照)。
|IR-S|=|IR−IS|=31/2×|IR|=31/2×|IR0|=31/2×1
=31/2 (9−1)
R-S=|IR-S|/|I(R-S)0|=31/2/31/2=1 (9−2)
θR-S=270° (9−3)
|VTR|=|VT−VR|=31/2×|VT|=31/2×|VT0|=31/2×1
=31/2 (9−4)
TR=|VTR|/|VTR0|=31/2/31/2=1 (9−5)
θTR=30° (9−6)
α=θR-S−θTR=270°−30°=240°=−120° (9−7)
(4) Combined current I RS and TR phase line voltage V TR at the time of TR phase opposite phase
When the T phase and R phase of the three-phase power supply line are reversed (TR phase opposite phase), the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the TR phase line voltage V TR value | V TR |, voltage change rate L TR, phase θ TR, and phase difference α of combined current I RS are expressed by equations (9-1) to (9-7), respectively (FIG. 7 ( b-1) and (b-2)).
| I RS | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I R0 | = 3 1/2 × 1
= 3 1/2 (9-1)
K RS = | I RS | / | I (RS) 0 | = 3 1/2 / 3 1/2 = 1 (9-2)
θ RS = 270 ° (9-3)
| V TR | = | V T −V R | = 3 1/2 × | V T | = 3 1/2 × | V T0 | = 3 1/2 × 1
= 3 1/2 (9-4)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (9-5)
θ TR = 30 ° (9-6)
α = θ RS −θ TR = 270 ° −30 ° = 240 ° = −120 ° (9-7)

(5)反相の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=1)が所定の反相検出電流変化率範囲(たとえば、0.9〜1.1)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が所定の反相検出電圧変化率範囲(たとえば、0.9〜1.1)内の値であり、かつ、合成電流IR-Sの位相差α(=−120°)が所定の反相検出位相差範囲(たとえば、−150°〜−90°)内の値であると、「反相が発生した」と判定する。
(5) Detection of opposite phase In the 3E relay 20, the current change rate K RS (= 1) of the combined current I RS is a value within a predetermined opposite phase detection current change rate range (for example, 0.9 to 1.1). And the voltage change rate L TR (= 1) of the TR phase line voltage V TR is a value within a predetermined antiphase detection voltage change rate range (for example, 0.9 to 1.1), and , the phase difference between the combined current I RS α (= - 120 ° ) is specified anti-phase phase difference detection range (for example, -150 ° ~-90 °) when a value within a "reverse phase occurs" judge.

次に、3Eリレー20におけるスター結線された三相電源線のR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出方法について、図8および図9を参照して詳しく説明する。   Next, FIG. 8 and FIG. 8 show detection methods for the R-phase, S-phase, T-phase, R-phase, S-phase, and T-phase disconnections of the star-connected three-phase power supply line in the 3E relay 20. This will be described in detail with reference to FIG.

(1)正常時の合成電流I(R-S)0およびTR相線間電圧VTR0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0と正常時の合成電流I(R-S)0の位相差α0とは上記(1−1)式から(1−5)式でそれぞれ表される(図8(a−1),(a−2)参照)。
(1) Combined current I (RS) 0 and TR phase line voltage V TR0 at normal time
Normal value of composite current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal value of TR phase line voltage V TR0 | V TR0 | and phase θ TR0 and normal value The phase difference α 0 of the combined current I (RS) 0 is expressed by the above equations (1-1) to (1-5) (see FIGS. 8A-1 and 8A-2). .

(2)R相欠相時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のR相の欠相(R相欠相)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-Sの位相差αとは(10−1)式から(10−7)式でそれぞれ表される(図8(b−1),(b−2)参照)。
|IR-S|=|IR−IS|=|IS|=|IS0|×cos30°=1×(31/2/2)
=31/2/2 (10−1)
R-S=|IR-S|/|I(R-S)0|=(31/2/2)/31/2=0.5 (10−2)
θR-S=270° (10−3)
|VTR|=|VT−VR|=|VT|=|VT0|×cos30°=1×(31/2/2)
=31/2/2 (10−4)
TR=|VTR|/|VTR0|=(31/2/2)/31/2=0.5 (10−5)
θTR=270° (10−6)
α=θR-S−θTR=270°−170°=0° (10−7)
(2) Composite current I RS and TR phase line voltage V TR when R phase is open
When an R-phase phase loss (R-phase phase loss) occurs in the three-phase power line, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the value of the TR phase line voltage V TR | V TR |, voltage change rate L TR, phase θ TR, and phase difference α of combined current I RS are expressed by equations (10-1) to (10-7), respectively (FIG. 8 (b-1)) ), (B-2)).
| I RS | = | I R −I S | = | I S | = | I S0 | × cos 30 ° = 1 × (3 1/2 / 2)
= 3 1/2 / 2 (10-1)
K RS = | I RS | / | I (RS) 0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (10-2)
θ RS = 270 ° (10-3)
| V TR | = | V T −V R | = | V T | = | V T0 | × cos 30 ° = 1 × (3 1/2 / 2)
= 3 1/2 / 2 (10-4)
L TR = | V TR | / | V TR0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (10−5)
θ TR = 270 ° (10-6)
α = θ RS −θ TR = 270 ° −170 ° = 0 ° (10−7)

(3)S相欠相時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のS相の欠相(S相欠相)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-Sの位相差αとは(11−1)式から(11−7)式でそれぞれ表される(図9(a−1),(a−2)参照)。
|IR-S|=|IR−IS|=|IR|=|IR0|×cos30°=1×(31/2/2)
=31/2/2 (11−1)
R-S=|IR-S|/|I(R-S)0|=(31/2/2)/31/2=0.5 (11−2)
θR-S=30° (11−3)
|VTR|=|VT−VR|=|VT|+|VR
=(|VT0|×cos30°)+(|VR0|×cos30°)
={1×(31/2/2)}+{1×(31/2/2)}
=2×{1×(31/2/2)}=31/2 (11−4)
TR=|VTR|/|VTR0|=31/2/31/2=1 (11−5)
θTR=210° (11−6)
α=θR-S−θTR=30°−210°=−180°=180° (11−7)
(3) Combined current I RS and TR phase line voltage V TR when S phase is open
When the S-phase phase loss (S-phase phase loss) occurs in the three-phase power line, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the value of the TR phase line voltage V TR | V TR |, the phase difference α between the voltage change rate L TR and the phase theta TR resultant current I RS respectively represented by (11-7) expression (11-1) expression (Fig. 9 (a-1 ), (A-2)).
| I RS | = | I R −I S | = | I R | = | I R0 | × cos 30 ° = 1 × (3 1/2 / 2)
= 3 1/2 / 2 (11-1)
K RS = | I RS | / | I (RS) 0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (11-2)
θ RS = 30 ° (11-3)
| V TR | = | V T −V R | = | V T | + | V R |
= (| V T0 | × cos 30 °) + (| V R0 | × cos 30 °)
= {1 × (3 1/2 / 2)} + {1 × (3 1/2 / 2)}
= 2 × {1 × (3 1/2 / 2)} = 3 1/2 (11-4)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (11-5)
θ TR = 210 ° (11-6)
α = θ RS −θ TR = 30 ° −210 ° = −180 ° = 180 ° (11−7)

(4)T相欠相時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のT相の欠相(T相欠相)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-Sの位相差αとは(12−1)式から(12−7)式でそれぞれ表される(図9(b−1),(b−2)参照)。
|IR-S|=|IR−IS|=|IR|+|IS
=|IR0|×cos30°+|IS0|×cos30°
={1×(31/2/2)}+{1×(31/2/2)}
=2×{1×(31/2/2)}=31/2 (12−1)
R-S=|IR-S|/|I(R-S)0|=31/2/31/2=1 (12−2)
θR-S=330° (12−3)
|VTR|=|VT−VR|=|VR|=|VR0|×cos30°=1×(31/2/2)
=31/2/2 (12−4)
TR=|VTR|/|VTR0|=(31/2/2)/31/2=0.5 (12−5)
θTR=150° (12−6)
α=θR-S−θTR=330°−150°=180° (12−7)
(4) Composite current I RS and T-phase line voltage V TR when T phase is open
When a T-phase phase loss (T-phase phase loss) occurs in the three-phase power line, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the value of the TR phase line voltage V TR | V TR |, voltage change rate L TR, phase θ TR, and phase difference α of combined current I RS are expressed by equations (12-1) to (12-7), respectively (FIG. 9 (b-1) ), (B-2)).
| I RS | = | I R −I S | = | I R | + | I S |
= | I R0 | × cos 30 ° + | I S0 | × cos 30 °
= {1 × (3 1/2 / 2)} + {1 × (3 1/2 / 2)}
= 2 × {1 × (3 1/2 / 2)} = 3 1/2 (12-1)
K RS = | I RS | / | I (RS) 0 | = 3 1/2 / 3 1/2 = 1 (12-2)
θ RS = 330 ° (12-3)
| V TR | = | V T −V R | = | V R | = | V R0 | × cos 30 ° = 1 × (3 1/2 / 2)
= 3 1/2 / 2 (12-4)
L TR = | V TR | / | V TR0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (12−5)
θ TR = 150 ° (12-6)
α = θ RS −θ TR = 330 ° -150 ° = 180 ° (12-7)

(5)R相断線時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のR相の断線(R相断線)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(10−1)式から(10−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表される。また、合成電流IR-Sの位相差αは(13−1)式で表される。
α=θR-S−θTR=270°−210°=60° (13−1)
(5) Composite current I RS and R phase line voltage V TR when R phase is broken
When the R-phase disconnection (R-phase disconnection) of the three-phase power supply line occurs, the value | I RS | of the combined current I RS , the current change rate K RS and the phase θ RS are expressed by 3), and the value of the TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively. The Further, the phase difference α of the combined current I RS is expressed by the equation (13-1).
α = θ RS −θ TR = 270 ° −210 ° = 60 ° (13-1)

(6)S相断線時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のS相の断線(S相断線)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(11−1)式から(11−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表される。また、合成電流IR-Sの位相差αは(13−2)式で表される。
α=θR-S−θTR=210°−30°=180° (13−2)
(6) Synthetic current I RS and TR phase line voltage V TR when S phase is broken
When the S-phase disconnection (S-phase disconnection) of the three-phase power supply line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are calculated from the above equation (11-1) as (11− 3) each represented by the formula, the value of the voltage V TR - TR phase line | V TR |, the voltage change rate L TR and the phase theta TR is represented respectively by (2-6) below from the above (2-4) below The Further, the phase difference α of the combined current I RS is expressed by the equation (13-2).
α = θ RS −θ TR = 210 ° −30 ° = 180 ° (13-2)

(7)T相断線時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のT相の断線(T相断線)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(12−1)式から(12−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表される。また、合成電流IR-Sの位相差αは(13−3)式で表される。
α=θR-S−θTR=330°−210°=120° (13−3)
(8)R相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出
(a)R相欠相の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=0.5)が所定の欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.5)が所定の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、合成電流IR-Sの位相差α(=0°)が所定の第1の欠相・断線検出位相差範囲(たとえば、−30°〜30°)内の値であると、「R相欠相が発生した」と判定する。
(b)S相欠相またはS相断線の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=0.5)が欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの位相差α(=180°)が所定の第2の欠相・断線検出位相差範囲(たとえば、150°〜210°)内の値であると、「S相欠相またはS相断線が発生した」と判定する。
(c)T相欠相の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=1)が欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.5)が欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、合成電流IR-Sの位相差α(=180°)が第2の欠相・断線検出位相差範囲(たとえば、150°〜210°)内の値であると、「T相欠相が発生した」と判定する。
(d)R相断線の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=0.5)が欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの位相差α(=60°)が所定の第3の欠相・断線検出位相差範囲(たとえば、30°〜90°)内の値であると、「R相断線が発生した」と判定する。
(e)T相断線の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=1)が欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの位相差α(=120°)が所定の第4の断線検出位相差範囲(たとえば、90°〜150°)内の値であると、「T相断線が発生した」と判定する。
(7) Composite current I RS and TR phase line voltage V TR when T phase is broken
When the T-phase disconnection (T-phase disconnection) of the three-phase power supply line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are calculated from the above equation (12-1) as 3), the value of the TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively. The Further, the phase difference α of the combined current I RS is expressed by the equation (13-3).
α = θ RS −θ TR = 330 ° −210 ° = 120 ° (13-3)
(8) R Aiketsusho, S Aiketsusho, T Aiketsusho, detection 3E relay 20 of the R-phase disconnection, S-phase disconnection and T-phase detection of disconnection (a) R-phase open-phase is the combined current I RS The current change rate K RS (= 0.5) is a value within a predetermined open phase / disconnection detection current change rate range (for example, 0.4 to 0.6), and the TR phase line voltage V TR The voltage change rate L TR (= 0.5) is a value within a predetermined open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6), and the phase difference α of the combined current I RS If (= 0 °) is a value within a predetermined first phase loss / disconnection detection phase difference range (for example, −30 ° to 30 °), it is determined that “R phase phase loss has occurred”.
(B) Detection of S-phase open phase or S-phase disconnection In the 3E relay 20, the current change rate K RS (= 0.5) of the combined current I RS is in the open phase / open-circuit detection current change rate range (for example, 0.4 ˜0.6), and the voltage change rate L TR (= 1) of the TR phase line-to-line voltage V TR is within the phase loss / breakage detection voltage change rate range (for example, 0.4 to 0.6). ) And the phase difference α (= 180 °) of the combined current I RS is a value within a predetermined second phase failure / disconnection detection phase difference range (for example, 150 ° to 210 °). Then, it is determined that “the S phase missing phase or the S phase disconnection has occurred”.
(C) Detection of T-phase phase loss In the 3E relay 20, the current change rate K RS (= 1) of the combined current I RS is within the phase loss / disconnection detection current rate of change range (for example, 0.4 to 0.6). And the voltage change rate L TR (= 0.5) of the TR phase line-to-line voltage V TR is a value within the phase loss / disconnection detection voltage change rate range (for example, 0.4 to 0.6). And the phase difference α (= 180 °) of the combined current I RS is a value within the second phase failure / disconnection detection phase difference range (for example, 150 ° to 210 °). It is determined that a phase has occurred.
(D) Detection of R-phase disconnection In the 3E relay 20, the current change rate K RS (= 0.5) of the combined current I RS is in the range of open-phase / disconnection detection current change rate (for example, 0.4 to 0.6). And the voltage change rate L TR (= 1) of the TR phase line-to-line voltage V TR is a value within the open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6). And the phase difference α (= 60 °) of the combined current I RS is a value within a predetermined third open phase / disconnection detection phase difference range (for example, 30 ° to 90 °). It is determined that a disconnection has occurred.
(E) Detection of T-phase disconnection The 3E relay 20 has a current change rate K RS (= 1) of the combined current I RS within an open / break detection current change rate range (for example, 0.4 to 0.6). Is not a value, and the voltage change rate L TR (= 1) of the TR phase line voltage V TR is not a value within the phase loss / breakage detection voltage change rate range (for example, 0.4 to 0.6). Further, if the phase difference α (= 120 °) of the combined current I RS is a value within a predetermined fourth disconnection detection phase difference range (for example, 90 ° to 150 °), “T-phase disconnection has occurred”. It is determined.

次に、3Eリレー20におけるデルタ結線された三相電源線のR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線の検出方法について、図10を参照して詳しく説明する。   Next, FIG. 10 shows a method for detecting an R phase, S phase, T phase, RS phase, ST phase, and TR phase disconnection of the delta-connected three-phase power supply line in the 3E relay 20. This will be described in detail with reference.

(1)正常時の合成電流I(R-S)0およびTR相線間電圧VTR0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0と正常時の合成電流I(R-S)0の位相差α0とは上記(1−1)式から(1−5)式でそれぞれ表される。
(1) Combined current I (RS) 0 and TR phase line voltage V TR0 at normal time
Normal value of composite current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal value of TR phase line voltage V TR0 | V TR0 | and phase θ TR0 and normal value The phase difference α 0 of the combined current I (RS) 0 is expressed by the above equations (1-1) to (1-5).

(2)R相欠相、S相欠相およびT相欠相の検出
3Eリレー20は、上述したスター結線された三相電源線のR相欠相、S相欠相およびT相欠相の検出と同様にして、デルタ結線された三相電源線のR相欠相、S相欠相およびT相欠相を検出する。
(2) Detection of R-phase, S-phase, and T-phase phases In the same manner as the detection, the R phase missing phase, the S phase missing phase, and the T phase missing phase of the three-phase power line connected in the delta connection are detected.

(3)RS相断線時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のRS相断線が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは(14−1)式から(14−3)式でそれぞれ表される(図10(a)参照)。また、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表される。さらに、合成電流IR-Sの位相差αは(14−4)式で表される。
|IR-S|=|IR−IS
=(|IR2+|IS2−2×|IR|×|IS|×cos60°)1/2
={(|IR0|/31/22+(|IS0|/31/22−2×(|IR0|/31/2)×(|IS0|/31/2)×cos60°}1/2
={(1/31/22+(1/31/22−2×(1/31/2)×(1/31/2)×cos60°}1/2
=(1/3+1/3−1/3)1/2=1/31/2 (14−1)
R-S=|IR-S|/|I(R-S)0|=(1/31/2)/31/2
=1/3(=0.333) (14−2)
θR-S=330° (14−3)
α=θR-S−θTR=330°−210°=120° (14−4)
(3) Combined current I RS and RS phase line voltage V TR when RS phase is disconnected
When the RS phase disconnection of the three-phase power supply line occurs, the value | I RS | of the combined current I RS , the current change rate K RS and the phase θ RS are expressed by the equations (14-1) to (14-3), respectively. (See FIG. 10A). Further, the value | V TR | of the TR phase line voltage V TR , the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively. Furthermore, the phase difference α of the combined current I RS is expressed by the equation (14-4).
| I RS | = | I R −I S |
= (| I R | 2 + | I S | 2 −2 × | I R | × | I S | × cos 60 °) 1/2
= {(| I R0 | / 3 1/2 ) 2 + (| I S0 | / 3 1/2 ) 2 −2 × (| I R0 | / 3 1/2 ) × (| I S0 | / 3 1 / 2 ) x cos 60 °} 1/2
= {(1/3 1/2 ) 2 + (1/3 1/2 ) 2 −2 × (1/3 1/2 ) × (1/3 1/2 ) × cos 60 °} 1/2
= (1/3 + 1 / 3-1 / 3) 1/2 = 1/3 1/2 (14-1)
K RS = | I RS | / | I (RS) 0 | = (1/3 1/2 ) / 3 1/2
= 1/3 (= 0.333) (14-2)
θ RS = 330 ° (14-3)
α = θ RS −θ TR = 330 ° −210 ° = 120 ° (14-4)

(4)ST相断線時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のST相断線が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは(15−1)式から(15−3)式でそれぞれ表される(図10(b)参照)。また、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表される。さらに、合成電流IR-Sの位相差αは(15−4)式で表される。
|IR-S|=|IR−IS
={|IR2+|IS2−2×|IR|×|IS|×cos150°}1/2
={|IR02+(|IS0|/31/22−2×|IR0|×(|IS0|/31/2)×cos150°}1/2
={12+(1/31/22−2×1×(1/31/2)×cos150°}1/2
=(1+1/3+1)1/2=(7/3)1/2 (15−1)
R-S=|IR-S|/|I(R-S)0|=(7/3)1/2/31/2=71/2/3
(=0.882) (15−2)
θR-S=349.1° (15−3)
α=θR-S−θTR=349.1°−210°=139.1° (15−4)
(4) Combined current I RS and ST phase line voltage V TR when ST phase is disconnected
When the ST phase disconnection of the three-phase power supply line occurs, the value | I RS | of the combined current I RS , the current change rate K RS and the phase θ RS are expressed by the equations (15-1) to (15-3), respectively. (See FIG. 10B). Further, the value | V TR | of the TR phase line voltage V TR , the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively. Furthermore, the phase difference α of the combined current I RS is expressed by the equation (15-4).
| I RS | = | I R −I S |
= {| I R | 2 + | I S | 2 −2 × | I R | × | I S | × cos 150 °} 1/2
= {| I R0 | 2 + (| I S0 | / 3 1/2 ) 2 −2 × | I R0 | × (| I S0 | / 3 1/2 ) × cos 150 °} 1/2
= {1 2 + (1/3 1/2 ) 2 −2 × 1 × (1/3 1/2 ) × cos 150 °} 1/2
= (1 + 1/3 + 1) 1/2 = (7/3) 1/2 (15-1)
K RS = | I RS | / | I (RS) 0 | = (7/3) 1/2 / 3 1/2 = 7 1/2 / 3
(= 0.882) (15-2)
θ RS = 349.1 ° (15-3)
α = θ RS −θ TR = 349.1 ° −210 ° = 139.1 ° (15-4)

(4)TR相断線時の合成電流IR-SおよびTR相線間電圧VTR
三相電源線のTR相断線が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは(16−1)式から(16−3)式でそれぞれ表される(図10(c)参照)。また、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表される(図3(b)参照)。さらに、合成電流IR-Sの位相差αは(16−4)式で表される。
|IR-S|=|IR−IS
={|IR2+|IS2−2×|IR|×|IS|×cos150°}1/2
={(|IR0|/31/22+|IS02−2×(|IR0|/31/2)×|IS0|×cos150°}1/2
={(1/31/22+12−2×(1/31/2)×1×cos150°}1/2
=(1/3+1+1)1/2=(7/3)1/2 (16−1)
R-S=|IR-S|/|I(R-S)0|=(7/3)1/2/31/2=71/2/3
(=0.882) (16−2)
θR-S=310.9° (16−3)
α=θR-S−θTR=310.9°−210°=100.9° (16−4)
(4) Composite current I RS and TR phase line voltage V TR when TR phase is disconnected
When the TR phase disconnection of the three-phase power supply line occurs, the value | I RS | of the combined current I RS , the current change rate K RS and the phase θ RS are expressed by the equations (16-1) to (16-3), respectively. (See FIG. 10C). Further, the value of the TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively (FIG. 3B). )reference). Furthermore, the phase difference α of the combined current I RS is expressed by the equation (16-4).
| I RS | = | I R −I S |
= {| I R | 2 + | I S | 2 −2 × | I R | × | I S | × cos 150 °} 1/2
= {(| I R0 | / 3 1/2 ) 2 + | I S0 | 2 −2 × (| I R0 | / 3 1/2 ) × | I S0 | × cos 150 °} 1/2
= {(1/3 1/2 ) 2 +1 2 -2 × (1/3 1/2 ) × 1 × cos 150 °} 1/2
= (1/3 + 1 + 1) 1/2 = (7/3) 1/2 (16-1)
K RS = | I RS | / | I (RS) 0 | = (7/3) 1/2 / 3 1/2 = 7 1/2 / 3
(= 0.882) (16-2)
θ RS = 310.9 ° (16-3)
α = θ RS −θ TR = 310.9 ° −210 ° = 100.9 ° (16-4)

(5)RS相断線、ST相断線およびTR相断線の検出
(a)RS相断線の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=0.333)が所定の第1の断線検出電流変化率範囲(たとえば、0.2〜0.4)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でないと、「RS相断線が発生した」と判定する。
(b)ST相断線の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=0.882)が所定の第2の断線検出電流変化率範囲(たとえば、0.8〜0.9)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの位相差α(=139.1°)が所定の第1の断線検出位相差範囲(たとえば、130°〜150°)内の値であると、「ST相断線が発生した」と判定する。
(c)TR相断線の検出
3Eリレー20は、合成電流IR-Sの電流変化率KR-S(=0.882)が第2の断線検出電流変化率範囲(たとえば、0.8〜0.9)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの位相差α(=100.9°)が所定の第2の断線検出位相差範囲(たとえば、90°〜110°)内の値であると、「TR相断線が発生した」と判定する。
(5) Detection of RS phase disconnection, ST phase disconnection, and TR phase disconnection (a) Detection of RS phase disconnection The 3E relay 20 has a predetermined current change rate K RS (= 0.333) of the combined current I RS . Is a value within the disconnection detection current change rate range (for example, 0.2 to 0.4), and the voltage change rate L TR (= 1) of the TR phase line voltage V TR is the phase loss / disconnection detection voltage. If it is not a value within the change rate range (for example, 0.4 to 0.6), it is determined that “RS phase disconnection has occurred”.
(B) Detection of ST phase disconnection In the 3E relay 20, the current change rate K RS (= 0.882) of the combined current I RS is a predetermined second disconnection detection current change rate range (for example, 0.8 to 0. 9), and the voltage change rate L TR (= 1) of the TR phase line-to-line voltage V TR is within the phase loss / breakage detection voltage change rate range (for example, 0.4 to 0.6). If the phase difference α (= 139.1 °) of the combined current I RS is not a value and is a value within a predetermined first disconnection detection phase difference range (for example, 130 ° to 150 °), “ST It is determined that a phase break has occurred.
(C) TR phase disconnection detection In the 3E relay 20, the current change rate K RS (= 0.882) of the combined current I RS is in the second disconnection detection current change rate range (for example, 0.8 to 0.9). And the voltage change rate L TR (= 1) of the TR phase line-to-line voltage V TR is a value within the open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6). And the phase difference α (= 100.9 °) of the combined current I RS is a value within a predetermined second disconnection detection phase difference range (for example, 90 ° to 110 °), “TR phase disconnection Is determined to occur.

次に、3Eリレー20の構成について、図11を参照して説明する。
3Eリレー20は、図11に示すように、入力変換器21と、アナログ入力部22と、メモリ23と、電流変化率算出部24と、電圧変化率算出部25と、位相変化角算出部26と、位相差算出部27と、リレー演算処理部28と、整定・表示部29と、入出部30と、外部機器I/F部31とを備える。
Next, the configuration of the 3E relay 20 will be described with reference to FIG.
As illustrated in FIG. 11, the 3E relay 20 includes an input converter 21, an analog input unit 22, a memory 23, a current change rate calculation unit 24, a voltage change rate calculation unit 25, and a phase change angle calculation unit 26. A phase difference calculation unit 27, a relay calculation processing unit 28, a settling / display unit 29, an input / output unit 30, and an external device I / F unit 31.

ここで、入力変換器21は、クロス貫通変流器11から入力される合成電流IR-Sおよび計器用変成器12から入力されるTR相線間電圧VTRのレベルをアナログ入力部22の処理に適したレベルに変換する。
アナログ入力部22は、バンドパスフィルタとサンプリングホールド回路とマルチプレクサ回路とアナログ/ディジタル変換器とを備え、入力変換器21から入力されるアナログの合成電流IR-SおよびTR相線間電圧VTRをディジタルの合成電流IR-SおよびTR相線間電圧VTRに変換する。
メモリ23は、アナログ入力部22によってディジタルデータに変換された合成電流IR-SおよびTR相線間電圧VTRを格納するためのものである。
Here, the input converter 21 processes the level of the combined current I RS input from the cross-through current transformer 11 and the TR phase line voltage V TR input from the instrument transformer 12 to the analog input unit 22. Convert to a suitable level.
The analog input unit 22 includes a band-pass filter, a sampling hold circuit, a multiplexer circuit, and an analog / digital converter, and digitally outputs the analog combined current I RS and the TR phase line voltage V TR input from the input converter 21. The combined current I RS and the TR phase line voltage V TR are converted.
The memory 23 is for storing the combined current I RS and the TR phase line voltage V TR converted into digital data by the analog input unit 22.

電流変化率算出部24は、メモリ23に格納されているR相、S相およびT相電流IR,IS,ITの定格電流値に基づいて、アナログ入力部22から入力される合成電流IR-Sの電流変化率KR-Sを算出する。 The current change rate calculation unit 24 is a composite current input from the analog input unit 22 based on the rated current values of the R-phase, S-phase, and T-phase currents I R , I S , I T stored in the memory 23. calculating a current change rate K RS of I RS.

電圧変化率算出部25は、メモリ23に格納されているR相、S相およびT相電圧VR,VS,VTの定格電圧値に基づいて、アナログ入力部22から入力されるTR相線間電圧VTRの電圧変化率LTRを算出する。 The voltage change rate calculation unit 25 is a TR phase input from the analog input unit 22 based on the rated voltage values of the R-phase, S-phase, and T-phase voltages V R , V S , and V T stored in the memory 23. calculating the voltage change rate L TR line voltage V TR.

位相変化角算出部26と、アナログ入力部22から入力されるTR相線間電圧VTRの位相θTRからメモリ23に格納されている正常時のTR相線間電圧VTRの位相θTR0を引くことにより、TR相線間電圧VTRの位相変化角ΔθTRを算出する。 From the phase θ TR of the TR phase line voltage V TR input from the phase change angle calculation unit 26 and the analog input unit 22, the phase θ TR0 of the normal TR phase line voltage V TR stored in the memory 23 is calculated. it allows to calculate the phase shift angle [Delta] [theta] TR of the voltage V TR - TR phase line pulling.

位相差算出部27は、アナログ入力部22から入力される合成電流IR-Sの位相θR-Sからアナログ入力部22から入力されるTR相線間電圧VTRの位相θTRを引くことにより、合成電流IR-Sの位相差αを算出する。 The phase difference calculation unit 27 subtracts the phase θ TR of the TR phase line voltage V TR input from the analog input unit 22 from the phase θ RS of the combined current I RS input from the analog input unit 22, thereby generating a combined current. The phase difference α of I RS is calculated.

リレー演算処理部28は、電流変化率算出部24によって算出された合成電流IR-Sの電流変化率KR-Sと電圧変化率算出部25によって算出されたTR相線間電圧VTRの電圧変化率LTRと位相変化角算出部26によって算出されたTR相線間電圧VTRの位相変化角ΔθTRと位相差算出部27によって算出された合成電流IR-Sの位相差αと基づいて、過負荷、R−S相短絡、S−T相短絡、T−R相短絡、三相短絡、R−S相反相、S−T相反相、T−R相反相、スター結線された三相電源線におけるR相欠相、S相欠相、T相欠相、R相断線、S相断線、T相断線、デルタ結線された三相電源線におけるR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線を検出すると、第1乃至第3の遮断器31〜33(図1参照)をそれぞれ遮断するための第1乃至第3のトリップ信号T1〜T3を生成し、生成した第1乃至第3のトリップ信号T1〜T3を入出力部30および外部機器インターフェース部31を介して第1乃至第3の遮断器31〜33にそれぞれ出力する。 The relay calculation processing unit 28 includes a current change rate K RS of the combined current I RS calculated by the current change rate calculation unit 24 and a voltage change rate L of the TR phase line voltage V TR calculated by the voltage change rate calculation unit 25. Based on the phase change angle Δθ TR of the TR phase line voltage V TR calculated by TR and the phase change angle calculation unit 26 and the phase difference α of the combined current I RS calculated by the phase difference calculation unit 27, overload, R-S phase short circuit, S-T phase short circuit, T-R phase short circuit, three-phase short circuit, R-S reciprocal phase, S-T reciprocal phase, TR reciprocal phase, R in star-connected three-phase power supply line Phase open phase, S phase open phase, T phase open phase, R phase open wire, S phase open wire, T phase open wire, R phase open phase, S phase open phase, T phase open phase in delta-connected three-phase power supply line, RS phase disconnection, when detecting the ST-phase disconnection and TR phase disconnection, the first to third circuit breakers 3 1 to 3 3 (see FIG. 1) its The first to third trip signal T 1 generates through T 3, the first through third trip signal T 1 through T 3 input-output unit 30 and an external device interface unit 31 which is generated for interrupting, respectively To the first to third circuit breakers 3 1 to 3 3 , respectively.

整定・表示部29は、過負荷・短絡検出電流変化率値、第1および第2の過負荷・短絡検出電圧変化率値、第1および第2の過負荷・短絡検出位相変化角範囲、第1および第2の過負荷・短絡検出位相差範囲、反相検出電流変化率範囲、反相検出電圧変化率範囲、反相検出位相差範囲、欠相・断線検出電流変化率範囲、第1および第2の断線検出電流変化率範囲、欠相・断線検出電圧変化率範囲、第1乃至第4の欠相・断線検出位相差範囲並びに第1および第2の断線検出位相差範囲に基づいてリレー整定処理を行うとともに、整定値などを外部に表示する。   The settling / display unit 29 includes an overload / short-circuit detection current change rate value, first and second overload / short-circuit detection voltage change rate values, first and second overload / short-circuit detection phase change angle ranges, 1 and 2 overload / short circuit detection phase difference range, anti-phase detection current change rate range, anti-phase detection voltage change rate range, anti-phase detection phase difference range, open phase / disconnection detection current change rate range, Relay based on the second disconnection detection current change rate range, the phase loss / disconnection detection voltage change rate range, the first to fourth phase loss / disconnection detection phase difference ranges, and the first and second disconnection detection phase difference ranges A settling process is performed and a settling value is displayed outside.

次に、以下に示す条件下におけるリレー演算処理部28の動作について説明する。
(1)過負荷・短絡検出電流変化率値=1.15、第1の過負荷・短絡検出電圧変化率値=0.96、第2の過負荷・短絡検出電圧変化率値=0.8、第1の過負荷・短絡検出位相変化角範囲=5.2°〜30°、第2の過負荷・短絡検出位相変化角範囲=−5.2°〜−30°、第1の過負荷・短絡検出位相差範囲=−203°〜−90°、第2の過負荷・短絡検出位相差範囲=−210°〜−150°
(2)反相検出電流変化率範囲=0.9〜1.1、反相検出電圧変化率範囲=0.9〜1.1、反相検出位相差範囲=−150°〜−90°
(3)欠相・断線検出電流変化率範囲=0.4〜0.6、第1の断線検出電流変化率範囲=0.2〜0.4、第2の断線検出電流変化率範囲=0.8〜0.9、欠相・断線検出電圧変化率範囲=0.4〜0.6、第1の欠相・断線検出位相差範囲=−30°〜30°、第2の欠相・断線検出位相差範囲=150°〜210°、第3の欠相・断線検出位相差範囲=30°〜90°、第4の欠相・断線検出位相差範囲=90°〜150°、第1の断線検出位相差範囲=130°〜150°、第2の断線検出位相差範囲=90°〜110°
Next, the operation of the relay calculation processing unit 28 under the following conditions will be described.
(1) Overload / short-circuit detection current change rate value = 1.15, first overload / short-circuit detection voltage change rate value = 0.96, second overload / short-circuit detection voltage change rate value = 0.8 First overload / short-circuit detection phase change angle range = 5.2 ° to 30 °, second overload / short-circuit detection phase change angle range = −5.2 ° to −30 °, first overload Short-circuit detection phase difference range = −203 ° to −90 °, second overload / short-circuit detection phase difference range = −210 ° to −150 °
(2) Anti-phase detection current change rate range = 0.9 to 1.1, anti-phase detection voltage change rate range = 0.9 to 1.1, anti-phase detection phase difference range = −150 ° to −90 °
(3) Phase loss / disconnection detection current change rate range = 0.4 to 0.6, first disconnection detection current change rate range = 0.2 to 0.4, second disconnection detection current change rate range = 0 .8 to 0.9, phase loss / breakage detection voltage change rate range = 0.4 to 0.6, first phase failure / breakage detection phase difference range = −30 ° to 30 °, second phase loss / Disconnection detection phase difference range = 150 ° to 210 °, third open phase / disconnection detection phase difference range = 30 ° to 90 °, fourth open phase / disconnection detection phase difference range = 90 ° to 150 °, first Disconnection detection phase difference range = 130 ° to 150 °, second disconnection detection phase difference range = 90 ° to 110 °

まず、過負荷または短絡事故発生時のリレー演算処理部28の動作について、図12に示すフローチャートを参照して説明する。
リレー演算処理部28は、合成電流IR-Sの電流変化率KR-Sが過負荷・短絡検出電流変化率値(=1.15)以上であるか否かを調べ(ステップS10)、電流変化率KR-Sが過負荷・短絡検出電流変化率値以上であると、TR相線間電圧VTRの電圧変化率LTRが第1の過負荷・短絡検出電圧変化率値(=0.96)以下であるか否かを調べる(ステップS11)。
リレー演算処理部28は、電圧変化率LTRが第1の過負荷・短絡検出電圧変化率値以下でないと、「過負荷が発生した」と判定する(ステップS19a)。
First, the operation of the relay calculation processing unit 28 when an overload or short circuit accident occurs will be described with reference to the flowchart shown in FIG.
Relay processing section 28, the resultant current the current rate of change K RS overload or short circuit detecting current change rate values I RS (= 1.15) examines if the either more (step S10), and the current change rate K If RS is equal to or greater than the overload / short-circuit detection current change rate value, the voltage change rate L TR of the TR phase line voltage V TR is equal to or less than the first overload / short-circuit detection voltage change rate value (= 0.96). It is checked whether or not there is (step S11).
If the voltage change rate L TR is not less than or equal to the first overload / short-circuit detection voltage change rate value, the relay calculation processing unit 28 determines that “overload has occurred” (step S19a).

