JP2010144976A - Air-conditioning combined hot water supplying device - Google Patents

Air-conditioning combined hot water supplying device Download PDF

Info

Publication number
JP2010144976A
JP2010144976A JP2008321205A JP2008321205A JP2010144976A JP 2010144976 A JP2010144976 A JP 2010144976A JP 2008321205 A JP2008321205 A JP 2008321205A JP 2008321205 A JP2008321205 A JP 2008321205A JP 2010144976 A JP2010144976 A JP 2010144976A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
water supply
hot water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008321205A
Other languages
Japanese (ja)
Other versions
JP5419437B2 (en
Inventor
Akihiro Ogawa
晃弘 小川
茂生 ▲高▼田
Shigeo Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008321205A priority Critical patent/JP5419437B2/en
Publication of JP2010144976A publication Critical patent/JP2010144976A/en
Application granted granted Critical
Publication of JP5419437B2 publication Critical patent/JP5419437B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioning combined hot water supplying device, capable of cooling a semiconductor device without degrading air-conditioning performance by applying exhaust heat generated from the semiconductor device controlling a compressor for hot water supply, of a refrigerating cycle for hot water supply, to the water. <P>SOLUTION: This air-conditioning combined hot water supplying device includes the refrigerating cycle 2 for hot water supply, having the compressor 21 for hot water supply, a water-refrigerant heat exchanger 51, a throttle means 22 for hot water supply and a refrigerant-refrigerant heat exchanger 41, and circulating the refrigerant for hot water supply, and a refrigerating cycle 1 for air-conditioning, having a compressor 101 for air-conditioning, an indoor heat exchanger 118 for air-conditioning, performing a cooling operation or a heating operation, a throttle means 117 for air-conditioning, an outdoor heat exchanger 103, a refrigerant-refrigerant heat exchanger 44, and a throttle means 119 for hot water supply heat source, and circulating the refrigerant for air-conditioning, and the semiconductor device 63 loading an invertor control circuit for driving and controlling the compressor 22 for hot water supply, of the refrigerating cycle 2 for hot water supply is mounted on the water-refrigerant heat exchanger 51 or another proper place. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、空調機能を有する冷媒回路と給湯機能を有する冷媒回路を備えた空調複合給湯装置に係り、詳しくは、密閉された空間に設置される給湯用冷媒回路の発熱電子部品の冷却に関するものである。 The present invention relates to an air conditioning combined hot water supply apparatus having a refrigerant circuit having an air conditioning function and a refrigerant circuit having a hot water supply function, and more particularly to cooling of heat-generating electronic components of a hot water supply refrigerant circuit installed in a sealed space. It is.

従来、冷媒回路を駆動制御する各種電子部品を収容した電気品箱では、電子部品からの発熱による昇温を回避するために、電気品箱内を冷却する構成が採用されてきた。
例えば下記の特許文献1では、電気品箱の冷却ファンを運転することにより、空気調和装置の冷媒回路部の空気を電気品箱内に取り込んで電気品箱内を冷却し、暖まった空気を空気冷却用熱交換器に通して冷却したのち、空気調和装置の筐体内部の冷媒回路部に送り込んで筐体内部全体を冷却するようにしたものが開示されている。
2. Description of the Related Art Conventionally, in an electrical component box that houses various electronic components that drive and control a refrigerant circuit, a configuration in which the interior of the electrical component box is cooled has been employed in order to avoid a temperature rise due to heat generation from the electronic component.
For example, in Patent Document 1 below, by operating a cooling fan of an electrical component box, the air in the refrigerant circuit portion of the air conditioner is taken into the electrical component box to cool the electrical component box, and the warm air is An apparatus is disclosed in which after cooling through a cooling heat exchanger, the entire interior of the casing is cooled by being sent to the refrigerant circuit section inside the casing of the air conditioner.

また、例えば下記の特許文献2では、冷凍サイクルを行う冷媒回路と、電装品を収納した電装品箱と、冷媒回路の冷媒を流して電装品箱内を冷却する冷却用配管と、電装品箱と冷却用配管との間に設けられていて冷却用配管を流れる冷媒の冷熱を蓄熱する蓄熱層とを備えたものが開示されている。 Further, for example, in Patent Document 2 below, a refrigerant circuit that performs a refrigeration cycle, an electrical component box that houses electrical components, a cooling pipe that cools the electrical component box by flowing a refrigerant in the refrigerant circuit, and an electrical component box And a heat storage layer that stores the cold heat of the refrigerant that flows through the cooling pipe and is provided between the cooling pipe and the cooling pipe.

特開平5−322224号公報JP-A-5-322224 特開2008−2741号公報JP 2008-27441 A

しかしながら、上記特許文献1の電気品箱の構成では、電気品箱を冷却するための媒体が空気を含むものであるため、構造が大型化するという問題がある。また、機械室など密閉された空間に設置した場合、温まった空気がその密閉空間に溜まってしまうため、周囲温度が上昇するという問題があった。また、冷媒冷却方式であるので、冷媒温度が低い場合には冷却対象が冷えすぎて、電子部品に結露を生じるおそれがある。 However, in the configuration of the electrical component box of Patent Document 1, since the medium for cooling the electrical component box contains air, there is a problem that the structure is enlarged. In addition, when installed in a sealed space such as a machine room, there is a problem that the ambient temperature rises because warm air accumulates in the sealed space. Moreover, since it is a refrigerant cooling system, when the refrigerant temperature is low, the object to be cooled is too cold, and there is a possibility that condensation occurs on the electronic component.

一方、上記特許文献2の電気品箱の構成では、電気品箱を冷却するために、空調の冷却に使用すべき能力の一部を電気品箱冷却用蓄熱材に用いざるを得ないことから、元来の冷房能力が低下してしまうという問題がある。 On the other hand, in the configuration of the electrical component box of Patent Document 2, in order to cool the electrical component box, a part of the capacity to be used for cooling the air conditioner must be used for the electrical component box cooling heat storage material. There is a problem that the original cooling capacity is reduced.

この発明は、上記のような課題を解決するためになされたもので、空調用冷媒が循環する空調用冷凍サイクルと、給湯用冷媒が循環する給湯用冷凍サイクルとを有する空調複合給湯装置において、給湯用冷凍サイクルの給湯用圧縮機を制御するインバータを搭載した半導体装置から発生した排熱を、加熱したい負荷である水に与えることにより、その排熱を利用し、なおかつ空調能力を低下させることなく半導体装置を100℃以下に冷却することを目的とする。 This invention was made in order to solve the above problems, and in an air conditioning combined hot water supply apparatus having an air conditioning refrigeration cycle in which an air conditioning refrigerant circulates and a hot water supply refrigeration cycle in which a hot water supply refrigerant circulates, By applying the exhaust heat generated from a semiconductor device equipped with an inverter that controls the hot water supply compressor of the hot water supply refrigeration cycle to the water that is the load to be heated, the exhaust heat is used and the air conditioning capacity is reduced. It aims at cooling a semiconductor device to 100 degrees C or less.

この発明に係る空調複合給湯装置は、給湯用圧縮機、水−冷媒熱交換器、給湯用絞り手段、および冷媒−冷媒熱交換器を有して給湯用冷媒が循環し、水−冷媒熱交換器にて給湯用冷媒により水を加熱するように構成された給湯用冷凍サイクルと、空調用圧縮機、冷房運転または暖房運転を行なう空調用室内熱交換器、空調用絞り手段、室外熱交換器、冷媒−冷媒熱交換器、および給湯熱源用絞り手段を有し、空調用絞り手段が空調用室内熱交換器と直列に配置され、給湯熱源用絞り手段が冷媒−冷媒熱交換器と直列に配置され、空調用室内熱交換器と冷媒−冷媒熱交換器とが互いに並列に配置されるように構成されて空調用冷媒が循環する空調用冷凍サイクルとを備えてなり、給湯用冷凍サイクルの給湯用圧縮機を駆動制御するインバータ制御回路を搭載した半導体装置を、水−冷媒熱交換器に取り付けたことを特徴とするものである。尚、本発明で言うインバータ制御回路は、直流電力を交流電力に変換して給湯用圧縮機を制御する半導体素子を搭載した電力変換装置のことである。   The air-conditioning combined hot water supply apparatus according to the present invention has a hot water supply compressor, a water-refrigerant heat exchanger, a hot water supply throttling means, and a refrigerant-refrigerant heat exchanger, and the hot water supply refrigerant circulates and water-refrigerant heat exchange is performed. Refrigeration cycle for hot water supply configured to heat water with a hot water supply refrigerant in a cooler, an air conditioning compressor, an air conditioner indoor heat exchanger for cooling operation or heating operation, an air conditioning throttle means, and an outdoor heat exchanger , A refrigerant-refrigerant heat exchanger, and a hot water source heat source throttle means, wherein the air conditioning throttle means is arranged in series with the air conditioning indoor heat exchanger, and the hot water source heat source throttle means is in series with the refrigerant-refrigerant heat exchanger. An air conditioning indoor heat exchanger and a refrigerant-refrigerant heat exchanger arranged in parallel with each other, and an air conditioning refrigeration cycle through which the air conditioning refrigerant circulates. Inverter system for driving and controlling the compressor for hot water supply The semiconductor device equipped with a circuit, the water - is characterized in that attached to the refrigerant heat exchanger. In addition, the inverter control circuit said by this invention is a power converter device carrying the semiconductor element which converts direct-current power into alternating current power and controls the compressor for hot water supply.

この発明の空調複合給湯装置は、給湯用圧縮機を駆動制御するインバータ制御回路を搭載した半導体装置を水−冷媒熱交換器に直接接続するという構成にしたので、半導体装置からの排熱の伝達効率を向上させて小型で効率よく半導体装置を冷却できるという効果を有する。そして、この発明の空調複合給湯装置は、給湯用冷凍サイクルを駆動制御する半導体装置の排熱を最終的に温水の温度上昇のために有効に利用できるという効果を有する。また、半導体装置の排熱を伝達する部分はいずれも常に周囲空気温度以上となる温度の部分であるため、冷えすぎにより半導体装置が結露などを生じるおそれはない。   The air conditioner combined hot water supply apparatus of the present invention has a configuration in which a semiconductor device equipped with an inverter control circuit that drives and controls a hot water supply compressor is directly connected to a water-refrigerant heat exchanger. There is an effect that the semiconductor device can be cooled efficiently with a small size by improving the efficiency. The air-conditioning combined hot water supply apparatus of the present invention has the effect that the exhaust heat of the semiconductor device that drives and controls the hot water supply refrigeration cycle can be effectively used for finally raising the temperature of the hot water. In addition, since all the portions of the semiconductor device that transmit the exhaust heat are portions that always have a temperature equal to or higher than the ambient air temperature, there is no possibility that the semiconductor device will cause dew condensation due to excessive cooling.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
実施の形態1.
図1はこの発明の実施の形態1における空調複合給湯装置の全体構成を示す冷媒回路図、図2はこの発明の実施の形態1における給湯負荷で半導体装置の排熱を水−冷媒熱交換器に与える態様を示した図、図3はこの発明の実施の形態1における圧縮機制御用の電源装置を示したブロック構成図、図4はこの発明の実施の形態1における水−冷媒熱交換器への半導体装置の取付態様を示した図である。以下、この発明の実施の形態1を図に基づいて詳細に説明する。
図1に示した空調複合給湯装置は、空調用冷媒が循環する空調用冷凍サイクル1と、給湯用冷媒が循環する給湯用冷凍サイクル2と、湯水が循環する給湯負荷3とから構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
1 is a refrigerant circuit diagram showing the overall configuration of an air-conditioning composite hot water supply apparatus according to Embodiment 1 of the present invention, and FIG. FIG. 3 is a block diagram showing a compressor control power supply apparatus according to Embodiment 1 of the present invention, and FIG. 4 is a diagram showing a water-refrigerant heat exchanger according to Embodiment 1 of the present invention. It is the figure which showed the attachment aspect of this semiconductor device. Embodiment 1 of the present invention will be described below in detail with reference to the drawings.
The air-conditioning combined hot water supply apparatus shown in FIG. 1 includes an air conditioning refrigeration cycle 1 through which air conditioning refrigerant circulates, a hot water supply refrigeration cycle 2 through which hot water supply refrigerant circulates, and a hot water supply load 3 through which hot water circulates. .

空調用冷凍サイクル1は、熱源機Aと、互いに並列接続された室内機B、Cと、給湯熱源用回路Dと、熱源機Aと室内機B、C、給湯熱源用回路Dとを接続する中継機Eとから構成されている。
熱源機Aは、空調用圧縮機101、空調用圧縮機101に接続されて冷媒の流通方向を切り換える四方弁102、室外熱交換器103、および、四方弁102と空調用圧縮機101との間に接続されたアキュムレータ104から主に構成される。更に、逆止弁105a、逆止弁105b、逆止弁105c、及び逆止弁105dを有している。逆止弁105aは、室外熱交換器103と高圧側接続配管106との間に設けられ、室外熱交換器103から高圧側接続配管106の方向へのみ冷媒の流通を許容する。逆止弁105bは、四方弁102と低圧側接続配管107との間に設けられ、低圧側接続配管107から四方弁102の方向へのみ冷媒の流通を許容する。逆止弁105cは、四方弁102と高圧側接続配管106との間に設けられ、四方弁102から高圧側接続配管106の方向へのみ冷媒の流通を許容する。逆止弁105dは、室外熱交換器103と低圧側接続配管107との間に設けられ、低圧側接続配管107から室外熱交換器103の方向へのみ冷媒の流通を許容するようになっている。
The air-conditioning refrigeration cycle 1 connects the heat source unit A, the indoor units B and C connected in parallel to each other, the hot water supply heat source circuit D, the heat source unit A, the indoor units B and C, and the hot water supply heat source circuit D. It is comprised from the relay machine E.
The heat source machine A includes an air conditioning compressor 101, a four-way valve 102 that is connected to the air conditioning compressor 101 and switches a refrigerant flow direction, an outdoor heat exchanger 103, and the four-way valve 102 and the air conditioning compressor 101. It is mainly comprised from the accumulator 104 connected to. Furthermore, a check valve 105a, a check valve 105b, a check valve 105c, and a check valve 105d are provided. The check valve 105 a is provided between the outdoor heat exchanger 103 and the high-pressure side connection pipe 106, and allows the refrigerant to flow only from the outdoor heat exchanger 103 toward the high-pressure side connection pipe 106. The check valve 105 b is provided between the four-way valve 102 and the low-pressure side connection pipe 107 and allows the refrigerant to flow only from the low-pressure side connection pipe 107 to the four-way valve 102. The check valve 105 c is provided between the four-way valve 102 and the high-pressure side connection pipe 106 and allows the refrigerant to flow only from the four-way valve 102 to the high-pressure side connection pipe 106. The check valve 105 d is provided between the outdoor heat exchanger 103 and the low-pressure side connection pipe 107, and allows the refrigerant to flow only from the low-pressure side connection pipe 107 to the outdoor heat exchanger 103. .