ステップS11において電圧変化率LTRが第1の過負荷・短絡検出電圧変化率値以下であると、リレー演算処理部28は、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値(=0.8)以下であるか否かを調べる(ステップS12)。
リレー演算処理部28は、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値以下でないと、TR相線間電圧VTRの位相変化角ΔθTRが第1の過負荷・短絡検出位相変化角範囲(=5.2°〜30°)内の値であるか否かを調べ(ステップS13)、位相変化角ΔθTRが第1の過負荷・短絡検出位相変化角範囲内の値であると、「R−S相短絡が発生した」と判定し(ステップS19b)、一方、位相変化角ΔθTRが第1の過負荷・短絡検出位相変化角範囲内の値でないと、位相変化角ΔθTRが第2の過負荷・短絡検出位相変化角範囲(=−5.2°〜−30°)内の値であるか否かを調べ(ステップS16)、位相変化角ΔθTRが第2の過負荷・短絡検出位相変化角範囲内の値であると、「S−T相短絡が発生した」と判定する(ステップS19c)。
When the voltage change rate L TR is equal to or less than the first overload / short circuit detection voltage change rate value in step S11, the relay calculation processing unit 28 determines that the voltage change rate L TR is the second overload / short circuit detection voltage change rate. It is checked whether or not the value (= 0.8) or less (step S12).
Relay processing section 28, when the voltage change rate L TR not less than the second overload or short circuit detecting voltage change rate value, the phase change angle [Delta] [theta] TR of the voltage V TR - TR phase line first overload or short circuit It is checked whether or not the value is within the detection phase change angle range (= 5.2 ° to 30 °) (step S13), and the phase change angle Δθ TR is within the first overload / short-circuit detection phase change angle range. If it is a value, it is determined that “R-S phase short-circuit has occurred” (step S19b). On the other hand, if the phase change angle Δθ TR is not within the first overload / short-circuit detection phase change angle range, change angle [Delta] [theta] TR is checked whether the second value of the overload or short circuit detecting the phase change angle range (= -5.2 ° ~-30 ° ) in (step S16), and the phase change angle [Delta] [theta] TR If the value is within the second overload / short-circuit detection phase change angle range, it is determined that "ST phase short-circuit has occurred" (step S19). c).

ステップS12において電圧変化率LTRが第2の短絡検出電圧変化率値以下であると、リレー演算処理部28は、合成電流IR-Sの位相差αが第2の過負荷・短絡検出位相差範囲(=−210°〜−150°)内の値であるか否かを調べ(ステップS18)、位相差αが第2の過負荷・短絡検出位相差範囲内の値であると、「三相短絡が発生した」と判定し(ステップS19e)、一方、位相差αが第2の過負荷・短絡検出位相差範囲内の値でないと、「T−R相短絡が発生した」と判定し(ステップS19d)。 When the voltage change rate L TR is equal to or smaller than the second short circuit detection voltage change rate value in step S12, the relay calculation processing unit 28 determines that the phase difference α of the combined current I RS is the second overload / short circuit detection phase difference range. (= −210 ° to −150 °) is checked (step S18). If the phase difference α is a value within the second overload / short-circuit detection phase difference range, “three-phase On the other hand, if the phase difference α is not a value within the second overload / short circuit detection phase difference range, it is determined that a “T-R phase short circuit has occurred” (step S19e) Step S19d).

ステップS10において電流変化率KR-Sが過負荷・短絡検出電流変化率値(=1.15)未満であると、リレー演算処理部28は、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値(=0.8)以下であるか否かを調べ(ステップS14)、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値以下でないと、電圧変化率LTRが第1の過負荷・短絡検出電圧変化率値(=0.96)以下であるか否かを調べ(ステップS15)、電圧変化率LTRが第1の過負荷・短絡検出電圧変化率値以下であると、位相変化角ΔθTRが第2の過負荷・短絡検出位相変化角範囲(=−5.2°〜−30°)内の値であるか否かを調べる(ステップS16)。
リレー演算処理部28は、位相変化角ΔθTRが第2の過負荷・短絡検出位相変化角範囲内の値であると、「S−T相短絡が発生した」と判定する(ステップS19c)。
If the current change rate KRS is less than the overload / short circuit detection current change rate value (= 1.15) in step S10, the relay calculation processing unit 28 determines that the voltage change rate LTR is the second overload / short circuit detection. It is checked whether or not the voltage change rate value (= 0.8) or less (step S14). If the voltage change rate L TR is not less than or equal to the second overload / short-circuit detection voltage change rate value, the voltage change rate L TR Is less than or equal to the first overload / short circuit detection voltage change rate value (= 0.96) (step S15), and the voltage change rate L TR is the first overload / short circuit detection voltage change rate value. If it is below, it is checked whether or not the phase change angle Δθ TR is a value within the second overload / short-circuit detection phase change angle range (= −5.2 ° to −30 °) (step S16).
When the phase change angle Δθ TR is a value within the second overload / short-circuit detection phase change angle range, the relay arithmetic processing unit 28 determines that “ST phase short-circuit has occurred” (step S19c).

ステップS14において電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値(=0.8)以下であると、リレー演算処理部28は、位相差αが第1の過負荷・短絡検出位相差範囲(=−203°〜−90°)内の値であるか否かを調べる(ステップS17)。
リレー演算処理部28は、位相差αが第1の過負荷・短絡検出位相差範囲内の値であると、「T−R相短絡が発生した」と判定する(ステップS19d)。
When the voltage change rate L TR is equal to or less than the second overload / short circuit detection voltage change rate value (= 0.8) in step S14, the relay calculation processing unit 28 determines that the phase difference α is the first overload / short circuit. It is checked whether or not the value is within a detection phase difference range (= −203 ° to −90 °) (step S17).
When the phase difference α is a value within the first overload / short circuit detection phase difference range, the relay calculation processing unit 28 determines that “TR phase short circuit has occurred” (step S19d).

リレー演算処理部28は、以上のようにして過負荷、R−S相短絡、S−T相短絡、T−R相短絡または三相短絡の発生を検出すると、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS20)。 When the relay calculation processing unit 28 detects the occurrence of an overload, an R-S phase short circuit, an ST phase short circuit, a TR phase short circuit, or a three-phase short circuit as described above, the first to third trip signals are detected. T 1 to T 3 are output (step S20).

次に、反相発生時のリレー演算処理部28の動作について、図13に示すフローチャートを参照して説明する。
リレー演算処理部28は、合成電流IR-Sの電流変化率KR-Sが反相検出電流変化率範囲(=0.9〜1.1)内の値であるか否かを調べ(ステップS21)、電流変化率KR-Sが反相検出電流変化率範囲内の値であると、TR相線間電圧VTRの電圧変化率LTRが反相検出電圧変化率範囲(=0.9〜1.1)内の値であるか否かを調べ(ステップS22)、電圧変化率LTRが反相検出電圧変化率範囲内の値であると、合成電流IR-Sの位相差αが反相検出位相差範囲(=−150°〜−90°)内の値であるか否かを調べる(ステップS23)。
リレー演算処理部28は、位相差αが反相検出位相差範囲内の値であると、「反相が発生した」と判定して(ステップS24)、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS25)。
Next, the operation of the relay calculation processing unit 28 when a reverse phase occurs will be described with reference to the flowchart shown in FIG.
Relay processing section 28 checks whether the combined current I current change rate K RS of RS is a value within the anti-phase detected current change rate range (= 0.9 to 1.1) (step S21), and If the current change rate K RS is a value within the antiphase detection current change rate range, the voltage change rate L TR of the TR phase line voltage V TR is the antiphase detection voltage change rate range (= 0.9 to 1.1). ) (Step S22), and if the voltage change rate L TR is a value within the anti-phase detection voltage change rate range, the phase difference α of the combined current I RS is the anti-phase detection phase difference. It is checked whether the value is within a range (= −150 ° to −90 °) (step S23).
When the phase difference α is a value within the anti-phase detection phase difference range, the relay calculation processing unit 28 determines that “an anti-phase has occurred” (step S24), and the first to third trip signals T 1. and it outputs the through T 3 (step S25).

次に、スター結線された三相電源線における欠相または断線発生時のリレー演算処理部28の動作について、図14に示すフローチャートを参照して説明する。
リレー演算処理部28は、TR相線間電圧VTRの電圧変化率LTRが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS31)、電圧変化率LTRが欠相・断線検出電圧変化率範囲内の値であると、合成電流IR-Sの電流変化率KR-Sが欠相・断線検出電流変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS32)、電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値であると、合成電流IR-Sの位相差αが第1の欠相・断線検出位相差範囲(=−30°〜30°)内の値であるか否かを調べる(ステップS33)。
リレー演算処理部28は、位相差αが第1の欠相・断線検出位相差範囲内の値であると、「R相欠相が発生した」と判定する(ステップS39a)。
Next, the operation of the relay arithmetic processing unit 28 when a phase loss or disconnection occurs in a star-connected three-phase power supply line will be described with reference to the flowchart shown in FIG.
The relay arithmetic processing unit 28 checks whether or not the voltage change rate L TR of the TR phase line voltage V TR is a value within the phase loss / disconnection detection voltage change rate range (= 0.4 to 0.6). (Step S31) If the voltage change rate L TR is a value within the range of the phase failure / disconnection detection voltage change rate, the current change rate K RS of the combined current I RS is the range of the phase failure / disconnection detection current change rate (= 0). examines whether the value of .4~0.6) in (step S32), the current rate of change K RS is a value open phase-disconnection detecting the current change rate in the range, the resultant current I-position of the RS It is checked whether or not the phase difference α is a value within the first phase loss / disconnection detection phase difference range (= −30 ° to 30 °) (step S33).
When the phase difference α is a value within the first phase loss / disconnection detection phase difference range, the relay calculation processing unit 28 determines that “R phase phase loss has occurred” (step S39a).

ステップS31において電圧変化率LTRが欠相・断線検出電圧変化率範囲内の値でないと、リレー演算処理部28は、電流変化率KR-Sが欠相・断線検出電流変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS34)、電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値であると、位相差αが第2の欠相・断線検出位相差範囲(=150°〜210°)内の値であるか否かを調べる(ステップS35)。
リレー演算処理部28は、位相差αが第2の欠相・断線検出位相差範囲内の値であると、「S相欠相またはS相断線が発生した」と判定する(ステップS39d)。
If the voltage change rate LTR is not a value within the phase loss / disconnection detection voltage change rate range in step S31, the relay processing unit 28 determines that the current change rate KRS is the phase loss / disconnection detection current change rate range (= 0. examines whether the value of 4 to 0.6) in (step S34), the current rate of change K RS is a value open phase-disconnection detecting the current change rate in the range, the phase difference α is the second It is checked whether or not the value is within the open phase / disconnection detection phase difference range (= 150 ° to 210 °) (step S35).
When the phase difference α is a value within the second phase loss / disconnection detection phase difference range, the relay calculation processing unit 28 determines that “S phase phase loss or S phase disconnection has occurred” (step S39d).

ステップS32において電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値でないと、リレー演算処理部28は、位相差αが第2の欠相・断線検出位相差範囲(=150°〜210°)内の値であるか否かを調べる(ステップS36)。
リレー演算処理部28は、位相差αが第2の欠相・断線検出位相差範囲内の値であると、「T相欠相が発生した」と判定する(ステップS39c)。
If the current change rate KRS is not a value within the open phase / disconnection detection current change rate range in step S32, the relay calculation processing unit 28 determines that the phase difference α is equal to the second open phase / disconnection detection phase difference range (= 150 °). It is checked whether the value is within the range of ~ 210 ° (step S36).
When the phase difference α is a value within the second phase loss / disconnection detection phase difference range, the relay arithmetic processing unit 28 determines that “a T phase phase loss has occurred” (step S39c).

ステップS35において位相差αが第2の欠相・断線検出位相差範囲内の値でないと、リレー演算処理部28は、位相差αが第3の欠相・断線検出位相差範囲(=30°〜90°)内の値であるか否かを調べる(ステップS37)。
リレー演算処理部28は、位相差αが第3の欠相・断線検出位相差範囲内の値であると、「R相断線が発生した」と判定する(ステップS39d)。
If the phase difference α is not a value within the second open phase / disconnection detection phase difference range in step S35, the relay processing unit 28 determines that the phase difference α is within the third open phase / disconnection detection phase difference range (= 30 °). It is checked whether the value is within the range of (˜90 °) (step S37).
When the phase difference α is a value within the third open phase / disconnection detection phase difference range, the relay calculation processing unit 28 determines that “R phase disconnection has occurred” (step S39d).

ステップS34において電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値でないと、リレー演算処理部28は、位相差αが第4の欠相・断線検出位相差範囲(=90°〜150°)内の値であるか否かを調べる(ステップS38)。
リレー演算処理部28は、位相差αが第4の欠相・断線検出位相差範囲内の値であると、「T相断線が発生した」と判定する(ステップS39e)。
If the current change rate KRS is not a value within the phase loss / disconnection detection current change rate range in step S34, the relay calculation processing unit 28 determines that the phase difference α is the fourth phase loss / disconnection detection phase difference range (= 90 °). It is checked whether the value is within the range of (˜150 °) (step S38).
When the phase difference α is a value within the fourth open phase / disconnection detection phase difference range, the relay arithmetic processing unit 28 determines that “a T-phase disconnection has occurred” (step S39e).

リレー演算処理部28は、以上のようにしてR相欠相、S相欠相、T相欠相、R相断線、S相断線またはT相断線の発生を検出すると、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS40)。 When the relay arithmetic processing unit 28 detects the occurrence of the R-phase, S-phase, T-phase, R-phase, S-phase, or T-phase disconnection as described above, the first to third and it outputs the trip signal T 1 through T 3 (step S40).

次に、デルタ結線された三相電源線における欠相または断線発生時のリレー演算処理部28の動作について、図15および図16に示すフローチャートを参照して説明する。
リレー演算処理部28は、TR相線間電圧VTRの電圧変化率LTRが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS41)、電圧変化率LTRが欠相・断線検出電圧変化率範囲内の値であると、合成電流IR-Sの電流変化率KR-Sが欠相・断線検出電流変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS42)、電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値であると、合成電流IR-Sの位相差αが第1の欠相・断線検出位相差範囲(=−30°〜30°)内の値であるか否かを調べる(ステップS43)。
リレー演算処理部28は、位相差αが第1の欠相・断線検出位相差範囲内の値であると、「R相欠相が発生した」と判定する(ステップS51a)。
Next, the operation of the relay arithmetic processing unit 28 when a phase loss or disconnection occurs in the delta-connected three-phase power supply line will be described with reference to the flowcharts shown in FIGS. 15 and 16.
The relay arithmetic processing unit 28 checks whether or not the voltage change rate L TR of the TR phase line-to-line voltage V TR is a value within the phase loss / disconnection detection voltage change rate range (= 0.4 to 0.6). (Step S41) When the voltage change rate L TR is a value within the range of the phase failure / disconnection detection voltage change rate, the current change rate K RS of the combined current I RS is the range of the phase failure / disconnection detection current change rate (= 0). .4 to 0.6) (step S42), and if the current change rate K RS is a value within the range of the phase failure / disconnection detection current change rate, the position of the combined current I RS It is checked whether or not the phase difference α is a value within the first phase loss / disconnection detection phase difference range (= −30 ° to 30 °) (step S43).
If the phase difference α is a value within the first open phase / disconnection detection phase difference range, the relay calculation processing unit 28 determines that “the R phase open phase has occurred” (step S51a).

ステップS41において電圧変化率LTRが欠相・断線検出電圧変化率範囲内の値でないと、リレー演算処理部28は、電流変化率KR-Sが欠相・断線検出電流変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS44)、電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値であると、位相差αが第2の欠相・断線検出位相差範囲(=150°〜210°)内の値であるか否かを調べる(ステップS45)。
リレー演算処理部28は、位相差αが第2の欠相・断線検出位相差範囲内の値であると、「S相欠相が発生した」と判定する(ステップS51b)。
If the voltage change rate LTR is not a value within the phase failure / disconnection detection voltage change rate range in step S41, the relay processing unit 28 determines that the current change rate KRS is the phase loss / disconnection detection current change rate range (= 0.0. examines whether the value of 4 to 0.6) in (step S44), the current rate of change K RS is a value open phase-disconnection detecting the current change rate in the range, the phase difference α is the second It is checked whether or not the value is within the phase loss / disconnection detection phase difference range (= 150 ° to 210 °) (step S45).
When the phase difference α is a value within the second phase loss / disconnection detection phase difference range, the relay calculation processing unit 28 determines that “S phase phase loss has occurred” (step S51b).

ステップS42において電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値でないと、リレー演算処理部28は、位相差αが第2の欠相・断線検出位相差範囲(=150°〜210°)内の値であるか否かを調べる(ステップS46)。
リレー演算処理部28は、位相差αが第2の欠相・断線検出位相差範囲内の値であると、「T相欠相が発生した」と判定する(ステップS51c)。
If the current change rate KRS is not a value within the open phase / disconnection detection current change rate range in step S42, the relay calculation processing unit 28 determines that the phase difference α is equal to the second open phase / disconnection detection phase difference range (= 150 °). It is checked whether the value is within the range of ~ 210 ° (step S46).
When the phase difference α is a value within the second phase loss / disconnection detection phase difference range, the relay calculation processing unit 28 determines that “T phase phase loss has occurred” (step S51c).

ステップS44において電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値でないと、リレー演算処理部28は、電流変化率KR-Sが第1の断線検出電流変化率範囲(=0.2〜0.4)内の値であるか否かを調べる(図16のステップS47)。
リレー演算処理部28は、電流変化率KR-Sが第1の断線検出電流変化率範囲内の値であると、「R相断線が発生した」と判定する(ステップS51d)。
If the current change rate K RS is not a value within the phase failure / disconnection detection current change rate range in step S44, the relay processing unit 28 determines that the current change rate K RS is within the first disconnection detection current change rate range (= 0.0. 2 to 0.4) is checked (step S47 in FIG. 16).
When the current change rate K RS is a value within the first disconnection detection current change rate range, the relay arithmetic processing unit 28 determines that “R-phase disconnection has occurred” (step S51d).

一方、ステップS47において電流変化率KR-Sが第1の断線検出電流変化率範囲内の値でないと、リレー演算処理部28は、電流変化率KR-Sが第2の断線検出電流変化率範囲(=0.8〜0.9)内の値であるか否かを調べ(ステップS48)、電流変化率KR-Sが第2の断線検出電流変化率範囲内の値であると、位相差αが第1の断線検出位相差範囲(=130°〜150°)内の値であるか否かを調べる(ステップS49)。
リレー演算処理部28は、位相差αが第1の断線検出位相差範囲内の値であると、ST相断線が発生した」と判定する(ステップS51e)。
On the other hand, if the current change rate K RS is not a value within the first disconnection detection current change rate range in step S47, the relay calculation processing unit 28 determines that the current change rate K RS is equal to the second disconnection detection current change rate range (= It examines whether the value of 0.8-0.9) in (step S48), if the current rate of change K RS is the value of the second disconnection detecting the current change rate range, the phase difference α is a It is checked whether the value is within a disconnection detection phase difference range of 1 (= 130 ° to 150 °) (step S49).
When the phase difference α is a value within the first disconnection detection phase difference range, the relay calculation processing unit 28 determines that the ST phase disconnection has occurred ”(step S51e).

一方、ステップS49において位相差αが第1の断線検出位相差範囲内の値でないと、リレー演算処理部28は、位相差αが第2の断線検出位相差範囲(=90°〜110°)内の値であるか否かを調べる(ステップS50)。
リレー演算処理部28は、位相差αが第2の断線検出位相差範囲内の値であると、「TR相断線が発生した」と判定する(ステップS51f)。
On the other hand, if the phase difference α is not a value within the first disconnection detection phase difference range in step S49, the relay calculation processing unit 28 determines that the phase difference α is the second disconnection detection phase difference range (= 90 ° to 110 °). It is checked whether the value is within the range (step S50).
When the phase difference α is a value within the second disconnection detection phase difference range, the relay calculation processing unit 28 determines that “TR phase disconnection has occurred” (step S51f).

リレー演算処理部28は、以上のようにしてR相欠相、S相欠相、T相欠相、RS相断線、ST相断線またはTR相断線の発生を検出すると、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS52)。 When the relay calculation processing unit 28 detects the occurrence of the R-phase open phase, the S-phase open phase, the T-phase open phase, the RS phase open wire, the ST phase open wire, or the TR phase open wire as described above, and it outputs the trip signal T 1 through T 3 (step S52).

次に、本発明の第2の実施例による保護継電システムについて、図17乃至図27を参照して説明する。
本実施例による保護継電システムは、図17に示すように、三相電源線のR相およびS相がクロスするように貫通されたクロス貫通変流器41と、三相電源線のR相とT相との間に設けられた計器用変成器42と、クロス貫通変流器41から入力される合成電流IR-Sと計器用変成器42から入力されるTR相線間電圧VTRおよびT相電圧VTとに基づいて三相電源線における過負荷、短絡、反相、欠相および断線を検出する三相誘導電動機用3Eリレー50(以下、「3Eリレー50」と称する。)とを具備する。
Next, a protection relay system according to a second embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 17, the protection relay system according to the present embodiment includes a cross-through current transformer 41 that is penetrated so that the R phase and the S phase of the three-phase power supply line cross, and the R phase of the three-phase power supply line. Instrument transformer 42 provided between the T phase and the T phase, the combined current I RS input from the cross-through current transformer 41 and the TR phase line voltage V TR and T input from the instrument transformer 42. A 3E relay 50 for a three-phase induction motor (hereinafter referred to as “3E relay 50”) that detects overload, short circuit, reverse phase, phase loss, and disconnection in a three-phase power source line based on the phase voltage V T. It has.

ここで、クロス貫通変流器41は、図1に示したクロス貫通変流器11と同じものである。
計器用変成器42は、TR相線間電圧VTRおよびT相電圧VTを3Eリレー50に出力する。
Here, the cross through current transformer 41 is the same as the cross through current transformer 11 shown in FIG.
The instrument transformer 42 outputs the TR phase line voltage V TR and the T phase voltage V T to the 3E relay 50.

3Eリレー50は、クロス貫通変流器41から入力される合成電流IR-Sの電流変化率KR-Sと計器用変成器42から入力されるTR相線間電圧VTRの電圧変化率LTRおよび位相変化角ΔθTRと計器用変成器42から入力されるT相電圧VTの電圧変化率LTおよび位相変化角ΔθTとに基づいて、過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡を検出する。
また、3Eリレー50は、合成電流IR-Sの電流変化率KR-SとTR相線間電圧VTRの電圧変化率LTRとT相電圧VTの電圧変化率LTおよび位相差β(TR相線間電圧VTRの位相θTRに対する位相差であり、遅れ位相を正の値で進み位相を負の値で示す。以下同様)とに基づいて、R−S相反相、S−T相反相およびT−R相反相を検出する。
さらに、3Eリレー50は、合成電流IR-Sの電流変化率KR-Sおよび位相差α(TR相線間電圧VTRの位相θTRに対する位相差であり、遅れ位相を正の値で進み位相を負の値で示す。)とTR相線間電圧VTRの電圧変化率LTRとT相電圧VTの電圧変化率LTとに基づいて、スター結線された三相電源線におけるR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線を検出するとともに、デルタ結線された三相電源線におけるR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線を検出する。
3Eリレー50は、以上のようにして過負荷などを検出すると、第1乃至第3のトリップ信号T1〜T3を第1乃至第3の遮断器31〜33にそれぞれ出力する。
The 3E relay 50 includes a current change rate K RS of the combined current I RS input from the cross-through current transformer 41, a voltage change rate L TR and a phase of the TR phase line voltage V TR input from the instrument transformer 42. based on the voltage change rate L T and the phase change angle [Delta] [theta] T T-phase voltage V T which is input from the change angle [Delta] [theta] TR and instrument transformer 42, overload, R-S-phase short circuit, S-T phase short-circuit , TR phase short circuit and three phase short circuit are detected.
Further, 3E relay 50 is the combined current-voltage change rate L T and the phase difference of the voltage change rate L TR and T-phase voltage V T of the current change rate K RS and TR phase line voltage V TR of the I RS beta (TR phase Based on the phase difference of the line voltage V TR relative to the phase θ TR , the lag phase is a positive value, the lead phase is a negative value, and so on. And TR reciprocal phase is detected.
Furthermore, 3E relay 50 is the phase difference for the phase theta TR synthetic current I RS of the current rate of change K RS and the phase difference alpha (TR-phase line voltage V TR, negative phase lead lag phase at a positive value indicated by the value.) and on the basis of the voltage change rate L T of the voltage change rate L TR and T-phase voltage V T of the TR-phase line voltage V TR, R Aiketsusho in three-phase power supply lines which are star-connected , S phase open phase, T phase open phase, R phase open phase, S phase open phase and T phase open phase are detected, and R phase open phase, S phase open phase, T phase open phase in delta-connected three-phase power supply line RS phase disconnection, ST phase disconnection and TR phase disconnection are detected.
When the 3E relay 50 detects an overload or the like as described above, the 3E relay 50 outputs the first to third trip signals T 1 to T 3 to the first to third circuit breakers 3 1 to 3 3 , respectively.

次に、3Eリレー50における過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出方法について、図18を参照して詳しく説明する。
なお、以下の説明では、R相、S相およびT相電流IR,IS,ITの定格電流値を“1”とし、R相、S相およびT相電圧VR,VS,VTの定格電圧値を“1”とし、正常時のR相電流IR0の位相θR0を0°として説明する。
Next, a method for detecting overload, RS phase short circuit, ST phase short circuit, TR phase short circuit, and three phase short circuit in the 3E relay 50 will be described in detail with reference to FIG.
In the following description, the rated current values of the R-phase, S-phase, and T-phase currents I R , I S , I T are “1”, and the R-phase, S-phase, and T-phase voltages V R , V S , V Description will be made assuming that the rated voltage value of T is “1” and the phase θ R0 of the R-phase current I R0 at normal time is 0 °.

(1)正常時の合成電流I(R-S)0、TR相線間電圧VTR0およびT相電圧VT0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0と正常時の合成電流I(R-S)0の位相差α0とは上記(1−1)式から(1−5)式でそれぞれ表される。
また、正常時のT相電圧VT0の値|VT0|、位相θT0および位相差β0は(21−1)式から(21−3)式でそれぞれ表される(図19(a)参照)。
|VT0|=1 (21−1)
θT0=240° (21−2)
β0=θT0−θTR0=240°−210°=30° (21−3)
(1) Composite current I (RS) 0 at normal time, TR phase line voltage V TR0 and T phase voltage V T0
Normal value of composite current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal value of TR phase line voltage V TR0 | V TR0 | and phase θ TR0 and normal value The phase difference α 0 of the combined current I (RS) 0 is expressed by the above equations (1-1) to (1-5).
Further, the value of the T-phase voltage V T0 at normal time | V T0 |, the phase θ T0, and the phase difference β 0 are expressed by the equations (21-1) to (21-3), respectively (FIG. 19A) reference).
| V T0 | = 1 (21-1)
θ T0 = 240 ° (21-2)
β 0 = θ T0 −θ TR0 = 240 ° −210 ° = 30 ° (21-3)

(2)過負荷時の合成電流IR-S、TR相線間電圧VTRおよびT相電圧VT
過負荷が発生して定格電流値(この例では、正常時のR相、S相およびT相電流IR0,IS0,IT0)の1.15倍のR相、S相およびT相電流IR,IS,ITが三相電源線のR相、S相およびT相にそれぞれ流れたとすると、過負荷時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRとは上記(2−1)式から(2−7)式でそれぞれ表される。
また、過負荷時のT相電圧VTの値|VT|、電圧変化率LT、位相θTおよび位相変化角ΔθTは(22−1)式から(22−4)式でそれぞれ表される。
|VT|=|VT0|=1 (22−1)
T=|VT|/|VT0|=1/1=1 (22−2)
θT=240° (22−3)
ΔθT=θT−θT0=240°−240°=0° (22−4)
(2) Composite current I RS at the time of overload, TR phase line voltage V TR and T phase voltage V T
R-phase, S-phase, and T-phase current 1.15 times the rated current value (in this example, normal R-phase, S-phase, and T-phase currents I R0 , I S0 , I T0 ) due to overload I R, I S, R-phase of the I T is a three-phase power line, assuming that respectively flow into S phase and T-phase, the value of the composite current I RS during overload | I RS |, the current change rate K RS and phase The value of θ RS and the TR phase line voltage V TR | V TR |, the voltage change rate L TR , the phase θ TR and the phase change angle Δθ TR are expressed by the equations (2-1) to (2-7), respectively. expressed.
Further, the value of the T-phase voltage V T at the time of overload | V T |, the voltage change rate L T , the phase θ T and the phase change angle Δθ T are respectively expressed by the equations (22-1) to (22-4). Is done.
| V T | = | V T0 | = 1 (22-1)
L T = | V T | / | V T0 | = 1/1 = 1 (22-2)
θ T = 240 ° (22-3)
Δθ T = θ T −θ T0 = 240 ° −240 ° = 0 ° (22-4)

(3)R−S相短絡時の合成電流IR-S、TR相線間電圧VTRおよびT相電圧VT
R相−S相間の短絡事故(R−S相短絡)が発生して定格電流値(この例では、正常時のR相およびS相電流IR0,IS0)の1.15倍のR相およびS相事故電流IFR,IFSが流れたとすると、R−S相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRと合成電流IR-Sの位相差α(=θR-S−θTR)とは上記(3−1)式から(3−8)式でそれぞれ表される)。
また、R−S相短絡時のT相電圧VTの値|VT|、電圧変化率LT、位相θTおよび位相変化角ΔθTは(23−1)式から(23−4)式でそれぞれ表される(図18(a)参照)。
|VT|=|VT0|=1 (23−1)
T=|VT|/|VT0|=1/1=1 (23−2)
θT=240° (23−3)
ΔθT=θT−θT0=240°−240°=0° (23−4)
(3) Composite current I RS , TR phase line voltage V TR and T phase voltage V T when RS phase is short-circuited
An R phase that is 1.15 times the rated current value (in this example, the normal R phase and S phase currents I R0 , I S0 ) due to a short circuit accident between the R phase and the S phase (R-S phase short circuit) And S-phase fault currents I FR and I FS flow, the value of the combined current I RS when the RS phase is short-circuited | I RS |, the current change rate K RS and the phase θ RS and the TR phase line voltage V TR The value | V TR |, the voltage change rate L TR , the phase θ TR, the phase change angle Δθ TR, and the phase difference α (= θ RS −θ TR ) of the combined current I RS are obtained from the above equation (3-1) ( 3-8) each represented by the formula).
Also, the value of the T-phase voltage V T when the RS phase is short-circuited | V T |, the voltage change rate L T , the phase θ T, and the phase change angle Δθ T are expressed by the equations (23-1) to (23-4) (Refer to FIG. 18A).
| V T | = | V T0 | = 1 (23-1)
L T = | V T | / | V T0 | = 1/1 = 1 (23-2)
θ T = 240 ° (23-3)
Δθ T = θ T −θ T0 = 240 ° −240 ° = 0 ° (23-4)

(4)S−T相短絡時の合成電流IR-S、TR相線間電圧VTRおよびT相電圧VT
S相−T相間の短絡事故(S−T相短絡)が発生して定格電流値(この例では、正常時のR相およびS相電流IR0,IS0)の1.15倍のS相およびT相事故電流IFS,IFTが流れたとすると、S−T相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRと合成電流IR-Sの位相差αとは上記(4−1)式から(4−8)式でそれぞれ表される。
また、定格電流値よりも過大なS相およびT相事故電流IFS,IFTが流れたとすると、S−T相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sと合成電流IR-Sの位相差αとは上記(4−9)式から(4−12)式でそれぞれ表される。
さらに、S−T相短絡時のT相電圧VTの値|VT|、電圧変化率LT、位相θTおよび位相変化角ΔθTは(24−1)式から(24−4)式でそれぞれ表される(図18(b)参照)。
|VT|={0.52+(0.8×31/2/2)21/2 (24−1)
T=|VT|/|VT0|={0.52+(0.8×31/2/2)21/2/1
(=0.854) (24−2)
θT=234.2° (24−3)
ΔθT=θT−θT0=234.2°−240°=−5.8° (24−4)
(4) Composite current I RS , TR phase line voltage V TR and T phase voltage V T when S-T phase is short-circuited
The S phase is 1.15 times the rated current value (in this example, the normal R phase and S phase currents I R0 , I S0 ) due to the occurrence of a short circuit accident between the S phase and the T phase (ST phase short circuit) And T-phase fault currents I FS and I FT flow, the value | I RS | of the combined current I RS when the ST phase is short-circuited, the current change rate K RS and the phase θ RS and the TR phase line voltage V TR Value | V TR |, voltage change rate L TR , phase θ TR, phase change angle Δθ TR and phase difference α of the combined current I RS are expressed by the equations (4-1) to (4-8), respectively. Is done.
Further, if the S-phase and T-phase fault currents I FS and I FT that are larger than the rated current value flow, the value | I RS | of the combined current I RS and the current change rate K RS The phase difference α between the phase θ RS and the combined current I RS is expressed by the above equations (4-9) to (4-12), respectively.
Further, the value of the T-phase voltage V T when the S-T phase is short-circuited | V T |, the voltage change rate L T , the phase θ T, and the phase change angle Δθ T are expressed by equations (24-1) to (24-4). (Refer to FIG. 18B).
| V T | = {0.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (24-1)
L T = | V T | / | V T0 | = {0.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 1
(= 0.854) (24-2)
θ T = 234.2 ° (24-3)
Δθ T = θ T −θ T0 = 234.2 ° −240 ° = −5.8 ° (24-4)

(5)T−R相短絡時の合成電流IR-S、TR相線間電圧VTRおよびT相電圧VT
T相−R相間の短絡事故(T−R相短絡)が発生して定格電流値(この例では、正常時のR相およびS相電流IR0,IS0)の1.15倍のT相およびR相事故電流IFT,IFRが流れたとすると、T−R相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRと合成電流IR-Sの位相差αとは上記(5−1)式から(5−8)式でそれぞれ表される。
また、定格電流値よりも過大なT相およびR相事故電流IFT,IFRが流れたとすると、T−R相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sと合成電流IR-Sの位相差αとは上記(5−9)式から(5−12)式でそれぞれ表される。
さらに、T−R相短絡時のT相電圧VTの値|VT|、電圧変化率LT、位相θTおよび位相変化角ΔθTは(25−1)式から(25−4)式でそれぞれ表される(図18(c)参照)。
|VT|={0.52+(0.8×31/2/2)21/2 (25−1)
T=|VT|/|VT0|={0.52+(0.8×31/2/2)21/2/1
(=0.854) (25−2)
θT=245.8° (25−3)
ΔθT=θT−θT0=245.8°−240°=5.8° (25−4)
(5) Composite current I RS , TR phase line voltage V TR and T phase voltage V T when T-R phase is short-circuited
A T-phase that is 1.15 times the rated current value (in this example, the R-phase and S-phase currents I R0 and I S0 in the normal state) due to a short-circuit accident between the T-phase and R-phase (T-R phase short-circuit) And R-phase fault currents I FT and I FR flow, the value of the combined current I RS when the TR phase is short-circuited | I RS |, the current change rate K RS and the phase θ RS and the TR phase line voltage V TR Value | V TR |, voltage change rate L TR , phase θ TR, phase change angle Δθ TR and phase difference α of the combined current I RS are expressed by the above equations (5-1) to (5-8), respectively. Is done.
Also, assuming that the T-phase and R-phase fault currents I FT and I FR that are larger than the rated current value flow, the value of the combined current I RS when the TR phase is short-circuited | I RS |, the current change rate K RS and The phase θ RS and the phase difference α between the combined currents I RS are expressed by the above equations (5-9) to (5-12), respectively.
Further, the value of the T-phase voltage V T when the T-R phase is short-circuited | V T |, the voltage change rate L T , the phase θ T, and the phase change angle Δθ T are expressed by equations (25-1) to (25-4). (Refer to FIG. 18C).
| V T | = {0.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (25-1)
L T = | V T | / | V T0 | = {0.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 1
(= 0.854) (25-2)
θ T = 245.8 ° (25-3)
Δθ T = θ T −θ T0 = 245.8 ° -240 ° = 5.8 ° (25-4)