また、室内機B、Cは、それぞれ、空調用の室内熱交換器118と、各室内熱交換器118に近接して直列接続された空調用絞り手段117とを備えている。空調用絞り手段117は、冷房時には室内熱交換器118の出口側の冷媒の過熱度により、暖房時には同じく出口側の冷媒の過冷却度により、各空調用絞り手段117を流れる冷媒の流量を制御する。給湯熱源用回路Dは、給湯用冷凍サイクル2と共有する冷媒−冷媒熱交換器41の片側の冷媒流路と、冷媒−冷媒熱交換器41に近接して前記片側の冷媒流路に直列接続された給湯熱源用絞り手段119とを備えている。給湯熱源用回路Dは各室内熱交換器118と互いに並列に配置されている。 Each of the indoor units B and C includes an indoor heat exchanger 118 for air conditioning, and an air conditioning throttle means 117 connected in series to each indoor heat exchanger 118. The air-conditioning throttle means 117 controls the flow rate of the refrigerant flowing through each air-conditioning throttle means 117 according to the degree of superheat of the refrigerant on the outlet side of the indoor heat exchanger 118 during cooling and according to the degree of refrigerant subcooling during the heating. To do. The hot water supply heat source circuit D is connected in series to the refrigerant flow path on one side of the refrigerant-refrigerant heat exchanger 41 shared with the refrigeration cycle 2 for hot water supply and to the refrigerant flow path on the one side close to the refrigerant-refrigerant heat exchanger 41. The hot water supply heat source throttling means 119 is provided. The hot water supply heat source circuit D is arranged in parallel with each indoor heat exchanger 118.

中継機Eは、四方弁102と接続された低圧側接続配管107、および室外熱交換器103と接続され低圧側接続配管107よりも細い高圧側接続配管106によって熱源機Aと接続される。また、室内機B、Cの各室内熱交換器118と接続された室内機側の接続配管107a、107a、・・および室内機B、Cの各空調用絞り手段117に接続された室内機側の接続配管117a、117a、・・によって各室内機B、Cと接続され、給湯熱源側の接続配管107aおよび給湯熱源用絞り手段119に接続された接続配管117aによって給湯熱源用回路Dと接続される。 The relay machine E is connected to the heat source machine A by a low-pressure side connection pipe 107 connected to the four-way valve 102 and a high-pressure side connection pipe 106 connected to the outdoor heat exchanger 103 and narrower than the low-pressure side connection pipe 107. Also, the indoor unit side connection pipes 107a, 107a connected to the indoor heat exchangers 118 of the indoor units B and C, and the indoor unit side connected to the air conditioning throttle means 117 of the indoor units B and C. Are connected to the indoor units B and C by the connection pipes 117a, 117a,..., And connected to the hot water supply heat source circuit D by the connection pipe 117a connected to the hot water supply heat source side connection pipe 107a and the hot water supply heat source throttle means 119. The

第一の分配部109は、室内機側および給湯熱源側の接続配管107a、107a、・・・を、低圧側接続配管107または高圧側接続配管106に選択的に接続するものである。この第一の分配部109は、一端が室内機側および給湯熱源側の接続配管107a、107a、・・・にそれぞれ接続され、他端が一括されて低圧側接続配管107に接続された5個の弁手段109aと、一端が室内機側および給湯熱源側の接続配管107a、107a、・・・にそれぞれ接続され、他端が一括されて高圧側接続配管106に接続された5個の弁手段109bとを備えている。弁手段109aを開路、弁手段109bを閉路することにより、室内機側および給湯熱源側の接続配管107a、107a、・・・を低圧側接続配管107に接続し、弁手段109aを閉路、弁手段109bを開路することにより、室内機側および給湯熱源側の接続配管107a、107a、・・・を高圧側接続配管106に接続するようになっている。 The first distribution unit 109 selectively connects the connection pipes 107a, 107a,... On the indoor unit side and the hot water supply heat source side to the low-pressure side connection pipe 107 or the high-pressure side connection pipe 106. The first distribution unit 109 is connected to the connection pipes 107 a, 107 a,... On the indoor unit side and the hot water supply heat source side, respectively, and the other end is collectively connected to the low-pressure side connection pipe 107. Of the valve unit 109a and one end thereof are connected to the connection pipes 107a, 107a,... On the indoor unit side and the hot water supply heat source side, respectively, and the other end is collectively connected to the high-pressure side connection pipe 106. 109b. By opening the valve means 109a and closing the valve means 109b, the connection pipes 107a, 107a,... On the indoor unit side and the hot water supply heat source side are connected to the low pressure side connection pipe 107, and the valve means 109a is closed and valve means. By opening 109b, the connection pipes 107a, 107a,... On the indoor unit side and the hot water supply heat source side are connected to the high-pressure side connection pipe 106.

気液分離器108は高圧側接続配管106の途中に設けられ、その気相部は、第一の分配部109の弁手段109aに接続され、その液相部は第二の分配部110に接続されている。 The gas-liquid separator 108 is provided in the middle of the high-pressure side connection pipe 106, the gas phase part is connected to the valve means 109 a of the first distribution part 109, and the liquid phase part is connected to the second distribution part 110. Has been.

第一の中継機用絞り手段112は気液分離器108と第二の分配部110との間に接続され、開閉が自在である。バイパス配管114aは第二の分配部110と低圧側接続配管107とを結んでいる。第二の中継機用絞り手段114はバイパス配管114aの途中に設けられている。第二の内部熱交換器113は、バイパス配管114aにおける第二の中継機用絞り手段114の下流部分と、第一の中継機用絞り手段112から第2の分配部110の第二の会合部116に至る配管との間で熱交換を行うものである。一方、第一の内部熱交換器111は、バイパス配管114aにおける第二の内部熱交換器113の下流部分と、気液分離器108と、第一の中継機用絞り手段112を接続する配管との間で熱交換を行う。 The first relay throttle unit 112 is connected between the gas-liquid separator 108 and the second distributor 110 and can be opened and closed freely. The bypass pipe 114 a connects the second distribution unit 110 and the low-pressure side connection pipe 107. The second relay throttle unit 114 is provided in the middle of the bypass pipe 114a. The second internal heat exchanger 113 includes a downstream portion of the second relay throttle unit 114 in the bypass pipe 114a and a second meeting portion of the second distributor 110 from the first relay throttle unit 112. Heat exchange is performed with the pipe reaching 116. On the other hand, the first internal heat exchanger 111 includes a pipe connecting the downstream portion of the second internal heat exchanger 113 in the bypass pipe 114a, the gas-liquid separator 108, and the first relay throttle means 112. Heat exchange between.

給湯用冷凍サイクル2は、給湯用圧縮機21と、空調用冷凍サイクル1と共有する冷媒−冷媒熱交換器41と、給湯用絞り手段22と、給湯負荷3と共有する水−冷媒熱交換器51とから回路状に構成されている。この給湯用冷凍サイクル2では、給湯用冷媒が循環し、水−冷媒熱交換器51にて給湯負荷3の水を加熱して湯を生成するようになっている。空調用冷凍サイクル1および給湯用冷凍サイクル2の各機器は冷媒配管を介して接続されている。 The hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a refrigerant-refrigerant heat exchanger 41 shared with the air conditioning refrigeration cycle 1, a hot water supply throttling means 22, and a water-refrigerant heat exchanger shared with the hot water supply load 3. 51 and a circuit configuration. In the hot water supply refrigeration cycle 2, hot water supply refrigerant circulates and water in the hot water supply load 3 is heated by a water-refrigerant heat exchanger 51 to generate hot water. Each device of the refrigeration cycle 1 for air conditioning and the refrigeration cycle 2 for hot water supply is connected via a refrigerant pipe.

給湯負荷3は、水循環用ポンプ31と、上記した水−冷媒熱交換器51と、貯湯タンク32とから回路状に構成されている。これらの機器は銅管、ステンレス管、鋼管、塩化ビニル系配管などを介して接続されている。 The hot water supply load 3 is configured in a circuit shape from a water circulation pump 31, the water-refrigerant heat exchanger 51 described above, and a hot water storage tank 32. These devices are connected via copper pipes, stainless steel pipes, steel pipes, vinyl chloride pipes, and the like.

そして、図2に示すように、給湯用冷凍サイクル2の給湯用圧縮機21を駆動制御する半導体装置63が、水−冷媒熱交換器51の表面に直に取り付けられている。この例において、図3に示すように、圧縮機制御用の電源装置(インバータ基板)61は、整流回路、電力昇圧装置、および電力変換装置とから構成されている。電力変換装置は、インバータ制御回路631を搭載した半導体装置63と電力制御装置とから構成されている。半導体装置63はスイッチング用パワー素子(ダイオード、トランジスタなど)をモジュール化(パワーモジュール)させ、パワー半導体デバイスのスイッチ動作によって、電力の変換を行う装置である。電力制御装置は半導体電力変換装置に目的の電圧、電流、周波数の信号を出力させるための制御装置である。半導体装置63では、入力が整流装置により交流から直流に変換され、直流信号が電力変換装置により直流信号から交流信号に変換される。このとき、圧縮機制御用の電源装置61は信号を目的の電圧、電流、周波数などに変換し、負荷を動作させるようになっている。尚、半導体装置63は作動により発熱する。また、整流回路付きの電力昇圧装置も発熱はするが、冷却が必要なほどの発熱はしない。   As shown in FIG. 2, a semiconductor device 63 that drives and controls the hot water supply compressor 21 of the hot water supply refrigeration cycle 2 is directly attached to the surface of the water-refrigerant heat exchanger 51. In this example, as shown in FIG. 3, the power supply device (inverter substrate) 61 for controlling the compressor is composed of a rectifier circuit, a power booster, and a power converter. The power conversion device includes a semiconductor device 63 on which an inverter control circuit 631 is mounted and a power control device. The semiconductor device 63 is a device that converts switching power elements (diodes, transistors, etc.) into modules (power modules), and converts power by switching operation of the power semiconductor devices. The power control device is a control device for causing the semiconductor power conversion device to output signals of a target voltage, current, and frequency. In the semiconductor device 63, the input is converted from AC to DC by the rectifier, and the DC signal is converted from the DC signal to the AC signal by the power converter. At this time, the power supply device 61 for controlling the compressor converts the signal into a target voltage, current, frequency, etc., and operates the load. The semiconductor device 63 generates heat when activated. The power booster with a rectifier circuit also generates heat, but does not generate heat that requires cooling.

また、この例において、水−冷媒熱交換器51は、図4のように、内部が空洞になった2次冷媒側扁平管511と水側扁平管512を張り合わせて、扁平管511、512の両端に配管516、517、514、515を接続して扁平管と配管を溶接して接続し、複数の張り合わせた扁平管511、512間で熱交換を行なう。半導体装置63は水側扁平管512に圧縮機制御用の電源装置61を固定するための金属板513をろう付けして、半導体装置63を金属板513に接触させてインバータ取り付け手段64で圧縮機制御用の電源装置61を固定する。半導体装置63は複数の張り合わせた扁平管に多くの熱が伝達する箇所(例えば、複数の張り合わせた扁平管の中央部分)に固定される。水側扁平管512は貯湯タンク32と水循環用ポンプ31との間、2次冷媒側扁平管511は給湯用圧縮機21と給湯用絞り手段22との間に構成される。第1の温度センサ518は半導体装置63の内部温度との相関の得られる位置(例えば金属板513における半導体装置63の近傍位置)に取り付けられる。 Further, in this example, as shown in FIG. 4, the water-refrigerant heat exchanger 51 is configured such that the secondary refrigerant-side flat tube 511 and the water-side flat tube 512 that are hollow inside are bonded to each other. Pipes 516, 517, 514, and 515 are connected to both ends, the flat pipe and the pipe are welded and connected, and heat exchange is performed between the plurality of flattened pipes 511 and 512. The semiconductor device 63 is brazed with a metal plate 513 for fixing the power supply device 61 for controlling the compressor to the water side flat tube 512, and the semiconductor device 63 is brought into contact with the metal plate 513, and the inverter mounting means 64 is used for controlling the compressor. The power supply device 61 is fixed. The semiconductor device 63 is fixed to a location where a large amount of heat is transferred to the plurality of flattened flat tubes (for example, the central portion of the plurality of flattened flat tubes). The water side flat tube 512 is configured between the hot water storage tank 32 and the water circulation pump 31, and the secondary refrigerant side flat tube 511 is configured between the hot water supply compressor 21 and the hot water supply throttle means 22. The first temperature sensor 518 is attached to a position where a correlation with the internal temperature of the semiconductor device 63 is obtained (for example, a position near the semiconductor device 63 on the metal plate 513).

上記したように構成された空調複合給湯装置の動作を以下に説明する。ここでは、室内機Bが冷房運転を行ない、室内機Cが暖房運転を行ない、給湯熱源用回路Dが給湯に利用される例を説明する。
図1の空調用冷凍サイクル1において、空調用圧縮機101にて圧縮された高温高圧のガス冷媒は四方弁102と逆止弁105cを通り、気液分離器108に入る。気液分離器108の過熱ガス状態の空調用冷媒の一部は、第一の分配部109に入り弁手段109a、109a、・・・のうちで、開いている回路(暖房用の室内機Cと湯熱源用回路D)に分配される。分配された冷媒は暖房用の室内機Cまたは給湯熱源用回路Dを通って放熱し、第一の会合部115にて合流する。
The operation of the air conditioning combined hot water supply apparatus configured as described above will be described below. Here, an example will be described in which the indoor unit B performs a cooling operation, the indoor unit C performs a heating operation, and the hot water supply heat source circuit D is used for hot water supply.
In the air-conditioning refrigeration cycle 1 of FIG. 1, the high-temperature and high-pressure gas refrigerant compressed by the air-conditioning compressor 101 passes through the four-way valve 102 and the check valve 105 c and enters the gas-liquid separator 108. A part of the superheated air-conditioning refrigerant in the gas-liquid separator 108 enters the first distribution unit 109 and is open among the valve means 109a, 109a,... (The indoor unit C for heating). And the hot water source circuit D). The distributed refrigerant radiates heat through the indoor unit C for heating or the hot water supply heat source circuit D, and joins at the first meeting unit 115.

また、気液分離器108に至る過熱ガス状態の空調用冷媒の一部は第一の内部熱交換器111にて、第二の中継機用絞り手段114にて低温低圧に膨張した冷媒と熱交換を行うことにより過冷却度を得る。続いて、第一の中継機用絞り手段112を通り、第一の会合部115を経た空調用冷媒と合流する。合流した冷媒は、第二の内部熱交換器113において、第二の中継機用絞り手段114で低温低圧に膨張した冷媒と熱交換を行うことにより過冷却度を得た後、第二の会合部116を通る冷媒と、バイパス配管114aの第二の中継機用絞り手段114を通る冷媒とに分配される。 A part of the superheated gas conditioning refrigerant reaching the gas-liquid separator 108 is heated by the first internal heat exchanger 111 and the refrigerant and heat expanded to low temperature and low pressure by the second relay throttle unit 114. The degree of supercooling is obtained by replacement. Subsequently, it passes through the first repeater throttle means 112 and merges with the air conditioning refrigerant that has passed through the first meeting portion 115. In the second internal heat exchanger 113, the merged refrigerant obtains the degree of supercooling by performing heat exchange with the refrigerant expanded to low temperature and low pressure by the second relay throttle means 114, and then the second association. The refrigerant passes through the section 116 and the refrigerant passing through the second relay throttle unit 114 of the bypass pipe 114a.

第二の会合部116を通る冷媒は、弁手段109bが開いている回路(冷房用の室内機B)に分配され、空調用絞り手段117にて低温低圧に膨張し、冷房用の室内機Bの室内熱交換器118で蒸発して室内空気を冷却したのち、低圧側接続配管107に流入する。 The refrigerant passing through the second meeting portion 116 is distributed to the circuit (the cooling indoor unit B) in which the valve means 109b is opened, and is expanded to a low temperature and low pressure by the air conditioning throttle means 117, and the cooling indoor unit B is cooled. The indoor heat exchanger 118 evaporates to cool the indoor air, and then flows into the low-pressure side connection pipe 107.

また、第二の中継機用絞り手段114を通った冷媒は、第一、第二の内部熱交換器111、113にて熱交換を行って蒸発し、冷房用の室内機Bを経た冷媒と低圧側接続配管107で合流する。合流した冷媒は逆止弁105dによって室外熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレータ104を経て空調用圧縮機101へ戻る。 In addition, the refrigerant that has passed through the second relay unit throttle means 114 undergoes heat exchange in the first and second internal heat exchangers 111 and 113, evaporates, and passes through the cooling indoor unit B. Merge at the low-pressure side connecting pipe 107. The merged refrigerant is guided to the outdoor heat exchanger 103 by the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and returns to the air conditioning compressor 101 via the four-way valve 102 and the accumulator 104.

次に、給湯用冷凍サイクル2の動作について説明する。給湯用圧縮機21を出た給湯用冷媒は、水−冷媒熱交換器51にて熱交換により給湯負荷3の水を加熱し、空調用冷凍サイクル1の給湯熱源用回路Dにおける水−冷媒熱交換器51の出口温度以下まで給湯用絞り手段22によって膨張する。膨張した給湯用冷媒は、冷媒−冷媒熱交換器41にて、給湯熱源用回路Dを流れる空調用冷媒から受熱して蒸発し、給湯用圧縮機21へ戻る。 Next, the operation of the hot water supply refrigeration cycle 2 will be described. The hot-water supply refrigerant exiting the hot-water supply compressor 21 heats the water in the hot-water supply load 3 by heat exchange in the water-refrigerant heat exchanger 51, and the water-refrigerant heat in the hot water supply heat source circuit D of the refrigeration cycle 1 for air conditioning. The hot water supply squeezing means 22 expands below the outlet temperature of the exchanger 51. The expanded hot water supply refrigerant receives heat from the air conditioning refrigerant flowing through the hot water supply heat source circuit D in the refrigerant-refrigerant heat exchanger 41 and evaporates, and returns to the hot water supply compressor 21.

次に、給湯負荷3の動作について説明する。貯湯タンク32の底部から比較的低温の状態で出た水は、水循環用ポンプ31にて加圧され、水−冷媒熱交換器51にて給湯用冷媒と熱交換して加熱された後、貯湯タンク32へ戻る。 Next, the operation of the hot water supply load 3 will be described. The water discharged from the bottom of the hot water storage tank 32 at a relatively low temperature is pressurized by the water circulation pump 31 and heated by exchanging heat with the hot water supply refrigerant in the water-refrigerant heat exchanger 51. Return to tank 32.

そして、給湯用冷凍サイクル2では、インバータ制御回路631を搭載した半導体装置63が動作して給湯用圧縮機21が駆動し、半導体装置63はインバータとして動作して発熱し、装置温度が上昇する。半導体装置63の排熱は金属板513を介して水側扁平管512に与えられ、熱を与えられた水側扁平管512の給湯負荷3の温水は貯湯タンク32へ流れ、循環する。 In the hot water supply refrigeration cycle 2, the semiconductor device 63 on which the inverter control circuit 631 is mounted operates to drive the hot water supply compressor 21, and the semiconductor device 63 operates as an inverter to generate heat and the device temperature rises. The exhaust heat of the semiconductor device 63 is given to the water side flat tube 512 via the metal plate 513, and the hot water of the hot water supply load 3 of the water side flat tube 512 to which heat is applied flows to the hot water storage tank 32 and circulates.

このとき、半導体装置63の発熱とともに水−冷媒熱交換器51の水側扁平管512の温度も上昇する。第1の温度センサ518の検出値が、半導体装置63を保護するために予め設定されている上限温度よりも高くなると、給湯用圧縮機21を停止させて半導体装置63の温度低下を待つ。その間、空調用冷凍サイクル1も運転を抑制する。第1の温度センサ518の検出値が設定温度よりも低下すると、給湯用圧縮機21が動作して水−冷媒熱交換器51を通じて水側扁平管512に熱を供給し、再び目標温度に到達させる動作を行う。 At this time, the temperature of the water side flat tube 512 of the water-refrigerant heat exchanger 51 also rises with the heat generation of the semiconductor device 63. When the detection value of the first temperature sensor 518 becomes higher than the upper limit temperature set in advance to protect the semiconductor device 63, the hot water supply compressor 21 is stopped and the temperature of the semiconductor device 63 is waited for. Meanwhile, the refrigeration cycle 1 for air conditioning also suppresses operation. When the detected value of the first temperature sensor 518 falls below the set temperature, the hot water supply compressor 21 operates to supply heat to the water side flat tube 512 through the water-refrigerant heat exchanger 51 and reach the target temperature again. To perform the operation.

以上のように、半導体装置63の排熱は空気を介さずに直接、水−冷媒熱交換器51に伝達されるため、半導体装置63の排熱を効率よく温水に利用できる。 As described above, the exhaust heat of the semiconductor device 63 is directly transmitted to the water-refrigerant heat exchanger 51 without using air, so that the exhaust heat of the semiconductor device 63 can be efficiently used for hot water.

一般に、給湯用冷媒サイクル2および給湯負荷3は、密閉された空間である機械室などに設置されることが多いため、給湯用圧縮機21の動作時に半導体装置63が周囲空気に対して排熱を続けると排熱が機械室に溜まりやすい。しかしながら、本実施形態の空調複合給湯装置によれば、半導体装置63からの排熱が機械室に溜まることを防ぐことができる。 In general, since the hot water supply refrigerant cycle 2 and the hot water supply load 3 are often installed in a machine room or the like that is a sealed space, the semiconductor device 63 exhausts heat from the ambient air when the hot water supply compressor 21 operates. If you continue, waste heat will easily accumulate in the machine room. However, according to the air conditioning combined hot water supply apparatus of this embodiment, it is possible to prevent the exhaust heat from the semiconductor device 63 from accumulating in the machine room.

金属板513に半導体装置63を直に接触させ、排熱を水−冷媒熱交換器51に直に伝導することができるので、半導体装置63に風を送って冷却する必要がない。そのためにファンとヒートシンクを撤去できるから、信頼性が向上すると共にコストの低減ができる。 Since the semiconductor device 63 is brought into direct contact with the metal plate 513 and the exhaust heat can be directly conducted to the water-refrigerant heat exchanger 51, it is not necessary to send air to the semiconductor device 63 for cooling. Therefore, since the fan and the heat sink can be removed, the reliability can be improved and the cost can be reduced.

金属板513に半導体装置63を直に接触させ、空気を介さず排熱を水−冷媒熱交換器51に直接伝導するので、電気品箱の形状を小型化することができる。 Since the semiconductor device 63 is brought into direct contact with the metal plate 513 and the exhaust heat is directly conducted to the water-refrigerant heat exchanger 51 without air, the shape of the electrical component box can be reduced in size.

給湯負荷3は温水のみの利用であるため、水−冷媒熱交換器51に排熱を与えれば与えるほど温水の加熱に貢献できるので、排熱を有効利用することができ、給湯用冷凍サイクル2の給湯用圧縮機21に出力されるインバータ制御回路631を搭載した半導体装置63からの運転周波数を下げることもできる。   Since the hot water supply load 3 uses only hot water, the more heat is supplied to the water-refrigerant heat exchanger 51, the more heat water can be contributed to the heating of the hot water. Therefore, the exhaust heat can be used effectively, and the hot water supply refrigeration cycle 2 The operating frequency from the semiconductor device 63 on which the inverter control circuit 631 that is output to the hot water supply compressor 21 is mounted can also be lowered.

半導体装置63の排熱を水側扁平管512に与えることによって空調用冷凍サイクル1や給湯用冷凍サイクル2は運転を抑制するため、それぞれのサイクル1、2から余分な熱が発生することを防ぐことができる。給湯負荷3の水温は半導体装置63から熱を与え続けられるため、急激に温度低下することを防ぐことができる。   By applying the exhaust heat of the semiconductor device 63 to the water-side flat tube 512, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are restrained from operating, thereby preventing excessive heat from being generated from the respective cycles 1 and 2. be able to. Since the water temperature of the hot water supply load 3 can be continuously supplied with heat from the semiconductor device 63, it is possible to prevent the temperature from rapidly decreasing.

この空調複合給湯装置は、温水を概ね90℃以下(本実施の形態では最大70℃)に加熱する装置であるため、水−冷媒熱交換器51などが比較的高温ではあっても半導体装置63を100℃以下に冷却することは可能である。また、給湯負荷3の温水温度は70℃と常に周囲空気温度よりも高いため、冷えすぎにより半導体装置63が結露することがない。 This air conditioning combined hot-water supply apparatus is an apparatus that heats hot water to approximately 90 ° C. or less (maximum 70 ° C. in the present embodiment). Can be cooled to 100 ° C. or lower. In addition, since the hot water temperature of the hot water supply load 3 is always higher than the ambient air temperature of 70 ° C., the semiconductor device 63 does not condense due to excessive cooling.

尚、図1において、第二の分配部110の逆止弁110a、110bは、電磁弁のような弁手段で代用することによって、より確実に流路切り替えを行なうようにすることも可能である。 In FIG. 1, the check valves 110a and 110b of the second distributor 110 may be replaced with valve means such as an electromagnetic valve to switch the flow path more reliably. .

また、第一の中継機用絞り手段112、第二の中継機用絞り手段114、空調用絞り手段117、給湯熱源用絞り手段119、給湯用絞り手段22は、毛細管等からなる安価な冷媒流量調節手段、あるいは電子膨張弁による緻密な流量制御手段のいずれを使用することもできる。 In addition, the first relay unit throttle unit 112, the second relay unit throttle unit 114, the air conditioning throttle unit 117, the hot water supply heat source throttle unit 119, and the hot water supply throttle unit 22 are inexpensive refrigerant flow rates made of capillaries or the like. Either adjusting means or precise flow rate control means using an electronic expansion valve can be used.

また、空調用圧縮機101はレシプロ、ロータリー、スクロール、スクリューなどの各種タイプのいずれのものを用いてもよく、回転数可変可能のものでも、回転数固定のものを用いても原理的には変わらない。給湯用圧縮機21も同様であるが、給湯用圧縮機21は回転数可変の物を想定し、可変手段としての圧縮機制御用の電源装置61が電気品箱内に搭載されている。 The air-conditioning compressor 101 may be of various types such as reciprocating, rotary, scroll, screw, etc., and in principle it can be used either with a variable speed or with a fixed speed. does not change. The hot-water supply compressor 21 is the same, but the hot-water supply compressor 21 is assumed to have a variable rotation speed, and a power supply 61 for controlling the compressor as a variable means is mounted in the electrical component box.

また、空調用冷凍サイクル1と給湯用冷凍サイクル2の回路内を流れる冷媒の種類は、二酸化炭素、炭化水素、ヘリウム、のような自然冷媒、HFC410A、HFC407C、HFC404Aなどの代替冷媒など塩素を含まない冷媒、若しくは既存の製品に使用されているR22、R134aなどのフロン系冷媒のいずれを使用してもよい。 In addition, the types of refrigerants flowing in the circuits of the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 include chlorine, such as natural refrigerants such as carbon dioxide, hydrocarbons, and helium, alternative refrigerants such as HFC410A, HFC407C, and HFC404A. None of the refrigerants or CFC refrigerants such as R22 and R134a used in existing products may be used.

また、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、それぞれ独立した冷媒回路になっているが、内部を流れる冷媒は同じ種類のものでもよいし、別の種類のものでも構わない。すなわち、それぞれ混ざることなく冷媒−冷媒熱交換器41、水−冷媒熱交換器51にて互いに熱交換をするように構成される。 The air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuits, but the refrigerant flowing through the inside may be the same type or different types. That is, the refrigerant-refrigerant heat exchanger 41 and the water-refrigerant heat exchanger 51 are configured to exchange heat with each other without being mixed.

また、空調用冷凍サイクル1において余剰冷媒を受液器によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵することとして受液器を取り除いてもよい。 Moreover, although the case where the excess refrigerant | coolant was stored with a liquid receiver in the air-conditioning refrigerating cycle 1 was shown, it is not restricted to this, A liquid receiver is stored as a heat exchanger used as a heat radiator in a refrigerating cycle. May be removed.

尚、図5に示すように、半導体装置63を冷媒−冷媒熱交換器41の表面に直に取り付けても構わない。これにより、半導体装置63の排熱が冷媒−冷媒熱交換器41に与えられて半導体装置63が冷却される。 As shown in FIG. 5, the semiconductor device 63 may be attached directly to the surface of the refrigerant-refrigerant heat exchanger 41. Thereby, the exhaust heat of the semiconductor device 63 is given to the refrigerant-refrigerant heat exchanger 41, and the semiconductor device 63 is cooled.