(6)三相短絡時の合成電流IR-S、TR相線間電圧VTRおよびT相電圧VT
三相短絡事故(三相短絡)が発生して定格電流値(この例では、正常時のR相、S相およびT相電流IR0,IS0,IT0)の1.15倍のR相、S相およびT相事故電流IFR,IFS,IFTが流れたとすると、三相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTR、位相θTRおよび位相変化角ΔθTRと合成電流IR-Sの位相差αとは上記(6−1)式から(6−8)式でそれぞれ表される。
また、三相短絡時のT相電圧VTの値|VT|、電圧変化率LT、位相θTおよび位相変化角ΔθTは(26−1)式から(26−4)式でそれぞれ表される(図18(d)参照)。
|VT|=0.8×|VT0|=0.8×1=0.8 (26−1)
T=|VT|/|VT0|=0.8/1=0.8 (26−2)
θT=240° (26−3)
ΔθT=θT−θT0=240°−240°=0° (26−4)
(6) Composite current I RS , TR phase line voltage V TR and T phase voltage V T at the time of three-phase short circuit
R phase that is 1.15 times the rated current value (in this example, normal R phase, S phase, and T phase currents I R0 , I S0 , I T0 ) due to the occurrence of a three-phase short circuit accident (three-phase short circuit) , S-phase and T-phase fault currents I FR , I FS , I FT flow, value of composite current I RS at three-phase short circuit | I RS |, current change rate K RS and phase θ RS and TR phase line The value of the inter-voltage V TR | V TR |, the voltage change rate L TR , the phase θ TR, the phase change angle Δθ TR and the phase difference α of the combined current I RS are expressed by the above equation (6-1) (6-8) Each is represented by a formula.
Also, the value of the T-phase voltage V T at the time of a three-phase short circuit | V T |, the voltage change rate L T , the phase θ T and the phase change angle Δθ T are expressed by the equations (26-1) to (26-4), respectively. It is expressed (see FIG. 18D).
| V T | = 0.8 × | V T0 | = 0.8 × 1 = 0.8 (26-1)
L T = | V T | / | V T0 | = 0.8 / 1 = 0.8 (26-2)
θ T = 240 ° (26-3)
Δθ T = θ T −θ T0 = 240 ° −240 ° = 0 ° (26-4)

(7)過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出
合成電流IR-Sの位相θR-Sがアーク抵抗の影響により−45°〜15°の範囲で変動することを考慮する。
(a)過負荷の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=1.15)が所定の過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が所定の第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)よりも大きいと、「過負荷が発生した」と判定する。
(b)R−S相短絡の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=1.328)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.954)が第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)以下で所定の第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく、かつ、TR相線間電圧VTRの位相変化角ΔθTR(=5.2°)が第1の過負荷・短絡検出位相変化角範囲(たとえば、5.2°〜30°(短絡点までのインピーダンスを考慮))内の値であると、「R−S相短絡が発生した」と判定する。
(c)S−T相短絡の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=1.231)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、T相電圧VTの電圧変化率LT(=0.954)が第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)以下で第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく、かつ、TR相線間電圧VTRの位相変化角ΔθTR(=−5.2°)が第2の過負荷・短絡検出位相変化角範囲(たとえば、−5.2°〜−30°)内の値であると、「S−T相短絡が発生した」と判定する。
また、3Eリレー50は、定格電流値よりも過大なS相およびT相事故電流IFS,IFTが流れたときのために、合成電流IR-Sの電流変化率KR-S(≫0.664)が過負荷・短絡検出電流変化率値(たとえば、1.15)未満であっても、T相電圧VTの電圧変化率LT(=0.854)が第3の過負荷・短絡検出電圧変化率値(たとえば、0.86)以下であり、TR相線間電圧VTRの電圧変化率LTR(=0.954)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく、かつ、TR相線間電圧VTRの位相変化角ΔθTR(=−5.2°)が第2の過負荷・短絡検出位相変化角範囲(たとえば、−5.2°〜−30°)内の値であると、「S−T相短絡が発生した」と判定する。
(d)T−R相短絡の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=0.183)が過負荷・短絡検出電流変化率値(たとえば、1.15)未満であり、かつ、T相電圧VTの電圧変化率LT(=0.854)が第3の過負荷・短絡検出電圧変化率値(たとえば、0.86)以下であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、T相電圧VTの位相変化角ΔθT(=5.8°)が第3の過負荷・短絡検出位相変化角範囲(たとえば、5.8°〜60°)内の値であると、「T−R相短絡が発生した」と判定する。
また、3Eリレー50は、定格電流値よりも過大なT相およびR相事故電流IFT,IFRが流れたときのために、合成電流IR-Sの電流変化率KR-S(≫0.664)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であっても、TR相線間電圧VTRの電圧変化率LTR(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、T相電圧VTの位相変化率ΔθT(=5.8°)が第3の過負荷・短絡検出位相変化角範囲(たとえば、5.8〜60°)内の値であると、「T−R相短絡が発生した」と判定する。
(e)三相短絡の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=1.15)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、T相電圧VTの位相変化率ΔθT(=0°)が第3の過負荷・短絡検出位相変化角範囲(たとえば、5.8〜60°)内の値でないと、「三相短絡が発生した」と判定する。
(7) overload, RS-phase short circuit, S-T phase short-circuit, T-R phase short-circuit and three-phase short circuit detecting the resultant current I RS phase theta RS is -45 ° to 15 ° due to the influence of the arc resistance Consider fluctuations in range.
(A) Overload detection In the 3E relay 50, the current change rate K RS (= 1.15) of the combined current I RS is equal to or greater than a predetermined overload / short-circuit detection current change rate value (eg, 1.15). When the voltage change rate L TR (= 1) of the TR phase line voltage V TR is larger than a predetermined first overload / short-circuit detection voltage change rate value (for example, 0.96), Is determined to occur.
(B) Detection of R-S phase short circuit The 3E relay 50 has a current change rate K RS (= 1.328) of the combined current I RS that is equal to or greater than an overload / short circuit detection current change rate value (eg, 1.15). Yes, and the voltage change rate L TR (= 0.954) of the TR phase line voltage V TR is equal to or less than a first overload / short-circuit detection voltage change rate value (for example, 0.96) The overload / short circuit detection voltage change rate value (for example, 0.8) is larger and the phase change angle Δθ TR (= 5.2 °) of the TR phase line voltage V TR is the first overload / short circuit. If it is a value within the detection phase change angle range (for example, 5.2 ° to 30 ° (considering impedance to the short circuit point)), it is determined that “the R-S phase short circuit has occurred”.
(C) Detection of S-T phase short circuit The 3E relay 50 has a current change rate K RS (= 1.231) of the combined current I RS equal to or higher than an overload / short circuit detection current change rate value (eg, 1.15). There, and the voltage change rate L T (= 0.954) is the first overload or short circuit detecting voltage change rate value of the T-phase voltage V T (e.g., 0.96) the second overload or short circuit in the following The phase change angle Δθ TR (= −5.2 °) of the TR phase line voltage V TR is larger than the detection voltage change rate value (for example, 0.8), and the second overload / short-circuit detection phase change When the value is within the angular range (for example, −5.2 ° to −30 °), it is determined that “S-T phase short circuit has occurred”.
Further, the 3E relay 50 has a current change rate K RS (>> 0.664) of the combined current I RS because the S-phase and T-phase fault currents I FS , I FT exceeding the rated current value flow. Is less than the overload / short-circuit detection current change rate value (eg, 1.15), the voltage change rate L T (= 0.854) of the T-phase voltage V T is the third overload / short-circuit detection voltage. The change rate value (eg, 0.86) or less, and the voltage change rate L TR (= 0.954) of the TR phase line voltage V TR is equal to the second overload / short-circuit detection voltage change rate value (eg, 0 .8) and the phase change angle Δθ TR (= −5.2 °) of the TR phase line voltage V TR is equal to the second overload / short-circuit detection phase change angle range (for example, −5.2). When the value is within the range of (° to −30 °), it is determined that “ST phase short circuit has occurred”.
(D) Detection of TR phase short circuit The 3E relay 50 has a current change rate K RS (= 0.183) of the combined current I RS that is less than the overload / short circuit detection current change rate value (eg, 1.15). Yes, and the voltage change rate L T (= 0.854) of the T-phase voltage V T is equal to or less than a third overload / short-circuit detection voltage change rate value (for example, 0.86), and the TR phase wire The voltage change rate L TR (= 0.8) of the inter-voltage V TR is equal to or less than the second overload / short-circuit detection voltage change rate value (for example, 0.8), and the phase change angle Δθ of the T-phase voltage V T When T (= 5.8 °) is a value within the third overload / short-circuit detection phase change angle range (for example, 5.8 ° to 60 °), “T-R phase short-circuit has occurred” judge.
Further, the 3E relay 50 has a current change rate K RS (>> 0.664) of the combined current I RS because the T-phase and R-phase fault currents I FT and I FR that are larger than the rated current value flow. Is the overload / short circuit detection current change rate value (eg, 1.15) or more, the voltage change rate L TR (= 0.8) of the TR phase line voltage V TR is the second overload / short circuit The phase change rate Δθ T (= 5.8 °) of the T-phase voltage V T is equal to or less than the detected voltage change rate value (for example, 0.8), and the third overload / short-circuit detected phase change angle range ( For example, when the value is within the range of 5.8 to 60 °, it is determined that “T-R phase short circuit has occurred”.
(E) Three-phase short circuit detection The 3E relay 50 has a current change rate K RS (= 1.15) of the combined current I RS equal to or greater than an overload / short circuit detection current change rate value (eg, 1.15), The voltage change rate L TR (= 0.8) of the TR phase line voltage V TR is equal to or less than the second overload / short-circuit detection voltage change rate value (for example, 0.8), and the T phase voltage If the phase change rate Δθ T (= 0 °) of V T is not a value within the third overload / short-circuit detection phase change angle range (for example, 5.8 to 60 °), “a three-phase short circuit has occurred” Is determined.

次に、3Eリレー50におけるR−S相反相、S−T相反相およびT−R相反相の検出方法について、図19を参照して詳しく説明する。   Next, a method for detecting the RS reciprocal phase, the ST reciprocal phase, and the TR reciprocal phase in the 3E relay 50 will be described in detail with reference to FIG.

(1)正常時の合成電流I(R-S)0、TR相線間電圧VTR0およびT相電圧VT0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0と正常時の合成電流I(R-S)0の位相差α0とは上記(1−1)式から(1−5)式でそれぞれ表される。
また、正常時のT相電圧VT0の値|VT0|、位相θT0および位相差β0は上記(21−1)式から上記(21−3)式でそれぞれ表される(図19(a)参照)。
(1) Composite current I (RS) 0 at normal time, TR phase line voltage V TR0 and T phase voltage V T0
Normal value of composite current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal value of TR phase line voltage V TR0 | V TR0 | and phase θ TR0 and normal value The phase difference α 0 of the combined current I (RS) 0 is expressed by the above equations (1-1) to (1-5).
Further, the value | V T0 |, the phase θ T0, and the phase difference β 0 of the T-phase voltage V T0 in the normal state are expressed by the above formula (21-1) to the above formula (21-3), respectively (FIG. 19 ( a)).

(2)R−S相反相時の合成電流IR-S、TR相線間電圧VTRおよびT相電圧VT
三相電源線のR相およびS相が逆になる(R−S相反相)と、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとは上記(7−1)式から(7−6)式でそれぞれ表される。
また、T相電圧VTの値|VT|、電圧変化率LT、位相θTおよび位相差βは(27−1)式から(27−4)式でそれぞれ表される(図19(b)参照)。
|VT|=|VT0|=1 (27−1)
T=|VT|/|VT0|=1/1=1 (27−2)
θT=240° (27−3)
β=θT−θTR=240°−270°=−30° (27−4)
(2) Composite current I RS , TR phase line voltage V TR and T phase voltage V T during the R-S phase opposite phase
When the R phase and S phase of the three-phase power supply line are reversed (R-S phase opposite phase), the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the TR phase line voltage V The value of TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the above equations (7-1) to (7-6), respectively.
Further, the value | V T | of the T-phase voltage V T , the voltage change rate L T , the phase θ T and the phase difference β are expressed by the equations (27-1) to (27-4), respectively (FIG. 19 ( b)).
| V T | = | V T0 | = 1 (27-1)
L T = | V T | / | V T0 | = 1/1 = 1 (27-2)
θ T = 240 ° (27-3)
β = θ T −θ TR = 240 ° -270 ° = −30 ° (27-4)

(3)S−T相反相時の合成電流IR-S、TR相線間電圧VTRおよびT相電圧VT
三相電源線のS相およびT相が逆になる(S−T相反相)と、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとは上記(8−1)式から(8−6)式でそれぞれ表される。
また、T相電圧VTの値|VT|、電圧変化率LT、位相θTおよび位相差βは(28−1)式から(28−4)式でそれぞれ表される(図19(c)参照)。
|VT|=|VT0|=1 (28−1)
T=|VT|/|VT0|=1/1=1 (28−2)
θT=120° (28−3)
β=θT−θTR=120°−150°=−30° (28−4)
(3) Combined current I RS , TR phase line voltage V TR and T phase voltage V T during S-T phase reciprocal phase
When the S phase and T phase of the three-phase power supply line are reversed (ST phase opposite phase), the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the TR phase line voltage V The value of TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the equations (8-1) to (8-6), respectively.
Further, the value | V T | of the T-phase voltage V T , the voltage change rate L T , the phase θ T and the phase difference β are expressed by the equations (28-1) to (28-4), respectively (FIG. 19 ( c)).
| V T | = | V T0 | = 1 (28-1)
L T = | V T | / | V T0 | = 1/1 = 1 (28-2)
θ T = 120 ° (28-3)
β = θ T −θ TR = 120 ° −150 ° = −30 ° (28-4)

(4)T−R相反相時の合成電流IR-S、TR相線間電圧VTRおよびT相電圧VT
三相電源線のT相およびR相が逆になる(T−R相反相)と、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとは(10−1)式から(10−6)式でそれぞれ表される。
また、T相電圧VTの値|VT|、電圧変化率LT、位相θTおよび位相差βは(29−1)式から(29−4)式でそれぞれ表される(図19(d)参照)。
|VT|=|VT0|=1 (29−1)
T=|VT|/|VT0|=1/1=1 (29−2)
θT=0° (29−3)
β=θT−θTR=0°−30°=−30° (29−4)
(4) Combined current I RS , TR phase line voltage V TR and T phase voltage V T during the TR phase opposite phase
When the T phase and R phase of the three-phase power supply line are reversed (TR phase opposite phase), the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the TR phase line voltage V The value of TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by equations (10-1) to (10-6), respectively.
Also, the value | V T | of the T-phase voltage V T , the voltage change rate L T , the phase θ T and the phase difference β are respectively expressed by the equations (29-1) to (29-4) (FIG. 19 ( d)).
| V T | = | V T0 | = 1 (29-1)
L T = | V T | / | V T0 | = 1/1 = 1 (29-2)
θ T = 0 ° (29-3)
β = θ T −θ TR = 0 ° −30 ° = −30 ° (29-4)

(5)反相の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=1)が所定の反相検出電流変化率範囲(たとえば、0.9〜1.1)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が所定の反相検出電圧変化率範囲(たとえば、0.9〜1.1)内の値であり、かつ、T相電圧VTの電圧変化率LT(=1)が反相検出電圧変化率範囲内の値であり、かつ、T相電圧VTの位相差β(=−30°)が所定の反相検出位相差範囲(たとえば、−60°〜0°)内の値であると、「反相が発生した」と判定する。
(5) Detection of opposite phase In the 3E relay 50, the current change rate K RS (= 1) of the combined current I RS is a value within a predetermined opposite phase detection current change rate range (for example, 0.9 to 1.1). And the voltage change rate L TR (= 1) of the TR phase line voltage V TR is a value within a predetermined antiphase detection voltage change rate range (for example, 0.9 to 1.1), and , the voltage change rate of the T-phase voltage V T L T (= 1) is a value in the anti-phase detection voltage change rate range, and the phase difference between the T-phase voltage V T β (= - 30 ° ) is given If the value is within the anti-phase detection phase difference range (for example, −60 ° to 0 °), it is determined that “an anti-phase has occurred”.

次に、3Eリレー50におけるスター結線された三相電源線のR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出方法について、図20を参照して詳しく説明する。   Next, FIG. 20 shows a method for detecting the R-phase, S-phase, T-phase, R-phase, S-phase, and T-phase breaks of the star-connected three-phase power supply line in the 3E relay 50. This will be described in detail with reference.

(1)正常時の合成電流I(R-S)0、TR相線間電圧VTR0およびT相電流IT0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0とTR相線間電圧VTR0の値|VTR0|および位相θTR0とは上記(1−1)式から(1−4)式でそれぞれ表される。
また、正常時のT相電圧VT0の値|VT0|および位相θT0とは上記(21−1)式および(21−2)式でそれぞれ表される。
(1) Composite current I (RS) 0 at normal time, TR phase line voltage V TR0 and T phase current I T0
Combined current I (RS) 0 value at normal | I (RS) 0 | and phase θ (RS) 0 and the value of TR-phase line voltage V TR0 | V TR0 | and above the phase theta TR0 (1- 1) to (1-4).
Further, the value | V T0 | and the phase θ T0 of the T-phase voltage V T0 in the normal state are expressed by the above expressions (21-1) and (21-2), respectively.

(2)R相欠相時の合成電流IR-S、TR相線間電圧VTRおよびT相電流IT
三相電源線のR相の欠相(R相欠相)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-Sの位相差αとは上記(10−1)式から(10−7)式でそれぞれ表される。
また、T相電圧VTの値|VT|、電圧変化率LTおよび位相θTRは(30−1)式から(30−3)式でそれぞれ表される(図20(a)参照)。
|VT|=|VT0|×cos30°=1×(31/2/2)=31/2/2 (30−1)
T=|VT|/|VT0|=(31/2/2)/1=31/2/2
(=0.866) (30−2)
θT=270° (30−3)
(2) Composite current I RS , TR phase line voltage V TR and T phase current I T when R phase is open
When an R-phase phase loss (R-phase phase loss) occurs in the three-phase power line, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the value of the TR phase line voltage V TR | V TR |, the voltage change rate L TR, the phase θ TR, and the phase difference α of the combined current I RS are expressed by the above equations (10-1) to (10-7), respectively.
Further, the value | V T | of the T-phase voltage V T , the voltage change rate L T, and the phase θ TR are expressed by the equations (30-1) to (30-3), respectively (see FIG. 20A). .
| V T | = | V T0 | × cos 30 ° = 1 × (3 1/2 / 2) = 3 1/2 / 2 (30-1)
L T = | V T | / | V T0 | = (3 1/2 / 2) / 1 = 3 1/2 / 2
(= 0.866) (30-2)
θ T = 270 ° (30-3)

(3)S相欠相時の合成電流IR-S、TR相線間電圧VTRおよびT相電流IT
三相電源線のS相の欠相(S相欠相)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-Sの位相差αとは上記(11−1)式から(11−7)式でそれぞれ表される。
また、T相電圧VTの値|VT|、電圧変化率LTおよび位相θTRは(31−1)式から(31−3)式でそれぞれ表される(図20(b)参照)。
|VT|=|VT0|×cos30°=1×(31/2/2)=31/2/2 (31−1)
T=|VT|/|VT0|=(31/2/2)/1=31/2/2
(=0.866) (31−2)
θT=210° (30−3)
(3) Combined current I RS , TR phase line voltage V TR and T phase current I T when S phase is open
When the S-phase phase loss (S-phase phase loss) occurs in the three-phase power line, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the value of the TR phase line voltage V TR | V TR |, the voltage change rate L TR, the phase θ TR, and the phase difference α of the combined current I RS are expressed by the equations (11-1) to (11-7), respectively.
Further, the value | V T | of the T-phase voltage V T , the voltage change rate L T, and the phase θ TR are expressed by equations (31-1) to (31-3), respectively (see FIG. 20B). .
| V T | = | V T0 | × cos 30 ° = 1 × (3 1/2 / 2) = 3 1/2 / 2 (31-1)
L T = | V T | / | V T0 | = (3 1/2 / 2) / 1 = 3 1/2 / 2
(= 0.866) (31-2)
θ T = 210 ° (30-3)

(4)T相欠相時の合成電流IR-S、TR相線間電圧VTRおよびT相電流IT
三相電源線のT相の欠相(T相欠相)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-Sの位相差αとは上記(12−1)式から(12−7)式でそれぞれ表される。
また、T相電圧VTの値|VT|、電圧変化率LTおよび位相θTRは(32−1)式から(32−3)式でそれぞれ表される(図20(c)参照)。
|VT|=0 (32−1)
T=|VT|/|VT0|=0/1=0 (32−2)
θT=240° (32−3)
(4) Composite current I RS , TR phase line voltage V TR and T phase current I T when T phase is open
When a T-phase phase loss (T-phase phase loss) occurs in the three-phase power line, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the value of the TR phase line voltage V TR | V TR |, the voltage change rate L TR, the phase θ TR, and the phase difference α of the combined current I RS are expressed by the equations (12-1) to (12-7), respectively.
Further, the value | V T | of the T-phase voltage V T , the voltage change rate L T, and the phase θ TR are expressed by the equations (32-1) to (32-3), respectively (see FIG. 20C). .
| V T | = 0 (32-1)
L T = | V T | / | V T0 | = 0/1 = 0 (32-2)
θ T = 240 ° (32-3)

(5)R相断線時の合成電流IR-S、TR相線間電圧VTRおよびT相電流IT
三相電源線のR相の断線(R相断線)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(10−1)式から(10−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表され、合成電流IR-Sの位相差αは上記(13−1)式で表される。
また、T相電圧VTの値|VT|、電圧変化率LTおよび位相θTRは(33−1)式から(33−3)式でそれぞれ表される。
|VT|=|VT0|=1 (33−1)
T=|VT|/|VT0|=1/1=1 (33−2)
θT=240° (33−3)
(5) Combined current I RS , TR phase line voltage V TR and T phase current I T when R phase is broken
When the R-phase disconnection (R-phase disconnection) of the three-phase power supply line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are calculated from the above equation (10-1) (10− 3), the value of the TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively. The phase difference α of the combined current I RS is expressed by the above equation (13-1).
The value of T-phase voltage V T | V T |, the voltage change rate L T and the phase theta TR is respectively represented by (33-3) expression (33-1) below.
| V T | = | V T0 | = 1 (33-1)
L T = | V T | / | V T0 | = 1/1 = 1 (33-2)
θ T = 240 ° (33-3)

(6)S相断線時の合成電流IR-S、TR相線間電圧VTRおよびT相電流IT
三相電源線のS相の断線(S相断線)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(11−1)式から(11−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表され、合成電流IR-Sの位相差αは上記(13−2)式で表される。
また、T相電圧VTの値|VT|、電圧変化率LTおよび位相θTRは上記(33−1)式から(33−3)式でそれぞれ表される。
(6) Composite current I RS , TR phase line voltage V TR and T phase current I T when S phase is broken
When the S-phase disconnection (S-phase disconnection) of the three-phase power supply line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are calculated from the above equation (11-1) as (11− 3), and the value of the TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively. The phase difference α of the combined current I RS is expressed by the above equation (13-2).
The value of T-phase voltage V T | V T |, the voltage change rate L T and the phase theta TR are represented respectively by the above (33-1) Formula (33-3) below.

(7)T相断線時の合成電流IR-S、TR相線間電圧VTRおよびT相電流IT
三相電源線のT相の断線(T相断線)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(12−1)式から(12−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表され、合成電流IR-Sの位相差αは上記(13−3)式で表される。
また、T相電圧VTの値|VT|、電圧変化率LTおよび位相θTRは上記(33−1)式から(33−3)式でそれぞれ表される。
(7) Composite current I RS , TR phase line voltage V TR and T phase current I T when T phase is broken
When the T-phase disconnection (T-phase disconnection) of the three-phase power supply line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are calculated from the above equation (12-1) as (12− 3), the value of the TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively. The phase difference α of the combined current I RS is expressed by the above equation (13-3).
The value of T-phase voltage V T | V T |, the voltage change rate L T and the phase theta TR are represented respectively by the above (33-1) Formula (33-3) below.

(8)R相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出
(a)R相欠相の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=0.5)が所定の欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.5)が所定の第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、合成電流IR-Sの位相差α(=0°)が所定の第1の欠相検出位相差範囲(たとえば、−30°〜30°)内の値であると、「R相欠相が発生した」と判定する。
(b)S相欠相の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=0.5)が欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、T相電圧VTの電圧変化率LT(=0.866)が第2の欠相・断線検出電圧変化率範囲(たとえば、0.8〜0.9)内の値であり、かつ、合成電流IR-Sの位相差α(=180°)が所定の第2の欠相検出位相差範囲(たとえば、150°〜210°)内の値であると、「S相欠相が発生した」と判定する。
(c)T相欠相の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=1)が欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.5)が第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、T相電圧VTの電圧変化率LT(=0)が所定の欠相検出電圧変化率値(たとえば、0.1)以下であり、かつ、合成電流IR-Sの位相差α(=180°)が第2の欠相検出位相差範囲(たとえば、150°〜210°)内の値であると、「T相欠相が発生した」と判定する。
(d)R相断線の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=0.5)が欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、TR相電圧VTの電圧変化率LT(=1)が第2の欠相・断線検出電圧変化率範囲(たとえば、0.8〜0.9)内の値でなく、かつ、合成電流IR-Sの位相差α(=60°)が所定の第1の断線検出位相差範囲(たとえば、30°〜90°)内の値であると、「R相断線が発生した」と判定する。
(e)S相断線の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=0.5)が欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、T相電圧VTの電圧変化率LT(=1)が第2の欠相・断線検出電圧変化率範囲(たとえば、0.8〜0.9)内の値でなく、かつ、合成電流IR-Sの位相差α(=180°)が所定の第2の断線検出位相差範囲(たとえば、150°〜210°)内の値であると、「S相断線が発生した」と判定する。
(f)T相断線の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=1)が欠相・断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの位相差α(=120°)が所定の第3断線検出位相差範囲(たとえば、90°〜150°)内の値であると、「T相断線が発生した」と判定する。
(8) R Aiketsusho, S Aiketsusho, T Aiketsusho, detection 3E relay 50 of the R-phase disconnection, S-phase disconnection and T-phase detection of disconnection (a) R-phase open-phase is the combined current I RS The current change rate K RS (= 0.5) is a value within a predetermined open phase / disconnection detection current change rate range (for example, 0.4 to 0.6), and the TR phase line voltage V TR The voltage change rate L TR (= 0.5) is a value within a predetermined first open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6), and the combined current I RS When the phase difference α (= 0 °) is a value within a predetermined first phase loss detection phase difference range (for example, −30 ° to 30 °), it is determined that “R phase phase loss has occurred”.
(B) Detection of S-phase phase loss The 3E relay 50 has a current rate of change K RS (= 0.5) of the combined current I RS in the range of phase failure / disconnection detection current change rate (eg, 0.4 to 0.6 ), And the voltage change rate L TR (= 1) of the TR phase line-to-line voltage V TR is in the first open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6). And the voltage change rate L T (= 0.866) of the T-phase voltage V T is within the second open-phase / disconnection detection voltage change rate range (for example, 0.8 to 0.9). And the phase difference α (= 180 °) of the combined current I RS is a value within a predetermined second phase loss detection phase difference range (for example, 150 ° to 210 °). It is determined that a phase failure has occurred.
(C) Detection of T-phase phase loss In the 3E relay 50, the current change rate K RS (= 1) of the combined current I RS is within the range of the phase failure / disconnection detection current change rate (for example, 0.4 to 0.6). And the voltage change rate L TR (= 0.5) of the TR phase line-to-line voltage V TR is in the first open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6). And the voltage change rate L T (= 0) of the T-phase voltage V T is equal to or less than a predetermined open-phase detection voltage change rate value (for example, 0.1), and the combined current I RS When the phase difference α (= 180 °) is a value within the second phase loss detection phase difference range (for example, 150 ° to 210 °), it is determined that “T phase phase loss has occurred”.
(D) detecting 3E relay 50 of the R-phase disconnection, combined current I RS of the current rate of change K RS (= 0.5) is open phase-disconnection detecting the current change rate range (e.g., 0.4-0.6) And the voltage change rate L TR (= 1) of the TR phase line-to-line voltage V TR is within the first open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6). And the voltage change rate L T (= 1) of the TR phase voltage V T is a value within the second open phase / disconnection detection voltage change rate range (for example, 0.8 to 0.9). If the phase difference α (= 60 °) of the combined current I RS is a value within a predetermined first disconnection detection phase difference range (for example, 30 ° to 90 °), “R phase disconnection occurs. It was determined.
(E) Detection of S-phase disconnection In the 3E relay 50, the current change rate K RS (= 0.5) of the combined current I RS is in the range of open-phase / disconnection detection current change rate (for example, 0.4 to 0.6). And the voltage change rate L TR (= 1) of the TR phase line-to-line voltage V TR is within the first open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6). And the voltage change rate L T (= 1) of the T-phase voltage V T is a value within the second open-phase / disconnection detection voltage change rate range (for example, 0.8 to 0.9). If the phase difference α (= 180 °) of the combined current I RS is a value within a predetermined second disconnection detection phase difference range (for example, 150 ° to 210 °), “S phase disconnection occurs. It was determined.
(F) Detection of T-phase disconnection In the 3E relay 50, the current change rate K RS (= 1) of the combined current I RS is within the phase loss / disconnection detection current change rate range (for example, 0.4 to 0.6). And the voltage change rate L TR (= 1) of the TR phase line-to-line voltage V TR is a value within the first open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6). not, and the phase difference α (= 120 °) is predetermined third disconnection detecting phase difference range of the combined current I RS (e.g., 90 ° ~150 °) when a value within the "T-phase disconnection occurs It was determined.

次に、3Eリレー20におけるデルタ結線された三相電源線のR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線の検出方法について詳しく説明する。   Next, a method for detecting the R-phase, S-phase, T-phase, RS-phase, ST-phase, and TR-phase disconnections of the three-phase power supply line connected in delta connection in the 3E relay 20 will be described in detail.

(1)正常時の合成電流I(R-S)0、TR相線間電圧VTR0およびT相電流IT0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0とTR相線間電圧VTR0の値|VTR0|および位相θTR0とは上記(1−1)式から(1−4)式でそれぞれ表される。
(1) Composite current I (RS) 0 at normal time, TR phase line voltage V TR0 and T phase current I T0
Combined current I (RS) 0 value at normal | I (RS) 0 | and phase θ (RS) 0 and the value of TR-phase line voltage V TR0 | V TR0 | and above the phase theta TR0 (1- 1) to (1-4).

(2)R相欠相、S相欠相およびT相欠相の検出
3Eリレー50は、上述したスター結線された三相電源線のR相欠相、S相欠相およびT相欠相の検出と同様にして、三相電源線のR相欠相、S相欠相およびT相欠相を検出する。
(2) Detection of R-phase, S-phase, and T-phase missing phases The 3E relay 50 detects the R-phase, S-phase, and T-phase missing phases of the star-connected three-phase power supply line. Similarly to the detection, the R-phase missing phase, the S-phase missing phase, and the T-phase missing phase of the three-phase power supply line are detected.

(3)RS相断線時の合成電流IR-S、TR相線間電圧VTRおよびT相電流IT
三相電源線のRS相断線が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(14−1)式から(14−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表され、合成電流IR-Sの位相差αは上記(14−4)式で表される。
また、T相電圧VTの値|VT|、電圧変化率LTおよび位相θTRは上記(33−1)式から(33−3)式でそれぞれ表される。
(3) Composite current I RS , TR phase line voltage V TR and T phase current I T when RS phase is disconnected
When the RS phase disconnection of the three-phase power supply line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are expressed by the above equations (14-1) to (14-3), respectively. is the value of the voltage V TR - TR phase line | V TR |, the voltage change rate L TR and the phase theta TR each represented by (2-6) below from the above (2-4) equation, the composite current I RS The phase difference α is expressed by the above equation (14-4).
The value of T-phase voltage V T | V T |, the voltage change rate L T and the phase theta TR are represented respectively by the above (33-1) Formula (33-3) below.

(4)ST相断線時の合成電流IR-S、TR相線間電圧VTRおよびT相電流IT
三相電源線のST相断線が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(15−1)式から(15−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表され、合成電流IR-Sの位相差αは上記(15−4)式で表される。
また、T相電圧VTの値|VT|、電圧変化率LTおよび位相θTRは上記(33−1)式から(33−3)式でそれぞれ表される。
(4) Composite current I RS , TR phase line voltage V TR and T phase current I T when ST phase is disconnected
When the ST phase disconnection of the three-phase power line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are expressed by the above equations (15-1) to (15-3), respectively. is the value of the voltage V TR - TR phase line | V TR |, the voltage change rate L TR and the phase theta TR each represented by (2-6) below from the above (2-4) equation, the composite current I RS The phase difference α is expressed by the above equation (15-4).
The value of T-phase voltage V T | V T |, the voltage change rate L T and the phase theta TR are represented respectively by the above (33-1) Formula (33-3) below.

(4)TR相断線時の合成電流IR-S、TR相線間電圧VTRおよびT相電流IT
三相電源線のTR相断線が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(16−1)式から(16−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表され、合成電流IR-Sの位相差αは上記(16−4)式で表される。
また、T相電圧VTの値|VT|、電圧変化率LTおよび位相θTRは上記(33−1)式から(33−3)式でそれぞれ表される。
(4) Composite current I RS , TR phase line voltage V TR and T phase current I T when TR phase is disconnected
When the TR phase disconnection of the three-phase power supply line occurs, the value | I RS | of the combined current I RS , the current change rate K RS and the phase θ RS are expressed by the above equations (16-1) to (16-3), respectively. is the value of the voltage V TR - TR phase line | V TR |, the voltage change rate L TR and the phase theta TR each represented by (2-6) below from the above (2-4) equation, the composite current I RS The phase difference α is expressed by the above equation (16-4).
The value of T-phase voltage V T | V T |, the voltage change rate L T and the phase theta TR are represented respectively by the above (33-1) Formula (33-3) below.

(5)RS相断線、ST相断線およびTR相断線の検出
(a)RS相断線の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=0.333)が所定の第1の断線検出電流変化率範囲(たとえば、0.2〜0.4)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でないと、「RS相断線が発生した」と判定する。
(b)ST相断線の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=0.882)が所定の第2の断線検出電流変化率範囲(たとえば、0.8〜0.9)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの位相差α(=139.1°)が所定の第4の断線検出位相差範囲(たとえば、130°〜150°)内の値であると、「ST相断線が発生した」と判定する。
(c)TR相断線の検出
3Eリレー50は、合成電流IR-Sの電流変化率KR-S(=0.882)が第2の断線検出電流変化率範囲(たとえば、0.8〜0.9)内の値であり、かつ、TR相線間電圧VTRの電圧変化率LTR(=1)が第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの位相差α(=100.9°)が所定の第5の断線検出位相差範囲(たとえば、90°〜110°)内の値であると、「TR相断線が発生した」と判定する。
(5) Detection of RS phase disconnection, ST phase disconnection, and TR phase disconnection (a) Detection of RS phase disconnection The 3E relay 50 has a predetermined current change rate K RS (= 0.333) of the combined current I RS . Is a value within the disconnection detection current change rate range (for example, 0.2 to 0.4), and the voltage change rate L TR (= 1) of the TR phase line voltage V TR is If it is not a value within the disconnection detection voltage change rate range (for example, 0.4 to 0.6), it is determined that “RS phase disconnection has occurred”.
(B) Detection of ST phase disconnection In the 3E relay 50, the current change rate K RS (= 0.882) of the combined current I RS has a predetermined second disconnection detection current change rate range (for example, 0.8 to 0. 9), and the voltage change rate L TR (= 1) of the TR phase line voltage V TR is within the first open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6). ) And the phase difference α (= 139.1 °) of the combined current I RS is a value within a predetermined fourth disconnection detection phase difference range (for example, 130 ° to 150 °). , “ST phase disconnection has occurred” is determined.
(C) Detection of TR phase disconnection In the 3E relay 50, the current change rate K RS (= 0.882) of the combined current I RS has a second disconnection detection current change rate range (for example, 0.8 to 0.9). And the voltage change rate L TR (= 1) of the TR phase line-to-line voltage V TR is within the first open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6). And the phase difference α (= 100.9 °) of the combined current I RS is a value within a predetermined fifth disconnection detection phase difference range (for example, 90 ° to 110 °). It is determined that a TR phase disconnection has occurred.

次に、3Eリレー50の構成について、図21を参照して説明する。
3Eリレー50は、図21に示すように、入力変換器51と、アナログ入力部52と、メモリ53と、電流変化率算出部54と、電圧変化率算出部55と、位相角算出部56と、位相差算出部57と、リレー演算処理部58と、整定・表示部59と、入出力部60と、外部機器I/F部61とを備える。
Next, the configuration of the 3E relay 50 will be described with reference to FIG.
As shown in FIG. 21, the 3E relay 50 includes an input converter 51, an analog input unit 52, a memory 53, a current change rate calculation unit 54, a voltage change rate calculation unit 55, and a phase angle calculation unit 56. , A phase difference calculation unit 57, a relay calculation processing unit 58, a settling / display unit 59, an input / output unit 60, and an external device I / F unit 61.

ここで、入力変換器51は、クロス貫通変流器41から入力される合成電流IR-Sおよび計器用変成器42から入力されるTR相線間電圧VTRおよびT相電圧VTのレベルをアナログ入力部52の処理に適したレベルに変換する。
アナログ入力部52は、バンドパスフィルタとサンプリングホールド回路とマルチプレクサ回路とアナログ/ディジタル変換器とを備え、入力変換器51から入力されるアナログの合成電流IR-S、TR相線間電圧VTRおよびT相電圧VTをディジタルの合成電流IR-S、TR相線間電圧VTRおよびT相電圧VTに変換する。
メモリ53は、アナログ入力部52によってディジタルデータに変換された合成電流IR-S、TR相線間電圧VTRおよびT相電圧VTを格納するためのものである。
Here, the input converter 51 analogizes the levels of the combined current I RS input from the cross-through current transformer 41 and the TR phase line voltage V TR and T phase voltage V T input from the instrument transformer 42. The level is converted to a level suitable for the processing of the input unit 52.
Analog input unit 52 is provided with a band-pass filter and a sampling hold circuit and multiplexer circuit and an analog / digital converter, the combined current of the analog input from the input transducer 51 I RS, between TR-phase line voltage V TR and T The phase voltage V T is converted into a digital composite current I RS , a TR phase line voltage V TR and a T phase voltage V T.
The memory 53 is for storing the combined current I RS , the TR phase line voltage V TR and the T phase voltage V T converted into digital data by the analog input unit 52.

電流変化率算出部54は、メモリ53に格納されているR相、S相およびT相電流IR,IS,ITの定格電流値に基づいて、アナログ入力部52から入力される合成電流IR-Sの電流変化率KR-Sを算出する。 The current change rate calculation unit 54 is a composite current input from the analog input unit 52 based on the rated current values of the R-phase, S-phase, and T-phase currents I R , I S , I T stored in the memory 53. calculating a current change rate K RS of I RS.

電圧変化率算出部55は、メモリ53に格納されているR相、S相およびT相電圧VR,VS,VTの定格電圧値に基づいて、アナログ入力部52から入力されるTR相線間電圧VTRおよびT相電圧VTの電圧変化率LTR,LTを算出する。 The voltage change rate calculation unit 55 receives the TR phase input from the analog input unit 52 based on the rated voltage values of the R phase, S phase, and T phase voltages V R , V S , and V T stored in the memory 53. voltage change rate L TR line voltage V TR and T-phase voltage V T, and calculates the L T.

位相変化角算出部56と、アナログ入力部52から入力されるTR相線間電圧VTRの位相θTRからメモリ53に格納されている正常時のTR相線間電圧VTRの位相θTR0を引くことによりTR相線間電圧VTRの位相変化角ΔθTRを算出するとともに、アナログ入力部52から入力されるT相電圧VTの位相θTからメモリ53に格納されている正常時のT相電圧VTの位相θT0を引くことによりT相電圧VTの位相変化角ΔθTを算出する。 From the phase θ TR of the TR phase line voltage V TR input from the phase change angle calculation unit 56 and the analog input unit 52, the phase θ TR0 of the TR phase line voltage V TR at normal time stored in the memory 53 is obtained. The phase change angle Δθ TR of the TR phase line voltage V TR is calculated by subtraction, and the normal T stored in the memory 53 from the phase θ T of the T phase voltage V T input from the analog input unit 52. calculating a phase change angle [Delta] [theta] T T-phase voltage V T by subtracting the phase theta T0 of the phase voltage V T.

位相差算出部57は、アナログ入力部52から入力される合成電流IR-Sの位相θR-Sからアナログ入力部52から入力されるTR相線間電圧VTRの位相θTRを引くことにより、合成電流IR-Sの位相差αを算出するとともに、アナログ入力部52から入力されるT相電圧VTの位相θTからTR相線間電圧VTRの位相θTRを引くことにより、T相電圧VTの位相差βを算出する。 The phase difference calculation unit 57 subtracts the phase θ TR of the TR phase line voltage V TR input from the analog input unit 52 from the phase θ RS of the combined current I RS input from the analog input unit 52, thereby generating the combined current. By calculating the phase difference α of I RS and subtracting the phase θ TR of the TR phase line voltage V TR from the phase θ T of the T phase voltage V T input from the analog input unit 52, the T phase voltage V T The phase difference β is calculated.

リレー演算処理部58は、電流変化率算出部54によって算出された合成電流IR-Sの電流変化率KR-Sと電圧変化率算出部55によって算出されたTR相線間電圧VTRおよびT相電圧VTの電圧変化率LTR,LTと位相変化角算出部56によって算出されたTR相線間電圧VTRおよびT相電圧VTの位相変化角ΔθTR,ΔθTと位相差算出部57によって算出された合成電流IR-SおよびT相電圧VTの位相差α,βと基づいて、過負荷、R−S相短絡、S−T相短絡、T−R相短絡、三相短絡、R−S相反相、S−T相反相、T−R相反相、スター結線された三相電源線におけるR相欠相、S相欠相、T相欠相、R相断線、S相断線、T相断線、デルタ結線された三相電源線におけるR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線を検出すると、第1乃至第3の遮断器31〜33(図17参照)をそれぞれ遮断するための第1乃至第3のトリップ信号T1〜T3を生成し、生成した第1乃至第3のトリップ信号T1〜T3を入出力部60および外部機器インターフェース部61を介して第1乃至第3の遮断器31〜33にそれぞれ出力する。 The relay calculation processing unit 58 includes the current change rate K RS of the combined current I RS calculated by the current change rate calculating unit 54, the TR phase line voltage V TR and the T phase voltage V calculated by the voltage change rate calculating unit 55. voltage change rate L TR of T, L T and TR between phase line voltage is calculated by the phase change angle calculation unit 56 V TR and T-phase voltage V T of the phase change angle [Delta] [theta] TR, by [Delta] [theta] T and the phase difference calculator 57 Based on the calculated composite current I RS and phase difference α, β of T phase voltage V T , overload, RS phase short circuit, ST phase short circuit, TR phase short circuit, three phase short circuit, R− S-phase reciprocal phase, S-T reciprocal phase, TR reciprocal phase, R-phase open phase, S-phase open phase, T-phase open phase, R-phase open phase, S-phase open phase, T-phase R-phase open phase, S-phase open phase, T-phase open phase, RS phase open phase, ST phase open phase and T Upon detecting a phase disconnection, the first to the third circuit breakers 3 1 to 3 3 to generate the first to third trip signal T 1 through T 3 for blocking (see FIG. 17), respectively, were produced first The first to third trip signals T 1 to T 3 are output to the first to third circuit breakers 3 1 to 3 3 via the input / output unit 60 and the external device interface unit 61, respectively.

整定・表示部59は、過負荷・短絡検出電流変化率値、第1乃至第3の過負荷・短絡検出電圧変化率値、第1乃至第3の過負荷・短絡検出位相変化角範囲、第1および第2の過負荷・短絡検出位相差範囲、反相検出電流変化率範囲、反相検出電圧変化率範囲、反相検出位相差範囲、欠相・断線検出電流変化率範囲、第1および第2の断線検出電流変化率範囲、第1および第2の欠相・断線検出電圧変化率範囲、欠相検出電圧変化率値、第1および第2の欠相検出位相差範囲並びに第1乃至第5の断線検出位相差範囲に基づいてリレー整定処理を行うとともに、整定値などを外部に表示する。   The settling / display unit 59 includes an overload / short-circuit detection current change rate value, first to third overload / short-circuit detection voltage change rate values, first to third overload / short-circuit detection phase change angle ranges, 1 and 2 overload / short circuit detection phase difference range, anti-phase detection current change rate range, anti-phase detection voltage change rate range, anti-phase detection phase difference range, open phase / disconnection detection current change rate range, Second disconnection detection current change rate range, first and second open phase / disconnection detection voltage change rate range, open phase detection voltage change rate value, first and second open phase detection phase difference ranges, and first to second A relay settling process is performed based on the fifth disconnection detection phase difference range, and a settling value or the like is displayed outside.

次に、以下に示す条件下におけるリレー演算処理部58の動作について説明する。
(1)過負荷・短絡検出電流変化率値=1.15、第1の過負荷・短絡検出電圧変化率値=0.96、第2の過負荷・短絡検出電圧変化率値=0.8、第3の過負荷・短絡検出電圧変化率値=0.86、第1の過負荷・短絡検出位相変化角範囲=5.2°〜30°、第2の過負荷・短絡検出位相変化角範囲=−5.2°〜−30°、第3の過負荷・短絡検出位相変化角範囲=5.8°〜60°、第1の過負荷・短絡検出位相差範囲=95.2°〜180°、第2の過負荷・短絡検出位相差範囲=−150°〜−90°
(2)反相検出電流変化率範囲=0.9〜1.1、反相検出電圧変化率範囲=0.9〜1.1、反相検出位相差範囲=−60°〜0°
(3)欠相・断線検出電流変化率範囲=0.4〜0.6、第1の断線検出電流変化率範囲=0.2〜0.4、第2の断線検出電流変化率範囲=0.8〜0.9、第1の欠相・断線検出電圧変化率範囲=0.4〜0.6、第2の欠相・断線検出電圧変化率範囲=0.8〜0.9、欠相検出電圧変化率値=0.1、第1の欠相検出位相差範囲=−30°〜30°、第2の欠相検出位相差範囲=150°〜210°、第1の断線検出位相差範囲=30°〜90°、第2の断線検出位相差範囲=150°〜210°、第3断線検出位相差範囲=90°〜150°、第4の断線検出位相差範囲=130°〜150°、第5の断線検出位相差範囲=90°〜110°
Next, the operation of the relay calculation processing unit 58 under the following conditions will be described.
(1) Overload / short-circuit detection current change rate value = 1.15, first overload / short-circuit detection voltage change rate value = 0.96, second overload / short-circuit detection voltage change rate value = 0.8 , Third overload / short-circuit detection voltage change rate value = 0.86, first overload / short-circuit detection phase change angle range = 5.2 ° to 30 °, second overload / short-circuit detection phase change angle Range = −5.2 ° to −30 °, third overload / short-circuit detection phase change angle range = 5.8 ° to 60 °, first overload / short-circuit detection phase difference range = 95.2 ° to 180 °, second overload / short-circuit detection phase difference range = −150 ° to −90 °
(2) Antiphase detection current change rate range = 0.9 to 1.1, antiphase detection voltage change rate range = 0.9 to 1.1, antiphase detection phase difference range = −60 ° to 0 °
(3) Phase loss / disconnection detection current change rate range = 0.4 to 0.6, first disconnection detection current change rate range = 0.2 to 0.4, second disconnection detection current change rate range = 0 .8 to 0.9, first open phase / disconnection detection voltage change rate range = 0.4 to 0.6, second open phase / disconnection detection voltage change rate range = 0.8 to 0.9, missing Phase detection voltage change rate value = 0.1, first open phase detection phase difference range = −30 ° to 30 °, second open phase detection phase difference range = 150 ° to 210 °, first disconnection detection position Phase difference range = 30 ° to 90 °, second disconnection detection phase difference range = 150 ° to 210 °, third disconnection detection phase difference range = 90 ° to 150 °, fourth disconnection detection phase difference range = 130 ° to 150 °, fifth disconnection detection phase difference range = 90 ° to 110 °

まず、過負荷または短絡事故発生時のリレー演算処理部58の動作について、図22に示すフローチャートを参照して説明する。
リレー演算処理部58は、合成電流IR-Sの電流変化率KR-Sが過負荷・短絡検出電流変化率値(=1.15)以上であるか否かを調べ(ステップS60)、電流変化率KR-Sが過負荷・短絡検出電流変化率値以上であると、TR相線間電圧VTRの電圧変化率LTRが第1の過負荷・短絡検出電圧変化率値(=0.96)以下であるか否かを調べる(ステップS61)。
リレー演算処理部58は、電圧変化率LTRが第1の過負荷・短絡検出電圧変化率値以下でないと、「過負荷が発生した」と判定する(ステップS69a)。
First, the operation of the relay calculation processing unit 58 when an overload or short circuit accident occurs will be described with reference to the flowchart shown in FIG.
Relay processing section 58, the resultant current the current rate of change K RS overload or short circuit detecting current change rate values I RS (= 1.15) examines if the either more (step S60), the current change rate K If RS is equal to or greater than the overload / short-circuit detection current change rate value, the voltage change rate L TR of the TR phase line voltage V TR is equal to or less than the first overload / short-circuit detection voltage change rate value (= 0.96). It is checked whether or not there is (step S61).
Relay processing section 58 determines, when the voltage change rate L TR not less than the first overload or short circuit detecting voltage change rate value, the "overload has occurred" (step S69A).

ステップS61において電圧変化率LTRが第1の過負荷・短絡検出電圧変化率値以下であると、リレー演算処理部58は、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値(=0.8)以下であるか否かを調べ(ステップS62)、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値以下であると、T相電圧VTの位相変化角ΔθTが第3の過負荷・短絡検出位相変化角範囲(=5.8°〜60°)内の値であるか否かを調べる(ステップS68)。
リレー演算処理部58は、位相変化角ΔθTが第3の過負荷・短絡検出位相変化角範囲内の値であると、「T−R相短絡が発生した」と判定し(ステップS69d)、一方、位相変化角ΔθTが第3の過負荷・短絡検出位相変化角範囲内の値でないと、「三相短絡が発生した」と判定する(ステップS69e)。
When the voltage change rate L TR is equal to or less than the first overload / short circuit detection voltage change rate value in step S61, the relay calculation processing unit 58 determines that the voltage change rate L TR is the second overload / short circuit detection voltage change rate. It is checked whether or not the value (= 0.8) or less (step S62). If the voltage change rate L TR is less than or equal to the second overload / short-circuit detection voltage change rate value, the phase of the T-phase voltage V T It is checked whether or not the change angle Δθ T is a value within the third overload / short-circuit detection phase change angle range (= 5.8 ° to 60 °) (step S68).
When the phase change angle Δθ T is a value within the third overload / short circuit detection phase change angle range, the relay calculation processing unit 58 determines that “TR phase short circuit has occurred” (step S69d). On the other hand, if the phase change angle Δθ T is not a value within the third overload / short circuit detection phase change angle range, it is determined that “a three-phase short circuit has occurred” (step S69e).

一方、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値以下でないと、リレー演算処理部58は、TR相線間電圧VTRの位相変化角ΔθTRが第1の過負荷・短絡検出位相変化角範囲(=5.2°〜30°)内の値であるか否かを調べる(ステップS63)。
リレー演算処理部58は、位相変化角ΔθTRが第1の過負荷・短絡検出位相変化角範囲内の値であると、「R−S相短絡が発生した」と判定する(ステップS69b)。
On the other hand, when the voltage change rate L TR not less than the second overload or short circuit detecting voltage change rate value, the relay processing unit 58, a phase change angle [Delta] [theta] TR of the voltage V TR - TR phase line first overload Whether or not the value is within the short-circuit detection phase change angle range (= 5.2 ° to 30 °) is checked (step S63).
When the phase change angle Δθ TR is a value within the first overload / short-circuit detection phase change angle range, the relay calculation processing unit 58 determines that “RS phase short-circuit has occurred” (step S69b).

一方、位相変化角ΔθTRが第1の過負荷・短絡検出位相変化角範囲内の値でないと、リレー演算処理部58は、位相変化角ΔθTRが第2の過負荷・短絡検出位相変化角範囲(=−5.2°〜−30°)内の値であるか否かを調べる(ステップS66)。
リレー演算処理部58は、位相変化角ΔθTRが第2の過負荷・短絡検出位相変化角範囲内の値であると、「S−T相短絡が発生した」と判定する(ステップS69c)。
On the other hand, if the phase change angle Δθ TR is not a value within the first overload / short circuit detection phase change angle range, the relay calculation processing unit 58 determines that the phase change angle Δθ TR is the second overload / short circuit detection phase change angle. It is checked whether or not the value is within a range (= −5.2 ° to −30 °) (step S66).
When the phase change angle Δθ TR is a value within the second overload / short circuit detection phase change angle range, the relay calculation processing unit 58 determines that “ST phase short-circuit has occurred” (step S69c).

ステップS60において電流変化率KR-Sが過負荷・短絡検出電流変化率値(=1.15)未満であると、リレー演算処理部58は、T相電圧VTの電圧変化率LTが第3の過負荷・短絡検出電圧変化率値(=0.86)以下であるか否かを調べ(ステップS64)、電圧変化率LTが第3の過負荷・短絡検出電圧変化率値以下であると、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値(=0.8)以下であるか否かを調べ(ステップS65)、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値以下でないと、TR相線間電圧VTRの位相変化角ΔθTRが第2の過負荷・短絡検出位相変化角範囲(=−5.2°〜−30°)内の値であるか否かを調べる(ステップS66)。
リレー演算処理部58は、位相変化角ΔθTRが第2の過負荷・短絡検出位相変化角範囲内の値であると、「S−T相短絡が発生した」と判定する(ステップS69c)。
If the current rate of change K RS is less than the overload or short circuit detected current change rate value (= 1.15) in step S60, the relay processing unit 58, the voltage change rate L T of the T-phase voltage V T is the third overload or short circuit detecting voltage change rate value (= 0.86) examined in whether or less (step S64), the voltage change rate L T is below the third overload or short circuit detecting voltage change rate values When the voltage change rate L TR second overload or short circuit detecting voltage change rate value (= 0.8) examines if the either less (step S65), the voltage change rate L TR second overload - a short-circuit detecting not less voltage change rate value, the phase change angle [Delta] [theta] TR of the voltage V TR - TR phase line and the second overload or short circuit detecting the phase change angle range (= -5.2 ° ~-30 ° ) in It is checked whether or not the value is (step S66).
When the phase change angle Δθ TR is a value within the second overload / short circuit detection phase change angle range, the relay calculation processing unit 58 determines that “ST phase short-circuit has occurred” (step S69c).

ステップS65において電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値以下であると、リレー演算処理部58は、T相電圧VTの位相変化角ΔθTが第3の過負荷・短絡検出位相変化角範囲(=5.8°〜60°)内の値であるか否かを調べる(ステップS67)。
リレー演算処理部58は、位相変化角ΔθTが第3の過負荷・短絡検出位相変化角範囲内の値であると、「T−R相短絡が発生した」と判定する(ステップS69d)。
When the voltage change rate L TR is below the second overload or short circuit detecting voltage change rate value at step S65, the relay processing unit 58, a phase change angle [Delta] [theta] T T-phase voltage V T is the third overload Whether or not the value is within the short-circuit detection phase change angle range (= 5.8 ° to 60 °) is checked (step S67).
When the phase change angle Δθ T is a value within the third overload / short circuit detection phase change angle range, the relay calculation processing unit 58 determines that “TR phase short circuit has occurred” (step S69d).

リレー演算処理部58は、以上のようにして過負荷、R−S相短絡、S−T相短絡、T−R相短絡または三相短絡の発生を検出すると、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS70)。 When the relay calculation processing unit 58 detects the occurrence of overload, R-S phase short circuit, S-T phase short circuit, TR phase short circuit, or three-phase short circuit as described above, the first to third trip signals are detected. T 1 to T 3 are output (step S70).

次に、反相発生時のリレー演算処理部58の動作について、図23に示すフローチャートを参照して説明する。
リレー演算処理部58は、合成電流IR-Sの電流変化率KR-Sが反相検出電流変化率範囲(=0.9〜1.1)内の値であるか否かを調べ(ステップS71)、電流変化率KR-Sが反相検出電流変化率範囲内の値であると、TR相線間電圧VTRの電圧変化率LTRが反相検出電圧変化率範囲(=0.9〜1.1)内の値であるか否かを調べ(ステップS72)、電圧変化率LTRが反相検出電圧変化率範囲内の値であると、T相電圧VRの電圧変化率LTが反相検出電圧変化率範囲(=0.9〜1.1)内の値であるか否かを調べ(ステップS73)、電圧変化率LTが反相検出電圧変化率範囲内の値であると、T相電圧VRの位相差βが反相検出位相差範囲(=−60°〜0°)内の値であるか否かを調べる(ステップS74)。
リレー演算処理部58は、位相差βが反相検出位相差範囲内の値であると、「反相が発生した」と判定して(ステップS75)、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS76)。
Next, the operation of the relay calculation processing unit 58 when a reverse phase occurs will be described with reference to the flowchart shown in FIG.
Relay processing section 58 checks whether the combined current I current change rate K RS of RS is a value within the anti-phase detected current change rate range (= 0.9 to 1.1) (step S71), If the current rate of change K RS is within the anti-phase detected current change rate range, the voltage change rate L TR of the voltage V TR - TR phase line reverse phase detecting voltage change rate range (= 0.9 to 1.1 ) examines if the value is either in (step S72), when the voltage change rate L TR is within this reverse phase detecting voltage change rate range, the voltage change rate L T of the T-phase voltage V R is reverse phase detected voltage change rate ranges (= 0.9-1.1) examines whether the value of the (step S73), when the voltage change rate L T is a value within the counter-phase detection voltage change rate range, It is checked whether or not the phase difference β of the T-phase voltage V R is a value within the anti-phase detection phase difference range (= −60 ° to 0 °) (step S74).
When the phase difference β is a value within the anti-phase detection phase difference range, the relay calculation processing unit 58 determines that “an anti-phase has occurred” (step S75), and the first to third trip signals T 1. and it outputs the through T 3 (step S76).

次に、スター結線された三相電源線における欠相または断線発生時のリレー演算処理部58の動作について、図24および図25に示すフローチャートを参照して説明する。
リレー演算処理部58は、TR相線間電圧VTRの電圧変化率LTRが第1の欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS81)、電圧変化率LTRが第1の欠相・断線検出電圧変化率範囲内の値であると、合成電流IR-Sの電流変化率KR-Sが欠相・断線検出電流変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS82)、電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値であると、合成電流IR-Sの位相差αが第1の欠相検出位相差範囲(=−30°〜30°)内の値であるか否かを調べる(ステップS83)。
リレー演算処理部58は、位相差αが第1の欠相検出位相差範囲内の値であると、「R相欠相が発生した」と判定する(ステップS92a)。
Next, the operation of the relay calculation processing unit 58 when a phase loss or disconnection occurs in a star-connected three-phase power supply line will be described with reference to the flowcharts shown in FIGS.
The relay calculation processing unit 58 determines whether or not the voltage change rate L TR of the TR phase line voltage V TR is a value within the first open phase / disconnection detection voltage change rate range (= 0.4 to 0.6). or the checked (step S81), when the voltage change rate L TR is the value of the first phase loss-disconnection detecting voltage change rate range, the resultant current I RS of the current rate of change K RS is open phase-disconnection detection current change rate range (= 0.4-0.6) examines whether the value of the (step S82), the current rate of change K RS is a value open phase-disconnection detecting the current change rate in the range, It is checked whether or not the phase difference α of the combined current I RS is a value within the first open phase detection phase difference range (= −30 ° to 30 °) (step S83).
When the phase difference α is a value within the first phase loss detection phase difference range, the relay calculation processing unit 58 determines that “R phase phase loss has occurred” (step S92a).

ステップS81において電圧変化率LTRが第1の相・断線検出電圧変化率範囲内の値でないと、リレー演算処理部58は、電流変化率KR-Sが欠相・断線検出電流変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS84)、電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値であると、T相電圧VTの電圧変化率LTが第2の欠相・断線検出電圧変化率範囲(=0.8〜0.9)内の値であるか否かを調べ(ステップS85)、電圧変化率LTが第2の欠相・断線検出電圧変化率範囲内の値であると、位相差αが第2の欠相検出位相差範囲(=150°〜210°)内の値であるか否かを調べる(ステップS86)。
リレー演算処理部58は、位相差αが第2の欠相検出位相差範囲内の値であると、「S相欠相が発生した」と判定する(ステップS92d)。
If the voltage change rate LTR is not a value within the first phase / disconnection detection voltage change rate range in step S81, the relay calculation processing unit 58 determines that the current change rate KRS is an open phase / disconnection detection current change rate range (= examines whether the value of 0.4 to 0.6) in (step S84), the current rate of change K RS is a value open phase-disconnection detecting the current change rate in the range, T-phase voltage V T voltage change rate L T as it is checked whether the value of the second phase loss-disconnection detecting voltage change rate ranges (= 0.8-0.9) in (step S85), the voltage change rate L T Whether the phase difference α is a value within the second open phase detection phase difference range (= 150 ° to 210 °) is checked if the value is within the second open phase / disconnection detection voltage change rate range. (Step S86).
When the phase difference α is a value within the second phase loss detection phase difference range, the relay calculation processing unit 58 determines that “S phase phase loss has occurred” (step S92d).

ステップS82において電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値でないと、リレー演算処理部58は、電圧変化率LTが欠相検出電圧変化率値(=0.1)以下であるか否かを調べ(ステップS87)、電圧変化率LTが欠相検出電圧変化率値以下であると、位相差αが第2の欠相検出位相差範囲(=150°〜210°)内の値であるか否かを調べる(ステップS88)。
リレー演算処理部58は、位相差αが第2の欠相検出位相差範囲内の値であると、「T相欠相が発生した」と判定する(ステップS92c)。
If the current rate of change K RS is not the value of the open phase-disconnection detecting the current change rate in the range at step S82, the relay processing unit 58, the voltage change rate L T phase loss detection voltage change rate value (= 0.1) examines if less either (step S87), when the voltage change rate L T is less phase loss detection voltage change rate value, the phase difference α is a second open-phase phase difference detection range (= 0.99 ° to 210 It is checked whether the value is within (°) (step S88).
When the phase difference α is a value within the second phase loss detection phase difference range, the relay calculation processing unit 58 determines that “T phase phase loss has occurred” (step S92c).

ステップS85において電圧変化率LTが第2の欠相・断線検出電圧変化率範囲内の値でないと、リレー演算処理部58は、位相差αが第1の断線検出位相差範囲(=30°〜90°)内の値であるか否かを調べる(図25のステップS89)。
リレー演算処理部58は、位相差αが第1の断線検出位相差範囲内の値であると、「R相断線が発生した」と判定する(ステップS92d)。
When the voltage change rate L T is not the second value of the open phase-disconnection detecting voltage change rate in the range at step S85, the relay processing unit 58, the phase difference α is a first disconnection detecting the phase difference range (= 30 ° It is checked whether the value is within the range of (˜90 °) (step S89 in FIG. 25).
When the phase difference α is a value within the first disconnection detection phase difference range, the relay calculation processing unit 58 determines that “R phase disconnection has occurred” (step S92d).

ステップS89において位相差αが第1の断線検出位相差範囲内の値でないと、リレー演算処理部58は、位相差αが第2の断線検出位相差範囲(=150°〜210°)内の値であるか否かを調べる(ステップS90)。
リレー演算処理部58は、位相差αが第2の断線検出位相差範囲内の値であると、「S相断線が発生した」と判定する(ステップS92e)。
If the phase difference α is not a value within the first disconnection detection phase difference range in step S89, the relay calculation processing unit 58 determines that the phase difference α is within the second disconnection detection phase difference range (= 150 ° to 210 °). It is checked whether it is a value (step S90).
When the phase difference α is a value within the second disconnection detection phase difference range, the relay calculation processing unit 58 determines that “S phase disconnection has occurred” (step S92e).

ステップS84において電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値でないと、リレー演算処理部58は、位相差αが第3の断線検出位相差範囲(=90°〜150°)内の値であるか否かを調べる(ステップS91)。
リレー演算処理部58は、位相差αが第3の断線検出位相差範囲内の値であると、「T相断線が発生した」と判定する(ステップS92f)。
If the current change rate KRS is not a value within the phase loss / disconnection detection current change rate range in step S84, the relay calculation processing unit 58 determines that the phase difference α is equal to the third disconnection detection phase difference range (= 90 ° to 150 °). ) Is checked (step S91).
When the phase difference α is a value within the third disconnection detection phase difference range, the relay calculation processing unit 58 determines that “T-phase disconnection has occurred” (step S92f).

リレー演算処理部58は、以上のようにしてR相欠相、S相欠相、T相欠相、R相断線、S相断線またはT相断線の発生を検出すると、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS93)。 When the relay arithmetic processing unit 58 detects the occurrence of the R-phase, S-phase, T-phase, R-phase, S-phase, or T-phase disconnection as described above, the first to third Trip signals T 1 to T 3 are output (step S93).

次に、デルタ結線された三相電源線における欠相または断線発生時のリレー演算処理部58の動作について、図26および図27に示すフローチャートを参照して説明する。
リレー演算処理部58は、TR相線間電圧VTRの電圧変化率LTRが第1の欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS101)、電圧変化率LTRが第1の欠相・断線検出電圧変化率範囲内の値であると、合成電流IR-Sの電流変化率KR-Sが欠相・断線検出電流変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS102)、電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値であると、合成電流IR-Sの位相差αが第1の欠相検出位相差範囲(=−30°〜30°)内の値であるか否かを調べる(ステップS103)。
リレー演算処理部58は、位相差αが第1の欠相検出位相差範囲内の値であると、「R相欠相が発生した」と判定する(ステップS113a)。
Next, the operation of the relay calculation processing unit 58 when a phase loss or disconnection occurs in a delta-connected three-phase power supply line will be described with reference to the flowcharts shown in FIGS.
The relay calculation processing unit 58 determines whether or not the voltage change rate L TR of the TR phase line voltage V TR is a value within the first open phase / disconnection detection voltage change rate range (= 0.4 to 0.6). or the checked (step S101), when the voltage change rate L TR is the value of the first phase loss-disconnection detecting voltage change rate range, the resultant current I RS of the current rate of change K RS is open phase-disconnection detection current change rate range (= 0.4-0.6) examines whether the value of the (step S102), the current rate of change K RS is a value open phase-disconnection detecting the current change rate in the range, It is checked whether or not the phase difference α of the combined current I RS is a value within the first open phase detection phase difference range (= −30 ° to 30 °) (step S103).
When the phase difference α is a value within the first phase loss detection phase difference range, the relay calculation processing unit 58 determines that “R phase phase loss has occurred” (step S113a).

ステップS101において電圧変化率LTRが第1の欠相・断線検出電圧変化率範囲内の値でないと、リレー演算処理部58は、電流変化率KR-Sが欠相・断線検出電流変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS104)、電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値であると、T相電圧VTの電圧変化率LTが第2の欠相・断線検出電圧変化率範囲(=0.8〜0.9)内の値であるか否かを調べ(ステップS105)、電圧変化率LTが第2の欠相・断線検出電圧変化率範囲内の値であると、位相差αが第2の欠相検出位相差範囲(=150°〜210°)内の値であるか否かを調べる(ステップS106)。
リレー演算処理部58は、位相差αが第2の欠相検出位相差範囲内の値であると、「S相欠相が発生した」と判定する(ステップS113b)。
If the voltage change rate LTR is not a value within the first open phase / disconnection detection voltage change rate range in step S101, the relay calculation processing unit 58 determines that the current change rate KRS is the open phase / disconnection detection current change rate range ( = 0.4 to 0.6) examines if the value is either inside (step S104), and the current rate of change K RS is a value open phase-disconnection detecting the current change rate in the range, T-phase voltage V voltage change rate L T of the T are checked whether the value of the second phase loss-disconnection detecting voltage change rate ranges (= 0.8-0.9) in (step S105), the voltage change rate L T Is a value within the second open phase / disconnection detection voltage change rate range, whether or not the phase difference α is a value within the second open phase detection phase difference range (= 150 ° to 210 °). It investigates (step S106).
When the phase difference α is a value within the second phase loss detection phase difference range, the relay calculation processing unit 58 determines that “S phase phase loss has occurred” (step S113b).

ステップS102において電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値でないと、リレー演算処理部58は、電圧変化率LTが欠相検出電圧変化率値(=0.1)以下であるか否かを調べ(ステップS107)、電圧変化率LTが欠相検出電圧変化率値(=0.1)以下であると、位相差αが第2の欠相検出位相差範囲(=150°〜210°)内の値であるか否かを調べる(ステップS108)。
リレー演算処理部58は、位相差αが第2の欠相検出位相差範囲内の値であると、「T相欠相が発生した」と判定する(ステップS113c)。
If the current rate of change K RS is not the value of the open phase-disconnection detecting the current change rate in the range in step S102, the relay processing unit 58, the voltage change rate L T phase loss detection voltage change rate value (= 0.1) examines if the either less (step S107), when the voltage change rate L T is phase loss detection voltage change rate value (= 0.1) or less, the phase difference α is a second open-phase phase difference detection range It is checked whether the value is within the range (= 150 ° to 210 °) (step S108).
When the phase difference α is a value within the second phase loss detection phase difference range, the relay calculation processing unit 58 determines that “T phase phase loss has occurred” (step S113c).

ステップS104において電流変化率KR-Sが欠相・断線検出電流変化率範囲内の値でないと、リレー演算処理部58は、電流変化率KR-Sが第1の断線検出電流変化率範囲(=0.2〜0.4)内の値であるか否かを調べる(図27のステップS109)。
リレー演算処理部58は、電流変化率KR-Sが第1の断線検出電流変化率範囲内の値であると、「R相断線が発生した」と判定する(ステップS113d)。
If the current change rate K RS is not a value within the phase loss / disconnection detection current change rate range in step S104, the relay calculation processing unit 58 determines that the current change rate K RS is within the first disconnection detection current change rate range (= 0. 2 to 0.4) is checked (step S109 in FIG. 27).
Relay processing section 58, the current rate of change K RS is the value of the first disconnection detecting the current change rate range, it is determined that the "R-phase disconnection has occurred" (step S113d).

一方、ステップS109において電流変化率KR-Sが第1の断線検出電流変化率範囲内の値でないと、リレー演算処理部58は、電流変化率KR-Sが第2の断線検出電流変化率範囲(=0.8〜0.9)内の値であるか否かを調べ(ステップS110)、電流変化率KR-Sが第2の断線検出電流変化率範囲内の値であると、位相差αが第4の断線検出位相差範囲(=130°〜150°)内の値であるか否かを調べる(ステップS111)。
リレー演算処理部58は、位相差αが第4の断線検出位相差範囲内の値であると、ST相断線が発生した」と判定する(ステップS113e)。
On the other hand, if the current change rate K RS is not a value within the first disconnection detection current change rate range in step S109, the relay calculation processing unit 58 determines that the current change rate K RS is equal to the second disconnection detection current change rate range (= It examines whether the value of 0.8-0.9) in (step S110), if the current rate of change K RS is the value of the second disconnection detecting the current change rate range, the phase difference α is a It is checked whether or not the value is within the disconnection detection phase difference range of 4 (= 130 ° to 150 °) (step S111).
The relay calculation processing unit 58 determines that the ST phase disconnection has occurred when the phase difference α is a value within the fourth disconnection detection phase difference range (step S113e).

一方、ステップS111において位相差αが第4の断線検出位相差範囲内の値でないと、リレー演算処理部58は、位相差αが第5の断線検出位相差範囲(=90°〜110°)内の値であるか否かを調べる(ステップS112)。
リレー演算処理部58は、位相差αが第5の断線検出位相差範囲内の値であると、「TR相断線が発生した」と判定する(ステップS113f)。
On the other hand, if the phase difference α is not a value within the fourth disconnection detection phase difference range in step S111, the relay calculation processing unit 58 determines that the phase difference α is the fifth disconnection detection phase difference range (= 90 ° to 110 °). It is checked whether the value is within the range (step S112).
When the phase difference α is a value within the fifth disconnection detection phase difference range, the relay calculation processing unit 58 determines that “TR phase disconnection has occurred” (step S113f).

リレー演算処理部58は、以上のようにしてR相欠相、S相欠相、T相欠相、RS相断線、ST相断線またはTR相断線の発生を検出すると、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS114)。 When the relay calculation processing unit 58 detects the occurrence of the R-phase open phase, the S-phase open phase, the T-phase open phase, the RS phase open wire, the ST phase open wire, or the TR phase open wire as described above, Trip signals T 1 to T 3 are output (step S114).

次に、本発明の第3の実施例による保護継電システムについて、図28乃至図40を参照して説明する。
本実施例による保護継電システムは、図28に示すように、三相電源線のR相およびS相がクロスするように貫通されたクロス貫通変流器61と、三相電源線に設けられた計器用変成器62と、クロス貫通変流器61から入力される合成電流IR-Sと計器用変成器62から入力されるRS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRとに基づいて三相電源線における過負荷、短絡、反相、欠相および断線を検出する三相誘導電動機用3Eリレー70(以下、「3Eリレー70」と称する。)とを具備する。
Next, a protection relay system according to a third embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 28, the protection relay system according to the present embodiment is provided in the three-phase power supply line and the cross-through current transformer 61 that is penetrated so that the R phase and the S phase of the three-phase power supply line cross each other. Instrument transformer 62, combined current I RS input from cross-through current transformer 61, RS phase line voltage V RS , ST phase line voltage V ST and TR phase input from instrument transformer 62 A 3E relay 70 for a three-phase induction motor (hereinafter referred to as “3E relay 70”) that detects overload, short circuit, reverse phase, phase loss, and disconnection in a three-phase power supply line based on the line voltage V TR . It comprises.