このような構成では、第1の温度センサ518の検出値が、半導体装置63を保護するために予め設定されている上限温度よりも高くなると、給湯用圧縮機21を停止させて半導体装置63の温度低下を待つ。その間、空調用冷凍サイクル1も運転を抑制し、余分な熱を発生させない。上限温度よりも第1の温度センサ519の検出値が低くなると、給湯用圧縮機21が動作して半導体装置63が発熱し、冷媒−冷媒熱交換器41に排熱が供給される。
従って、半導体装置63の排熱が冷媒−冷媒熱交換器41に与えられて半導体装置63が冷却される。すなわち、図2に示した構成の場合と同様の効果が得られる。
また、図2に示した水−冷媒熱交換器51に排熱を与える場合よりも半導体装置63を冷媒により低温で冷却できるため、半導体装置63の半導体の寿命を延ばすことができる。
In such a configuration, when the detected value of the first temperature sensor 518 becomes higher than an upper limit temperature set in advance to protect the semiconductor device 63, the hot water supply compressor 21 is stopped and the semiconductor device 63 Wait for the temperature to drop. Meanwhile, the air-conditioning refrigeration cycle 1 also suppresses operation and does not generate excessive heat. When the detected value of the first temperature sensor 519 becomes lower than the upper limit temperature, the hot water supply compressor 21 operates to generate heat in the semiconductor device 63, and exhaust heat is supplied to the refrigerant-refrigerant heat exchanger 41.
Therefore, the exhaust heat of the semiconductor device 63 is given to the refrigerant-refrigerant heat exchanger 41, and the semiconductor device 63 is cooled. That is, the same effect as in the case of the configuration shown in FIG. 2 can be obtained.
In addition, since the semiconductor device 63 can be cooled by the refrigerant at a lower temperature than when exhaust heat is applied to the water-refrigerant heat exchanger 51 shown in FIG. 2, the life of the semiconductor of the semiconductor device 63 can be extended.

尚、図1にて、冷房用の室内機Bと暖房用の室内機Cとがそれぞれ2台以上の場合について図示しているが、図1では冷房用の室内機Bが1台以上、暖房用の室内機Cが無いか若しくは1台以上であってもよい。また、それぞれの室内機B、Cは容量が大から小まで異なっていても、全てが同一でもよい。 In FIG. 1, a case where there are two or more indoor units B for cooling and two indoor units C for heating is illustrated, but in FIG. 1, one or more indoor units B for cooling are heated. There may be no indoor unit C for use or one or more units. In addition, each of the indoor units B and C may have the same capacity from a large capacity to a small capacity.

排熱を生じる熱媒体は半導体装置63であるが、半導体装置63が複数であってもかまわない。上記の場合、半導体装置63の排熱を水−冷媒熱交換器51のよく伝達できる位置に取り付けるものとする。また、発熱する媒体は金属板513に取り付け得る形状、構造の電子部品(例えば、ダイオード、トランスなど)ならば何でもよい。 The heat medium that generates exhaust heat is the semiconductor device 63, but there may be a plurality of semiconductor devices 63. In the above case, the exhaust heat of the semiconductor device 63 is attached to a position where the water-refrigerant heat exchanger 51 can be transmitted well. The medium that generates heat may be any electronic component (for example, a diode or a transformer) having a shape and structure that can be attached to the metal plate 513.

第1の温度センサ518は、圧縮機制御用の電源装置61を固定するための金属板513に取り付け可能な形状、構造を有し、かつ、半導体装置63の動作温度の上限から下限までを測定できる温度範囲のセンサであればよい。 The first temperature sensor 518 has a shape and a structure that can be attached to the metal plate 513 for fixing the power supply device 61 for controlling the compressor, and can measure the operating temperature of the semiconductor device 63 from the upper limit to the lower limit. Any sensor in the temperature range may be used.

半導体装置63を固定する金属板513はアルミニウムなどのように熱伝導率が高い材質で圧縮機制御用の電源装置61を支えられる強度があるものならば何でもよい。
また、この実施の形態においては、給湯用冷凍サイクル2により水−冷媒熱交換器51で加熱される媒体として、給湯負荷3で循環する水を例示したが、本発明に言う「水」とは純然たる水に限るものでなく、加熱されても支障のない純水以外の液体も含むものである。
The metal plate 513 for fixing the semiconductor device 63 may be any material having a high heat conductivity such as aluminum and having a strength capable of supporting the power supply device 61 for controlling the compressor.
Further, in this embodiment, the water circulated in the hot water supply load 3 is exemplified as the medium heated by the water-refrigerant heat exchanger 51 by the hot water supply refrigeration cycle 2, but “water” in the present invention means It is not limited to pure water, but also includes liquids other than pure water that do not interfere with heating.

尚、半導体装置63が取り付けられる熱交換器としては、図6(a)〜(d)に示すような種々の構成が例示される。例えば、(a)に示すように、銅製の扁平角管H(上記した扁平管511,512に相当)の2つをろう付けなどで貼り合わせたものであり、片面に金属板513がろう付けなどで接着される。この構成は水−冷媒熱交換器51以外に、冷媒−冷媒熱交換器41や、後述する水−冷媒サブ熱交換器9に適用可能である。(b)に示すものは、板状に形成されたアルミ成型多孔管Iの片面に、円管を押し潰した形状の楕円管J、J、・・・がろう付けなどで接着され、更に楕円管J、J、・・・に金属板513がろう付けなどで接着されたものである。この構成は水−冷媒熱交換器51以外に水−冷媒サブ熱交換器9に適用可能である。(c)に示すものは、(b)とは逆に、楕円管J、J、・・・がろう付けなどで接着されたアルミ成型多孔管Iの他面に、金属板513がろう付けなどで接着されたものである。この構成も水−冷媒熱交換器51以外に水−冷媒サブ熱交換器9に適用可能である。(d)に示すものは、アルミ成型多孔管Iの2つがろう付けなどで接着されたものである。この構成は冷媒−冷媒熱交換器41に適用可能である。 In addition, as a heat exchanger with which the semiconductor device 63 is attached, various structures as shown to Fig.6 (a)-(d) are illustrated. For example, as shown in (a), two copper rectangular tubes H (corresponding to the flat tubes 511 and 512 described above) are bonded together by brazing, and a metal plate 513 is brazed on one side. Glued with etc. In addition to the water-refrigerant heat exchanger 51, this configuration can be applied to the refrigerant-refrigerant heat exchanger 41 and the water-refrigerant sub-heat exchanger 9 described later. In (b), an elliptical tube J, J,... In which a circular tube is crushed is bonded to one surface of an aluminum molded porous tube I formed into a plate shape by brazing or the like. A metal plate 513 is bonded to the tubes J, J,... By brazing or the like. This configuration can be applied to the water-refrigerant sub heat exchanger 9 in addition to the water-refrigerant heat exchanger 51. In (c), contrary to (b), a metal plate 513 is brazed to the other surface of the aluminum molded porous tube I to which the elliptical tubes J, J,. It is glued with. This configuration can also be applied to the water-refrigerant sub heat exchanger 9 in addition to the water-refrigerant heat exchanger 51. In (d), two aluminum molded perforated pipes I are bonded by brazing or the like. This configuration is applicable to the refrigerant-refrigerant heat exchanger 41.

実施の形態2.
上記した実施の形態1では、半導体装置63の排熱を熱交換器51、41に与えるようにしたが、この実施形態2では半導体装置63の排熱を配管に与える空調複合給湯装置について説明する。
Embodiment 2. FIG.
In the first embodiment described above, the exhaust heat of the semiconductor device 63 is applied to the heat exchangers 51 and 41. However, in this second embodiment, an air conditioning combined hot water supply device that supplies the exhaust heat of the semiconductor device 63 to the pipe will be described. .

図7に示すように、半導体装置63は水−冷媒熱交換器51の出口側水配管34に取り付けられている。半導体装置63は、図8に示すように、両端に配管342、343を接続した複数の扁平管341、341、・・・に取り付けられる。この半導体装置63は、扁平管341に圧縮機制御用の電源装置61を固定するための金属板513をろう付けして、半導体装置63を金属板513に接触させてインバータ取り付け手段で圧縮機制御用の電源装置61を固定する。扁平管341は水−冷媒熱交換器51と貯湯タンク32との間に構成される。半導体装置63の内部温度との相関の得られる位置(例えば金属板513における半導体装置63の近傍位置)に第2の温度センサ519が取り付けられる。 As shown in FIG. 7, the semiconductor device 63 is attached to the outlet side water pipe 34 of the water-refrigerant heat exchanger 51. As shown in FIG. 8, the semiconductor device 63 is attached to a plurality of flat tubes 341, 341,... Having pipes 342, 343 connected to both ends. The semiconductor device 63 is brazed with a metal plate 513 for fixing the power supply device 61 for controlling the compressor to the flat tube 341, the semiconductor device 63 is brought into contact with the metal plate 513, and the inverter mounting means is used for controlling the compressor. The power supply device 61 is fixed. The flat tube 341 is configured between the water-refrigerant heat exchanger 51 and the hot water storage tank 32. A second temperature sensor 519 is attached to a position where a correlation with the internal temperature of the semiconductor device 63 is obtained (for example, a position in the vicinity of the semiconductor device 63 on the metal plate 513).

この実施形態における空調用冷凍サイクル1、給湯用冷凍サイクル2、および給湯負荷3も実施形態1と同様の動作を行なう。 The air-conditioning refrigeration cycle 1, the hot water supply refrigeration cycle 2, and the hot water supply load 3 in this embodiment perform the same operations as in the first embodiment.

そして、第2の温度センサ519の検出値が、半導体装置63を保護するために予め設定されている上限温度より高くなると、給湯用圧縮機21を停止させて半導体装置63の温度低下を待つ。その間、空調用冷凍サイクル1も運転を抑制し、余分な熱を発生しない。給湯負荷3の水温は半導体装置63から熱を与え続けられるため、急激に温度が低下することがない。設定温度よりも第2の温度センサ519の検出値が低下すると、給湯用圧縮機21が動作して出口側水配管34の扁平管341に熱を供給して、再び目標温度に到達させる動作を行う。 When the detected value of the second temperature sensor 519 becomes higher than an upper limit temperature set in advance to protect the semiconductor device 63, the hot water supply compressor 21 is stopped and the temperature of the semiconductor device 63 is waited for. Meanwhile, the refrigeration cycle 1 for air conditioning also suppresses operation and does not generate excessive heat. Since the water temperature of the hot water supply load 3 can continue to be supplied with heat from the semiconductor device 63, the temperature does not drop rapidly. When the detection value of the second temperature sensor 519 is lower than the set temperature, the hot water supply compressor 21 is operated to supply heat to the flat tube 341 of the outlet side water pipe 34 to reach the target temperature again. Do.

一般に、給湯用冷凍サイクル2や給湯負荷3は、密閉された空間である機械室に設置されるため、圧縮機21の動作時に半導体装置63が周囲空気に対して排熱を続けると排熱が機械室に溜まってしまう。しかしながら、本実施形態の装置であれば、排熱が機械室に溜まることを防ぐことができる。   In general, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are installed in a machine room that is a sealed space. Therefore, when the semiconductor device 63 continues to exhaust heat from the ambient air during the operation of the compressor 21, exhaust heat is generated. It accumulates in the machine room. However, the apparatus of the present embodiment can prevent exhaust heat from accumulating in the machine room.

半導体装置63を直に金属板513に接触させているため、排熱を直に水配管34、33に伝達することができるので、半導体装置63に風を送って冷却する必要がない。そのためにファンとヒートシンクが撤去できるため、信頼性が向上すると共にコストの低減ができる。また、半導体装置63を取り付ける場所の自由度が高くなる。 Since the semiconductor device 63 is in direct contact with the metal plate 513, the exhaust heat can be directly transmitted to the water pipes 34 and 33, so there is no need to send air to the semiconductor device 63 for cooling. Therefore, since the fan and the heat sink can be removed, the reliability can be improved and the cost can be reduced. In addition, the degree of freedom of the place where the semiconductor device 63 is attached is increased.

給湯負荷3は温水のみの利用であるため、水配管34、33に排熱を与えれば与えるほど温水の加熱に貢献できるので、排熱を有効利用することができ、給湯用冷凍サイクル2の圧縮機21に出力されるインバータ制御回路631を搭載した半導体装置63からの運転周波数を下げることもできる。 Since the hot water supply load 3 uses only hot water, the more heat is supplied to the water pipes 34 and 33, the more it can contribute to the heating of the hot water, so that the exhaust heat can be used effectively and the hot water supply refrigeration cycle 2 is compressed. The operating frequency from the semiconductor device 63 equipped with the inverter control circuit 631 output to the machine 21 can also be lowered.

水−冷媒熱交換器51から排出される温水は最大70℃に対して排熱するのみで熱交換器など他の部品へ熱を伝える等の影響はない。 The hot water discharged from the water-refrigerant heat exchanger 51 only exhausts heat to a maximum of 70 ° C. and does not affect the transfer of heat to other components such as a heat exchanger.

この空調複合給湯装置は、温水を概ね90℃以下(実施の形態では最大70℃)に加熱する装置であるため、水−冷媒熱交換器の出口側配管なども高温ではあるが、半導体装置63を100℃以下に冷却することは可能である。また、給湯負荷3の温水温度は常に周囲空気温度よりも高いため、冷えすぎによる半導体装置63の結露を生じることがない。 Since this air-conditioning combined hot water supply device is a device that heats hot water to approximately 90 ° C. or less (maximum 70 ° C. in the embodiment), the piping on the outlet side of the water-refrigerant heat exchanger and the like are also hot, but the semiconductor device 63 Can be cooled to 100 ° C. or lower. Further, since the hot water temperature of the hot water supply load 3 is always higher than the ambient air temperature, condensation of the semiconductor device 63 due to excessive cooling does not occur.

水側扁平管341は楕円状の配管など圧縮機制御用の電源装置61を固定するための金属板513がろう付けで固定され得る金属配管ならば形状は何でもよい。ただし、水配管と圧縮機制御用の電源装置61を固定するための金属板513の接触面積が小さい形状であると、排熱を配管に伝達する効率が悪くなるため、接触面積が大きい形状の配管の方がよい。 The water side flat tube 341 may have any shape as long as the metal plate 513 for fixing the power supply device 61 for controlling the compressor such as an elliptical pipe can be fixed by brazing. However, if the contact area of the metal plate 513 for fixing the water pipe and the power supply device 61 for controlling the compressor is small, the efficiency of transferring waste heat to the pipe is deteriorated, so the pipe having a large contact area. Is better.