ここで、クロス貫通変流器61は、図1に示したクロス貫通変流器11および図17に示したクロス貫通変流器41と同じものである。
計器用変成器62は、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRを3Eリレー70に出力する。
Here, the cross through current transformer 61 is the same as the cross through current transformer 11 shown in FIG. 1 and the cross through current transformer 41 shown in FIG.
Instrument transformer 62 outputs RS phase line voltage V RS , ST phase line voltage V ST, and TR phase line voltage V TR to 3E relay 70.

3Eリレー70は、クロス貫通変流器61から入力される合成電流IR-Sの電流変化率KR-S、ST基準位相差αST(ST相線間電圧VSTの位相θSTに対する位相差であり、遅れ位相を正の値で進み位相を負の値で示す。以下同様)およびTR基準位相差αTR(TR相線間電圧VTRの位相θTRに対する位相差であり、遅れ位相を正の値で進み位相を負の値で示す。以下同様)と計器用変成器62から入力されるRS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRの電圧変化率LRS,LST,LTRとに基づいて、過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡を検出する。
また、3Eリレー70は、合成電流IR-Sの電流変化率KR-SとRS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRの電圧変化率LRS,LST,LTRとRS相線間電圧VRSのTR基準位相差βRS(TR相線間電圧VTRの位相θTRに対する位相差であり、遅れ位相を正の値で進み位相を負の値で示す。以下同様)とに基づいて、R−S相反相、S−T相反相およびT−R相反相を検出する。
さらに、3Eリレー70は、合成電流IR-Sの電流変化率KR-SおよびTR基準位相差αTRとRS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRの電圧変化率LRS,LST,LTRとRS相線間電圧VRSのTR基準位相差βRSとST相線間電圧VSTのRS基準位相差βST(RS相線間電圧VRSの位相θRSに対する位相差であり、遅れ位相を正の値で進み位相を負の値で示す。以下同様)とTR相線間電圧VTRのST基準位相差βTR(ST相線間電圧VSTの位相θSTに対する位相差であり、遅れ位相を正の値で進み位相を負の値で示す。以下同様)とに基づいて、スター結線された三相電源線におけるR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線を検出するとともに、デルタ結線された三相電源線におけるR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線を検出する。
3Eリレー70は、以上のようにして過負荷などを検出すると、第1乃至第3のトリップ信号T1〜T3を第1乃至第3の遮断器31〜33にそれぞれ出力する。
The 3E relay 70 is a current change rate K RS of the combined current I RS input from the cross-through current transformer 61, an ST reference phase difference α ST (a phase difference with respect to the phase θ ST of the ST phase line voltage V ST , The lag phase is a positive value and the lead phase is a negative value (the same applies hereinafter) and the TR reference phase difference α TR (the phase difference with respect to the phase θ TR of the TR phase line voltage V TR and the lag phase is a positive value) And the phase change is indicated by a negative value (the same applies hereinafter) and the voltage change rate of the RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR input from the instrument transformer 62. Based on L RS , L ST , and L TR , an overload, an RS phase short circuit, an ST phase short circuit, a TR phase short circuit, and a three phase short circuit are detected.
Further, 3E relay 70, the composite current I RS of the current change rate K RS and RS-phase line voltage V RS, the voltage change rate L RS voltage V ST and TR phase line voltage V TR between ST phase line, L ST is the phase difference for the phase theta TR of L TR between the RS phase line voltage V RS of the TR reference phase difference beta RS (TR phase line voltage V TR, the phase lead lag phase at a positive value at a negative value Based on the following, the R—S reciprocal phase, the S—T reciprocal phase, and the T—R reciprocal phase are detected.
Furthermore, 3E relay 70, the composite current I RS of the current rate of change K RS and TR reference phase difference alpha TR and RS phase line voltage V RS, ST-phase line voltage V ST and TR phase line voltage of the voltage V TR Rate of change L RS , L ST , L TR and RS phase line voltage V RS TR reference phase difference β RS and ST phase line voltage V ST RS reference phase difference β ST (RS phase line voltage V RS phase θ is the phase difference with respect to RS, indicating the phase advance and phase delay in a positive value at a negative value. hereinafter the same) and ST reference phase difference beta TR of TR-phase line voltage V TR (ST phase line voltage V ST Phase difference with respect to the phase θST of the phase, and the lagging phase is a positive value, the leading phase is indicated by a negative value, and so on. R phase in three-phase power supply line that detects open phase, T phase open phase, R phase open wire, S phase open wire and T phase open wire Phase, S Aiketsusho, T Aiketsusho, RS phase disconnection, to detect the ST phase disconnection and TR phase disconnection.
When the 3E relay 70 detects an overload or the like as described above, the 3E relay 70 outputs the first to third trip signals T 1 to T 3 to the first to third circuit breakers 3 1 to 3 3 , respectively.

次に、3Eリレー70における過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出方法について、図29乃至図31を参照して詳しく説明する。   Next, a method for detecting overload, RS phase short circuit, ST phase short circuit, TR phase short circuit, and three phase short circuit in the 3E relay 70 will be described in detail with reference to FIGS. 29 to 31.

(1)正常時の合成電流I(R-S)0、RS相線間電圧VRS0、ST相線間電圧VST0およびTR相線間電圧VTR0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のRS相線間電圧VRS0の値|VRS0|および位相θRS0と正常時のST相線間電圧VST0の値|VST0|および位相θST0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0とは(41−1)式から(41−8)式でそれぞれ表される(図29(a),(b)参照)。
|I(R-S)0|=|IR0−IS0|=31/2×|IR0|=31/2×1=31/2 (41−1)
θ(R-S)0=330° (41−2)
|VRS0|=|VR0−VS0|=31/2×|VR0|=31/2×1=31/2 (41−3)
θRS0=330° (41−4)
|VST0|=|VS0−VT0|=31/2×|VS0|=31/2×1=31/2 (41−5)
θST0=90° (41−6)
|VTR0|=|VT0−VR0|=31/2×|VT0|=31/2×1=31/2 (41−7)
θTR0=210° (41−8)
(1) Composite current I (RS) 0 at normal time, RS phase line voltage V RS0 , ST phase line voltage V ST0 and TR phase line voltage V TR0
Normal value of combined current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal RS phase line voltage V RS0 | V RS0 | and phase θ RS0 and normal The value | V ST0 | and the phase θ ST0 of the ST phase line voltage V ST0 and the value of the TR phase line voltage V TR0 in the normal state | V TR0 | and the phase θ TR0 from the equation (41-1) (41 −8) respectively represented by the equations (see FIGS. 29A and 29B).
| I (RS) 0 | = | I R0 −I S0 | = 3 1/2 × | I R0 | = 3 1/2 × 1 = 3 1/2 (41-1)
θ (RS) 0 = 330 ° (41-2)
| V RS0 | = | V R0 −V S0 | = 3 1/2 × | V R0 | = 3 1/2 × 1 = 3 1/2 (41-3)
θ RS0 = 330 ° (41-4)
| V ST0 | = | V S0 −V T0 | = 3 1/2 × | V S0 | = 3 1/2 × 1 = 3 1/2 (41-5)
θ ST0 = 90 ° (41-6)
| V TR0 | = | V T0 −V R0 | = 3 1/2 × | V T0 | = 3 1/2 × 1 = 3 1/2 (41-7)
θ TR0 = 210 ° (41-8)

(2)過負荷時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
過負荷が発生して定格電流値(この例では、正常時のR相、S相およびT相電流IR0,IS0,IT0)の1.15倍のR相、S相およびT相電流IR,IS,ITが三相電源線のR相、S相およびT相にそれぞれ流れたとすると、過負荷時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-SのST基準位相差αSTおよびTR基準位相差αTRとは(42−1)式から(42−14)式でそれぞれ表される(図30(a),(b)参照)。
|IR-S|=|IR−IS|=31/2×|IR|==31/2×(1.15×|IR0|)
=31/2×(1.15×1)=31/2×1.15 (42−1)
R-S=|IR-S|/|I(R-S)0|=(31/2×1.15)/31/2
=1.15 (42−2)
θR-S=330° (42−3)
|VRS|=|VR−VS|=31/2×|VR|=31/2×|VR0|=31/2×1
=31/2 (42−4)
RS=|VRS|/|VRS0|=31/2/31/2=1 (42−5)
θRS=330° (42−6)
|VST|=|VS−VT|=31/2×|VS|=31/2×|VS0|=31/2×1
=31/2 (42−7)
ST=|VST|/|VST0|=31/2/31/2=1 (42−8)
θST=90° (42−9)
|VTR|=|VT−VR|=31/2×|VT|=31/2×|VT0|=31/2×1
=31/2 (42−10)
TR=|VTR|/|VTR0|=31/2/31/2=1 (42−11)
θTR=210° (42−12)
αST=θR-S−θST=330°−90°=270°=−120° (42−13)
αTR=θR-S−θTR=330°−210°=120° (42−14)
(2) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR during overload
R-phase, S-phase, and T-phase currents that are 1.15 times the rated current values (in this example, normal R-phase, S-phase, and T-phase currents I R0 , I S0 , I T0 ) due to overload I R, I S, R-phase of the I T is a three-phase power line, assuming that respectively flow into S phase and T-phase, the value of the composite current I RS during overload | I RS |, the current change rate K RS and phase Value of θ RS and RS phase line voltage V RS | V RS |, voltage change rate L RS and phase θ RS and value of ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST And TR phase line voltage V TR | V TR |, voltage change rate L TR and phase θ TR, and ST reference phase difference α ST and TR reference phase difference α TR of combined current I RS (42-1) From the equations, they are expressed by equations (42-14) (see FIGS. 30A and 30B).
| I RS | = | I R −I S | = 3 1/2 × | I R | == 3 1/2 × (1.15 × | I R0 |)
= 3 1/2 × (1.15 × 1) = 3 1/2 × 1.15 (42-1)
K RS = | I RS | / | I (RS) 0 | = (3 1/2 × 1.15) / 3 1/2
= 1.15 (42-2)
θ RS = 330 ° (42-3)
| V RS | = | V R −V S | = 3 1/2 × | V R | = 3 1/2 × | V R0 | = 3 1/2 × 1
= 3 1/2 (42-4)
L RS = | V RS | / | V RS0 | = 3 1/2 / 3 1/2 = 1 (42-5)
θ RS = 330 ° (42-6)
| V ST | = | V S −V T | = 3 1/2 × | V S | = 3 1/2 × | V S0 | = 3 1/2 × 1
= 3 1/2 (42-7)
L ST = | V ST | / | V ST0 | = 3 1/2 / 3 1/2 = 1 (42-8)
θ ST = 90 ° (42-9)
| V TR | = | V T −V R | = 3 1/2 × | V T | = 3 1/2 × | V T0 | = 3 1/2 × 1
= 3 1/2 (42-10)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (42-11)
θ TR = 210 ° (42-12)
α ST = θ RS −θ ST = 330 ° −90 ° = 270 ° = −120 ° (42-13)
α TR = θ RS −θ TR = 330 ° -210 ° = 120 ° (42-14)

(3)R−S相短絡時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
R相−S相間の短絡事故(R−S相短絡)が発生して定格電流値(この例では、正常時のR相およびS相電流IR0,IS0)の1.15倍のR相およびS相事故電流IFR,IFSが流れたとすると、R−S相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-SのST基準位相差αSTおよびTR基準位相差αTRとは(43−1)式から(43−14)式でそれぞれ表される(図4(a−1),図30(b)参照)。
|IR-S|=|IFR−IFS|=2×|IFR|=2×(1.15×|IR0|)
=2×(1.15×1)=2×1.15=2.3 (43−1)
R-S=|IR-S|/|I(R-S)0|=2.3/31/2(=1.328) (43−2)
θR-S=45° (43−3)
|VRS|=|VR−VS|=0.8×31/2 (43−4)
RS=|VRS|/|VRS0|=(0.8×31/2)/31/2=0.8 (43−5)
θRS=330° (43−6)
|VST|=|VS−VT|={1.52+(0.8×31/2/2)21/2 (43−7)
ST=|VST|/|VST0|={1.52+(0.8×31/2/2)21/2/31/2
(=0.954) (43−8)
θST=84.8° (43−9)
|VTR|={1.52+(0.8×31/2/2)21/2 (43−10)
TR=|VTR|/|VTR0|={1.52+(0.8×31/2/2)21/2/31/2
(=0.954) (43−11)
θTR=215.2° (43−12)
αST=θR-S−θST=45°−84.8°=−39.8° (43−13)
αTR=θR-S−θTR=45°−215.2°=−170.2° (43−14)
(3) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR when RS phase is short-circuited
An R phase that is 1.15 times the rated current value (in this example, the normal R phase and S phase currents I R0 , I S0 ) due to a short circuit accident between the R phase and the S phase (R-S phase short circuit) And S phase fault currents I FR and I FS flow, the value | I RS | of the combined current I RS when the RS phase is short-circuited, the current change rate K RS and the phase θ RS and the RS phase line voltage V RS Value | V RS |, voltage change rate L RS and phase θ RS and ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST and TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR and the ST reference phase difference α ST and the TR reference phase difference α TR of the combined current I RS are expressed by the equations (43-1) to (43-14), respectively. (Refer to FIG. 4A-1 and FIG. 30B).
| I RS | = | I FR −I FS | = 2 × | I FR | = 2 × (1.15 × | I R0 |)
= 2 × (1.15 × 1) = 2 × 1.15 = 2.3 (43-1)
K RS = | I RS | / | I (RS) 0 | = 2.3 / 3 1/2 (= 1.328) (43-2)
θ RS = 45 ° (43-3)
| V RS | = | V R −V S | = 0.8 × 3 1/2 (43-4)
L RS = | V RS | / | V RS0 | = (0.8 × 3 1/2 ) / 3 1/2 = 0.8 (43-5)
θ RS = 330 ° (43-6)
| V ST | = | V S −V T | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (43-7)
L ST = | V ST | / | V ST0 | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 3 1/2
(= 0.954) (43-8)
θ ST = 84.8 ° (43-9)
| V TR | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (43-10)
L TR = | V TR | / | V TR0 | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 3 1/2
(= 0.954) (43-11)
θ TR = 215.2 ° (43-12)
α ST = θ RS −θ ST = 45 ° −84.8 ° = −39.8 ° (43-13)
α TR = θ RS −θ TR = 45 ° -215.2 ° = −170.2 ° (43-14)

(4)S−T相短絡時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
S相−T相間の短絡事故(S−T相短絡)が発生して定格電流値(この例では、正常時のR相およびS相電流IR0,IS0)の1.15倍のS相およびT相事故電流IFS,IFTが流れたとすると、S−T相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-SのST基準位相差αSTおよびTR基準位相差αTRとは(44−1)式から(44−14)式でそれぞれ表される(図4(b−1),図31(a)参照)。
|IR-S|=|IR0−IFS|=|IR0−1.15IS0
=(|IR02+|1.15IS02−2×|IR0|×|1.15IS0|×cos165°)1/2
=(12+1.152−2×1×1.15×cos165°)1/2
=2.132 (44−1)
R-S=|IR-S|/|I(R-S)0|=2.132/31/2=1.231 (44−2)
θR-S=353° (44−3)
|VRS|=|VR−VS|={1.52+(0.8×31/2/2)21/2 (44−4)
RS=|VRS|/|VRS0|={1.52+(0.8×31/2/2)21/2/31/2
(=0.954) (44−5)
θRS=335.2° (44−6)
|VST|=|VS−VT|=0.8×31/2 (44−7)
ST=|VST|/|VST0|=(0.8×31/2)/31/2=0.8 (44−8)
θST=90° (44−9)
|VTR|={1.52+(0.8×31/2/2)21/2 (44−10)
TR=|VTR|/|VTR0|={1.52+(0.8×31/2/2)21/2/31/2
(=0.954) (44−11)
θTR=204.8° (44−12)
αST=θR-S−θST=353°−90°=263°=−97° (44−13)
αTR=θR-S−θTR=353°−204.8°=148.2° (44−14)
また、定格電流値よりも過大なS相およびT相事故電流IFS,IFTが流れたとすると、S−T相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sと合成電流IR-SのST基準位相差αSTおよびTR基準位相差αTRとは(44−15)式から(44−19)式でそれぞれ表される(図4(b)の一点鎖線参照)。
|IR-S|=|−IFS|≫|1.15IS0|≫1.15 (44−15)
R-S=|IR-S|/|I(R-S)0|≫1.15/31/2(=0.664) (44−16)
θR-S=345° (44−17)
αST=θR-S−θST=345°−90°=255°=−105° (44−18)
αTR=θR-S−θTR=345°−204.8°=140.2° (44−19)
(4) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST, and TR phase line voltage V TR when the S-T phase is short-circuited
An S phase that is 1.15 times the rated current value (in this example, the normal R phase and S phase currents I R0 , I S0 ) due to a short circuit accident between the S phase and the T phase (S-T phase short circuit) And T-phase fault currents I FS and I FT flow, the value | I RS | of the combined current I RS when the ST phase is short-circuited, the current change rate K RS and the phase θ RS and the RS phase line voltage V RS Value | V RS |, voltage change rate L RS and phase θ RS and ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST and TR phase line voltage V TR | V TR |, the ST reference phase difference alpha ST and TR reference phase difference alpha TR of the voltage change rate L TR and the phase theta TR with combined current I RS (44-1), respectively from the (44-14) by the formula formula (Refer to FIG. 4B-1 and FIG. 31A).
| I RS | = | I R0 −I FS | = | I R0 −1.15I S0 |
= (| I R0 | 2 + | 1.15I S0 | 2 −2 × | I R0 | × | 1.15I S0 | × cos 165 °) 1/2
= (1 2 +1.15 2 -2 × 1 × 1.15 × cos 165 °) 1/2
= 2.132 (44-1)
K RS = | I RS | / | I (RS) 0 | = 2.132 / 3 1/2 = 1.231 (44-2)
θ RS = 353 ° (44-3)
| V RS | = | V R −V S | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (44-4)
L RS = | V RS | / | V RS0 | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 3 1/2
(= 0.954) (44-5)
θ RS = 335.2 ° (44-6)
| V ST | = | V S −V T | = 0.8 × 3 1/2 (44-7)
L ST = | V ST | / | V ST0 | = (0.8 × 3 1/2 ) / 3 1/2 = 0.8 (44-8)
θ ST = 90 ° (44-9)
| V TR | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (44-10)
L TR = | V TR | / | V TR0 | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 3 1/2
(= 0.954) (44-11)
θ TR = 204.8 ° (44-12)
α ST = θ RS −θ ST = 353 ° −90 ° = 263 ° = −97 ° (44-13)
α TR = θ RS −θ TR = 353 ° -204.8 ° = 148.2 ° (44-14)
Also, assuming that the S-phase and T-phase fault currents I FS and I FT exceeding the rated current value flow, the value of the combined current I RS at the time of the S-T phase short circuit | I RS |, the current change rate K RS and The ST reference phase difference α ST and the TR reference phase difference α TR of the phase θ RS and the combined current I RS are expressed by the expressions (44-15) to (44-19), respectively (one point in FIG. 4B). (See chain line).
| I RS | = | −I FS | >> | 1.15I S0 | >> 1.15 (44-15)
K RS = | I RS | / | I (RS) 0 | >> 1.15 / 3 1/2 (= 0.664) (44-16)
θ RS = 345 ° (44-17)
α ST = θ RS −θ ST = 345 ° −90 ° = 255 ° = −105 ° (44-18)
α TR = θ RS −θ TR = 345 ° -204.8 ° = 140.2 ° (44-19)

(5)T−R相短絡時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
T相−R相間の短絡事故(T−R相短絡)が発生して定格電流値(この例では、正常時のR相およびS相電流IR0,IS0)の1.15倍のT相およびR相事故電流IFT,IFRが流れたとすると、T−R相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-SのST基準位相差αSTおよびTR基準位相差αTRとは(45−1)式から(45−14)式でそれぞれ表される(図5(a−1),図31(b)参照)。
|IR-S|=|IFR−IS0|=|1.15IR0−IS0
=(|1.15IR02+|IS02−2×|1.15IR0|×|IS0|×cos15°)1/2
=(1.152+12−2×1.15×1×cos15°)1/2
=0.318 (45−1)
R-S=|IR-S|/|I(R-S)0|=0.318/31/2=0.183 (45−2)
θR-S=50.4° (45−3)
|VRS|=|VR−VS|={1.52+(0.8×31/2/2)21/2 (45−4)
RS=|VRS|/|VRS0|={1.52+(0.8×31/2/2)21/2/31/2
(=0.954) (45−5)
θRS=324.8° (45−6)
|VST|=|VS−VT|={1.52+(0.8×31/2/2)21/2 (45−7)
ST=|VST|/|VST0|={1.52+(0.8×31/2/2)21/2/31/2
(=0.954) (45−8)
θST=95.2° (45−9)
|VTR|=0.8×31/2 (45−10)
TR=|VTR|/|VTR0|=(0.8×31/2)/31/2=0.8 (45−11)
θTR=210° (45−12)
αST=θR-S−θST=50.4°−95.2°=−44.8° (45−13)
αTR=θR-S−θTR=50.4°−210°=−159.6° (45−14)
また、定格電流値よりも過大なT相およびR相事故電流IFT,IFRが流れたとすると、T−R相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sと合成電流IR-SのST基準位相差αSTおよびTR基準位相差αTRとは(45−15)式から(45−19)式でそれぞれ表される(図4(c)の一点鎖線参照)。
|IR-S|=|IFR|≫1.15×|IR0|≫1.15 (45−15)
R-S=|IR-S|/|I(R-S)0|≫1.15/31/2(=0.664) (45−16)
θR-S=105° (45−17)
αST=θR-S−θST=105°−95.2=9.8° (45−18)
αTR=θR-S−θTR=105°−210°=−105° (45−19)
(5) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST, and TR phase line voltage V TR when T-R phase is short-circuited
T phase that is 1.15 times the rated current value (in this example, normal R phase and S phase currents I R0 , I S0 ) due to a short circuit accident between T phase and R phase (TR phase short circuit) And R-phase fault currents I FT and I FR flow, the value of the combined current I RS when the TR phase is short-circuited | I RS |, the current change rate K RS and the phase θ RS and the RS phase line voltage V RS Value | V RS |, voltage change rate L RS and phase θ RS and ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST and TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR and the ST reference phase difference α ST and the TR reference phase difference α TR of the combined current I RS are expressed by the equations (45-1) to (45-14), respectively. (Refer to FIG. 5A-1 and FIG. 31B).
| I RS | = | I FR −I S0 | = | 1.15 I R0 −I S0 |
= (| 1.15I R0 | 2 + | I S0 | 2 −2 × | 1.15I R0 | × | I S0 | × cos 15 °) 1/2
= (1.15 2 +1 2 -2 × 1.15 × 1 × cos 15 °) 1/2
= 0.318 (45-1)
K RS = | I RS | / | I (RS) 0 | = 0.318 / 3 1/2 = 0.183 (45-2)
θ RS = 50.4 ° (45-3)
| V RS | = | V R −V S | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (45-4)
L RS = | V RS | / | V RS0 | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 3 1/2
(= 0.954) (45-5)
θ RS = 324.8 ° (45-6)
| V ST | = | V S −V T | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 (45-7)
L ST = | V ST | / | V ST0 | = {1.5 2 + (0.8 × 3 1/2 / 2) 2 } 1/2 / 3 1/2
(= 0.954) (45-8)
θ ST = 95.2 ° (45-9)
| V TR | = 0.8 × 3 1/2 (45-10)
L TR = | V TR | / | V TR0 | = (0.8 × 3 1/2 ) / 3 1/2 = 0.8 (45-11)
θ TR = 210 ° (45-12)
α ST = θ RS −θ ST = 50.4 ° −95.2 ° = −44.8 ° (45-13)
α TR = θ RS −θ TR = 50.4 ° −210 ° = −159.6 ° (45-14)
Further, assuming that the T-phase and R-phase fault currents I FT and I FR that are larger than the rated current value flow, the value of the combined current I RS at the time of the TR phase short circuit | I RS |, the current change rate K RS and The ST reference phase difference α ST and the TR reference phase difference α TR of the phase θ RS and the combined current I RS are respectively expressed by the expressions (45-15) to (45-19) (one point in FIG. 4C). (See chain line).
| I RS | = | I FR | >> 1.15 × | I R0 | >> 1.15 (45-15)
K RS = | I RS | / | I (RS) 0 | >> 1.15 / 3 1/2 (= 0.664) (45-16)
θ RS = 105 ° (45-17)
α ST = θ RS −θ ST = 105 ° -95.2 = 9.8 ° (45-18)
α TR = θ RS −θ TR = 105 ° −210 ° = −105 ° (45-19)

(6)三相短絡時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相短絡事故(三相短絡)が発生して定格電流値(この例では、正常時のR相、S相およびT相電流IR0,IS0,IT0)の1.15倍のR相、S相およびT相事故電流IFR,IFS,IFTが流れたとすると、三相短絡時の合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRと合成電流IR-SのST基準位相差αSTおよびTR基準位相差αTRとは(46−1)式から(46−14)式でそれぞれ表される(図5(b−1),図31(c)参照)。
|IR-S|=|IFR−IFS|=31/2×|IFR|=31/2×(|1.15IR0|)
=31/2×(1.15×1)=31/2×1.15
(=1.992) (46−1)
R-S=|IR-S|/|I(R-S)0|=(31/2×1.15)/31/2
=1.15 (46−2)
θR-S=45° (46−3)
|VRS|=|VR−VS|=0.8×31/2 (46−4)
RS=|VRS|/|VRS0|=(0.8×31/2)/31/2=0.8 (46−5)
θRS=330° (46−6)
|VST|=|VS−VT|=0.8×31/2 (46−7)
ST=|VST|/|VST0|=(0.8×31/2)/31/2=0.8 (46−8)
θST=90° (46−9)
|VTR|=0.8×31/2 (46−10)
TR=|VTR|/|VTR0|=(0.8×31/2)/31/2=0.8 (46−11)
θTR=210° (46−12)
αST=θR-S−θST=45°−90°=−45° (46−13)
αTR=θR-S−θTR=45°−210°=−165° (46−14)
(6) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST, and TR phase line voltage V TR during three-phase short circuit
R phase that is 1.15 times the rated current value (in this example, normal R phase, S phase, and T phase currents I R0 , I S0 , I T0 ) due to the occurrence of a three-phase short circuit accident (three-phase short circuit) , S-phase and T-phase fault currents I FR , I FS , I FT flow, value of combined current I RS at three-phase short circuit | I RS |, current change rate K RS and phase θ RS and RS phase line The value of the voltage V RS | V RS |, the voltage change rate L RS and the phase θ RS and the ST phase line voltage V ST | V ST |, the voltage change rate L ST and the phase θ ST and the TR phase line voltage the value of V TR | V TR |, the ST reference phase difference alpha ST and TR reference phase difference alpha TR of the voltage change rate L TR and the phase theta TR resultant current I RS from (46-1) below (46-14 ) (Refer to FIG. 5 (b-1) and FIG. 31 (c)).
| I RS | = | I FR −I FS | = 3 1/2 × | I FR | = 3 1/2 × (| 1.15I R0 |)
= 3 1/2 × (1.15 × 1) = 3 1/2 × 1.15
(= 1.992) (46-1)
K RS = | I RS | / | I (RS) 0 | = (3 1/2 × 1.15) / 3 1/2
= 1.15 (46-2)
θ RS = 45 ° (46-3)
| V RS | = | V R −V S | = 0.8 × 3 1/2 (46-4)
L RS = | V RS | / | V RS0 | = (0.8 × 3 1/2 ) / 3 1/2 = 0.8 (46-5)
θ RS = 330 ° (46-6)
| V ST | = | V S −V T | = 0.8 × 3 1/2 (46-7)
L ST = | V ST | / | V ST0 | = (0.8 × 3 1/2 ) / 3 1/2 = 0.8 (46−8)
θ ST = 90 ° (46-9)
| V TR | = 0.8 × 3 1/2 (46-10)
L TR = | V TR | / | V TR0 | = (0.8 × 3 1/2 ) / 3 1/2 = 0.8 (46-11)
θ TR = 210 ° (46-12)
α ST = θ RS −θ ST = 45 ° −90 ° = −45 ° (46-13)
α TR = θ RS −θ TR = 45 ° −210 ° = −165 ° (46-14)

(7)過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出
合成電流IR-Sの位相θR-Sがアーク抵抗の影響により−45°〜15°の範囲で変動することを考慮する。
(a)過負荷の検出
3Eリレー70は、合成電流IR-Sの電流変化率KR-S(=1.15)が所定の過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、RS相線間電圧VRSの電圧変化率LRS(=1)が所定の第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)よりも大きいと、「過負荷が発生した」と判定する。
(b)R−S相短絡の検出
3Eリレー70は、合成電流IR-Sの電流変化率KR-S(=1.328)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、RS相線間電圧VRSの電圧変化率LRS(=0.8)が所定の第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、ST相線間電圧VSTの電圧変化率LST(=0.954)が第2の過負荷・短絡検出電圧変化率値よりも大きいと、「R−S相短絡が発生した」と判定する。
(c)S−T相短絡の検出
3Eリレー70は、合成電流IR-Sの電流変化率KR-S(=1,231)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、RS相線間電圧VRSの電圧変化率LRS(=0.954)が第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)以下で第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく、かつ、ST相線間電圧VSTの電圧変化率LST(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、合成電流IR-SのST基準位相差αST(=−97°)が所定の第1の過負荷・短絡検出位相差範囲(たとえば、−150°〜−90°)内の値であると、「S−T相短絡が発生した」と判定する。
また、3Eリレー70は、定格電流値よりも過大なS相およびT相事故電流IFS,IFTが流れたときのために、合成電流IR-Sの電流変化率KR-S(≫0.664)が過負荷・短絡検出電流変化率値(たとえば、1.15)未満であっても、ST相線間電圧VSTの電圧変化率LST(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、合成電流IR-SのST基準位相差αST(=−105°)が第1の過負荷・短絡検出位相差範囲(たとえば、−150°〜−90°)内の値であると、「S−T相短絡が発生した」と判定する。
(d)T−R相短絡の検出
3Eリレー70は、合成電流IR-Sの電流変化率KR-S(=0.183)が過負荷・短絡検出電流変化率値(たとえば、1.15)未満であり、かつ、ST相線間電圧VSTの電圧変化率LST(=0.954)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、合成電流IR-SのTR基準位相差αTR(=−159.6°)が所定の第2の過負荷・短絡検出位相差範囲(たとえば、−203.1°〜−90°)内の値であると、「T−R相短絡が発生した」と判定する。
また、3Eリレー20は、定格電流値よりも過大なT相およびR相事故電流IFT,IFRが流れたときのために、合成電流IR-Sの電流変化率KR-S(≫0.664)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であっても、RS相線間電圧VRSの電圧変化率LRS(=0.954)が第1の過負荷・短絡検出電圧変化率値(たとえば、0.96)以下で第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく、かつ、ST相線間電圧VSTの電圧変化率LST(=0.954)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)よりも大きく、かつ、TR相線間電圧VTRの電圧変化率LTR(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、合成電流IR-SのTR基準位相差αTR(=−140.2°)が第2の過負荷・短絡検出位相差範囲(たとえば、−203.1°〜−90°)内の値であると、「T−R相短絡が発生した」と判定する。
(e)三相短絡の検出
3Eリレー70は、合成電流IR-Sの電流変化率KR-S(=1.15)が過負荷・短絡検出電流変化率値(たとえば、1.15)以上であり、かつ、RS相線間電圧VRSの電圧変化率LRS(=0.8)が第2の過負荷・短絡検出電圧変化率値(たとえば、0.8)以下であり、かつ、ST相線間電圧VSTの電圧変化率LST(=0.8)が第2の過負荷・短絡検出電圧変化率値以下であると、「三相短絡が発生した」と判定する。
(7) overload, RS-phase short circuit, S-T phase short-circuit, T-R phase short-circuit and three-phase short circuit detecting the resultant current I RS phase theta RS is -45 ° to 15 ° due to the influence of the arc resistance Consider fluctuations in range.
(A) Overload detection In the 3E relay 70, the current change rate K RS (= 1.15) of the combined current I RS is equal to or greater than a predetermined overload / short-circuit detection current change rate value (eg, 1.15). When the voltage change rate L RS (= 1) of the RS phase line voltage V RS is larger than a predetermined first overload / short-circuit detection voltage change rate value (for example, 0.96), Is determined to occur.
(B) Detection of R-S phase short circuit The 3E relay 70 has a current change rate K RS (= 1.328) of the combined current I RS that is equal to or greater than an overload / short circuit detection current change rate value (eg, 1.15). And the voltage change rate L RS (= 0.8) of the RS phase line voltage V RS is equal to or less than a predetermined second overload / short-circuit detection voltage change rate value (for example, 0.8), and When the voltage change rate L ST (= 0.954) of the ST phase line voltage V ST is larger than the second overload / short circuit detection voltage change rate value, it is determined that “RS phase short circuit has occurred”. To do.
(C) Detection of S-T phase short circuit The 3E relay 70 has a current change rate K RS (= 1,231) of the combined current I RS equal to or higher than an overload / short circuit detection current change rate value (eg, 1.15). And the second overload when the voltage change rate L RS (= 0.954) of the RS phase line voltage V RS is equal to or less than the first overload / short-circuit detection voltage change rate value (for example, 0.96). The voltage change rate L ST (= 0.8) of the ST phase line voltage V ST is greater than the short circuit detection voltage change rate value (for example, 0.8), and the second overload / short circuit detection voltage change. The ST reference phase difference α ST (= −97 °) of the combined current I RS is a predetermined first overload / short-circuit detection phase difference range (for example, − When the value is within the range of 150 ° to −90 °, it is determined that “S-T phase short circuit has occurred”.
Further, the 3E relay 70 has a current change rate K RS (>> 0.664) of the combined current I RS because the S-phase and T-phase fault currents I FS and I FT exceeding the rated current value flow. Is less than the overload / short circuit detection current change rate value (for example, 1.15), the voltage change rate L ST (= 0.8) of the ST phase line voltage V ST is the second overload / short circuit The detected voltage change rate value (for example, 0.8) or less and the ST reference phase difference α ST (= −105 °) of the combined current I RS is the first overload / short-circuit detection phase difference range (for example, When the value is within the range of −150 ° to −90 °, it is determined that “S-T phase short circuit has occurred”.
(D) Detection of TR phase short circuit The 3E relay 70 has a current change rate K RS (= 0.183) of the combined current I RS that is less than an overload / short circuit detection current change rate value (eg, 1.15). Yes, and the voltage change rate L ST (= 0.954) of the ST phase line voltage V ST is larger than the second overload / short-circuit detection voltage change rate value (for example, 0.8), and TR Voltage change rate L TR (= 0.8) of phase-line voltage V TR is equal to or less than a second overload / short-circuit detection voltage change rate value (for example, 0.8), and TR of composite current I RS When the reference phase difference α TR (= −159.6 °) is a value within a predetermined second overload / short-circuit detection phase difference range (for example, −203.1 ° to −90 °), “T− It is determined that an R-phase short circuit has occurred.
Further, the 3E relay 20 has a current change rate K RS (>> 0.664) of the combined current I RS because the T-phase and R-phase fault currents I FT and I FR that are larger than the rated current value flow. Is the overload / short circuit detection current change rate value (for example, 1.15) or more, the voltage change rate L RS (= 0.954) of the RS phase line voltage V RS is the first overload / short circuit Voltage change rate of ST phase line-to-line voltage V ST that is equal to or less than detection voltage change rate value (eg, 0.96) and greater than second overload / short-circuit detection voltage change rate value (eg, 0.8) L ST (= 0.954) is larger than the second overload / short-circuit detection voltage change rate value (for example, 0.8), and the voltage change rate L TR (= 0) of the TR phase line voltage V TR .8) a second overload or short circuit detecting voltage change rate value (e.g., 0.8) or less and, T of the resultant current I RS Reference phase difference α TR (= -140.2 °) a second overload or short circuit detecting a phase difference range (for example, -203.1 ° ~-90 °) when a value within the "TR phase It is determined that a short circuit has occurred.
(E) Three-phase short circuit detection The 3E relay 70 has a current change rate K RS (= 1.15) of the combined current I RS equal to or greater than an overload / short circuit detection current change rate value (eg, 1.15), Further, the voltage change rate L RS (= 0.8) of the RS phase line voltage V RS is equal to or less than the second overload / short-circuit detection voltage change rate value (for example, 0.8), and the ST phase line When the voltage change rate L ST (= 0.8) of the inter-voltage V ST is equal to or less than the second overload / short circuit detection voltage change rate value, it is determined that “a three-phase short circuit has occurred”.