排熱を与える場所、すなわち半導体装置63を取り付ける場所は、この例では水−冷媒熱交換器51の出口側水配管34としたが、水−冷媒熱交換器51の入口側水配管33でも構わない。 In this example, the outlet side water pipe 34 of the water-refrigerant heat exchanger 51 is used as the place where the waste heat is applied, that is, the place where the semiconductor device 63 is attached. However, the inlet side water pipe 33 of the water-refrigerant heat exchanger 51 may be used. Absent.

尚、半導体装置63が取り付けられる配管としては、図9(a)〜(c)に示すような種々の構成が例示される。例えば、(a)に示すように、銅製の扁平角管H(上記した扁平管511または512に相当)をろう付けなどで金属板513に接着したものである。この構成は水−冷媒熱交換器51の出口側水配管33,34以外に、冷媒−冷媒熱交換器41の出口側冷媒配管24に適用可能である。(b)に示すものは、楕円管Jをろう付けなどで金属板513に接着したものである。この構成も水−冷媒熱交換器51の出口側水配管34に適用可能である。(c)に示すものは、アルミ成型多孔管Iをろう付けなどで金属板513に接着したものである。この構成は冷媒−冷媒熱交換器41の出口側冷媒配管24に適用可能である。 The piping to which the semiconductor device 63 is attached is exemplified by various configurations as shown in FIGS. For example, as shown in (a), a copper flat rectangular tube H (corresponding to the flat tube 511 or 512 described above) is bonded to a metal plate 513 by brazing or the like. This configuration is applicable to the outlet side refrigerant pipe 24 of the refrigerant-refrigerant heat exchanger 41 in addition to the outlet side water pipes 33 and 34 of the water-refrigerant heat exchanger 51. In (b), the elliptic tube J is bonded to the metal plate 513 by brazing or the like. This configuration is also applicable to the outlet side water pipe 34 of the water-refrigerant heat exchanger 51. In (c), the aluminum molded porous tube I is bonded to the metal plate 513 by brazing or the like. This configuration can be applied to the outlet side refrigerant pipe 24 of the refrigerant-refrigerant heat exchanger 41.

尚、半導体装置63の排熱を図10のように冷媒−冷媒熱交換器41の出口側冷媒配管24、もしくは入口側冷媒配管23に与えるようにして、半導体装置63を冷却してもよい。 Alternatively, the semiconductor device 63 may be cooled by applying the exhaust heat of the semiconductor device 63 to the outlet side refrigerant pipe 24 or the inlet side refrigerant pipe 23 of the refrigerant-refrigerant heat exchanger 41 as shown in FIG.

上記の場合、第2の温度センサ519の検出値が、半導体装置63を保護するために予め設定されている上限温度より高くなるとき、給湯用圧縮機21を停止させて半導体装置63の温度低下を待つ。その間、空調用冷凍サイクル1も運転を抑制し、余分な熱を発生させない。上限温度よりも第2の温度センサ519の検出値が低下すると、給湯用圧縮機21が動作して半導体装置63が発熱し、冷媒配管24、23に排熱を供給する。この場合も、半導体装置63の排熱が冷媒−冷媒熱交換器41に与えられて半導体装置63が冷却され、図2に示した構成と同様の効果が得られる。 In the above case, when the detected value of the second temperature sensor 519 is higher than the upper limit temperature set in advance to protect the semiconductor device 63, the hot water supply compressor 21 is stopped to reduce the temperature of the semiconductor device 63. Wait for. Meanwhile, the air-conditioning refrigeration cycle 1 also suppresses operation and does not generate excessive heat. When the detected value of the second temperature sensor 519 is lower than the upper limit temperature, the hot water supply compressor 21 is operated, the semiconductor device 63 generates heat, and exhaust heat is supplied to the refrigerant pipes 24 and 23. Also in this case, the exhaust heat of the semiconductor device 63 is given to the refrigerant-refrigerant heat exchanger 41 to cool the semiconductor device 63, and the same effect as the configuration shown in FIG. 2 is obtained.

また、水−冷媒熱交換器51に接続されている水配管34、33に排熱を与えるときよりも半導体装置63を冷媒により低温で冷却できるため、半導体装置63の半導体の寿命を延ばすことができる。 In addition, since the semiconductor device 63 can be cooled with the refrigerant at a lower temperature than when exhaust heat is applied to the water pipes 34 and 33 connected to the water-refrigerant heat exchanger 51, the life of the semiconductor of the semiconductor device 63 can be extended. it can.

実施の形態3.
以上の実施の形態1、2では半導体装置63を熱交換器や配管の1箇所に接続したが、この実施形態では給湯用冷凍サイクル2と給湯用負荷3の配管の双方に半導体装置63の排熱を与えるようにした空調複合給湯装置を図11により説明する。
この実施形態の給湯用冷凍サイクル7は、給湯用圧縮機21と、水−冷媒熱交換器51と、給湯用絞り手段22と、冷媒−冷媒熱交換器41と、弁手段71と、逆止弁72と、逆止弁73と、水−冷媒サブ熱交換器9とによって構成される。給湯負荷8は、水循環用ポンプ31と、水−冷媒熱交換器51と、弁手段81と、逆止弁82と、逆止弁83と、貯湯タンク32とによって構成される。
Embodiment 3 FIG.
In the first and second embodiments described above, the semiconductor device 63 is connected to one place of the heat exchanger and piping. However, in this embodiment, the semiconductor device 63 is discharged to both the hot water supply refrigeration cycle 2 and the hot water supply load 3 piping. An air-conditioning combined hot water supply apparatus that applies heat will be described with reference to FIG.
The hot water supply refrigeration cycle 7 of this embodiment includes a hot water supply compressor 21, a water-refrigerant heat exchanger 51, a hot water supply throttle means 22, a refrigerant-refrigerant heat exchanger 41, a valve means 71, and a check. The valve 72, the check valve 73, and the water-refrigerant sub heat exchanger 9 are configured. The hot water supply load 8 includes a water circulation pump 31, a water-refrigerant heat exchanger 51, valve means 81, a check valve 82, a check valve 83, and a hot water storage tank 32.

水−冷媒サブ熱交換器9は、冷媒−冷媒熱交換器41出側から給湯用圧縮機21入側までの出口側冷媒配管24に並列に接続された並列冷媒配管241と、水−冷媒熱交換器51出側から貯湯タンク32までの出口側水配管34に並列に接続された並列水配管344との間で熱交換を行なうように構成されている。水−冷媒サブ熱交換器9入側の並列冷媒配管241に弁手段71が配備されている。水−冷媒サブ熱交換器9出側の並列冷媒配管241に、水−冷媒サブ熱交換器9から流出する方向にのみ冷媒の流れを許容する逆止弁72が配備されている。並列冷媒配管241の分岐位置と合流位置の間における出口側冷媒配管24に、給湯用圧縮機21に向かう方向にのみ冷媒の流れを許容する逆止弁73が配備されている。水−冷媒サブ熱交換器9入側の並列水配管344に弁手段81が配備されている。水−冷媒サブ熱交換器9出側の並列水配管344に、水−冷媒サブ熱交換器9から流出する方向にのみ水の流れを許容する逆止弁82が配備されている。並列水配管344の分岐位置と合流位置の間における出口側水配管34に、貯湯タンク32に向かう方向にのみ水の流れを許容する逆止弁83が配備されている。給湯用冷凍サイクル7の給湯用圧縮機21を駆動制御するインバータ制御回路631を搭載した半導体装置63が、水−冷媒サブ熱交換器9の表面に取り付けられている。 The water-refrigerant sub heat exchanger 9 includes a parallel refrigerant pipe 241 connected in parallel to the outlet-side refrigerant pipe 24 from the refrigerant-refrigerant heat exchanger 41 outlet side to the hot water supply compressor 21 inlet side, and water-refrigerant heat. Heat exchange is performed with the parallel water pipe 344 connected in parallel to the outlet side water pipe 34 from the outlet side of the exchanger 51 to the hot water storage tank 32. Valve means 71 is provided in the parallel refrigerant pipe 241 on the inlet side of the water-refrigerant sub heat exchanger 9. A check valve 72 that allows the refrigerant to flow only in the direction of flowing out of the water-refrigerant sub-heat exchanger 9 is provided in the parallel refrigerant pipe 241 on the outlet side of the water-refrigerant sub-heat exchanger 9. A check valve 73 that allows the refrigerant to flow only in the direction toward the hot water supply compressor 21 is disposed in the outlet side refrigerant pipe 24 between the branch position and the merge position of the parallel refrigerant pipe 241. Valve means 81 is provided in the parallel water pipe 344 on the inlet side of the water-refrigerant sub heat exchanger 9. A check valve 82 that allows the flow of water only in the direction of flowing out of the water-refrigerant sub heat exchanger 9 is provided in the parallel water pipe 344 on the outlet side of the water-refrigerant sub heat exchanger 9. A check valve 83 that allows the flow of water only in the direction toward the hot water storage tank 32 is provided in the outlet side water pipe 34 between the branch position and the merge position of the parallel water pipe 344. A semiconductor device 63 on which an inverter control circuit 631 that drives and controls the hot water supply compressor 21 of the hot water supply refrigeration cycle 7 is mounted on the surface of the water-refrigerant sub heat exchanger 9.

水−冷媒サブ熱交換器9は、2次冷媒側扁平管511と水側扁平管512を張り合わせて、扁平管511、512の両端にそれぞれ配管516、517、514、515を接続し、扁平管511、512間で熱交換をする。半導体装置63は水側扁平管512にインバータ制御回路631を搭載した半導体装置63を固定するための金属板513をろう付けして、半導体装置63を金属板513に接触させてインバータ取り付け手段で半導体装置63を固定する。水側扁平管512は水−冷媒熱交換器51と貯湯タンク32との間、2次冷媒側扁平管511は冷媒−冷媒熱交換器41と給湯用圧縮機21との間に構成される。半導体装置63の内部温度との相関の得られる位置(例えば金属板513の半導体装置63の近傍位置)に第3の温度センサ520が取り付けられる。 The water-refrigerant sub heat exchanger 9 has a secondary refrigerant side flat tube 511 and a water side flat tube 512 bonded together, and pipes 516, 517, 514, 515 are connected to both ends of the flat tubes 511, 512, respectively. Heat exchange is performed between 511 and 512. In the semiconductor device 63, a metal plate 513 for fixing the semiconductor device 63 on which the inverter control circuit 631 is mounted is brazed to the water side flat tube 512, the semiconductor device 63 is brought into contact with the metal plate 513, and the semiconductor is mounted by the inverter mounting means. The device 63 is fixed. The water-side flat tube 512 is configured between the water-refrigerant heat exchanger 51 and the hot water storage tank 32, and the secondary refrigerant-side flat tube 511 is configured between the refrigerant-refrigerant heat exchanger 41 and the hot water supply compressor 21. The third temperature sensor 520 is attached to a position where a correlation with the internal temperature of the semiconductor device 63 is obtained (for example, a position in the vicinity of the semiconductor device 63 of the metal plate 513).

給湯用冷凍サイクル7では、給湯用圧縮機21を出た給湯用冷媒が、水−冷媒熱交換器51にて水を加熱して熱交換し、給湯用絞り手段22にて空調用冷凍サイクル1の給湯熱源用回路Dにおける水−冷媒熱交換器51の出口温度以下まで膨張し、冷媒−冷媒熱交換器41にて、給湯熱源用回路Dを流れる空調用冷媒から受熱して蒸発し、弁手段71を通り、水−冷媒サブ熱交換器9で排熱を受熱し、逆止弁72に導かれて給湯用圧縮機21へ戻る。また、冷媒−冷媒熱交換器41から蒸発した冷媒は弁手段71を通らずに逆止弁73に導かれて逆止弁72から流れる冷媒と合流し、給湯用圧縮機21へ戻る。上記の各機器は冷媒配管を介して接続されている。 In the hot water supply refrigeration cycle 7, the hot water supply refrigerant that exits the hot water supply compressor 21 heats water by the water-refrigerant heat exchanger 51 to exchange heat, and the hot water supply squeezing means 22 performs the air conditioning refrigeration cycle 1. The hot water supply heat source circuit D expands to a temperature equal to or lower than the outlet temperature of the water-refrigerant heat exchanger 51, and the refrigerant-refrigerant heat exchanger 41 receives heat from the air conditioning refrigerant flowing through the hot water supply heat source circuit D and evaporates. The waste heat is received by the water-refrigerant sub heat exchanger 9 through the means 71, led to the check valve 72, and returned to the hot water supply compressor 21. Further, the refrigerant evaporated from the refrigerant-refrigerant heat exchanger 41 is led to the check valve 73 without passing through the valve means 71, joins the refrigerant flowing from the check valve 72, and returns to the hot water supply compressor 21. Each of the above devices is connected via a refrigerant pipe.

給湯負荷8においては、比較的低温の状態で貯湯タンク32の底部を出た水は、水循環用ポンプ31にて加圧され、水−冷媒熱交換器51にて給湯用冷媒にて熱交換した後、弁手段81を通り、水−冷媒熱交換器9で排熱を受熱し、逆止弁82に導かれて、貯湯タンク32へ戻る。また、冷媒−冷媒熱交換器51から蒸発した冷媒は弁手段81を通らずに逆止弁73に導かれて逆止弁82から流れる冷媒と合流し、貯湯タンク32へ戻る。上記の各機器は銅管、ステンレス管、鋼管、塩化ビニル系配管などを介して接続されている。 In the hot water supply load 8, the water exiting the bottom of the hot water storage tank 32 in a relatively low temperature state is pressurized by the water circulation pump 31, and heat-exchanged with the hot water supply refrigerant by the water-refrigerant heat exchanger 51. Thereafter, the exhaust gas passes through the valve means 81, receives the exhaust heat by the water-refrigerant heat exchanger 9, is guided to the check valve 82, and returns to the hot water storage tank 32. Further, the refrigerant evaporated from the refrigerant-refrigerant heat exchanger 51 is guided to the check valve 73 without passing through the valve means 81, joins the refrigerant flowing from the check valve 82, and returns to the hot water storage tank 32. Each of the above devices is connected via a copper pipe, a stainless steel pipe, a steel pipe, a vinyl chloride pipe, or the like.