次に、3Eリレー70におけるR−S相反相、S−T相反相およびT−R相反相の検出方法について、図32を参照して詳しく説明する。   Next, the detection method of the RS reciprocal phase, the ST reciprocal phase, and the TR reciprocal phase in the 3E relay 70 will be described in detail with reference to FIG.

(1)正常時の正常時の合成電流I(R-S)0、RS相線間電圧VRS0、ST相線間電圧VST0およびTR相線間電圧VTR0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のRS相線間電圧VRS0の値|VRS0|および位相θRS0と正常時のST相線間電圧VST0の値|VST0|および位相θST0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0とは上記(41−1)式から(41−8)式でそれぞれ表される。
また、正常時のRS相線間電圧VRS0のTR基準位相差βRS0は(47−1)式で表される。
βRS0=θRS0−θTR0=330°−210°=120° (47−1)
(1) Normal combined current I (RS) 0 at normal time, RS phase line voltage V RS0 , ST phase line voltage V ST0 and TR phase line voltage V TR0
Normal value of combined current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal RS phase line voltage V RS0 | V RS0 | and phase θ RS0 and normal The value | V ST0 | and the phase θ ST0 of the ST phase line voltage V ST0 and the value of the TR phase line voltage V TR0 in the normal state | V TR0 | and the phase θ TR0 from the equation (41-1) ( 41-8).
Further, the TR reference phase difference β RS0 of the RS phase line voltage V RS0 at the normal time is expressed by the equation (47-1).
β RS0 = θ RS0TR0 = 330 ° -210 ° = 120 ° (47-1)

(2)R−S相反相時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のR相およびS相が逆になる(R−S相反相)と、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとRS相線間電圧VRSのTR基準位相差βRSとは(48−1)式から(48−13)式でそれぞれ表される(図6(b−1),図32(a)参照)。
|IR-S|=|IR−IS|=31/2×|IR|=31/2×|IR0|=31/2×1
=31/2 (48−1)
R-S=|IR-S|/|I(R-S)0|=31/2/31/2=1 (48−2)
θR-S=150° (48−3)
|VRS|=|VR−VS|=31/2×|VR|=31/2×|VR0|=31/2×1
=31/2 (48−4)
RS=|VRS|/|VRS0|=31/2/31/2=1 (48−5)
θRS=150° (48−6)
|VST|=|VS−VT|=31/2×|VS|=31/2×|VS0|=31/2×1
=31/2 (48−7)
ST=|VST|/|VST0|=31/2/31/2=1 (48−8)
θST=30° (48−9)
|VTR|=|VT−VR|=31/2×|VT|=31/2×|VT0|=31/2×1
=31/2 (48−10)
TR=|VTR|/|VTR0|=31/2/31/2=1 (48−11)
θTR=270° (48−12)
βRS=θRS−θTR=150°−270°=−120° (48−13)
(2) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST, and TR phase line voltage V TR during the R-S phase opposite phase
When the R phase and S phase of the three-phase power supply line are reversed (R-S phase opposite phase), the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the RS phase line voltage V RS value | V RS |, voltage change rate L RS and phase θ RS and ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST and TR phase line voltage V TR The value | V TR |, the voltage change rate L TR, the phase θ TR, and the TR reference phase difference β RS of the RS phase line voltage V RS are expressed by equations (48-1) to (48-13), respectively. (See FIG. 6B-1 and FIG. 32A).
| I RS | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I R0 | = 3 1/2 × 1
= 3 1/2 (48-1)
K RS = | I RS | / | I (RS) 0 | = 3 1/2 / 3 1/2 = 1 (48-2)
θ RS = 150 ° (48-3)
| V RS | = | V R −V S | = 3 1/2 × | V R | = 3 1/2 × | V R0 | = 3 1/2 × 1
= 3 1/2 (48-4)
L RS = | V RS | / | V RS0 | = 3 1/2 / 3 1/2 = 1 (48-5)
θ RS = 150 ° (48-6)
| V ST | = | V S −V T | = 3 1/2 × | V S | = 3 1/2 × | V S0 | = 3 1/2 × 1
= 3 1/2 (48-7)
L ST = | V ST | / | V ST0 | = 3 1/2 / 3 1/2 = 1 (48-8)
θ ST = 30 ° (48-9)
| V TR | = | V T −V R | = 3 1/2 × | V T | = 3 1/2 × | V T0 | = 3 1/2 × 1
= 3 1/2 (48-10)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (48-11)
θ TR = 270 ° (48-12)
β RS = θ RS −θ TR = 150 ° -270 ° = −120 ° (48-13)

(3)S−T相反相時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のS相およびT相が逆になる(S−T相反相)と、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとRS相線間電圧VRSのTR基準位相差βRSとは(49−1)式から(49−13)式でそれぞれ表される(図7(a−1),図32(b)参照)。
|IR-S|=|IR−IS|=31/2×|IR|=31/2×|IR0|=31/2×1
=31/2 (49−1)
R-S=|IR-S|/|I(R-S)0|=31/2/31/2=1 (49−2)
θR-S=30° (49−3)
|VRS|=|VR−VS|=31/2×|VR|=31/2×|VR0|=31/2×1
=31/2 (49−4)
RS=|VRS|/|VRS0|=31/2/31/2=1 (49−5)
θRS=30° (49−6)
|VST|=|VS−VT|=31/2×|VS|=31/2×|VS0|=31/2×1
=31/2 (49−7)
ST=|VST|/|VST0|=31/2/31/2=1 (49−8)
θST=270° (49−9)
|VTR|=|VT−VR|=31/2×|VT|=31/2×|VT0|=31/2×1
=31/2 (49−10)
TR=|VTR|/|VTR0|=31/2/31/2=1 (49−11)
θTR=150° (49−12)
βRS=θRS−θTR=30°−150°=−120° (49−13)
(3) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST, and TR phase line voltage V TR during the S-T phase opposite phase
When the S phase and T phase of the three-phase power supply line are reversed (ST phase opposite phase), the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the RS phase line voltage V RS value | V RS |, voltage change rate L RS and phase θ RS and ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST and TR phase line voltage V TR The value | V TR |, the voltage change rate L TR, the phase θ TR, and the TR reference phase difference β RS of the RS phase line voltage V RS are expressed by equations (49-1) to (49-13), respectively. (See FIGS. 7 (a-1) and 32 (b)).
| I RS | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I R0 | = 3 1/2 × 1
= 3 1/2 (49-1)
K RS = | I RS | / | I (RS) 0 | = 3 1/2 / 3 1/2 = 1 (49-2)
θ RS = 30 ° (49-3)
| V RS | = | V R −V S | = 3 1/2 × | V R | = 3 1/2 × | V R0 | = 3 1/2 × 1
= 3 1/2 (49-4)
L RS = | V RS | / | V RS0 | = 3 1/2 / 3 1/2 = 1 (49-5)
θ RS = 30 ° (49-6)
| V ST | = | V S −V T | = 3 1/2 × | V S | = 3 1/2 × | V S0 | = 3 1/2 × 1
= 3 1/2 (49-7)
L ST = | V ST | / | V ST0 | = 3 1/2 / 3 1/2 = 1 (49-8)
θ ST = 270 ° (49-9)
| V TR | = | V T −V R | = 3 1/2 × | V T | = 3 1/2 × | V T0 | = 3 1/2 × 1
= 3 1/2 (49-10)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (49-11)
θ TR = 150 ° (49-12)
β RS = θ RS −θ TR = 30 ° −150 ° = −120 ° (49-13)

(4)T−R相反相時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のT相およびR相が逆になる(T−R相反相)と、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとRS相線間電圧VRSのTR基準位相差βRSとは(50−1)式から(50−13)式でそれぞれ表される(図7(b−1),図32(c)参照)。
|IR-S|=|IR−IS|=31/2×|IR|=31/2×|IR0|=31/2×1
=31/2 (50−1)
R-S=|IR-S|/|I(R-S)0|=31/2/31/2=1 (50−2)
θR-S=270° (50−3)
|VRS|=|VR−VS|=31/2×|VR|=31/2×|VR0|=31/2×1
=31/2 (50−4)
RS=|VRS|/|VRS0|=31/2/31/2=1 (50−5)
θRS=270° (50−6)
|VST|=|VS−VT|=31/2×|VS|=31/2×|VS0|=31/2×1
=31/2 (50−7)
ST=|VST|/|VST0|=31/2/31/2=1 (50−8)
θST=150° (50−9)
|VTR|=|VT−VR|=31/2×|VT|=31/2×|VT0|=31/2×1
=31/2 (50−10)
TR=|VTR|/|VTR0|=31/2/31/2=1 (50−11)
θTR=30° (50−12)
βRS=θRS−θTR=270°−30°=240°=−120° (50−13)
(4) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST, and TR phase line voltage V TR during the TR phase opposite phase
When the T phase and R phase of the three-phase power supply line are reversed (TR phase opposite phase), the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the RS phase line voltage V RS value | V RS |, voltage change rate L RS and phase θ RS and ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST and TR phase line voltage V TR The value | V TR |, the voltage change rate L TR, the phase θ TR, and the TR reference phase difference β RS of the RS phase line voltage V RS are expressed by equations (50-1) to (50-13), respectively. (See FIG. 7 (b-1) and FIG. 32 (c)).
| I RS | = | I R −I S | = 3 1/2 × | I R | = 3 1/2 × | I R0 | = 3 1/2 × 1
= 3 1/2 (50-1)
K RS = | I RS | / | I (RS) 0 | = 3 1/2 / 3 1/2 = 1 (50-2)
θ RS = 270 ° (50-3)
| V RS | = | V R −V S | = 3 1/2 × | V R | = 3 1/2 × | V R0 | = 3 1/2 × 1
= 3 1/2 (50-4)
L RS = | V RS | / | V RS0 | = 3 1/2 / 3 1/2 = 1 (50-5)
θ RS = 270 ° (50-6)
| V ST | = | V S −V T | = 3 1/2 × | V S | = 3 1/2 × | V S0 | = 3 1/2 × 1
= 3 1/2 (50-7)
L ST = | V ST | / | V ST0 | = 3 1/2 / 3 1/2 = 1 (50-8)
θ ST = 150 ° (50-9)
| V TR | = | V T −V R | = 3 1/2 × | V T | = 3 1/2 × | V T0 | = 3 1/2 × 1
= 3 1/2 (50-10)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (50-11)
θ TR = 30 ° (50-12)
β RS = θ RS −θ TR = 270 ° −30 ° = 240 ° = −120 ° (50-13)

(5)反相の検出
3Eリレー70は、合成電流IR-Sの電流変化率KR-S(=1)が所定の反相検出電流変化率範囲(たとえば、0.9〜1.1)内の値であり、かつ、RS相線間電圧VRSの電圧変化率LRS(=1)、ST相線間電圧VSTの電圧変化率LST(=1)およびTR相線間電圧VTRの電圧変化率LTR(=1)がすべて所定の反相検出電圧変化率範囲(たとえば、0.9〜1.1)内の値であり、かつ、RS相線間電圧VRSのTR基準位相差βRS(=−120°)が所定の反相検出位相差範囲(たとえば、−90°〜−150°)内の値であると、「反相が発生した」と判定する。
(5) Detection of opposite phase In the 3E relay 70, the current change rate K RS (= 1) of the combined current I RS is a value within a predetermined opposite phase detection current change rate range (for example, 0.9 to 1.1). , and the and the voltage change rate L RS voltage V RS between RS phase line (= 1), the voltage change rate L ST of the voltage V ST between the ST phase line (= 1) and TR phase line voltage of the voltage V TR All the change rates L TR (= 1) are values within a predetermined anti-phase detection voltage change rate range (for example, 0.9 to 1.1), and the TR reference phase difference of the RS phase line voltage V RS If β RS (= −120 °) is a value within a predetermined anti-phase detection phase difference range (for example, −90 ° to −150 °), it is determined that “an anti-phase has occurred”.

次に、3Eリレー70におけるスター結線された三相電源線のR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出方法について、図33を参照して詳しく説明する。   Next, FIG. 33 shows a method for detecting the R-phase, S-phase, T-phase, R-phase, S-phase, and T-phase disconnections of the star-connected three-phase power supply line in the 3E relay 70. This will be described in detail with reference.

(1)正常時の正常時の合成電流I(R-S)0、RS相線間電圧VRS0、ST相線間電圧VST0およびTR相線間電圧VTR0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のRS相線間電圧VRS0の値|VRS0|および位相θRS0と正常時のST相線間電圧VST0の値|VST0|および位相θST0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0とは上記(41−1)式から(41−8)式でそれぞれ表される。
また、正常時のRS相線間電圧VRS0のTR基準位相差βRS0と正常時のST相線間電圧VST0のRS基準位相差βST0と正常時のTR相線間電圧VTR0のST基準位相差βTR0とは(51−1)式から(51−3)式で表される。
βRS0=θRS0−θTR0=330°−210°=120° (51−1)
βST0=θST0−θRS0=90°−330°=−240°=120° (51−2)
βTR0=θTR0−θST0=210°−90°=120° (51−3)
(1) Normal combined current I (RS) 0 at normal time, RS phase line voltage V RS0 , ST phase line voltage V ST0 and TR phase line voltage V TR0
Normal value of combined current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal RS phase line voltage V RS0 | V RS0 | and phase θ RS0 and normal The value | V ST0 | and the phase θ ST0 of the ST phase line voltage V ST0 and the value of the TR phase line voltage V TR0 in the normal state | V TR0 | and the phase θ TR0 from the equation (41-1) ( 41-8).
In addition, the TR reference phase difference β RS0 of the RS phase line voltage V RS0 in the normal state and the ST reference phase difference β ST0 of the ST phase line voltage V ST0 in the normal state and the ST of the TR phase line voltage V TR0 in the normal state The reference phase difference β TR0 is expressed by equations (51-1) to (51-3).
β RS0 = θ RS0TR0 = 330 ° -210 ° = 120 ° (51-1)
β ST0 = θ ST0RS0 = 90 ° -330 ° = -240 ° = 120 ° (51-2)
β TR0 = θ TR0 −θ ST0 = 210 ° -90 ° = 120 ° (51-3)

(2)R相欠相時の合成電流IR-S、、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のR相の欠相(R相欠相)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとRS相線間電圧VRSのTR基準位相差βRSとST相線間電圧VSTのRS基準位相差βSTとTR相線間電圧VTRのST基準位相差βTRとは(52−1)式から(52−15)式でそれぞれ表される(図8(b−1),図33(a)参照)。
|IR-S|=|IR−IS|=|IS|=|IS0|×cos30°=1×(31/2/2)
=31/2/2 (52−1)
R-S=|IR-S|/|I(R-S)0|=(31/2/2)/31/2=0.5 (52−2)
θR-S=270° (52−3)
|VRS|=|VR−VS|=|VS|=|VS0|×cos30°=1×(31/2/2)
=31/2/2 (52−4)
RS=|VRS|/|VRS0|=(31/2/2)/31/2=0.5 (52−5)
θRS=270° (52−6)
|VST|=|VS−VT|=|VS|+|VT
=(|VS0|×cos30°)+(|VT0|×cos30°)
={1×(31/2/2)}+{1×(31/2/2)}
=2×{1×(31/2/2)}=31/2 (52−7)
ST=|VST|/|VST0|=31/2/31/2=1 (52−8)
θST=90° (52−9)
|VTR|=|VT−VR|=|VT|=|VT0|×cos30°
=1×(31/2/2)=31/2/2 (52−10)
TR=|VTR|/|VTR0|=(31/2/2)/31/2=0.5 (52−11)
θTR=270° (52−12)
βRS=θRS−θTR=270°−270°=0° (52−13)
βST=θST−θRS=90°−270°=−180°=180° (52−14)
βTR=θTR−θST=270°−90°=180° (52−15)
(2) Composite current I RS at the time of R phase loss, RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR
When phase failure of the R-phase of the three-phase power line (R Aiketsusho) occurs, the resultant current I RS value | I RS |, the current change rate K RS and the phase theta RS and the value of the voltage V RS between RS phase line | V RS |, voltage change rate L RS and value of phase θ RS and ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST and value of TR phase line voltage V TR | V TR |, voltage change rate L TR and phase θ TR and RS phase line voltage V RS TR reference phase difference β RS and ST phase line voltage V ST RS reference phase difference β ST and TR phase line voltage V TR The ST reference phase difference β TR is expressed by the equations (52-1) to (52-15) (see FIGS. 8B-1 and 33A).
| I RS | = | I R −I S | = | I S | = | I S0 | × cos 30 ° = 1 × (3 1/2 / 2)
= 3 1/2 / 2 (52-1)
K RS = | I RS | / | I (RS) 0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (52-2)
θ RS = 270 ° (52-3)
| V RS | = | V R -V S | = | V S | = | V S0 | × cos30 ° = 1 × (3 1/2 / 2)
= 3 1/2 / 2 (52-4)
L RS = | V RS | / | V RS0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (52-5)
θ RS = 270 ° (52-6)
| V ST | = | V S −V T | = | V S | + | V T |
= (| V S0 | × cos 30 °) + (| V T0 | × cos 30 °)
= {1 × (3 1/2 / 2)} + {1 × (3 1/2 / 2)}
= 2 × {1 × (3 1/2 / 2)} = 3 1/2 (52-7)
L ST = | V ST | / | V ST0 | = 3 1/2 / 3 1/2 = 1 (52-8)
θ ST = 90 ° (52-9)
| V TR | = | V T −V R | = | V T | = | V T0 | × cos 30 °
= 1 × (3 1/2 / 2 ) = 3 1/2 / 2 (52-10)
L TR = | V TR | / | V TR0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (52-11)
θ TR = 270 ° (52-12)
β RS = θ RS −θ TR = 270 ° -270 ° = 0 ° (52-13)
β ST = θ ST −θ RS = 90 ° -270 ° = −180 ° = 180 ° (52-14)
β TR = θ TR −θ ST = 270 ° -90 ° = 180 ° (52-15)

(3)S相欠相時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のS相の欠相(S相欠相)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとRS相線間電圧VRSのTR基準位相差βRSとST相線間電圧VSTのRS基準位相差βSTとTR相線間電圧VTRのST基準位相差βTRとは(53−1)式から(53−15)式でそれぞれ表される(図9(a−1),図33(b)参照)。
|IR-S|=|IR−IS|=|IR|=|IR0|×cos30°=1×(31/2/2)
=31/2/2 (53−1)
R-S=|IR-S|/|I(R-S)0|=(31/2/2)/31/2=0.5 (53−2)
θR-S=30° (53−3)
|VRS|=|VR−VS|=|VR|=|VR0|×cos30°=1×(31/2/2)
=31/2/2 (53−4)
RS=|VRS|/|VRS0|=(31/2/2)/31/2=0.5 (53−5)
θRS=30° (53−6)
|VST|=|VS−VT|=|VT|=|VT0|×cos30°
=1×(31/2/2)=31/2/2 (53−7)
ST=|VST|/|VST0|=(31/2/2)/31/2=0.5 (53−8)
θST=30° (53−9)
|VTR|=|VT−VR|=|VT|+|VR
=(|VT0|×cos30°)+(|VR0|×cos30°)
={1×(31/2/2)}+{1×(31/2/2)}
=2×{1×(31/2/2)}=31/2 (53−10)
TR=|VTR|/|VTR0|=31/2/31/2=1 (53−11)
θTR=210° (53−12)
βRS=θRS−θTR=30°−210°=−180°=180° (53−13)
βST=θST−θRS=30°−30°=0° (53−14)
βTR=θTR−θST=210°−30°=180° (53−15)
(3) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR when S phase is open
When an S-phase phase loss (S-phase phase loss) occurs in the three-phase power line, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS and the RS phase line voltage V RS | V RS |, voltage change rate L RS and phase θ RS and value of ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST and value of TR phase line voltage V TR | V TR |, voltage change rate L TR and phase θ TR and RS phase line voltage V RS TR reference phase difference β RS and ST phase line voltage V ST RS reference phase difference β ST and TR phase line voltage V TR The ST reference phase difference β TR is expressed by equations (53-1) to (53-15) (see FIGS. 9 (a-1) and 33 (b)).
| I RS | = | I R −I S | = | I R | = | I R0 | × cos 30 ° = 1 × (3 1/2 / 2)
= 3 1/2 / 2 (53-1)
K RS = | I RS | / | I (RS) 0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (53-2)
θ RS = 30 ° (53-3)
| V RS | = | V R −V S | = | V R | = | V R0 | × cos 30 ° = 1 × (3 1/2 / 2)
= 3 1/2 / 2 (53-4)
L RS = | V RS | / | V RS0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (53-5)
θ RS = 30 ° (53-6)
| V ST | = | V S −V T | = | V T | = | V T0 | × cos 30 °
= 1 × (3 1/2 / 2) = 3 1/2 / 2 (53-7)
L ST = | V ST | / | V ST0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (53-8)
θ ST = 30 ° (53-9)
| V TR | = | V T −V R | = | V T | + | V R |
= (| V T0 | × cos 30 °) + (| V R0 | × cos 30 °)
= {1 × (3 1/2 / 2)} + {1 × (3 1/2 / 2)}
= 2 × {1 × (3 1/2 / 2)} = 3 1/2 (53-10)
L TR = | V TR | / | V TR0 | = 3 1/2 / 3 1/2 = 1 (53-11)
θ TR = 210 ° (53-12)
β RS = θ RS −θ TR = 30 ° −210 ° = −180 ° = 180 ° (53-13)
β ST = θ ST −θ RS = 30 ° -30 ° = 0 ° (53-14)
β TR = θ TR −θ ST = 210 ° −30 ° = 180 ° (53-15)

(4)T相欠相時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のT相の欠相(T相欠相)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-SとRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとRS相線間電圧VRSのTR基準位相差βRSとST相線間電圧VSTのRS基準位相差βSTとTR相線間電圧VTRのST基準位相差βTRとは(54−1)式から(54−15)式でそれぞれ表される(図9(b−1),図33(c)参照)。
|IR-S|=|IR−IS|=|IR|+|IS
=|IR0|×cos30°+|IS0|×cos30°
={1×(31/2/2)}+{1×(31/2/2)}
=2×{1×(31/2/2)}=31/2 (54−1)
R-S=|IR-S|/|I(R-S)0|=31/2/31/2=1 (54−2)
θR-S=330° (54−3)
|VRS|=|VR−VT|=|VR|+|VT
=(|VR0|×cos30°)+(|VT0|×cos30°)
={1×(31/2/2)}+{1×(31/2/2)}
=2×{1×(31/2/2)}=31/2 (54−4)
RS=|VRS|/|VRS0|=31/2/31/2=1 (54−5)
θRS=330° (54−6)
|VST|=|VS−VT|=|VS|=|VS0|×cos30°
=1×(31/2/2)=31/2/2 (54−7)
ST=|VST|/|VST0|=(31/2/2)/31/2=0.5 (54−8)
θST=150° (54−9)
|VTR|=|VT−VR|=|VR|=|VR0|×cos30°
=1×(31/2/2)=31/2/2 (54−10)
TR=|VTR|/|VTR0|=(31/2/2)/31/2=0.5 (54−11)
θTR=150° (54−12)
βRS=θRS−θTR=330°−150°=180° (54−13)
βST=θST−θRS=150°−330°=−180°=180° (54−14)
βTR=θTR−θST=150°−150°=0° (54−15)
(4) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR when T phase is open
When a T-phase phase loss (T-phase phase loss) occurs in the three-phase power line, the value of the combined current I RS | I RS |, the current change rate K RS and the value of the phase θ RS and the RS phase line voltage V RS | V RS |, voltage change rate L RS and phase θ RS and value of ST phase line voltage V ST | V ST |, voltage change rate L ST and phase θ ST and value of TR phase line voltage V TR | V TR |, voltage change rate L TR and phase θ TR and RS phase line voltage V RS TR reference phase difference β RS and ST phase line voltage V ST RS reference phase difference β ST and TR phase line voltage V TR The ST reference phase difference β TR is expressed by the equations (54-1) to (54-15) (see FIGS. 9 (b-1) and 33 (c)).
| I RS | = | I R −I S | = | I R | + | I S |
= | I R0 | × cos 30 ° + | I S0 | × cos 30 °
= {1 × (3 1/2 / 2)} + {1 × (3 1/2 / 2)}
= 2 × {1 × (3 1/2 / 2)} = 3 1/2 (54-1)
K RS = | I RS | / | I (RS) 0 | = 3 1/2 / 3 1/2 = 1 (54-2)
θ RS = 330 ° (54-3)
| V RS | = | V R −V T | = | V R | + | V T |
= (| V R0 | × cos 30 °) + (| V T0 | × cos 30 °)
= {1 × (3 1/2 / 2)} + {1 × (3 1/2 / 2)}
= 2 × {1 × (3 1/2 / 2)} = 3 1/2 (54-4)
L RS = | V RS | / | V RS0 | = 3 1/2 / 3 1/2 = 1 (54-5)
θ RS = 330 ° (54-6)
| V ST | = | V S −V T | = | V S | = | V S0 | × cos 30 °
= 1 × (3 1/2 / 2) = 3 1/2 / 2 (54-7)
L ST = | V ST | / | V ST0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (54-8)
θ ST = 150 ° (54-9)
| V TR | = | V T −V R | = | V R | = | V R0 | × cos 30 °
= 1 × (3 1/2 / 2) = 3 1/2 / 2 (54-10)
L TR = | V TR | / | V TR0 | = (3 1/2 / 2) / 3 1/2 = 0.5 (54-11)
θ TR = 150 ° (54-12)
β RS = θ RS −θ TR = 330 ° -150 ° = 180 ° (54-13)
β ST = θ ST −θ RS = 150 ° −330 ° = −180 ° = 180 ° (54-14)
β TR = θ TR −θ ST = 150 ° −150 ° = 0 ° (54-15)

(5)R相断線時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のR相の断線(R相断線)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(52−1)式から(52−3)式でそれぞれ表され、RS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとは上記(42−4)式から(42−12)式でそれぞれ表される。
また、合成電流IR-SのTR基準位相差αTRは(55−1)式で表される。
αTR=θR-S−θTR=270°−210°=60° (55−1)
(5) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR when R phase is disconnected
When disconnection of the R-phase of the three-phase power line (R-phase disconnection) occurs, the resultant current value of I RS | I RS |, the current change rate K RS and the phase theta RS from the (52-1) Formula (52- 3) The values of RS phase line voltage V RS | V RS |, voltage change rate L RS and phase θ RS and ST phase line voltage V ST value | V ST |, voltage change rate L The value of the ST and phase θ ST and TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the equations (42-4) to (42-12), respectively. .
The TR reference phase difference α TR of the combined current I RS is expressed by the formula (55-1).
α TR = θ RS −θ TR = 270 ° −210 ° = 60 ° (55-1)

(6)S相断線時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のS相の断線(S相断線)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(53−1)式から(53−3)式でそれぞれ表され、RS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとは上記(42−4)式から(42−12)式でそれぞれ表される。
また、合成電流IR-SのTR基準位相差αTRは(55−2)式で表される。
αTR=θR-S−θTR=30°−210°=−180°=180° (55−2)
(6) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR when S phase is broken
When the S-phase disconnection (S-phase disconnection) of the three-phase power supply line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are calculated from the above equation (53-1) (53− 3) The values of RS phase line voltage V RS | V RS |, voltage change rate L RS and phase θ RS and ST phase line voltage V ST value | V ST |, voltage change rate L the value of the ST and the phase theta ST and TR phase line voltage V TR | V TR |, respectively represented by the above (42-4) expression (42-12) where the voltage change rate L TR and the phase theta TR .
The TR reference phase difference α TR of the combined current I RS is expressed by the formula (55-2).
α TR = θ RS −θ TR = 30 ° -210 ° = −180 ° = 180 ° (55-2)

(7)T相断線時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のT相の断線(T相断線)が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(54−1)式から(54−3)式でそれぞれ表され
とRS相線間電圧VRSの値|VRS|、電圧変化率LRSおよび位相θRSとST相線間電圧VSTの値|VST|、電圧変化率LSTおよび位相θSTとTR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRとは上記(42−4)式から(42−12)式でそれぞれ表される。
また、合成電流IR-SのTR基準位相差αTRは(55−3)式で表される。
αTR=θR-S−θTR=330°−210°=120° (55−3)
(7) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR when T phase is broken
When the T-phase disconnection (T-phase disconnection) of the three-phase power supply line occurs, the value | I RS | of the combined current I RS , the current change rate K RS and the phase θ RS are expressed by the equation 3) each represented by the formula the value of the voltage V RS between RS phase line | V RS |, the voltage change rate L RS and the phase theta RS and ST-phase line voltage V values of ST | V ST |, the voltage change rate L The value of the ST and phase θ ST and TR phase line voltage V TR | V TR |, the voltage change rate L TR and the phase θ TR are expressed by the equations (42-4) to (42-12), respectively. .
The TR reference phase difference α TR of the combined current I RS is expressed by the equation (55-3).
α TR = θ RS −θ TR = 330 ° -210 ° = 120 ° (55-3)

(8)R相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出
(a)R相欠相の検出
3Eリレー70は、RS相線間電圧VRSの電圧変化率LRS(=0.5)およびTR相線間電圧VTRの電圧変化率LTR(=0.5)が共に所定の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、ST相線間電圧VSTの電圧変化率LST(=1)が欠相・断線検出電圧変化率範囲内の値でなく、かつ、RS相線間電圧VRSのTR基準位相差βRS(=0°)が所定の欠相検出位相差範囲(たとえば、−30°〜30°)内の値であると、「R相欠相が発生した」と判定する。
(b)S相欠相の検出
3Eリレー70は、RS相線間電圧VRSの電圧変化率LRS(=0.5)およびST相線間電圧VSTの電圧変化率LST(=0.5)が共に欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、ST相線間電圧VSTのRS基準位相差βST(=0°)が欠相検出位相差範囲(たとえば、−30°〜30°)内の値であると、「S相欠相が発生した」と判定する。
(c)T相欠相の検出
3Eリレー70は、RS相線間電圧VRSの電圧変化率LRS(=1)が欠相・断線検出電圧変化率範囲内の値でなく、かつ、ST相線間電圧VSTの電圧変化率LST(=0.5)およびTR相線間電圧VTRの電圧変化率LTR(=0.5)が共に欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、R相線間電圧VTRのTR基準位相差βTR(=0°)が欠相検出位相差範囲(たとえば、−30°〜30°)内の値であると、「T相欠相が発生した」と判定する。
(d)R相断線の検出
3Eリレー70は、RS相線間電圧VRSの電圧変化率LRS(=1)およびST相線間電圧VSTの電圧変化率LST(=1)が共に欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの電流変化率KR-S(=0.5)が所定の断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、合成電流IR-SのTR基準位相差αTR(=60°)が所定の第1の断線検出位相差範囲(たとえば、30°〜90°)内の値であると、「R相断線が発生した」と判定する。
(e)S相断線の検出
3Eリレー70は、RS相線間電圧VRSの電圧変化率LRS(=1)およびST相線間電圧VSTの電圧変化率LST(=1)が共に欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの電流変化率KR-S(=0.5)が断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値であり、かつ、合成電流IR-SのTR基準位相差αTR(=180°)が所定の第2の断線検出位相差範囲(たとえば、150°〜210°)内の値であると、「S相断線が発生した」と判定する。
(f)T相断線の検出
3Eリレー70は、RS相線間電圧VRSの電圧変化率LRS(=1)およびST相線間電圧VSTの電圧変化率LST(=1)が共に欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-Sの電流変化率KR-S(=1)が断線検出電流変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-SのTR基準位相差αTR(=120°)が所定の第3の断線検出位相差範囲(たとえば、90°〜150°)内の値であると、「T相断線が発生した」と判定する。
(8) Detection of R phase open phase, S phase open phase, T phase open phase, R phase open phase, S phase open phase and T phase open phase (a) Detection of R phase open phase 3E relay 70 is RS phase line voltage voltage change rate L RS of V RS (= 0.5) and TR the voltage change rate of the phase line voltage V TR L TR (= 0.5) are both predetermined phase loss-disconnection detecting voltage change rate ranges (e.g., 0.4 to 0.6), and the voltage change rate L ST (= 1) of the ST phase line-to-line voltage V ST is not a value within the phase loss / breakage detection voltage change rate range, and When the TR reference phase difference β RS (= 0 °) of the RS phase line voltage V RS is a value within a predetermined phase loss detection phase difference range (for example, −30 ° to 30 °), It is determined that a phase has occurred.
(B) Detection of S-phase phase loss The 3E relay 70 has a voltage change rate L RS (= 0.5) of the RS phase line voltage V RS and a voltage change rate L ST (= 0) of the ST phase line voltage V ST. .5) are both values within the phase loss / breakage detection voltage change rate range (for example, 0.4 to 0.6), and the RS reference phase difference β ST (= 0) of the ST phase line voltage V ST (°) is a value within a phase loss detection phase difference range (for example, −30 ° to 30 °), it is determined that “S phase phase loss has occurred”.
(C) Detection of T-phase phase loss The 3E relay 70 has a voltage change rate L RS (= 1) of the RS phase line-to-line voltage V RS that is not within the range of the phase loss / breakage detection voltage change rate range, and ST voltage change rate of the phase line voltage V ST L ST (= 0.5) and the voltage change rate of the TR-phase line voltage V TR L TR (= 0.5) are both open phase-disconnection detecting voltage change rate ranges ( For example, the value is within a range of 0.4 to 0.6), and the TR reference phase difference β TR (= 0 °) of the R-phase line-to-line voltage V TR is in the open phase detection phase difference range (for example, −30 ° If the value is within the range of ˜30 °, it is determined that “T phase phase loss has occurred”.
(D) detecting 3E relay 70 of the R-phase disconnection, the voltage change rate L RS voltage V RS between RS phase line (= 1) and the voltage change rate L ST of the voltage V ST between the ST phase line (= 1) are both The current change rate K RS (= 0.5) of the composite current I RS is not a value within the phase loss / disconnection detection voltage change rate range (for example, 0.4 to 0.6), and the predetermined disconnection detection current. It is a value within a change rate range (for example, 0.4 to 0.6), and the TR reference phase difference α TR (= 60 °) of the combined current I RS is a predetermined first disconnection detection phase difference range ( For example, if the value is within a range of 30 ° to 90 °, it is determined that “R-phase disconnection has occurred”.
(E) detecting 3E relay 70 of the S-phase disconnection, the voltage change rate L RS voltage V RS between RS phase line (= 1) and the voltage change rate L ST of the voltage V ST between the ST phase line (= 1) are both The current change rate K RS (= 0.5) of the combined current I RS is not a value within the phase loss / disconnection detection voltage change rate range (for example, 0.4 to 0.6), and the disconnection detection current change rate. The TR reference phase difference α TR (= 180 °) of the combined current I RS is a value within a range (eg, 0.4 to 0.6), and a predetermined second disconnection detection phase difference range (eg, If the value is within the range of 150 ° to 210 °, it is determined that “S phase disconnection has occurred”.
Detection 3E relay 70 (f) T-phase disconnection, the voltage change rate L RS voltage V RS between RS phase line (= 1) and the voltage change rate L ST of the voltage V ST between the ST phase line (= 1) are both The current change rate K RS (= 1) of the combined current I RS is not a value within the phase loss / disconnection detection voltage change rate range (for example, 0.4 to 0.6), and the disconnection detection current change rate range ( For example, the value is not within the range of 0.4 to 0.6), and the TR reference phase difference α TR (= 120 °) of the combined current I RS is a predetermined third disconnection detection phase difference range (for example, 90 ° If the value is within the range of ~ 150 °, it is determined that “T-phase disconnection has occurred”.

次に、3Eリレー70におけるデルタ結線された三相電源線のR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線の検出方法について詳しく説明する。   Next, a method for detecting the R-phase, S-phase, T-phase, RS-phase, ST-phase, and TR-phase disconnections of the delta-connected three-phase power supply line in the 3E relay 70 will be described in detail.

(1)正常時の合成電流I(R-S)0、RS相線間電圧VRS0、ST相線間電圧VST0およびTR相線間電圧VTR0
正常時の合成電流I(R-S)0の値|I(R-S)0|および位相θ(R-S)0と正常時のRS相線間電圧VRS0の値|VRS0|および位相θRS0と正常時のST相線間電圧VST0の値|VST0|および位相θST0と正常時のTR相線間電圧VTR0の値|VTR0|および位相θTR0とは上記(41−1)式から(41−8)式でそれぞれ表される。
また、正常時のRS相線間電圧VRS0のTR基準位相差βRS0とST相線間電圧VST0のRS基準位相差βST0とTR相線間電圧VTR0のST基準位相差βTR0とは上記(51−1)式から(51−3)式で表される。
(1) Composite current I (RS) 0 at normal time, RS phase line voltage V RS0 , ST phase line voltage V ST0 and TR phase line voltage V TR0
Normal value of combined current I (RS) 0 | I (RS) 0 | and phase θ (RS) 0 and normal RS phase line voltage V RS0 | V RS0 | and phase θ RS0 and normal The value | V ST0 | and the phase θ ST0 of the ST phase line voltage V ST0 and the value of the TR phase line voltage V TR0 in the normal state | V TR0 | and the phase θ TR0 from the equation (41-1) ( 41-8).
Further, the TR reference phase difference beta RS0 and ST reference phase difference beta TR0 of RS reference phase difference beta ST0 and TR phase line voltage V TR0 the ST phase line voltage V ST0 of RS-phase line voltage V RS0 of normal Is represented by the above equations (51-1) to (51-3).

(2)R相欠相、S相欠相およびT相欠相の検出
3Eリレー70は、上述したスター結線された三相電源線のR相欠相、S相欠相およびT相欠相の検出と同様にして、三相電源線のR相欠相、S相欠相およびT相欠相を検出する。
(2) Detection of R-phase, S-phase, and T-phase missing 3E relay 70 detects the R-phase, S-phase, and T-phase missing phases of the star-connected three-phase power line. Similarly to the detection, the R-phase missing phase, the S-phase missing phase, and the T-phase missing phase of the three-phase power supply line are detected.

(3)RS相断線時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のRS相断線が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(14−1)式から(14−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表される。
また、合成電流IR-SのST基準位相差αTRは(56−1)式で表される。
αTR=θR-S−θTR=330°−210°=120° (56−1)
(3) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR when RS phase is broken
When the RS phase disconnection of the three-phase power supply line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are expressed by the above equations (14-1) to (14-3), respectively. The value | V TR | of the TR phase line voltage V TR , the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively.
Further, the ST reference phase difference α TR of the combined current I RS is expressed by the equation (56-1).
α TR = θ RS −θ TR = 330 ° -210 ° = 120 ° (56-1)

(4)ST相断線時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のST相断線が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(15−1)式から(15−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表される。
また、合成電流IR-SのST基準位相差αTRは(56−2)式で表される。
αTR=θR-S−θTR=349.1°−210°=139.1° (56−2)
(4) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR when ST phase is disconnected
When the ST phase disconnection of the three-phase power line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are expressed by the above equations (15-1) to (15-3), respectively. The value | V TR | of the TR phase line voltage V TR , the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively.
Further, the ST reference phase difference α TR of the combined current I RS is expressed by the equation (56-2).
α TR = θ RS −θ TR = 349.1 ° -210 ° = 139.1 ° (56-2)

(4)TR相断線時の合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTR
三相電源線のTR相断線が発生すると、合成電流IR-Sの値|IR-S|、電流変化率KR-Sおよび位相θR-Sは上記(16−1)式から(16−3)式でそれぞれ表され、TR相線間電圧VTRの値|VTR|、電圧変化率LTRおよび位相θTRは上記(2−4)式から(2−6)式でそれぞれ表される。
また、合成電流IR-SのST基準位相差αTRは(56−3)式で表される。
αTR=θR-S−θTR=310.9°−210°=100.9° (56−3)
(4) Composite current I RS , RS phase line voltage V RS , ST phase line voltage V ST and TR phase line voltage V TR when TR phase is disconnected
When the TR phase disconnection of the three-phase power supply line occurs, the value of the combined current I RS | I RS |, the current change rate K RS and the phase θ RS are expressed by the above equations (16-1) to (16-3), respectively. The value | V TR | of the TR phase line voltage V TR , the voltage change rate L TR and the phase θ TR are expressed by the above equations (2-4) to (2-6), respectively.
Further, the ST reference phase difference α TR of the combined current I RS is expressed by the equation (56-3).
α TR = θ RS −θ TR = 310.9 ° −210 ° = 100.9 ° (56-3)

(5)RS相断線、ST相断線およびTR相断線の検出
(a)RS相断線の検出
3Eリレー70は、合成電流IR-Sの電流変化率KR-S(=0.333)が所定の第1の断線検出電流変化率範囲(たとえば、0.2〜0.4)内の値であり、かつ、RS相線間電圧VRSの電圧変化率LRS(=1)およびST相線間電圧VSTの電圧変化率LST(=1)が共に欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でないと、「RS相断線が発生した」と判定する。
(b)ST相断線の検出
3Eリレー70は、合成電流IR-Sの電流変化率KR-S(=0.882)が所定の第2の断線検出電流変化率範囲(たとえば、0.8〜0.9)内の値であり、かつ、RS相線間電圧VRSの電圧変化率LRS(=1)およびST相線間電圧VSTの電圧変化率LST(=1)が共に第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-SのTR基準位相差αTR(=139.1°)が所定の第4の断線検出位相差範囲(たとえば、130°〜150°)内の値であると、「ST相断線が発生した」と判定する。
(c)TR相断線の検出
3Eリレー70は、合成電流IR-Sの電流変化率KR-S(=0.882)が第2の断線検出電流変化率範囲(たとえば、0.8〜0.9)内の値であり、かつ、RS相線間電圧VRSの電圧変化率LRS(=1)およびST相線間電圧VSTの電圧変化率LST(=1)が共に第1の欠相・断線検出電圧変化率範囲(たとえば、0.4〜0.6)内の値でなく、かつ、合成電流IR-SのTR基準位相差αTR(=100.9°)が所定の第5の断線検出位相差範囲(たとえば、90°〜110°)内の値であると、「TR相断線が発生した」と判定する。
(5) RS-phase disconnection detection 3E relay 70 of the ST phase disconnection and detection of TR-phase disconnection (a) RS phase disconnection, combined current I RS of the current rate of change K RS (= 0.333) first reaches a predetermined Is a value within the disconnection detection current change rate range (for example, 0.2 to 0.4), the voltage change rate L RS (= 1) of the RS phase line voltage V RS and the ST phase line voltage V If the ST voltage change rate L ST (= 1) is not a value within the phase loss / breakage detection voltage change rate range (for example, 0.4 to 0.6), it is determined that “RS phase breakage has occurred”. .
(B) Detection of ST phase disconnection In the 3E relay 70, the current change rate K RS (= 0.882) of the combined current I RS has a predetermined second disconnection detection current change rate range (for example, 0.8 to 0. 0). 9) the value of the, and the voltage change rate L RS voltage V RS between RS phase line (= 1) and the voltage change rate L ST of the ST phase line voltage V ST (= 1) is first both The TR reference phase difference α TR (= 139.1 °) of the combined current I RS is not a value within the open phase / disconnection detection voltage change rate range (for example, 0.4 to 0.6), and the predetermined first If the value is within a disconnection detection phase difference range of 4 (for example, 130 ° to 150 °), it is determined that “ST phase disconnection has occurred”.
(C) Detection of TR phase disconnection In the 3E relay 70, the current change rate K RS (= 0.882) of the combined current I RS has a second disconnection detection current change rate range (for example, 0.8 to 0.9). is the value of the inner and the voltage change rate of the voltage V RS between RS phase line L RS (= 1) and the voltage change rate of the voltage V ST between the ST phase line L ST (= one) are both first open phase A value not within the disconnection detection voltage change rate range (for example, 0.4 to 0.6) and the TR reference phase difference α TR (= 100.9 °) of the combined current I RS is a predetermined fifth If the value is within the disconnection detection phase difference range (for example, 90 ° to 110 °), it is determined that “TR phase disconnection has occurred”.

次に、3Eリレー70の構成について、図34を参照して説明する。
3Eリレー70は、図34に示すように、入力変換器71と、アナログ入力部72と、メモリ73と、電流変化率算出部74と、電圧変化率算出部75と、位相差算出部76と、リレー演算処理部77と、整定・表示部78と、入出部79と、外部機器I/F部80とを備える。
Next, the configuration of the 3E relay 70 will be described with reference to FIG.
As shown in FIG. 34, the 3E relay 70 includes an input converter 71, an analog input unit 72, a memory 73, a current change rate calculation unit 74, a voltage change rate calculation unit 75, and a phase difference calculation unit 76. A relay calculation processing unit 77, a settling / display unit 78, an input / output unit 79, and an external device I / F unit 80.

ここで、入力変換器71は、クロス貫通変流器61から入力される合成電流IR-Sおよび計器用変成器62から入力されるRS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRのレベルをアナログ入力部72の処理に適したレベルに変換する。
アナログ入力部72は、バンドパスフィルタとサンプリングホールド回路とマルチプレクサ回路とアナログ/ディジタル変換器とを備え、入力変換器71から入力されるアナログの合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRをディジタルの合成電流IR-S、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRに変換する。
メモリ73は、アナログ入力部72によってディジタルデータに変換されたRS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRを格納するためのものである。
Here, the input converter 71 includes the combined current I RS input from the cross-through current transformer 61 and the RS phase line voltage V RS , the ST phase line voltage V ST and TR input from the instrument transformer 62. The level of the phase-line voltage V TR is converted to a level suitable for processing of the analog input unit 72.
The analog input unit 72 includes a band pass filter, a sampling hold circuit, a multiplexer circuit, and an analog / digital converter. The analog combined current I RS , RS phase line voltage V RS , ST input from the input converter 71 is provided. converting the phase line voltage V ST and TR phase line voltage V TR digital composite current I RS, RS phase line voltage V RS, ST and phase line voltage V ST and TR phase line voltage V TR.
The memory 73 is for storing the RS phase line voltage V RS , the ST phase line voltage V ST, and the TR phase line voltage V TR converted into digital data by the analog input unit 72.

電流変化率算出部74は、メモリ73に格納されているR相、S相およびT相電流IR,IS,ITの定格電流値に基づいて、アナログ入力部72から入力される合成電流IR-Sの電流変化率KR-Sを算出する。 The current change rate calculation unit 74 is a composite current input from the analog input unit 72 based on the rated current values of the R-phase, S-phase, and T-phase currents I R , I S , I T stored in the memory 73. calculating a current change rate K RS of I RS.

電圧変化率算出部75は、メモリ73に格納されているR相、S相およびT相電圧VR,VS,VTの定格電圧値に基づいて、アナログ入力部72から入力されるRS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRの電圧変化率LRS,LST,LTRを算出する。 The voltage change rate calculation unit 75 is an RS phase input from the analog input unit 72 based on the rated voltage values of the R-phase, S-phase, and T-phase voltages V R , V S , and V T stored in the memory 73. calculated line voltage V RS, the voltage change rate L RS voltage V ST and TR phase line voltage V TR between ST phase line, L ST, the L TR.

位相差算出部76は、アナログ入力部72から入力される合成電流IR-Sの位相θR-Sからアナログ入力部72から入力されるST相線間電圧VSTの位相θSTを引くことにより合成電流IR-SのST基準位相差αSTを算出するとともに、合成電流IR-Sの位相θR-Sからアナログ入力部72から入力されるTR相線間電圧VTRの位相θTRを引くことにより合成電流IR-SのTR基準位相差αTRを算出する。
また、位相差算出部76は、RS相線間電圧VRSの位相θRSからTR相線間電圧VTRの位相θTRを引くことによりRS相線間電圧VRSのTR基準位相差βRSを算出し、ST相線間電圧VSTの位相θSTからRS相線間電圧VRSの位相θRSを引くことによりST相線間電圧VSTのRS基準位相差βSTを算出するとともに、TR相線間電圧VTRの位相θTRからST相線間電圧VSTの位相θSTを引くことによりTR相線間電圧VTRのST基準位相差βTRを算出する。
The phase difference calculation unit 76 subtracts the phase θ ST of the ST phase line voltage V ST input from the analog input unit 72 from the phase θ RS of the combined current I RS input from the analog input unit 72 to thereby generate the combined current I RS. calculates the ST reference phase difference alpha ST of RS, the combined current I RS by subtracting the phase theta TR synthetic current I RS in phase theta TR phase line voltage V TR inputted from the analog input unit 72 from the RS The TR reference phase difference α TR is calculated.
Further, the phase difference calculating section 76, TR reference phase difference of RS-phase line voltage V RS by subtracting the phase theta TR of TR-phase line voltage V TR from the phase theta RS voltage V RS between RS phase line beta RS is calculated, to calculate the RS reference phase difference beta ST voltage V ST between the ST phase line by subtracting the phase theta RS voltage V RS between RS phase line from the phase theta ST voltage V ST between the ST phase line, calculating the ST reference phase difference beta TR of TR-phase line voltage V TR by the phase theta TR of TR-phase line voltage V TR subtracting the phase theta ST of the ST phase line voltage V ST.

リレー演算処理部77は、電流変化率算出部74によって算出された合成電流IR-Sの電流変化率KR-Sと、電圧変化率算出部75によって算出されたRS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRの電圧変化率LRS,LST,LTRと、位相差算出部76によって算出された合成電流IR-SのST基準位相差αSTおよびTR基準位相差αTR、RS相線間電圧VRSのTR基準位相差βRS、ST相線間電圧VSTのRS基準位相差βST並びにTR相線間電圧VTRのST基準位相差βTRと基づいて、過負荷、R−S相短絡、S−T相短絡、T−R相短絡、三相短絡、R−S相反相、S−T相反相、T−R相反相、スター結線された三相電源線におけるR相欠相、S相欠相、T相欠相、R相断線、S相断線、T相断線、デルタ結線された三相電源線におけるR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線を検出すると、第1乃至第3の遮断器31〜33(図28参照)をそれぞれ遮断するための第1乃至第3のトリップ信号T1〜T3を生成し、生成した第1乃至第3のトリップ信号T1〜T3を入出力部79および外部機器インターフェース部80を介して第1乃至第3の遮断器31〜33にそれぞれ出力する。 The relay calculation processing unit 77 includes a current change rate K RS of the combined current I RS calculated by the current change rate calculating unit 74, an RS phase line voltage V RS calculated by the voltage change rate calculating unit 75, and an ST phase line. Voltage change rates L RS , L ST , L TR of the inter-phase voltage V ST and the TR phase line voltage V TR and the ST reference phase difference α ST and TR reference level of the combined current I RS calculated by the phase difference calculation unit 76 Based on the phase difference α TR , the TR reference phase difference β RS of the RS phase line voltage V RS , the RS reference phase difference β ST of the ST phase line voltage V ST , and the ST reference phase difference β TR of the TR phase line voltage V TR Overload, R-S phase short circuit, S-T phase short circuit, T-R phase short circuit, three-phase short circuit, R-S reciprocal phase, S-T reciprocal phase, TR reciprocal phase, star-connected three R phase, S phase, T phase, R phase disconnection, S phase disconnection, T phase disconnection, delta connection in phase power supply line R Aiketsusho in the power line, S Aiketsusho, T Aiketsusho, RS phase disconnection, when detecting the ST-phase disconnection and TR phase disconnection, the first to the third circuit breakers 3 1 to 3 3 (see FIG. 28 ) to the generation of the first through third trip signal T 1 through T 3 for blocking respectively, output the first to third trip signal T 1 through T 3 produced unit 79 and an external device interface unit 80 Are output to the first to third circuit breakers 3 1 to 3 3 , respectively.

整定・表示部78は、過負荷・短絡検出電流変化率値、第1および第2の過負荷・短絡検出電圧変化率値、第1および第2の過負荷・短絡検出位相差範囲、反相検出電流変化率範囲、反相検出電圧変化率範囲、反相検出位相差範囲、断線検出電流変化率範囲、第1および第2の断線検出電流変化率範囲、欠相・断線検出電圧変化率範囲、欠相検出位相差範囲並びに第1乃至第4の断線検出位相差範囲に基づいてリレー整定処理を行うとともに、整定値などを外部に表示する。   The settling / display unit 78 includes an overload / short-circuit detection current change rate value, first and second overload / short-circuit detection voltage change rate values, first and second overload / short-circuit detection phase difference ranges, anti-phase Detection current change rate range, antiphase detection voltage change rate range, antiphase detection phase difference range, disconnection detection current change rate range, first and second disconnection detection current change rate ranges, open phase / disconnection detection voltage change rate range The relay settling processing is performed based on the phase loss detection phase difference range and the first to fourth disconnection detection phase difference ranges, and the settling value and the like are displayed to the outside.

次に、以下に示す条件下におけるリレー演算処理部77の動作について説明する。
(1)過負荷・短絡検出電流変化率=1.15、第1の過負荷・短絡検出電圧変化率値=0.96、第2の過負荷・短絡検出電圧変化率値=0.8、第1の過負荷・短絡検出位相差範囲=−150°〜−90°、第2の過負荷・短絡検出位相差範囲=−203.1°〜−90°
(2)反相検出電流変化率範囲=0.9〜1.1、反相検出電圧変化率範囲=0.9〜1.1、反相検出位相差範囲=−90°〜−150°
(3)断線検出電流変化率範囲=0.4〜0.6、第1の断線検出電流変化率範囲=0.2〜0.4、第2の断線検出電流変化率範囲=0.8〜0.9、欠相・断線検出電圧変化率範囲=0.4〜0.6、欠相検出位相差範囲=−30°〜30°、第1の断線検出位相差範囲=30°〜90°、第2の断線検出位相差範囲=150°〜210°、第3の断線検出位相差範囲=90°〜150°、第4の断線検出位相差範囲=130°〜150°
Next, the operation of the relay calculation processing unit 77 under the following conditions will be described.
(1) Overload / short-circuit detection current change rate = 1.15, first overload / short-circuit detection voltage change rate value = 0.96, second overload / short-circuit detection voltage change rate value = 0.8, First overload / short-circuit detection phase difference range = −150 ° to −90 °, second overload / short-circuit detection phase difference range = −203.1 ° to −90 °
(2) Anti-phase detection current change rate range = 0.9 to 1.1, anti-phase detection voltage change rate range = 0.9 to 1.1, anti-phase detection phase difference range = −90 ° to −150 °
(3) Disconnection detection current change rate range = 0.4 to 0.6, first disconnection detection current change rate range = 0.2 to 0.4, second disconnection detection current change rate range = 0.8 to 0.9, phase loss / breakage detection voltage change rate range = 0.4 to 0.6, phase loss detection phase difference range = −30 ° to 30 °, first wire breakage detection phase difference range = 30 ° to 90 ° , Second disconnection detection phase difference range = 150 ° to 210 °, third disconnection detection phase difference range = 90 ° to 150 °, fourth disconnection detection phase difference range = 130 ° to 150 °

まず、過負荷または短絡事故発生時のリレー演算処理部77の動作について、図35に示すフローチャートを参照して説明する。
リレー演算処理部77は、合成電流IR-Sの電流変化率KR-Sが過負荷・短絡検出電流変化率値(=1.15)以上であるか否かを調べ(ステップS121)、電流変化率KR-Sが過負荷・短絡検出電流変化率値以上であると、RS相線間電圧VRSの電圧変化率LRSが第1の過負荷・短絡検出電圧変化率値(=0.96)以下であるか否かを調べる(ステップS122)。
リレー演算処理部77は、電圧変化率LRSが第1の過負荷・短絡検出電圧変化率値以下でないと、「過負荷が発生した」と判定する(ステップS129a)。
First, the operation of the relay calculation processing unit 77 when an overload or short circuit accident occurs will be described with reference to the flowchart shown in FIG.
Relay processing section 77, the composite current I current change rate K RS overload or short circuit detecting current change rate value of RS (= 1.15) examined in whether more (step S121), the current change rate K If RS is equal to or greater than the overload / short-circuit detection current change rate value, the voltage change rate L RS of the RS phase line voltage V RS is equal to or less than the first overload / short-circuit detection voltage change rate value (= 0.96). It is checked whether or not there is (step S122).
If the voltage change rate L RS is not less than or equal to the first overload / short-circuit detection voltage change rate value, the relay calculation processing unit 77 determines that “overload has occurred” (step S129a).

一方、ステップS122において電圧変化率LRSが第1の過負荷・短絡検出電圧変化率値以下であると、リレー演算処理部77は、電圧変化率LRSが第2の過負荷・短絡検出電圧変化率値(=0.8)以下であるか否かを調べ(ステップS123)、電圧変化率LRSが第2の過負荷・短絡検出電圧変化率値以下であると、ST相線間電圧VSTの電圧変化率LSTが第2の過負荷・短絡検出電圧変化率値(=0.8)以下であるか否かを調べる(ステップS124)。
リレー演算処理部77は、電圧変化率LSTが第2の過負荷・短絡検出電圧変化率値以下でないと、「R−S相短絡が発生した」と判定し(ステップS129b)、一方、電圧変化率LSTが第2の過負荷・短絡検出電圧変化率値以下であると、「三相短絡が発生した」と判定する(ステップS129e)
On the other hand, if the voltage change rate L RS is equal to or less than the first overload / short circuit detection voltage change rate value in step S122, the relay calculation processing unit 77 determines that the voltage change rate L RS is the second overload / short circuit detection voltage. It is checked whether or not the change rate value (= 0.8) or less (step S123). If the voltage change rate L RS is less than or equal to the second overload / short-circuit detection voltage change rate value, the ST phase line voltage voltage change rate L ST second overload or short circuit detecting voltage change rate value V ST (= 0.8) checks less if it (step S124).
Relay processing section 77, when the voltage change rate L ST not less than the second overload or short circuit detecting voltage change rate value, determines that the "R-S phase short circuit occurs" (step S129b), whereas, the voltage When the rate of change L ST is equal to or less than the second overload or short circuit detecting voltage change rate value, it determines that the "three-phase short circuit occurs" (step S129e)

ステップS121において電流変化率KR-Sが過負荷・短絡検出電流変化率値(=1.15)未満であるかステップS123において電圧変化率LRSが第2の過負荷・短絡検出電圧変化率値よりも大きいと、リレー演算処理部77は、電圧変化率LSTが第2の過負荷・短絡検出電圧変化率値(=0.8)以下であるか否かを調べ(ステップS125)、電圧変化率LSTが第2の過負荷・短絡検出電圧変化率値以下であると、合成電流IR-SのST基準位相差αSTが第1の過負荷・短絡検出位相差範囲(=−150°〜−90°)内の値であるか否かを調べる(ステップS126)。
リレー演算処理部77は、ST基準位相差αSTが第1の過負荷・短絡検出位相差範囲内の値であると、「S−T相短絡が発生した」と判定する(ステップS129c)。
Current change rate K RS overload or short circuit detected current change rate value at step S121 (= 1.15) the rate of voltage change in a is either step S123 less than L RS is higher than the second overload or short circuit detecting voltage change rate value When is large, the relay processing unit 77, the voltage change rate L ST second overload or short circuit detecting voltage change rate value (= 0.8) examines if the either less (step S125), the voltage change When the rate L ST is equal to or less than the second overload / short-circuit detection voltage change rate value, the ST reference phase difference α ST of the combined current I RS is equal to the first overload / short-circuit detection phase difference range (= −150 ° to It is checked whether the value is within -90 °) (step S126).
When the ST reference phase difference α ST is a value within the first overload / short-circuit detection phase difference range, the relay calculation processing unit 77 determines that “ST phase short-circuit has occurred” (step S129c).

ステップS125においてST相線間電圧VSTの電圧変化率LSTが第2の過負荷・短絡検出電圧変化率値よりも大きいと、リレー演算処理部77は、TR相線間電圧VTRの電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値以下であるか否かを調べ(ステップS127)、電圧変化率LTRが第2の過負荷・短絡検出電圧変化率値以下であると、合成電流IR-SのTR基準位相差αTRが第2の過負荷・短絡検出位相差範囲(=−203.1°〜−90°)内の値であるか否かを調べる(ステップS128)。
リレー演算処理部77は、TR基準位相差αTRが第2の過負荷・短絡検出位相差範囲内の値であると、「T−R相短絡が発生した」と判定する(ステップS129d)。
When the voltage change rate L ST of the ST phase line voltage V ST is larger than the second overload / short circuit detection voltage change rate value in step S125, the relay calculation processing unit 77 determines the voltage of the TR phase line voltage V TR . It is checked whether or not the rate of change L TR is less than or equal to the second overload / short circuit detection voltage change rate value (step S127), and the voltage change rate L TR is less than or equal to the second overload / short circuit detection voltage change rate value. If there is, it is checked whether or not the TR reference phase difference α TR of the combined current I RS is a value within the second overload / short-circuit detection phase difference range (= −203.1 ° to −90 °) (step) S128).
When the TR reference phase difference α TR is a value within the second overload / short circuit detection phase difference range, the relay calculation processing unit 77 determines that “TR phase short circuit has occurred” (step S129d).

リレー演算処理部77は、以上のようにして過負荷、R−S相短絡、S−T相短絡、T−R相短絡または三相短絡の発生を検出すると、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS130)。 When the relay calculation processing unit 77 detects the occurrence of overload, RS phase short circuit, ST phase short circuit, TR phase short circuit, or three-phase short circuit as described above, the first to third trip signals are detected. T 1 to T 3 are output (step S130).

次に、反相発生時のリレー演算処理部77の動作について、図36に示すフローチャートを参照して説明する。
リレー演算処理部77は、合成電流IR-Sの電流変化率KR-Sが反相検出電流変化率範囲(=0.9〜1.1)内の値であるか否かを調べ(ステップS131)、電流変化率KR-Sが反相検出電流変化率範囲内の値であると、RS相線間電圧VRS、ST相線間電圧VSTおよびTR相線間電圧VTRの電圧変化率LRS,LST,LTRがすべて反相検出電圧変化率範囲(=0.9〜1.1)内の値であるか否かを調べ(ステップS132)、電圧変化率LRS,LST,LTRがすべて反相検出電圧変化率範囲内の値であると、RS相線間電圧VRSのTR基準位相差βRSが反相検出位相差範囲(=−90°〜−150°)内の値であるか否かを調べる(ステップS134)。
リレー演算処理部77は、TR基準位相差βRSが反相検出位相差範囲内の値であると、「反相が発生した」と判定して(ステップS134)、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS135)。
Next, the operation of the relay calculation processing unit 77 when a reverse phase occurs will be described with reference to the flowchart shown in FIG.
Relay processing section 77 checks whether the combined current I current change rate K RS of RS is a value within the anti-phase detected current change rate range (= 0.9 to 1.1) (step S131), If the current change rate K RS is a value within the antiphase detection current change rate range, the voltage change rate L RS of the RS phase line voltage V RS , the ST phase line voltage V ST, and the TR phase line voltage V TR , It is checked whether or not L ST and L TR are all values within the antiphase detection voltage change rate range (= 0.9 to 1.1) (step S132), and the voltage change rates L RS , L ST and L TR are determined. Are all within the anti-phase detection voltage change rate range, the TR reference phase difference β RS of the RS phase line voltage V RS is within the anti-phase detection phase difference range (= −90 ° to −150 °). Is checked (step S134).
When the TR reference phase difference β RS is a value within the anti-phase detection phase difference range, the relay calculation processing unit 77 determines that “an anti-phase has occurred” (step S134), and the first to third trips Signals T 1 to T 3 are output (step S135).

次に、スター結線された三相電源線における欠相または断線発生時のリレー演算処理部77の動作について、図37および図38に示すフローチャートを参照して説明する。
リレー演算処理部77は、RS相線間電圧VRSの電圧変化率LRSが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS141)、電圧変化率LRSが欠相・断線検出電圧変化率範囲内の値であると、ST相線間電圧VSTの電圧変化率LSTが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS142)、電圧変化率LSTが欠相・断線検出電圧変化率範囲内の値でないと、TR相線間電圧VTRの電圧変化率LTRが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS143)、電圧変化率LTRが欠相・断線検出電圧変化率範囲内の値でないと、RS相線間電圧VRSのTR基準位相差βRSが欠相検出位相差範囲(=−30°〜−30°)内の値であるか否かを調べる(ステップS144)。
リレー演算処理部77は、TR基準位相差βRSが欠相検出位相差範囲内の値であると、「R相欠相が発生した」と判定する(ステップS153a)。
Next, the operation of the relay calculation processing unit 77 when a phase loss or disconnection occurs in the star-connected three-phase power supply line will be described with reference to the flowcharts shown in FIGS.
The relay calculation processing unit 77 checks whether or not the voltage change rate L RS of the RS phase line voltage V RS is a value within the phase loss / breakage detection voltage change rate range (= 0.4 to 0.6). (step S141), when the voltage change rate L RS is a value of phase loss-disconnection detecting voltage change rate range, the voltage change rate L ST is open phase-disconnection detecting voltage change rate range of the voltage V ST between the ST phase line (= 0.4-0.6) examines if the value is either inside (step S142), when the voltage change rate L ST not a value of the open phase-disconnection detecting voltage change rate range, between TR phase line the voltage change rate L TR of the voltage V TR checked whether the value of the open phase-disconnection detecting voltage change rate range (= 0.4 to 0.6) in (step S143), the voltage change rate L TR If not a value of the open phase-disconnection detecting voltage change rate range, TR reference phase difference beta RS is open phase detection phase difference range of the voltage V RS between RS phase line (= -30 ° ~ - It is checked whether the value is within 30 ° (step S144).
When the TR reference phase difference β RS is a value within the phase loss detection phase difference range, the relay calculation processing unit 77 determines that “R phase phase loss has occurred” (step S153a).

ステップS142において電圧変化率LSTが欠相・断線検出電圧変化率範囲内の値であると、リレー演算処理部77は、ST相線間電圧VSTのRS基準位相差βSTが欠相検出位相差範囲(=−30°〜−30°)内の値であるか否かを調べる(ステップS145)。
リレー演算処理部77は、RS基準位相差βSTが欠相検出位相差範囲内の値であると、「S相欠相が発生した」と判定する(ステップS153b)。
If voltage change rate LST is a value within the phase loss / disconnection detection voltage change rate range in step S142, relay operation processing unit 77 detects that RS reference phase difference βST of ST phase line voltage VST is a phase loss detection. It is checked whether or not the value is within the phase difference range (= −30 ° to −30 °) (step S145).
Relay processing section 77 determines, when the RS reference phase difference beta ST is a value phase loss detection phase range, the "S-phase phase loss has occurred" (step S153b).

ステップS141において電圧変化率LRSが欠相・断線検出電圧変化率範囲内の値でないと、リレー演算処理部77は、ST相線間電圧VSTの電圧変化率LSTが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS146)、電圧変化率LSTが欠相・断線検出電圧変化率範囲内の値であると、TR相線間電圧VTRの電圧変化率LTRが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS147)、電圧変化率LTRが欠相・断線検出電圧変化率範囲内の値であると、TR相線間電圧VTRのST基準位相差βTRが欠相検出位相差範囲(=−30°〜−30°)内の値であるか否かを調べる(ステップS148)。
リレー演算処理部77は、ST基準位相差βTRが欠相検出位相差範囲内の値であると、「T相欠相が発生した」と判定する(ステップS153c)。
When the voltage change rate L RS not a value of the open phase-disconnection detecting voltage change rate range in step S141, the relay processing unit 77, the voltage change rate L ST of the voltage V ST between the ST phase line open phase-break detection checked whether the value of the voltage change rate range (= 0.4 to 0.6) in (step S146), when the voltage change rate L ST is a value of phase loss-disconnection detecting voltage change rate range Then, it is checked whether or not the voltage change rate L TR of the TR phase line-to-line voltage V TR is a value within the phase loss / disconnection detection voltage change rate range (= 0.4 to 0.6) (step S147). When the rate of change L TR is a value open phase-disconnection detecting voltage change rate range, ST reference phase difference beta TR is open phase detection phase difference range of the voltage V TR - TR phase line (= -30 ° ~-30 It is checked whether the value is within (°) (step S148).
If the ST reference phase difference β TR is a value within the phase loss detection phase difference range, the relay calculation processing unit 77 determines that “T phase phase loss has occurred” (step S153c).

ステップS146において電圧変化率LSTが欠相・断線検出電圧変化率範囲内の値でないと、リレー演算処理部77は、合成電流IR-Sの電流変化率KR-Sが断線検出電流変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(図38のステップS149)、電流変化率KR-Sが断線検出電流変化率範囲内の値であると、合成電流IR-SのTR基準位相差αTRが第1の断線検出位相差範囲(30°〜90°)内の値であるか否かを調べる(ステップS150)。
リレー演算処理部77は、TR基準位相差αTRが第1の断線検出位相差範囲内の値であると、「R相断線が発生した」と判定する(ステップS153d)。
When the voltage change rate L ST in step S146 is not a value within the range open phase-disconnection detecting voltage change rate, the relay processing unit 77, the composite current I current change rate K RS disconnection detection current change rate range of RS (= 0.4 to 0.6) is checked (step S149 in FIG. 38), and if the current change rate K RS is a value within the disconnection detection current change rate range, the composite current I RS is It is checked whether or not the TR reference phase difference α TR is a value within the first disconnection detection phase difference range (30 ° to 90 °) (step S150).
When the TR reference phase difference α TR is a value within the first disconnection detection phase difference range, the relay calculation processing unit 77 determines that “R-phase disconnection has occurred” (step S153d).

一方、ステップS150においてTR基準位相差αTRが第1の断線検出位相差範囲内の値でないと、リレー演算処理部77は、合成電流IR-SのTR基準位相差αTRが第2の断線検出位相差範囲(150°〜210°)内の値であるか否かを調べる(ステップS151)。
リレー演算処理部77は、TR基準位相差αTRが第2の断線検出位相差範囲内の値であると、「S相断線が発生した」と判定する(ステップS153e)。
On the other hand, if the TR reference phase difference α TR is not within the first disconnection detection phase difference range in step S150, the relay calculation processing unit 77 detects that the TR reference phase difference α TR of the combined current I RS is the second disconnection detection. It is checked whether the value is within the phase difference range (150 ° to 210 °) (step S151).
The relay calculation processing unit 77 determines that “S phase disconnection has occurred” when the TR reference phase difference α TR is a value within the second disconnection detection phase difference range (step S153e).

ステップS149において電流変化率KR-Sが断線検出電流変化率範囲内の値でないと、リレー演算処理部77は、合成電流IR-SのTR基準位相差αTRが第3の断線検出位相差範囲(=90°〜150°)内の値であるか否かを調べる(ステップS154)。
リレー演算処理部77は、TR基準位相差αTRが第3の断線検出位相差範囲内の値であると、「T相断線が発生した」と判定する(ステップS153f)。
If the current change rate K RS is not a value within the disconnection detection current change rate range in step S149, the relay calculation processing unit 77 determines that the TR reference phase difference α TR of the combined current I RS is the third disconnection detection phase difference range (= Whether the value is within the range of 90 ° to 150 ° is checked (step S154).
When TR reference phase difference α TR is a value within the third disconnection detection phase difference range, relay calculation processing unit 77 determines that “T-phase disconnection has occurred” (step S153f).

リレー演算処理部77は、以上のようにしてR相欠相、S相欠相、T相欠相、R相断線、S相断線またはT相断線の発生を検出すると、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS154)。 When the relay calculation processing unit 77 detects the occurrence of the R-phase, S-phase, T-phase, R-phase, S-phase, or T-phase break as described above, the first to third Trip signals T 1 to T 3 are output (step S154).

次に、デルタ結線された三相電源線における欠相または断線発生時のリレー演算処理部77の動作について、図39および図40に示すフローチャートを参照して説明する。
リレー演算処理部77は、RS相線間電圧VRSの電圧変化率LRSが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS161)、電圧変化率LRSが欠相・断線検出電圧変化率範囲内の値であると、ST相線間電圧VSTの電圧変化率LSTが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS152)、電圧変化率LSTが欠相・断線検出電圧変化率範囲内の値でないと、R相線間電圧VTRの電圧変化率LTRが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS163)、電圧変化率LTRが欠相・断線検出電圧変化率範囲内の値でないと、RS相線間電圧VRSのTR基準位相差βRSが欠相検出位相差範囲(=−30°〜−30°)内の値であるか否かを調べる(ステップS164)。
リレー演算処理部77は、TR基準位相差βRSが欠相検出位相差範囲内の値であると、「R相欠相が発生した」と判定する(ステップS173a)。
Next, the operation of the relay computation processing unit 77 when a phase loss or disconnection occurs in the delta-connected three-phase power supply line will be described with reference to the flowcharts shown in FIGS. 39 and 40.
The relay calculation processing unit 77 checks whether or not the voltage change rate L RS of the RS phase line voltage V RS is a value within the phase loss / breakage detection voltage change rate range (= 0.4 to 0.6). (step S161), when the voltage change rate L RS is a value of phase loss-disconnection detecting voltage change rate range, the voltage change rate L ST is open phase-disconnection detecting voltage change rate range of the voltage V ST between the ST phase line (= 0.4-0.6) examines if the value is either inside (step S152), when the voltage change rate L ST not a value of the open phase-disconnection detecting voltage change rate range, between the R-phase line the voltage change rate L TR of the voltage V TR checked whether the value of the open phase-disconnection detecting voltage change rate range (= 0.4 to 0.6) in (step S163), the voltage change rate L TR If the value is not within the range of the phase loss / disconnection detection voltage change rate range, the TR reference phase difference β RS of the RS phase line voltage V RS is equal to the phase loss detection phase difference range (= −30 ° to −3). It is checked whether the value is within 0 ° (step S164).
When the TR reference phase difference β RS is a value within the phase loss detection phase difference range, the relay calculation processing unit 77 determines that “R phase phase loss has occurred” (step S173a).