そして、給湯用圧縮機21を動作させるために、半導体装置63はインバータ回路として動作して発熱し、半導体装置63の温度が上昇する。半導体装置63の排熱は金属板513を介して水側扁平管512に与えられ、熱を与えられた水側扁平管512の給湯負荷8の温水は給湯負荷8の貯湯タンク32へ流入し、更に循環する。このとき、冷媒−冷媒熱交換器41に接続されている弁手段71と逆止弁72は閉じた状態である。給湯負荷8の弁手段81と逆止弁82が閉じられ、給湯用冷凍サイクル7の弁手段71と逆止弁72が開けられると、半導体装置63の排熱は給湯用冷凍サイクル7の冷媒−冷媒熱交換器41の出口側冷媒配管24に与えられる。 Then, in order to operate the hot water supply compressor 21, the semiconductor device 63 operates as an inverter circuit to generate heat, and the temperature of the semiconductor device 63 rises. The waste heat of the semiconductor device 63 is given to the water side flat tube 512 through the metal plate 513, and the hot water of the hot water supply load 8 of the water side flat tube 512 given heat flows into the hot water storage tank 32 of the hot water supply load 8, Circulate further. At this time, the valve means 71 and the check valve 72 connected to the refrigerant-refrigerant heat exchanger 41 are in a closed state. When the valve means 81 and the check valve 82 of the hot water supply load 8 are closed and the valve means 71 and the check valve 72 of the hot water supply refrigeration cycle 7 are opened, the exhaust heat of the semiconductor device 63 becomes the refrigerant of the hot water supply refrigeration cycle 7. The refrigerant is supplied to the outlet side refrigerant pipe 24 of the refrigerant heat exchanger 41.

ここで、この実施形態における空調複合給湯装置の制御動作を、図12の制御フローチャートを用いて説明する。まず、運転の初期状態として、弁手段71、逆止弁72、逆止弁73、逆止弁83が開かれ、弁手段81と逆止弁82が閉じられ(ステップS1)、給湯用圧縮機21が駆動されて(ステップS2)、給湯用冷凍サイクル7が運転される。そして、給湯用冷凍サイクル7の運転中に、弁手段81と逆止弁82が開けられ、弁手段71と逆止弁72が閉じられて水−冷媒サブ熱交換器9から温水に排熱が与えられる。そうして、第3の温度センサ520の検出値が、半導体装置63を保護するために予め設定されている上限温度よりも高くなった場合(ステップS3のY)、目標周波数から所定値△F分減らした周波数を出力して給湯用圧縮機21を減速させ(ステップS4)、弁手段71と逆止弁72を開け(ステップS5)、弁手段81と逆止弁82を閉じ、半導体装置63の排熱を冷媒−冷媒熱交換器41の出口側冷媒配管24に与えて半導体装置63の温度低下を待つ。一方、設定温度(上限値)よりも第3の温度センサ520の検出値が低い場合は(ステップS3のN)、給湯用圧縮機21を目標周波数で作動させたまま(ステップS6)、弁手段81と逆止弁82を開け、弁手段71と逆止弁72を閉じさせることにより(ステップS7)、排熱を水−冷媒熱交換器51の出口側水配管34に供給して再び目標温度に到達させる動作を行うのである。   Here, the control operation of the air-conditioning combined hot water supply apparatus in this embodiment will be described using the control flowchart of FIG. First, as an initial state of operation, the valve means 71, the check valve 72, the check valve 73, and the check valve 83 are opened, the valve means 81 and the check valve 82 are closed (step S1), and the hot water supply compressor 21 is driven (step S2), and the hot water supply refrigeration cycle 7 is operated. During the operation of the hot water supply refrigeration cycle 7, the valve means 81 and the check valve 82 are opened, the valve means 71 and the check valve 72 are closed, and heat is discharged from the water-refrigerant sub heat exchanger 9 to the hot water. Given. Then, when the detected value of the third temperature sensor 520 becomes higher than the upper limit temperature set in advance to protect the semiconductor device 63 (Y in step S3), a predetermined value ΔF from the target frequency. The reduced frequency is output to decelerate the hot water supply compressor 21 (step S4), the valve means 71 and the check valve 72 are opened (step S5), the valve means 81 and the check valve 82 are closed, and the semiconductor device 63 Is supplied to the outlet-side refrigerant pipe 24 of the refrigerant-refrigerant heat exchanger 41 to wait for the temperature of the semiconductor device 63 to decrease. On the other hand, when the detected value of the third temperature sensor 520 is lower than the set temperature (upper limit value) (N in step S3), the hot water supply compressor 21 is operated at the target frequency (step S6), and the valve means 81 and the check valve 82 are opened, and the valve means 71 and the check valve 72 are closed (step S7), whereby the exhaust heat is supplied to the outlet side water pipe 34 of the water-refrigerant heat exchanger 51 and the target temperature is again reached. The operation to reach is performed.

以上のように、半導体装置63の排熱が空気を介さずに直接、水−冷媒サブ熱交換器9に伝達されるため、効率よく排熱を温水に利用できる。また、上記のように、第3の温度センサ520の検出温度がその上限値に到達した場合に、減らした目標周波数で給湯用圧縮機21を運転することで半導体装置63の温度上昇を防ぐことができる。
尚、図12のフローチャートでは、第3の温度センサ520の検出値が上限値に達したときに給湯用圧縮機21を減速させる方法を示したが、そのときに給湯用圧縮機21を停止させる制御方法であっても構わない。
As described above, since the exhaust heat of the semiconductor device 63 is directly transmitted to the water-refrigerant sub heat exchanger 9 without air, the exhaust heat can be efficiently used for hot water. Further, as described above, when the temperature detected by the third temperature sensor 520 reaches the upper limit value, the temperature of the semiconductor device 63 is prevented from increasing by operating the hot water supply compressor 21 at the reduced target frequency. Can do.
In the flowchart of FIG. 12, the method of decelerating the hot water supply compressor 21 when the detected value of the third temperature sensor 520 reaches the upper limit value is shown. At that time, the hot water supply compressor 21 is stopped. It may be a control method.

一般に、給湯用冷凍サイクル2と給湯負荷3は、密閉された空間である機械室などに設置されることが多いため、給湯用圧縮機21の動作時に半導体装置が周囲空気に対して排熱を続けると排熱が機械室に溜まってしまう。しかしながら、本実施形態の空調複合給湯装置では、半導体装置63からの排熱が機械室に溜まることを防ぐことができる。 In general, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are often installed in a machine room or the like, which is a sealed space, so that the semiconductor device exhausts heat from the ambient air during operation of the hot water supply compressor 21. If it continues, waste heat will accumulate in the machine room. However, in the air conditioning combined hot water supply apparatus of the present embodiment, the exhaust heat from the semiconductor device 63 can be prevented from accumulating in the machine room.

水−冷媒サブ熱交換器9に半導体装置63を直に接触させ、排熱を直に水−冷媒サブ熱交換器9に伝導することができるので、半導体装置に風を送って冷却する必要がない。そのために、ファンとヒートシンクが撤去できるため、信頼性が向上する。また、半導体装置63を取り付ける場所の自由度が高くなる。 Since the semiconductor device 63 is brought into direct contact with the water-refrigerant sub heat exchanger 9 and the exhaust heat can be directly conducted to the water-refrigerant sub heat exchanger 9, it is necessary to send air to the semiconductor device for cooling. Absent. Therefore, since the fan and the heat sink can be removed, the reliability is improved. In addition, the degree of freedom of the place where the semiconductor device 63 is attached is increased.

給湯負荷8は温水のみの利用であるため、水−冷媒サブ熱交換器9に排熱を与えれば与えるほど温水の加熱に貢献できるので、排熱を有効利用することができ、給湯用冷凍サイクル2の給湯用圧縮機21に出力されるインバータ制御回路631を搭載した半導体装置63からの運転周波数を下げることもできる。 Since the hot water supply load 8 uses only hot water, the more heat is supplied to the water-refrigerant sub-heat exchanger 9, the more it can contribute to the heating of the hot water, so that the exhaust heat can be used effectively and the refrigeration cycle for hot water supply The operating frequency from the semiconductor device 63 equipped with the inverter control circuit 631 that is output to the hot water supply compressor 21 can also be lowered.

半導体装置63の排熱を水側扁平管341に与えることによって空調用冷凍サイクル1や給湯用冷凍サイクル2は運転を抑制するため、それぞれのサイクル1、2から余分な熱が発生することを防ぐことができる。 Since the exhaust heat of the semiconductor device 63 is applied to the water-side flat tube 341, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are prevented from operating, so that excessive heat is not generated from the respective cycles 1 and 2. be able to.

この空調複合給湯装置は、温水を概ね90℃以下(実施の形態では最大70℃)に過熱する装置であるため、水−冷媒サブ熱交換器9なども比較的高温ではあっても半導体装置63を100℃以下に冷却することは可能である。また、給湯負荷8の温水温度は70℃と常に周囲空気温度よりも高いため、冷えすぎによる半導体装置63の結露を生じることはない。 Since this air-conditioning combined hot water supply device is a device that heats hot water to approximately 90 ° C. or less (maximum 70 ° C. in the embodiment), the semiconductor device 63 even if the water-refrigerant sub-heat exchanger 9 and the like are relatively hot. Can be cooled to 100 ° C. or lower. Further, since the hot water temperature of the hot water supply load 8 is always 70 ° C. and higher than the ambient air temperature, the semiconductor device 63 is not condensed due to being too cold.

以上のように、圧縮機動作中に温水に排熱を与え、圧縮機停止中に冷媒配管に排熱を与えるといったように、排熱を与える箇所を変化させることにより、半導体装置63からの排熱を有効利用でき、かつ半導体装置63を効率よく冷却できるという効果を奏する。
尚、半導体装置63は、上記した実施形態1または実施形態2と同様に、冷媒−冷媒熱交換器41、水−冷媒熱交換器51、出口側冷媒配管24、入口側冷媒配管23、出口側水配管34、または入口側水配管33に取り付けることができる。
As described above, the exhaust heat from the semiconductor device 63 is changed by changing the location to which the exhaust heat is applied, such as exhaust heat to the hot water during operation of the compressor and exhaust heat to the refrigerant pipe while the compressor is stopped. The heat can be effectively used, and the semiconductor device 63 can be efficiently cooled.
The semiconductor device 63 includes the refrigerant-refrigerant heat exchanger 41, the water-refrigerant heat exchanger 51, the outlet-side refrigerant pipe 24, the inlet-side refrigerant pipe 23, and the outlet side as in the first or second embodiment. It can be attached to the water pipe 34 or the inlet side water pipe 33.

尚、図11の空調複合給湯装置において、弁手段71としては、絞り手段、毛細管等の安価な冷媒流量調節手段、あるいは電子膨張弁による緻密な流量制御手段を用いてもよい。 In the air-conditioning combined hot water supply apparatus of FIG. 11, as the valve means 71, an inexpensive refrigerant flow rate adjusting means such as a throttle means or a capillary tube, or a precise flow rate control means using an electronic expansion valve may be used.

また、逆止弁72、73、82の代わりに、電磁弁のような弁手段を用いてより確実に流路切り替えを行ってもよい。 Further, instead of the check valves 72, 73, 82, the flow path may be switched more reliably by using valve means such as an electromagnetic valve.

また、弁手段81の代わりに、毛細管等の安価な流量調節手段、あるいは電子膨張弁による緻密な流量制御手段を用いてもよい。 Further, instead of the valve means 81, an inexpensive flow rate adjusting means such as a capillary tube or a precise flow rate control means using an electronic expansion valve may be used.

半導体装置63の排熱は運転の有無に関わらず水−冷媒サブ熱交換器9の水側扁平管、2次冷媒側扁平管、どちらに与えてもよい。また、半導体装置63を2次冷媒側扁平管に取り付けても構わない。 The waste heat of the semiconductor device 63 may be given to either the water-side flat tube or the secondary refrigerant-side flat tube of the water-refrigerant sub heat exchanger 9 regardless of whether or not it is in operation. Further, the semiconductor device 63 may be attached to the secondary refrigerant side flat tube.

水−冷媒サブ熱交換器9の2次冷媒側扁平管は冷媒−冷媒熱交換器41の2次冷媒入口配管517と2次冷媒出口配管516のうち、どちらの配管と接続されていてもよい。また、水側扁平管512は水−冷媒熱交換器51の入口側水配管514、出口側水配管515のうち、どちらの配管と接続されていてもよい。 The secondary refrigerant side flat tube of the water-refrigerant sub heat exchanger 9 may be connected to any one of the secondary refrigerant inlet pipe 517 and the secondary refrigerant outlet pipe 516 of the refrigerant-refrigerant heat exchanger 41. . Further, the water side flat tube 512 may be connected to any one of the inlet side water pipe 514 and the outlet side water pipe 515 of the water-refrigerant heat exchanger 51.

実施の形態4.
この実施形態に係る空調複合給湯装置は、図13に示すように、空調用冷凍サイクル1aと、給湯用冷凍サイクル2と、給湯負荷3とから構成されている。
空調用冷凍サイクル1aが、図1に示した空調用冷凍サイクル1と異なるところは、中継機E、逆止弁105a、105b、105c、105dを省略して、室内機BおよびCの双方が冷房のみまたは暖房のみの運転を行なうように構成されていることである。給湯用冷凍サイクル2および給湯負荷3の構成ならびに動作については、図1に示したものと同じである。
Embodiment 4 FIG.
As shown in FIG. 13, the air conditioning combined hot water supply apparatus according to this embodiment includes an air conditioning refrigeration cycle 1 a, a hot water supply refrigeration cycle 2, and a hot water supply load 3.
The difference between the air-conditioning refrigeration cycle 1a and the air-conditioning refrigeration cycle 1 shown in FIG. 1 is that the relay unit E and the check valves 105a, 105b, 105c, and 105d are omitted, and both the indoor units B and C are cooled. Or only heating. The configuration and operation of the hot water supply refrigeration cycle 2 and the hot water supply load 3 are the same as those shown in FIG.

このような空調用冷凍サイクル1aを備える空調複合給湯装置の場合は、室内機Bおよび室内機Cで冷房運転または暖房運転のいずれかしか行なえないが、半導体装置63からの排熱を回収させることはできる。更に、空調用冷凍サイクル1aの四方弁102を省略した暖房運転専用の空調用冷凍サイクル(図示省略)であっても、給湯負荷3側に半導体装置63からの排熱を回収できることは言うまでもない。   In the case of an air-conditioning combined hot water supply apparatus including such an air-conditioning refrigeration cycle 1a, the indoor unit B and the indoor unit C can perform only a cooling operation or a heating operation, but the exhaust heat from the semiconductor device 63 is recovered. I can. Furthermore, it goes without saying that the exhaust heat from the semiconductor device 63 can be recovered on the hot water supply load 3 side even in the air conditioning refrigeration cycle (not shown) dedicated to the heating operation in which the four-way valve 102 of the air conditioning refrigeration cycle 1a is omitted.

この発明の実施の形態1における空調複合給湯装置の暖房主体運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of heating main operation | movement of the air conditioning composite hot-water supply apparatus in Embodiment 1 of this invention. この発明の実施の形態1における給湯負荷で半導体装置の排熱を水−冷媒熱交換器に与える態様を示した図である。It is the figure which showed the aspect which gives the waste heat of a semiconductor device to a water-refrigerant heat exchanger with the hot water supply load in Embodiment 1 of this invention. この発明の実施の形態1における圧縮機制御用の電源装置を示したブロック構成図である。It is the block block diagram which showed the power supply device for compressor control in Embodiment 1 of this invention. この発明の実施の形態1における水−冷媒熱交換器への半導体装置の取付態様を示した図である。It is the figure which showed the attachment aspect of the semiconductor device to the water-refrigerant heat exchanger in Embodiment 1 of this invention. この発明の実施の形態1における給湯用冷凍サイクルで半導体装置の排熱を冷媒−冷媒熱交換器に与える態様を示した図である。It is the figure which showed the aspect which gives the exhaust heat of a semiconductor device to a refrigerant | coolant-refrigerant heat exchanger in the refrigerating cycle for hot water supply in Embodiment 1 of this invention. この発明の実施の形態1における水−冷媒熱交換器の種々の構成例を示す図である。It is a figure which shows the various structural examples of the water-refrigerant heat exchanger in Embodiment 1 of this invention. この発明の実施の形態2における給湯負荷で半導体装置の排熱を水−冷媒熱交換器の出口側水配管に与える態様を示した図である。It is the figure which showed the aspect which gives the waste heat of a semiconductor device to the outlet side water piping of a water-refrigerant heat exchanger with the hot water supply load in Embodiment 2 of this invention. この発明の実施の形態2における水−冷媒熱交換器の出口側水配管への半導体装置の取付態様を示した図である。It is the figure which showed the attachment aspect of the semiconductor device to the exit side water piping of the water-refrigerant heat exchanger in Embodiment 2 of this invention. この発明の実施の形態2において半導体装置が取り付けられる配管の種々の態様を示す図である。It is a figure which shows the various aspects of piping to which a semiconductor device is attached in Embodiment 2 of this invention. この発明の実施の形態2における給湯用冷凍サイクルで半導体装置の排熱を冷媒−冷媒熱交換器の出口側冷媒配管に与える態様を示した図である。It is the figure which showed the aspect which gives the waste heat of a semiconductor device to the exit side refrigerant | coolant piping of a refrigerant | coolant-refrigerant heat exchanger in the refrigerating cycle for hot water supply in Embodiment 2 of this invention. この発明の実施の形態3における空調複合給湯装置の給湯用冷凍サイクルと給湯負荷で半導体装置の排熱を水−冷媒熱交換器の出口側冷媒配管と冷媒−冷媒熱交換器の出口側冷媒配管に与える態様を示した図である。In the third embodiment of the present invention, the exhaust heat of the semiconductor device is supplied to the outlet-side refrigerant pipe of the water-refrigerant heat exchanger and the outlet-side refrigerant pipe of the refrigerant-refrigerant heat exchanger with the hot water supply refrigeration cycle and hot water supply load of the air conditioning combined hot water supply apparatus. It is the figure which showed the aspect given to. この発明の実施の形態3における空調複合給湯装置の制御フローを示した図である。It is the figure which showed the control flow of the air-conditioning compound hot-water supply apparatus in Embodiment 3 of this invention. この発明の実施の形態4における空調複合給湯装置の全体構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows the whole structure of the air-conditioning composite hot-water supply apparatus in Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 空調用冷凍サイクル、1a 空調用冷凍サイクル、2 給湯用冷凍サイクル、3 給湯負荷、A 熱源機、B 冷房用の室内機、C 暖房用の室内機、D 給湯熱源用回路、E 中継機、H 扁平角管、I アルミ成型多孔管、J 楕円管、101 空調用圧縮機、102 四方弁、103 室外熱交換器、104 アキュムレータ、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 高圧側接続配管、106a 接続配管、107 低圧側接続配管、107a 接続配管、108 気液分離器、109 第一の分配部、109a 弁手段、109b 弁手段、110 第二の分配部、110a 逆止弁、110b 逆止弁、111 第一の内部熱交換器、112 第一の中継機用絞り手段、113 第二の内部熱交換器、114 第二の中継機用絞り手段、114a バイパス配管、115 第一の会合部、116 第二の会合部、117 空調用絞り手段、117a 接続配管、118 室内熱交換器、119 給湯熱源用絞り手段、120 空調用制御手段、121 空調用通信手段、122 空調用演算手段、123 空調用記憶手段、124 第一の熱源機用絞り手段、125 空調用吐出ガス配管、126 空調用吸入ガス配管、127 空調用液配管、128 第二の熱源機用絞り手段、21 給湯用圧縮機、22 給湯用絞り手段、23 入口側冷媒配管、24 出口側冷媒配管、241 並列冷媒配管、25 インバータの信号線、31 水循環用ポンプ、32 貯湯タンク、33 入口側水配管、34 出口側水配管、341 扁平管、342 水循環用ポンプ側配管、343 貯湯タンク側配管、344 並列水配管、41 冷媒−冷媒熱交換器、51 水−冷媒熱交換器、511 2次冷媒側扁平管、512 水側扁平管、513 金属板、514 水入口配管、515 水出口配管、516 2次冷媒出口配管、517 2次冷媒入口配管、518 第1の温度センサ、519 第2の温度センサ、520 第3の温度センサ、61 圧縮機制御用の電源装置、63 半導体装置、631 インバータ制御回路、64 インバータ取り付け手段、7 給湯用冷凍サイクル、71 弁手段、72 逆止弁、73 逆止弁、8 給湯負荷、81 弁手段、82 逆止弁、83 逆止弁、9 水−冷媒サブ熱交換器。 1 Refrigeration cycle for air conditioning, 1a Refrigeration cycle for air conditioning, 2 refrigeration cycle for hot water supply, 3 hot water supply load, A heat source machine, B indoor unit for cooling, C indoor unit for heating, D hot water supply heat source circuit, E relay machine, H flat rectangular pipe, I aluminum molded perforated pipe, J elliptical pipe, 101 compressor for air conditioning, 102 four-way valve, 103 outdoor heat exchanger, 104 accumulator, 105a check valve, 105b check valve, 105c check valve, 105d Check valve, 106 High-pressure side connection pipe, 106a Connection pipe, 107 Low-pressure side connection pipe, 107a Connection pipe, 108 Gas-liquid separator, 109 First distributor, 109a Valve means, 109b Valve means, 110 Second distribution 110a check valve, 110b check valve, 111 first internal heat exchanger, 112 first throttle means for relay, 113 second internal heat exchanger, 14 Second relay throttle means, 114a bypass piping, 115 first meeting part, 116 second meeting part, 117 air conditioning throttle means, 117a connection pipe, 118 indoor heat exchanger, 119 hot water supply heat source throttle means 120 air conditioning control means 121 air conditioning communication means 122 air conditioning computing means 123 air conditioning storage means 124 first heat source throttle means 125 air conditioning discharge gas piping 126 air conditioning intake gas piping 127 Air conditioning liquid piping, 128 Second heat source device throttle means, 21 Hot water supply compressor, 22 Hot water supply throttle means, 23 Inlet side refrigerant piping, 24 Outlet side refrigerant piping, 241 Parallel refrigerant piping, 25 Inverter signal line, 31 Water circulation pump, 32 Hot water storage tank, 33 Inlet side water piping, 34 Outlet side water piping, 341 Flat tube, 342 Water circulation pump side Pipe, 343 hot water tank side pipe, 344 parallel water pipe, 41 refrigerant-refrigerant heat exchanger, 51 water-refrigerant heat exchanger, 511 secondary refrigerant side flat pipe, 512 water side flat pipe, 513 metal plate, 514 water inlet Pipe, 515 water outlet pipe, 516 secondary refrigerant outlet pipe, 517 secondary refrigerant inlet pipe, 518 first temperature sensor, 519 second temperature sensor, 520 third temperature sensor, 61 power supply device for compressor control, 63 Semiconductor device, 631 Inverter control circuit, 64 Inverter mounting means, 7 Refrigeration cycle for hot water supply, 71 Valve means, 72 Check valve, 73 Check valve, 8 Hot water supply load, 81 Valve means, 82 Check valve, 83 Check Valve, 9 Water-refrigerant sub heat exchanger.

Claims (6)