ステップS162において電圧変化率LSTが欠相・断線検出電圧変化率範囲内の値であると、リレー演算処理部77は、ST相線間電圧VSTのRS基準位相差βSTが欠相検出位相差範囲(=−30°〜−30°)内の値であるか否かを調べる(ステップS165)。
リレー演算処理部77は、RS基準位相差βSTが欠相検出位相差範囲内の値であると、「S相欠相が発生した」と判定する(ステップS173b)。
If voltage change rate LST is a value within the phase loss / breakage detection voltage change rate range in step S162, relay operation processing unit 77 detects that RS reference phase difference βST of ST phase line voltage VST is a phase loss detection. It is checked whether or not the value is within the phase difference range (= −30 ° to −30 °) (step S165).
Relay processing section 77 determines, when the RS reference phase difference beta ST is a value phase loss detection phase range, the "S-phase phase loss has occurred" (step S173b).

ステップS161において電圧変化率LRSが欠相・断線検出電圧変化率範囲内の値でないと、リレー演算処理部77は、ST相線間電圧VSTの電圧変化率LSTが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS166)、電圧変化率LSTが欠相・断線検出電圧変化率範囲内の値であると、TR相線間電圧VTRの電圧変化率LTRが欠相・断線検出電圧変化率範囲(=0.4〜0.6)内の値であるか否かを調べ(ステップS167)、電圧変化率LTRが欠相・断線検出電圧変化率範囲内の値であると、TR相線間電圧VTRのST基準位相差βTRが欠相検出位相差範囲(=−30°〜−30°)内の値であるか否かを調べる(ステップS168)。
リレー演算処理部77は、ST基準位相差βTRが欠相検出位相差範囲内の値であると、「T相欠相が発生した」と判定する(ステップS173c)。
When the voltage change rate L RS not a value of the open phase-disconnection detecting voltage change rate range in step S161, the relay processing unit 77, the voltage change rate L ST of the voltage V ST between the ST phase line open phase-break detection checked whether the value of the voltage change rate range (= 0.4 to 0.6) in (step S166), when the voltage change rate L ST is a value of phase loss-disconnection detecting voltage change rate range Then, it is checked whether or not the voltage change rate L TR of the TR phase line-to-line voltage V TR is a value within the phase loss / disconnection detection voltage change rate range (= 0.4 to 0.6) (step S167), and the voltage When the rate of change L TR is a value open phase-disconnection detecting voltage change rate range, ST reference phase difference beta TR is open phase detection phase difference range of the voltage V TR - TR phase line (= -30 ° ~-30 It is checked whether the value is within (°) (step S168).
When the ST reference phase difference β TR is a value within the phase loss detection phase difference range, the relay calculation processing unit 77 determines that “T phase phase loss has occurred” (step S173c).

ステップS166において電圧変化率LSTが欠相・断線検出電圧変化率範囲内の値でないと、リレー演算処理部77は、合成電流IR-Sの電流変化率KR-Sが第1の断線検出電流変化率範囲(=0.2〜0.4)内の値であるか否かを調べる(図40のステップS169)。
リレー演算処理部77は、電流変化率KR-Sが断線検出電流変化率範囲内の値であると、「RS相断線が発生した」と判定する(ステップS173d)。
When the voltage change rate L ST not a value of the open phase-disconnection detecting voltage change rate range in step S166, the relay processing unit 77, the composite current I current change rate K RS is the first disconnection detecting the current change rate of the RS It is checked whether or not the value is within the range (= 0.2 to 0.4) (step S169 in FIG. 40).
Relay processing section 77 determines the current rate of change K RS when a value within the disconnection detection current change rate range, and "RS phase disconnection has occurred" (step S173d).

一方、ステップS169において電流変化率KR-Sが断線検出電流変化率範囲内の値でないと、リレー演算処理部77は、電流変化率KR-Sが第2の断線検出電流変化率範囲(=0.8〜0.9)内の値であるか否かを調べ(ステップS170)、電流変化率KR-Sが第2の断線検出電流変化率範囲内の値であると、合成電流IR-SのTR基準位相差αTRが第4の断線検出位相差範囲(=130°〜150°)内の値であるか否かを調べる(ステップS171)。
リレー演算処理部77は、TR基準位相差αTRが第4の断線検出位相差範囲内の値であると、「ST相断線が発生した」と判定する(ステップS173e)。
On the other hand, if the current change rate K RS is not a value within the disconnection detection current change rate range in step S169, the relay calculation processing unit 77 determines that the current change rate K RS is equal to the second disconnection detection current change rate range (= 0.8). To 0.9) (step S170), and if the current change rate K RS is a value within the second disconnection detection current change rate range, the TR reference position of the combined current I RS It is checked whether or not the phase difference α TR is a value within the fourth disconnection detection phase difference range (= 130 ° to 150 °) (step S171).
When the TR reference phase difference α TR is a value within the fourth disconnection detection phase difference range, the relay calculation processing unit 77 determines that “ST phase disconnection has occurred” (step S173e).

一方、ステップS171においてTR基準位相差αTRが第4の断線検出位相差範囲内の値でないと、リレー演算処理部77は、TR基準位相差αTRが第4の断線検出位相差範囲(=90°〜110°)内の値であるか否かを調べる(ステップS172)。
リレー演算処理部77は、TR基準位相差αTRが第4の断線検出位相差範囲内の値であると、「TR相断線が発生した」と判定する(ステップS173f)。
On the other hand, if the TR reference phase difference α TR is not a value within the fourth disconnection detection phase difference range in step S171, the relay calculation processing unit 77 determines that the TR reference phase difference α TR is equal to the fourth disconnection detection phase difference range (= It is checked whether the value is within the range of 90 ° to 110 ° (step S172).
When the TR reference phase difference α TR is a value within the fourth disconnection detection phase difference range, the relay calculation processing unit 77 determines that “TR phase disconnection has occurred” (step S173f).

リレー演算処理部77は、以上のようにしてR相欠相、S相欠相、T相欠相、R相断線、S相断線またはT相断線の発生を検出すると、第1乃至第3のトリップ信号T1〜T3を出力する(ステップS174)。 When the relay calculation processing unit 77 detects the occurrence of the R-phase, S-phase, T-phase, R-phase, S-phase, or T-phase break as described above, the first to third Trip signals T 1 to T 3 are output (step S174).

以上の説明ではR相、S相およびT相電流IR,IS,ITの定格電流値を基準として合成電流IR-Sの電流変化率KR-Sを求めたが、負荷の変動が小さい場合などでは1サイクル前のR相、S相およびT相電流IR,IS,ITの値を基準として合成電流IR-Sの電流変化率KR-Sを求めてもよい。 R phase in the above description, S-phase and T-phase currents I R, I S, has been determined current change rate K RS synthetic current I RS, based on the rated current value of I T, if the variation in load is small such as Then, the current change rate K RS of the combined current I RS may be obtained based on the values of the R-phase, S-phase, and T-phase currents I R , I S , I T one cycle before.

また、R相、S相およびT相電圧VR,VS,VTの定格電圧値を基準としてRS相線間電圧VRSの電圧変化率LRS、ST相線間電圧VSTの電圧変化率LSTおよびTR相線間電圧VTRの電圧変化率LTRを求めたが、1サイクル前のR相、S相およびT相電圧VR,VS,VTの値を基準としてRS相線間電圧VRSの電圧変化率LRS、ST相線間電圧VSTの電圧変化率LSTおよびTR相線間電圧VTRを求めてもよい。 Further, the voltage change rate L RS of the RS phase line voltage V RS and the voltage change of the ST phase line voltage V ST on the basis of the rated voltage values of the R phase, S phase, and T phase voltages V R , V S , V T The rate L ST and the voltage change rate L TR of the TR phase line voltage V TR were obtained, but the RS phase based on the values of the R phase, S phase, and T phase voltages V R , V S , V T one cycle before voltage change rate L RS line voltage V RS, may be obtained a voltage V TR voltage change rate of the voltage V ST between the ST phase line L ST and TR phase line.

さらに、三相電源線のR相およびS相に設けたクロス貫通変流器11,41,61から合成電流IR-Sを3Eリレー20,50,70に入力するとともに三相電源線に設けた計器用変成器12,42,62からRS相線間電圧VRS,ST相線間電圧VST,TR相線間電圧VTRを3Eリレー20,50,70に入力したが、低電圧の三相電源線の場合には変流比が1:1のクロス貫通変流器および変成比が1:1の計器用変成器を3Eリレー20,50,70に内蔵させてもよい。 Further, the combined current I RS is input to the 3E relays 20, 50, 70 from the cross-through current transformers 11, 41, 61 provided in the R phase and S phase of the three-phase power supply line, and the meter provided in the three-phase power supply line RS phase line voltage V RS , ST phase line voltage V ST , and TR phase line voltage V TR are input to 3E relays 20, 50, and 70 from transformers 12, 42, and 62. In the case of a power supply line, a cross-through current transformer with a current transformation ratio of 1: 1 and an instrument transformer with a transformation ratio of 1: 1 may be incorporated in the 3E relays 20, 50, and 70.

本発明の第1の実施例による保護継電システムの構成を示す図である。It is a figure which shows the structure of the protection relay system by 1st Example of this invention. 図1に示したクロス貫通変流器11および計器用変成器12から3Eリレー20に正常時に入力される合成電流I(R-S)0およびTR相線間電圧VTR0について説明するための図である。FIG. 3 is a diagram for explaining a combined current I (RS) 0 and a TR phase line voltage V TR0 that are normally input to the 3E relay 20 from the cross-through current transformer 11 and the instrument transformer 12 shown in FIG. . 図1に示した3Eリレー20における過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出方法について説明するための図である。It is a figure for demonstrating the detection method of the overload in the 3E relay 20 shown in FIG. 1, RS phase short circuit, ST phase short circuit, TR phase short circuit, and three phase short circuit. 図1に示した3Eリレー20における過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出方法について説明するための図である。It is a figure for demonstrating the detection method of the overload in the 3E relay 20 shown in FIG. 1, RS phase short circuit, ST phase short circuit, TR phase short circuit, and three phase short circuit. 図1に示した3Eリレー20における過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出方法について説明するための図である。It is a figure for demonstrating the detection method of the overload in the 3E relay 20 shown in FIG. 1, RS phase short circuit, ST phase short circuit, TR phase short circuit, and three phase short circuit. 図1に示した3Eリレー20におけるR−S相反相、S−T相反相およびT−R相反相の検出方法について説明するための図である。It is a figure for demonstrating the detection method of the RS reciprocal phase, ST phase reciprocal phase, and TR reciprocal phase in the 3E relay 20 shown in FIG. 図1に示した3Eリレー20におけるR−S相反相、S−T相反相およびT−R相反相の検出方法について説明するための図である。It is a figure for demonstrating the detection method of the RS reciprocal phase, ST phase reciprocal phase, and TR reciprocal phase in the 3E relay 20 shown in FIG. 図1に示した3Eリレー20におけるスター結線された三相電源線のR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出方法について説明するための図である。A method of detecting the R-phase, S-phase, T-phase, R-phase, S-phase, and T-phase breaks of the star-connected three-phase power supply line in the 3E relay 20 shown in FIG. FIG. 図1に示した3Eリレー20におけるスター結線された三相電源線のR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出方法について説明するための図である。A method of detecting the R-phase, S-phase, T-phase, R-phase, S-phase, and T-phase breaks of the star-connected three-phase power supply line in the 3E relay 20 shown in FIG. FIG. 図1に示した3Eリレー20におけるデルタ結線された三相電源線のR相欠相、S相欠相、T相欠相、RS相断線、ST相断線およびTR相断線の検出方法について説明するための図である。A method for detecting the R-phase, S-phase, T-phase, RS-phase, ST-phase, and TR-phase disconnections of the three-phase power supply line connected in the delta connection shown in FIG. 1 will be described. FIG. 図1に示した3Eリレー20の構成を示すブロック図である。It is a block diagram which shows the structure of 3E relay 20 shown in FIG. 過負荷時または短絡事故発生時の図11に示したリレー演算処理部28の動作について説明するためのフローチャートである。12 is a flowchart for explaining an operation of the relay calculation processing unit 28 shown in FIG. 11 when an overload or a short circuit accident occurs. 反相発生時の図11に示したリレー演算処理部28の動作について説明するためのフローチャートである。12 is a flowchart for explaining the operation of the relay calculation processing unit 28 shown in FIG. 11 when a reverse phase occurs. スター結線された三相電源線における欠相または断線発生時の図11に示したリレー演算処理部28の動作について説明するためのフローチャートである。12 is a flowchart for explaining the operation of the relay calculation processing unit 28 shown in FIG. 11 when a phase loss or disconnection occurs in a star-connected three-phase power supply line. デルタ結線された三相電源線における欠相または断線発生時の図11に示したリレー演算処理部28の動作について説明するためのフローチャートである。12 is a flowchart for explaining the operation of relay arithmetic processing unit 28 shown in FIG. 11 when a phase loss or disconnection occurs in a delta-connected three-phase power supply line. デルタ結線された三相電源線における欠相または断線発生時の図11に示したリレー演算処理部28の動作について説明するためのフローチャートである。12 is a flowchart for explaining the operation of relay arithmetic processing unit 28 shown in FIG. 11 when a phase loss or disconnection occurs in a delta-connected three-phase power supply line. 本発明の第2の実施例による保護継電システムの構成を示す図である。It is a figure which shows the structure of the protection relay system by the 2nd Example of this invention. 図17に示した3Eリレー50における過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出方法について説明するための図である。It is a figure for demonstrating the detection method of the overload in the 3E relay 50 shown in FIG. 17, RS phase short circuit, ST phase short circuit, TR phase short circuit, and three phase short circuit. 図17に示した3Eリレー50におけるR−S相反相、S−T相反相およびT−R相反相の検出方法について説明するための図である。It is a figure for demonstrating the detection method of RS reciprocal phase, ST reciprocal phase, and TR reciprocal phase in the 3E relay 50 shown in FIG. 図17に示した3Eリレー50におけるスター結線された三相電源線のR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出方法について説明するための図である。A method of detecting the R-phase, S-phase, T-phase, R-phase, S-phase, and T-phase breaks of the star-connected three-phase power supply line in the 3E relay 50 shown in FIG. 17 will be described. FIG. 図17に示した3Eリレー50の構成を示すブロック図である。It is a block diagram which shows the structure of 3E relay 50 shown in FIG. 過負荷または短絡事故発生時の図21に示したリレー演算処理部58の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the relay arithmetic processing part 58 shown in FIG. 21 at the time of an overload or a short circuit accident. 反相発生時の図21に示したリレー演算処理部58の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the relay calculation process part 58 shown in FIG. 21 at the time of a reverse phase generation | occurrence | production. スター結線された三相電源線における欠相または断線発生時の図21に示したリレー演算処理部58の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the relay arithmetic processing part 58 shown in FIG. 21 at the time of the phase loss in the three-phase power source line connected by star connection, or disconnection. スター結線された三相電源線における欠相または断線発生時の図21に示したリレー演算処理部58の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the relay arithmetic processing part 58 shown in FIG. 21 at the time of the phase loss in the three-phase power source line connected by star connection, or disconnection. デルタ結線された三相電源線における欠相または断線発生時の図21に示したリレー演算処理部58の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the relay arithmetic processing part 58 shown in FIG. デルタ結線された三相電源線における欠相または断線発生時の図21に示したリレー演算処理部58の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the relay arithmetic processing part 58 shown in FIG. 21 at the time of the phase loss or disconnection generate | occur | producing in the delta-connected three-phase power supply line. 本発明の第3の実施例による保護継電システムの構成を示す図である。It is a figure which shows the structure of the protection relay system by the 3rd Example of this invention. 図28に示したクロス貫通変流器61および計器用変成器62から3Eリレー70に正常時に入力される合成電流I(R-S)0、RS相線間電圧VRS0、ST相線間電圧VST0およびTR相線間電圧VTR0について説明するための図である。The combined current I (RS) 0 , RS phase line voltage V RS0 , ST phase line voltage V ST0 that is normally input to the 3E relay 70 from the cross-through current transformer 61 and the instrument transformer 62 shown in FIG. FIG. 6 is a diagram for explaining a TR phase line voltage V TR0 . 図28に示した3Eリレー70における過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出方法について説明するための図である。It is a figure for demonstrating the detection method of the overload in the 3E relay 70 shown in FIG. 28, RS phase short circuit, ST phase short circuit, TR phase short circuit, and three phase short circuit. 図28に示した3Eリレー70における過負荷、R−S相短絡、S−T相短絡、T−R相短絡および三相短絡の検出方法について説明するための図である。It is a figure for demonstrating the detection method of the overload in the 3E relay 70 shown in FIG. 28, RS phase short circuit, ST phase short circuit, TR phase short circuit, and three phase short circuit. 図28に示した3Eリレー70におけるR−S相反相、S−T相反相およびT−R相反相の検出方法について説明するための図である。It is a figure for demonstrating the detection method of RS reciprocal phase, ST reciprocal phase, and TR reciprocal phase in 3E relay 70 shown in FIG. 図28に示した3Eリレー70におけるスター結線された三相電源線のR相欠相、S相欠相、T相欠相、R相断線、S相断線およびT相断線の検出方法について説明するための図である。A method of detecting the R-phase, S-phase, T-phase, R-phase, R-phase, S-phase, and T-phase disconnection of the star-connected three-phase power supply line in the 3E relay 70 shown in FIG. FIG. 図28に示した3Eリレー70の構成を示すブロック図である。It is a block diagram which shows the structure of 3E relay 70 shown in FIG. 過負荷または短絡事故発生時の図34に示したリレー演算処理部77の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the relay arithmetic processing part 77 shown in FIG. 34 at the time of an overload or a short circuit accident. 反相発生時の図34に示したリレー演算処理部77の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the relay arithmetic processing part 77 shown in FIG. 34 at the time of a reverse phase generation | occurrence | production. スター結線された三相電源線における欠相または断線発生時の図34に示したリレー演算処理部77の動作について説明するためのフローチャートである。FIG. 35 is a flowchart for explaining the operation of relay operation processing unit 77 shown in FIG. 34 when a phase loss or disconnection occurs in a star-connected three-phase power supply line. スター結線された三相電源線における欠相または断線発生時の図28に示したリレー演算処理部77の動作について説明するためのフローチャートである。FIG. 29 is a flowchart for describing an operation of relay arithmetic processing unit 77 shown in FIG. 28 when a phase loss or disconnection occurs in a star-connected three-phase power supply line. デルタ結線された三相電源線における欠相または断線発生時の図28に示したリレー演算処理部77の動作について説明するためのフローチャートである。FIG. 29 is a flowchart for explaining the operation of relay operation processing unit 77 shown in FIG. 28 when a phase loss or disconnection occurs in a delta-connected three-phase power supply line. デルタ結線された三相電源線における欠相または断線発生時の図28に示したリレー演算処理部77の動作について説明するためのフローチャートである。FIG. 29 is a flowchart for explaining the operation of relay operation processing unit 77 shown in FIG. 28 when a phase loss or disconnection occurs in a delta-connected three-phase power supply line. 従来の三相誘導電動機用3Eリレー110について説明するための図である。It is a figure for demonstrating the conventional 3E relay 110 for three-phase induction motors.

符号の説明Explanation of symbols

1〜13 第1乃至第3の変流器
2,12,42,62 計器用変成器
1〜33 第1乃至第3の遮断器
11,41,61 クロス貫通変流器
20,50,70,110 3Eリレー
21,51,71 入力変換器
22,52,72 アナログ入力部
23,53,73 メモリ
24,54,74 電流変化率算出部
25,55,75 電圧変化率算出部
26,56 位相変化角算出部
27,57,76 位相差算出部
28,58,77 リレー演算処理部
29,59,78 整定・表示部
30,60,79 入出部
31,61,80 外部機器I/F部
R,IS,IT R相、S相およびT相電流
R0,IS0,IT0 正常時のR相、S相およびT相電流
R-S 合成電流
(R-S)0 正常時の合成電流
FR,IFS,IFT R相、S相およびT相事故電流
R,VS,VT R相、S相およびT相電圧
R0,VS0,VT0 正常時のR相、S相およびT相電圧
RS,VST,VTR RS相、ST相およびTR相線間電圧
RS0,VST0,VTR0 正常時のRS相、ST相およびTR相線間電圧
1〜T3 第1乃至第3のトリップ信号
θT,θRS,θST,θTR,θR-S 位相
θR0,θT0,θRS0,θST0,θTR0,θ(R-S) 0 正常時の位相
ΔθTR,ΔθT 位相変化角
θ インピーダンス角
R-S 電流変化率
T,LRS,LST,LTR 電圧変化率
α,β 位相差
α0,β0 正常時の位相差
αST 合成電流IR-SのST基準位相差
αTR 合成電流IR-SのTR基準位相差
βRS RS相線間電圧VRSのTR基準位相差
βRS0 正常時のRS相線間電圧VRS0のTR基準位相差
βST ST相線間電圧VSTのRS基準位相差
βST0 正常時のST相線間電圧VST0のRS基準位相差
βTR TR相線間電圧VTRのST基準位相差
βTR0 正常時のTR相線間電圧VTR0のST基準位相差
S10〜S18,S19a〜s19e,S20〜S25,S31〜S38,S39a〜S39e,S40〜S50,S51a〜S51f,S52,S60〜S68,S69a〜S69e,S70〜S76,S81〜S96,S92a〜S92f,S93,S101〜S112,S113a〜S113f,S114,S121〜S128,S129a〜s129e,S130〜S135,S141〜S152,S153a〜S153f,S154,S161〜S172,S173a〜S173f,S174 ステップ
1 1 to 1 3 1st to 3rd current transformers 2, 12, 42, 62 Instrument transformer 3 1 to 3 3 1st to 3rd circuit breakers 11, 41, 61 Cross-through current transformer 20, 50, 70, 110 3E relays 21, 51, 71 Input converters 22, 52, 72 Analog input units 23, 53, 73 Memory 24, 54, 74 Current change rate calculation units 25, 55, 75 Voltage change rate calculation unit 26 , 56 Phase change angle calculation unit 27, 57, 76 Phase difference calculation unit 28, 58, 77 Relay operation processing unit 29, 59, 78 Settling / display unit 30, 60, 79 Input / output unit 31, 61, 80 External device I / F section I R , I S , I T R phase, S phase and T phase current I R0 , I S0 , I T0 normal R phase, S phase and T phase current I RS composite current I (RS) 0 normal the resultant current I FR, I FS, I FT R phase, S phase and T-phase fault current V R, V S, V T R phase S-phase and T-phase voltages V R0, V S0, V T0 normal state R phase, S-phase and T-phase voltages V RS, V ST, V TR RS phase, ST phase and TR phase line voltage V RS0, V ST0 , V TR0 normal RS phase, ST phase and TR phase line voltage T 1 to T 3 First to third trip signals θ T , θ RS , θ ST , θ TR , θ RS phase θ R0 , θ T0 , Θ RS0 , θ ST0 , θ TR0 , θ (RS) 0 Normal phase Δθ TR , Δθ T Phase change angle θ Impedance angle K RS Current change rate L T , L RS , L ST , L TR Voltage change rate α , beta phase difference alpha 0, beta 0 TR reference phase difference in the normal time of the phase difference alpha ST combined current I RS in ST reference phase difference alpha TR composite current I RS of TR reference phase difference beta RS RS phase line voltage V RS β RS0 normal RS phase line voltage V RS0 TR reference phase difference β ST ST phase line voltage V ST RS reference phase difference β ST0 normal ST phase line voltage V ST0 RS reference phase difference β TR TR phase line power ST reference phase difference S10~S18 of TR-phase line voltage V TR0 of ST reference phase difference beta TR0 normal of V TR, S19a~s19e, S20~S25, S31~S38 , S39a~S39e, S40~S50, S51a~ S51f, S52, S60-S68, S69a-S69e, S70-S76, S81-S96, S92a-S92f, S93, S101-S112, S113a-S113f, S114, S121-S128, S129a-s129e, S130-S135, S141- S152, S153a to S153f, S154, S161 to S172, S173a to S173f, S174 Steps

Claims (5)

三相交流回路の第1および第2の相にそれぞれ流れる第1および第2の相電流(IR,IS)の差電流(IR-S)と、該三相交流回路の1つの線間電圧(VTR)または該三相交流回路の1つの線間電圧(VTR)および1つの相電圧(VT)または該三相交流回路の3つの線間電圧(VRS,VST,VTR)とに基づいて、該三相交流回路における過負荷、短絡、反相、欠相および断線の発生を検出する三要素保護継電器(20,50,70)を具備することを特徴とする、保護継電システム。 The difference current (I RS ) between the first and second phase currents (I R , I S ) flowing in the first and second phases of the three-phase AC circuit, respectively, and one line voltage of the three-phase AC circuit (V TR ) or one line voltage (V TR ) and one phase voltage (V T ) of the three-phase AC circuit or three line voltages (V RS , V ST , V TR of the three-phase AC circuit) And a three-element protective relay (20, 50, 70) for detecting occurrence of overload, short circuit, reverse phase, phase loss and disconnection in the three-phase AC circuit based on Relay system. 2次コイルを巻装した環状鉄心に前記三相交流回路の前記第1および第2の相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器(11)と、
前記三相交流回路の前記第1および第3の相間に設けられた計器用変成器(12)とをさらに具備し、
前記三要素保護継電器(20)が、
前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)および位相差(α)と前記計器用変成器から入力される1つの線間電圧(VTR)の電圧変化率(LTR)および位相変化角(ΔθTR)とに基づいて、前記三相交流回路における過負荷および短絡の発生を検出し、
前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)および位相差(α)と前記計器用変成器から入力される1つの線間電圧(VTR)の電圧変化率(LTR)とに基づいて、前記三相交流回路における反相、欠相および断線の発生を検出する、
ことを特徴とする、請求項1記載の保護継電システム。
A cross-penetrating current transformer (11) in which the first and second phases of the three-phase AC circuit are crossed in an opposite direction and at an arbitrary angle through an annular core around which a secondary coil is wound;
An instrument transformer (12) provided between the first and third phases of the three-phase AC circuit;
The three-element protective relay (20)
The current change rate (K RS ) and phase difference (α) of the combined current (I RS ) input from the cross-through current transformer and one line voltage (V TR ) input from the instrument transformer Based on the voltage change rate (L TR ) and the phase change angle (Δθ TR ), the occurrence of overload and short circuit in the three-phase AC circuit is detected,
The current change rate (K RS ) and phase difference (α) of the combined current (I RS ) input from the cross-through current transformer and one line voltage (V TR ) input from the instrument transformer Based on the voltage change rate (L TR ), the occurrence of anti-phase, open phase and disconnection in the three-phase AC circuit is detected.
The protective relay system according to claim 1, wherein:
2次コイルを巻装した環状鉄心に前記三相交流回路の前記第1および第2の相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器(41)と、
前記三相交流回路の前記第1および第3の相間に設けられた計器用変成器(42)とをさらに具備し、
前記三要素保護継電器(50)が、
前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)と前記計器用変成器から入力される1つの線間電圧(VTR)の電圧変化率(LTR)および位相変化角(ΔθTR)と該計器用変成器から入力される1つの相電圧(VT)の電圧変化率(LT)および位相変化角(ΔθT)とに基づいて、前記三相交流回路における過負荷および短絡の発生を検出し、
前記合成電流の電流変化率と前記線間電圧の電圧変化率と前記相電圧の電圧変化率および位相差(β)とに基づいて、前記三相交流回路における反相の発生を検出し、
前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)および位相差(α)と前記計器用変成器から入力される1つの線間電圧(VTR)の電圧変化率(LTR)と該計器用変成器から入力される1つの相電圧(VT)の電圧変化率(LT)とに基づいて、前記三相交流回路における欠相および断線の発生を検出する、
ことを特徴とする、請求項1記載の保護継電システム。
A cross-penetrating current transformer (41) in which the first and second phases of the three-phase AC circuit are crossed in an opposite direction and crossed through an annular core around which a secondary coil is wound;
An instrument transformer (42) provided between the first and third phases of the three-phase AC circuit;
The three-element protective relay (50)
The current change rate (K RS ) of the combined current (I RS ) input from the cross-through current transformer and the voltage change rate (L TR ) of one line voltage (V TR ) input from the instrument transformer. ) And the phase change angle (Δθ TR ) and the voltage change rate (L T ) and phase change angle (Δθ T ) of one phase voltage (V T ) input from the instrument transformer, Detects the occurrence of overload and short circuit in the phase AC circuit,
Based on the current change rate of the combined current, the voltage change rate of the line voltage, the voltage change rate of the phase voltage and the phase difference (β), the occurrence of antiphase in the three-phase AC circuit is detected,
The current change rate (K RS ) and phase difference (α) of the combined current (I RS ) input from the cross-through current transformer and one line voltage (V TR ) input from the instrument transformer Based on the voltage change rate (L TR ) and the voltage change rate (L T ) of one phase voltage (V T ) input from the instrument transformer, occurrence of phase loss and disconnection in the three-phase AC circuit Detect
The protective relay system according to claim 1, wherein:
2次コイルを巻装した環状鉄心に前記三相交流回路の前記第1および第2の相を逆向きにかつ任意の角度でクロスさせて貫通させたクロス貫通変流器(61)と、
前記三相交流回路に設けられた計器用変成器(62)とをさらに具備し、
前記三要素保護継電器(70)が、
前記クロス貫通変流器から入力される合成電流(IR-S)の電流変化率(KR-S)および2つの位相差(αST,αTR)と前記計器用変成器から入力される3つの線間電圧(VRS,VST,VTR)の電圧変化率(LRS,LST,LTR)とに基づいて、前記三相交流回路における過負荷および短絡の発生を検出し、
前記合成電流の電流変化率と前記3つの線間電圧の電圧変化率と該3つの線間電圧のうちの1つの線間電圧の位相差(βRS)とに基づいて、前記三相交流回路における反相の発生を検出し、
前記合成電流の電流変化率および1つの位相差(αTR)と前記3つの線間電圧(VRS,VST,VTR)の電圧変化率(LRS,LST,LTR)および位相差(βRS,βST,βTR)とに基づいて、前記三相交流回路における欠相および断線の発生を検出する、
ことを特徴とする、請求項1記載の保護継電システム。
A cross-penetrating current transformer (61) in which the first and second phases of the three-phase AC circuit are crossed in opposite directions and at an arbitrary angle through an annular iron core wound with a secondary coil;
An instrument transformer (62) provided in the three-phase AC circuit;
The three-element protective relay (70)
The current change rate (K RS ) and two phase differences (α ST , α TR ) of the combined current (I RS ) input from the cross-through current transformer and the three lines input from the instrument transformer Based on the voltage change rate (L RS , L ST , L TR ) of the voltage (V RS , V ST , V TR ), the occurrence of overload and short circuit in the three-phase AC circuit is detected,
Based on the current change rate of the combined current, the voltage change rate of the three line voltages, and the phase difference (β RS ) of one of the three line voltages, the three-phase AC circuit Detecting the occurrence of anti-phase in
Current change rate and one phase difference (α TR ) of the combined current and voltage change rates (L RS , L ST , L TR ) and phase difference of the three line voltages (V RS , V ST , V TR ) Based on (β RS , β ST , β TR ), it detects the occurrence of phase loss and disconnection in the three-phase AC circuit.
The protective relay system according to claim 1, wherein:
前記合成電流の2つの位相差が、前記三相交流回路の前記第2および第3の相間の第2の線間電圧(VST)の位相(θST)に対する該合成電流の位相差(αST)と、該三相交流回路の前記第3および第1の相間の第3の線間電圧(VTR)の位相(θTR)に対する該合成電流の位相差(αTR)とであり、
前記3つの線間電圧の位相差が、前記第3の線間電圧(VTR)の位相(θTR)に対する前記三相交流回路の前記第1および第2の相間の第1の線間電圧(VRS)の位相差(βRS)と、該第1の線間電圧(VRS)の位相(θRS)に対する前記第2の線間電圧(VST)の位相差(βST)と、該第2の線間電圧(VST)の位相(θST)に対する前記第3の線間電圧(VTR)の位相差(βTR)とである、
ことを特徴とする、請求項4記載の保護継電システム。
The two phase differences of the combined current are the phase difference (α of the combined current with respect to the phase (θ ST ) of the second line voltage (V ST ) between the second and third phases of the three-phase AC circuit. ST ) and the phase difference (α TR ) of the combined current with respect to the phase (θ TR ) of the third line voltage (V TR ) between the third and first phases of the three-phase AC circuit,
A phase difference between the three line voltages is a first line voltage between the first and second phases of the three-phase AC circuit with respect to a phase (θ TR ) of the third line voltage (V TR ). (V RS ) phase difference (β RS ) and phase difference (β ST ) of the second line voltage (V ST ) with respect to the phase (θ RS ) of the first line voltage (V RS ) A phase difference (β TR ) of the third line voltage (V TR ) with respect to the phase (θ ST ) of the second line voltage (V ST ).
The protective relay system according to claim 4, wherein:
JP2008324429A 2008-12-19 2008-12-19 Protective relay system Withdrawn JP2010148284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324429A JP2010148284A (en) 2008-12-19 2008-12-19 Protective relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324429A JP2010148284A (en) 2008-12-19 2008-12-19 Protective relay system

Publications (1)

Publication Number Publication Date
JP2010148284A true JP2010148284A (en) 2010-07-01

Family

ID=42568116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324429A Withdrawn JP2010148284A (en) 2008-12-19 2008-12-19 Protective relay system

Country Status (1)

Country Link
JP (1) JP2010148284A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315623A (en) * 2011-09-14 2012-01-11 山东一统电器有限公司 Mining explosion-proof type long-distance short-circuit protecting device
CN106932663A (en) * 2015-12-29 2017-07-07 中国石油天然气股份有限公司 Measuring instrument of frequency conversion system
WO2020191825A1 (en) * 2019-03-26 2020-10-01 上海交通大学 Phase-relationship-based method for single-phase disconnection fault identification in power distribution network
WO2021118071A3 (en) * 2019-12-12 2021-08-05 엘에스일렉트릭(주) Protective relay and method for detecting disconnection of protective relay

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315623A (en) * 2011-09-14 2012-01-11 山东一统电器有限公司 Mining explosion-proof type long-distance short-circuit protecting device
CN106932663A (en) * 2015-12-29 2017-07-07 中国石油天然气股份有限公司 Measuring instrument of frequency conversion system
WO2020191825A1 (en) * 2019-03-26 2020-10-01 上海交通大学 Phase-relationship-based method for single-phase disconnection fault identification in power distribution network
WO2021118071A3 (en) * 2019-12-12 2021-08-05 엘에스일렉트릭(주) Protective relay and method for detecting disconnection of protective relay
US20230006436A1 (en) * 2019-12-12 2023-01-05 Ls Electric Co., Ltd. Protective relay and method for detecting disconnection of protective relay
US11695267B2 (en) * 2019-12-12 2023-07-04 Ls Electric Co., Ltd. Protective relay and method for detecting disconnection of protective relay

Similar Documents

Publication Publication Date Title
US7319576B2 (en) Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
Kezunovic et al. Design, modeling and evaluation of protective relays for power systems
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
CN105548719B (en) A kind of detection circuit and method of insulation against ground resistance
WO2013181809A1 (en) Method for identifying fault by current differential protection and device thereof
JP2010148284A (en) Protective relay system
JP2008164374A (en) Device and method for measuring leakage current
CN105393421B (en) Method for controlling chain type converter
Kasztenny et al. Fundamentals of distance protection
Calero Rebirth of negative-sequence quantities in protective relaying with microprocessor-based relays
JP5380702B2 (en) Leakage current measuring device and measuring method
Tajani et al. A novel differential protection scheme for AC microgrids based on discrete wavelet transform
JP5477020B2 (en) Leakage current measuring device and measuring method in electrical equipment
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JP6315829B2 (en) Disconnection section identification system and disconnection section identification method
JP6419492B2 (en) Disconnection detection device, disconnection detection method, and disconnection section identification system
JP6129562B2 (en) Disconnection detection device and disconnection detection method
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JP4835286B2 (en) Insulation monitoring system and method for low voltage electrical equipment
JP2019030073A (en) Zero-phase current differential relay
Laaksonen New passive islanding detection method based on cumulative sum of change in voltage positive sequence phase angle
JP2018506942A (en) Improvements in or relating to circuit breakers
JP2018155535A (en) Insulation monitoring device, method, and program
Mukhopadhyay et al. Islanding detection of interconnected grids based on synchrophasor measurements (PMU)
JP2010148269A (en) Protective relay system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306