給湯用圧縮機、水−冷媒熱交換器、給湯用絞り手段、および冷媒−冷媒熱交換器を有して給湯用冷媒が循環し、前記水−冷媒熱交換器にて給湯用冷媒により水を加熱するように構成された給湯用冷凍サイクルと、
空調用圧縮機、冷房運転または暖房運転を行なう空調用室内熱交換器、空調用絞り手段、室外熱交換器、前記冷媒−冷媒熱交換器、および給湯熱源用絞り手段を有し、前記空調用絞り手段が前記空調用室内熱交換器と直列に配置され、前記給湯熱源用絞り手段が前記冷媒−冷媒熱交換器と直列に配置され、前記空調用室内熱交換器と前記冷媒−冷媒熱交換器とが互いに並列に配置されるように構成されて空調用冷媒が循環する空調用冷凍サイクルとを備えてなり、
前記給湯用冷凍サイクルの給湯用圧縮機を駆動制御するインバータ制御回路を搭載した半導体装置を、前記水−冷媒熱交換器に取り付けたことを特徴とする空調複合給湯装置。
A hot-water supply compressor circulates, a water-refrigerant heat exchanger, a hot-water supply throttling means, and a refrigerant-refrigerant heat exchanger, and the hot-water supply refrigerant circulates, and water is supplied by the hot-water supply refrigerant in the water-refrigerant heat exchanger. A refrigeration cycle for hot water supply configured to heat;
An air-conditioning compressor, an air-conditioning indoor heat exchanger that performs cooling operation or heating operation, an air-conditioning throttle means, an outdoor heat exchanger, the refrigerant-refrigerant heat exchanger, and a hot-water supply heat source throttle means. The throttle means is arranged in series with the air conditioning indoor heat exchanger, the hot water supply heat source throttle means is arranged in series with the refrigerant-refrigerant heat exchanger, and the air conditioning indoor heat exchanger and the refrigerant-refrigerant heat exchange are arranged. And an air-conditioning refrigeration cycle in which the air-conditioning refrigerant circulates.
An air-conditioning combined hot water supply apparatus, wherein a semiconductor device equipped with an inverter control circuit for driving and controlling a hot water supply compressor of the hot water supply refrigeration cycle is attached to the water-refrigerant heat exchanger.
給湯用圧縮機、水−冷媒熱交換器、給湯用絞り手段、および冷媒−冷媒熱交換器を有して給湯用冷媒が循環し、前記水−冷媒熱交換器にて給湯用冷媒により水を加熱するように構成された給湯用冷凍サイクルと、
空調用圧縮機、冷房運転または暖房運転を行なう空調用室内熱交換器、空調用絞り手段、室外熱交換器、前記冷媒−冷媒熱交換器、および給湯熱源用絞り手段を有し、前記空調用絞り手段が前記空調用室内熱交換器と直列に配置され、前記給湯熱源用絞り手段が前記冷媒−冷媒熱交換器と直列に配置され、前記空調用室内熱交換器と前記冷媒−冷媒熱交換器とが互いに並列に配置されるように構成されて空調用冷媒が循環する空調用冷凍サイクルとを備えてなり、
前記給湯用冷凍サイクルの給湯用圧縮機を駆動制御するインバータ制御回路を搭載した半導体装置を、前記冷媒−冷媒熱交換器に取り付けたことを特徴とする空調複合給湯装置。
A hot-water supply compressor circulates, a water-refrigerant heat exchanger, a hot-water supply throttling means, and a refrigerant-refrigerant heat exchanger, and the hot-water supply refrigerant circulates, and water is supplied by the hot-water supply refrigerant in the water-refrigerant heat exchanger. A refrigeration cycle for hot water supply configured to heat;
An air-conditioning compressor, an air-conditioning indoor heat exchanger that performs cooling operation or heating operation, an air-conditioning throttle means, an outdoor heat exchanger, the refrigerant-refrigerant heat exchanger, and a hot-water supply heat source throttle means. The throttle means is arranged in series with the air conditioning indoor heat exchanger, the hot water supply heat source throttle means is arranged in series with the refrigerant-refrigerant heat exchanger, and the air conditioning indoor heat exchanger and the refrigerant-refrigerant heat exchange are arranged. And an air-conditioning refrigeration cycle in which the air-conditioning refrigerant circulates.
An air conditioning combined hot water supply apparatus, wherein a semiconductor device equipped with an inverter control circuit for driving and controlling a hot water supply compressor of the hot water supply refrigeration cycle is attached to the refrigerant-refrigerant heat exchanger.
給湯用圧縮機、水−冷媒熱交換器、給湯用絞り手段、および冷媒−冷媒熱交換器を有して給湯用冷媒が循環し、前記水−冷媒熱交換器にて給湯用冷媒により水を加熱するように構成された給湯用冷凍サイクルと、
空調用圧縮機、冷房運転または暖房運転を行なう空調用室内熱交換器、空調用絞り手段、室外熱交換器、前記冷媒−冷媒熱交換器、および給湯熱源用絞り手段を有し、前記空調用絞り手段が前記空調用室内熱交換器と直列に配置され、前記給湯熱源用絞り手段が前記冷媒−冷媒熱交換器と直列に配置され、前記空調用室内熱交換器と前記冷媒−冷媒熱交換器とが互いに並列に配置されるように構成されて空調用冷媒が循環する空調用冷凍サイクルとを備えてなり、
前記給湯用冷凍サイクルの給湯用圧縮機を駆動制御するインバータ制御回路を搭載した半導体装置を、前記水−冷媒熱交換器の水配管に取り付けたことを特徴とする空調複合給湯装置。
A hot-water supply compressor circulates, a water-refrigerant heat exchanger, a hot-water supply throttling means, and a refrigerant-refrigerant heat exchanger, and the hot-water supply refrigerant circulates, and water is supplied by the hot-water supply refrigerant in the water-refrigerant heat exchanger. A refrigeration cycle for hot water supply configured to heat;
An air-conditioning compressor, an air-conditioning indoor heat exchanger that performs cooling operation or heating operation, an air-conditioning throttle means, an outdoor heat exchanger, the refrigerant-refrigerant heat exchanger, and a hot-water supply heat source throttle means. The throttle means is arranged in series with the air conditioning indoor heat exchanger, the hot water supply heat source throttle means is arranged in series with the refrigerant-refrigerant heat exchanger, and the air conditioning indoor heat exchanger and the refrigerant-refrigerant heat exchange are arranged. And an air-conditioning refrigeration cycle in which the air-conditioning refrigerant circulates.
An air conditioning combined hot water supply apparatus, wherein a semiconductor device equipped with an inverter control circuit for driving and controlling a hot water supply compressor of the hot water supply refrigeration cycle is attached to a water pipe of the water-refrigerant heat exchanger.
給湯用圧縮機、水−冷媒熱交換器、給湯用絞り手段、および冷媒−冷媒熱交換器を有して給湯用冷媒が循環し、前記水−冷媒熱交換器にて給湯用冷媒により水を加熱するように構成された給湯用冷凍サイクルと、
空調用圧縮機、冷房運転または暖房運転を行なう空調用室内熱交換器、空調用絞り手段、室外熱交換器、前記冷媒−冷媒熱交換器、および給湯熱源用絞り手段を有し、前記空調用絞り手段が前記空調用室内熱交換器と直列に配置され、前記給湯熱源用絞り手段が前記冷媒−冷媒熱交換器と直列に配置され、前記空調用室内熱交換器と前記冷媒−冷媒熱交換器とが互いに並列に配置されるように構成されて空調用冷媒が循環する空調用冷凍サイクルとを備えてなり、
前記給湯用冷凍サイクルの給湯用圧縮機を駆動制御するインバータ制御回路を搭載した半導体装置を、前記給湯用冷凍サイクルにおける冷媒−冷媒熱交換器出側の冷媒配管に取り付けたことを特徴とする空調複合給湯装置。
A hot-water supply compressor circulates, a water-refrigerant heat exchanger, a hot-water supply throttling means, and a refrigerant-refrigerant heat exchanger, and the hot-water supply refrigerant circulates, and water is supplied by the hot-water supply refrigerant in the water-refrigerant heat exchanger. A refrigeration cycle for hot water supply configured to heat;
An air-conditioning compressor, an air-conditioning indoor heat exchanger that performs cooling operation or heating operation, an air-conditioning throttle means, an outdoor heat exchanger, the refrigerant-refrigerant heat exchanger, and a hot-water supply heat source throttle means. The throttle means is arranged in series with the air conditioning indoor heat exchanger, the hot water supply heat source throttle means is arranged in series with the refrigerant-refrigerant heat exchanger, and the air conditioning indoor heat exchanger and the refrigerant-refrigerant heat exchange are arranged. And an air-conditioning refrigeration cycle in which the air-conditioning refrigerant circulates.
An air conditioner characterized in that a semiconductor device equipped with an inverter control circuit for driving and controlling a hot water supply compressor of the hot water supply refrigeration cycle is attached to a refrigerant pipe on the outlet side of the refrigerant-refrigerant heat exchanger in the hot water supply refrigeration cycle. Combined water heater.
給湯用圧縮機、水−冷媒熱交換器、給湯用絞り手段、および冷媒−冷媒熱交換器を有して給湯用冷媒が循環し、前記水−冷媒熱交換器にて給湯用冷媒により水を加熱するように構成された給湯用冷凍サイクルと、
空調用圧縮機、冷房運転または暖房運転を行なう空調用室内熱交換器、空調用絞り手段、室外熱交換器、前記冷媒−冷媒熱交換器、および給湯熱源用絞り手段を有し、前記空調用絞り手段が前記空調用室内熱交換器と直列に配置され、前記給湯熱源用絞り手段が前記冷媒−冷媒熱交換器と直列に配置され、前記空調用室内熱交換器と前記冷媒−冷媒熱交換器とが互いに並列に配置されるように構成されて空調用冷媒が循環する空調用冷凍サイクルと、
前記水−冷媒熱交換器の水配管と前記冷媒−冷媒熱交換器出側の冷媒配管との間で熱交換を行なう水−冷媒サブ熱交換器とを備えてなり、
前記給湯用冷凍サイクルの給湯用圧縮機を駆動制御するインバータ制御回路を搭載した半導体装置を、前記水−冷媒サブ熱交換器に取り付けたことを特徴とする空調複合給湯装置。
A hot-water supply compressor circulates, a water-refrigerant heat exchanger, a hot-water supply throttling means, and a refrigerant-refrigerant heat exchanger, and the hot-water supply refrigerant circulates, and water is supplied by the hot-water supply refrigerant in the water-refrigerant heat exchanger. A refrigeration cycle for hot water supply configured to heat;
An air-conditioning compressor, an air-conditioning indoor heat exchanger that performs cooling operation or heating operation, an air-conditioning throttle means, an outdoor heat exchanger, the refrigerant-refrigerant heat exchanger, and a hot-water supply heat source throttle means. The throttle means is arranged in series with the air conditioning indoor heat exchanger, the hot water supply heat source throttle means is arranged in series with the refrigerant-refrigerant heat exchanger, and the air conditioning indoor heat exchanger and the refrigerant-refrigerant heat exchange are arranged. And an air-conditioning refrigeration cycle in which the air-conditioning refrigerant is circulated,
A water-refrigerant sub-heat exchanger that performs heat exchange between the water pipe of the water-refrigerant heat exchanger and the refrigerant pipe on the outlet side of the refrigerant-refrigerant heat exchanger;
An air conditioning combined hot water supply apparatus, wherein a semiconductor device equipped with an inverter control circuit that drives and controls a hot water supply compressor of the hot water supply refrigeration cycle is attached to the water-refrigerant sub heat exchanger.
水−冷媒サブ熱交換器は、冷媒−冷媒熱交換器出側から給湯用圧縮機入側までの冷媒配管に並列に接続された並列冷媒配管と、水−冷媒熱交換器出側から貯湯タンクまでの水配管に並列に接続された並列水配管との間で熱交換を行なうように構成され、前記水−冷媒サブ熱交換器入側の並列冷媒配管に弁手段が配備され、前記水−冷媒サブ熱交換器出側の並列冷媒配管に、前記水−冷媒サブ熱交換器から流出する方向にのみ冷媒の流れを許容する逆止弁が配備され、前記並列冷媒配管の分岐位置と合流位置の間における給湯用冷凍サイクルの冷媒配管に、給湯用圧縮機に向かう方向にのみ冷媒の流れを許容する逆止弁が配備され、前記水−冷媒サブ熱交換器入側の並列水配管に弁手段が配備され、前記水−冷媒サブ熱交換器出側の並列水配管に、前記水−冷媒サブ熱交換器から流出する方向にのみ水の流れを許容する逆止弁が配備され、前記並列水配管の分岐位置と合流位置の間における水配管に、貯湯タンクに向かう方向にのみ水の流れを許容する逆止弁が配備され、前記給湯用冷凍サイクルの給湯用圧縮機を駆動制御するインバータ制御回路を搭載した半導体装置が、前記水−冷媒サブ熱交換器に取り付けられていることを特徴とする請求項5に記載の空調複合給湯装置。 The water-refrigerant sub heat exchanger includes a parallel refrigerant pipe connected in parallel to the refrigerant pipe from the refrigerant-refrigerant heat exchanger outlet side to the hot water supply compressor inlet side, and a water-reservoir heat exchanger outlet side to the hot water storage tank. Heat exchange with parallel water pipes connected in parallel to the water pipes up to and including the water-refrigerant sub heat exchanger inlet side parallel refrigerant pipes with valve means, A check valve that allows the flow of the refrigerant only in the direction of flowing out from the water-refrigerant sub heat exchanger is provided in the parallel refrigerant pipe on the outlet side of the refrigerant sub heat exchanger, and a branch position and a merge position of the parallel refrigerant pipe A check valve that allows the flow of the refrigerant only in the direction toward the hot water supply compressor is provided in the refrigerant pipe of the hot water supply refrigeration cycle, and the valve is connected to the parallel water pipe on the inlet side of the water-refrigerant sub heat exchanger. Means for providing a parallel water pipe on the outlet side of the water-refrigerant sub-heat exchanger A check valve that allows water flow only in the direction of flowing out of the water-refrigerant sub heat exchanger is provided, and the water pipe between the branching position and the joining position of the parallel water pipes is directed to the hot water storage tank. A non-return valve that allows the flow of water only is provided, and a semiconductor device equipped with an inverter control circuit that drives and controls a hot water supply compressor of the hot water supply refrigeration cycle is attached to the water-refrigerant sub heat exchanger. The air-conditioning combined hot water supply device according to claim 5, wherein
JP2008321205A 2008-12-17 2008-12-17 Air conditioning combined water heater Expired - Fee Related JP5419437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008321205A JP5419437B2 (en) 2008-12-17 2008-12-17 Air conditioning combined water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321205A JP5419437B2 (en) 2008-12-17 2008-12-17 Air conditioning combined water heater

Publications (2)

Publication Number Publication Date
JP2010144976A true JP2010144976A (en) 2010-07-01
JP5419437B2 JP5419437B2 (en) 2014-02-19

Family

ID=42565588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321205A Expired - Fee Related JP5419437B2 (en) 2008-12-17 2008-12-17 Air conditioning combined water heater

Country Status (1)

Country Link
JP (1) JP5419437B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137243A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Heat pump apparatus and control method thereof
JP2012241984A (en) * 2011-05-20 2012-12-10 Corona Corp Geothermal heat pump device
WO2013145013A1 (en) * 2012-03-29 2013-10-03 三菱電機株式会社 Branch controller and air-conditioning device provided therewith
WO2013145014A1 (en) * 2012-03-29 2013-10-03 三菱電機株式会社 Indoor device and air conditioning device comprising same
JP2013234817A (en) * 2012-05-10 2013-11-21 Sharp Corp Heat pump type heating device
JP2014129961A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Air conditioner
JP2014167367A (en) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp Heat pump hot water supply outdoor unit and heat pump hot water supply system
JPWO2013039026A1 (en) * 2011-09-15 2015-03-26 住友重機械工業株式会社 Work machine
CN104879950A (en) * 2015-05-26 2015-09-02 珠海格力电器股份有限公司 Air conditioner all-in-one machine system and control method thereof
CN106123260A (en) * 2016-06-24 2016-11-16 青岛海信日立空调***有限公司 A kind of cold recovery energy-saving air conditioning system and control method
WO2018207278A1 (en) * 2017-05-10 2018-11-15 三菱電機株式会社 Heat pump device
CN114526554A (en) * 2022-01-17 2022-05-24 首都医科大学附属北京安贞医院 Clean and environment-friendly efficient medical variable-temperature water tank

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352023A (en) * 2000-06-08 2001-12-21 Denso Corp Refrigerant cooling double-faced cooling semiconductor device
JP2004144446A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Water heater
JP2005167224A (en) * 2003-11-11 2005-06-23 Showa Denko Kk Expansion tank device, its manufacturing method, and liquid-cooled heat radiator
JP2006170538A (en) * 2004-12-16 2006-06-29 Daikin Ind Ltd Heat exchange system
JP2008121966A (en) * 2006-11-10 2008-05-29 Daikin Ind Ltd Outdoor unit for air conditioner
WO2008117408A1 (en) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation Heat pump device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352023A (en) * 2000-06-08 2001-12-21 Denso Corp Refrigerant cooling double-faced cooling semiconductor device
JP2004144446A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Water heater
JP2005167224A (en) * 2003-11-11 2005-06-23 Showa Denko Kk Expansion tank device, its manufacturing method, and liquid-cooled heat radiator
JP2006170538A (en) * 2004-12-16 2006-06-29 Daikin Ind Ltd Heat exchange system
JP2008121966A (en) * 2006-11-10 2008-05-29 Daikin Ind Ltd Outdoor unit for air conditioner
WO2008117408A1 (en) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation Heat pump device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137243A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Heat pump apparatus and control method thereof
JP2012241984A (en) * 2011-05-20 2012-12-10 Corona Corp Geothermal heat pump device
JPWO2013039026A1 (en) * 2011-09-15 2015-03-26 住友重機械工業株式会社 Work machine
JPWO2013145014A1 (en) * 2012-03-29 2015-08-03 三菱電機株式会社 Indoor unit and air conditioner equipped with the same
WO2013145013A1 (en) * 2012-03-29 2013-10-03 三菱電機株式会社 Branch controller and air-conditioning device provided therewith
WO2013145014A1 (en) * 2012-03-29 2013-10-03 三菱電機株式会社 Indoor device and air conditioning device comprising same
JP2013234817A (en) * 2012-05-10 2013-11-21 Sharp Corp Heat pump type heating device
JP2014129961A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Air conditioner
JP2014167367A (en) * 2013-02-28 2014-09-11 Mitsubishi Electric Corp Heat pump hot water supply outdoor unit and heat pump hot water supply system
CN104879950A (en) * 2015-05-26 2015-09-02 珠海格力电器股份有限公司 Air conditioner all-in-one machine system and control method thereof
CN106123260A (en) * 2016-06-24 2016-11-16 青岛海信日立空调***有限公司 A kind of cold recovery energy-saving air conditioning system and control method
WO2018207278A1 (en) * 2017-05-10 2018-11-15 三菱電機株式会社 Heat pump device
JPWO2018207278A1 (en) * 2017-05-10 2019-12-26 三菱電機株式会社 Heat pump equipment
CN114526554A (en) * 2022-01-17 2022-05-24 首都医科大学附属北京安贞医院 Clean and environment-friendly efficient medical variable-temperature water tank
CN114526554B (en) * 2022-01-17 2023-08-22 首都医科大学附属北京安贞医院 Clean environment-friendly high-efficiency medical variable-temperature water tank

Also Published As

Publication number Publication date
JP5419437B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5419437B2 (en) Air conditioning combined water heater
JP4592617B2 (en) Cooling and heating device
JP4599910B2 (en) Water heater
JP5470374B2 (en) Heat pump heating system
JP5188629B2 (en) Air conditioner
US9664397B2 (en) Air-conditioning apparatus with reversible heat medium circuit
JP5279919B2 (en) Air conditioner
WO2011108068A1 (en) Air-conditioning hot-water-supplying system
WO2012172613A1 (en) Air conditioner
WO2011030407A1 (en) Air conditioning device
WO2011030429A1 (en) Air conditioning device
WO2012172605A1 (en) Air conditioner
JP2006023049A (en) Heat carrying system
JP2011252636A (en) Hot-water heating hot-water supply apparatus
JP2014169854A (en) Refrigeration cycle device and hot water generation device including the same
JP2011033290A (en) Heat exchanger, air conditioner and heat pump system
WO2011052049A1 (en) Air conditioning device
JP5752135B2 (en) Air conditioner
JP2012247136A (en) Booster unit, and air conditioning apparatus combined with water heater including the same
JPWO2011099056A1 (en) Air conditioner
JPWO2012049704A1 (en) Heat medium converter and air conditioner equipped with the same
JPWO2011117922A1 (en) Air conditioner
WO2011052050A1 (en) Air conditioning device
WO2011030420A1 (en) Air conditioning device
JP2003307365A (en) Refrigerating and air conditioning equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees