JP2010138768A - Blade pitch double control mechanism of windmill - Google Patents

Blade pitch double control mechanism of windmill Download PDF

Info

Publication number
JP2010138768A
JP2010138768A JP2008314822A JP2008314822A JP2010138768A JP 2010138768 A JP2010138768 A JP 2010138768A JP 2008314822 A JP2008314822 A JP 2008314822A JP 2008314822 A JP2008314822 A JP 2008314822A JP 2010138768 A JP2010138768 A JP 2010138768A
Authority
JP
Japan
Prior art keywords
blade
shaft
windmill
wind turbine
flap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008314822A
Other languages
Japanese (ja)
Other versions
JP4649570B2 (en
Inventor
Yukimaru Shimizu
幸丸 清水
Shiro Tamaki
史朗 玉城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of the Ryukyus NUC
Original Assignee
University of the Ryukyus NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of the Ryukyus NUC filed Critical University of the Ryukyus NUC
Priority to JP2008314822A priority Critical patent/JP4649570B2/en
Publication of JP2010138768A publication Critical patent/JP2010138768A/en
Application granted granted Critical
Publication of JP4649570B2 publication Critical patent/JP4649570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve an orthogonal three shaft double stall control passively controlling pitch flap control of blades of a small output horizontal shaft windmill, and further passively controlling a pitch angle of each of the blades in a strong wind and during excessive rotation of the windmill according to wind-power conditions to which the blade is subjected and the number of revolutions of the windmill. <P>SOLUTION: The windmill includes a structure in which a flap support shaft of a blade shaft holder holding a blade shaft of the windmill so as to be movable in a pitch motion is disposed perpendicularly to the blade shaft, and a support frame rotatably supporting the flap support shaft of the holder is rotatably journaled to a forward inclination control support shaft that is in parallel to a windmill shaft and perpendicular to the flap support shaft, on the nacelle side or the assembling frame side. Therefore, in the state where the blade shaft is constantly movable in a pitch motion, the windmill is rotatable windward and leeward around the flap support shaft as if being mounted on a universal joint. Further, in the rotation direction of the blade, the windmill is constantly reciprocally rotatable between the radial direction of the windmill shaft and the forward inclination angle around the forward-inclination control support shaft. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、強風域に適した風力発電用風車のブレードピッチをパッシブにダブル制御する機構に関する。 The present invention relates to a mechanism for passively double-controlling the blade pitch of a wind turbine for wind power generation suitable for a strong wind region.

近年の石油危機や環境保全の立場から、風力発電装置は人類社会の広範囲なエネルギー供給源として実用化が急務であり、現在、2MW〜3MWという大型機の開発に成功している。一方、マイクロ型や小型風力発電(500W〜10kW)は、安価で、かつ、取り扱いが容易であるため、小規模な電力供給源としての利用価値は高い。
しかしながら、強風時におけるブレードの飛散事故等が多発しており、現在まで、実用に耐えうる機種はあまり無いといえる。従来から、風車の過回転を抑える機構は検討されている。特に、大型風車においては、風速を検出し、モーターや油圧を用いてピッチ角を変化させることによるピッチ制御方式は一般的であるが、このような制御方式を小型風車に適用するのは非常にコスト高となり、また、メンテナンスの困難性が問題視される。
From the standpoint of the recent oil crisis and environmental conservation, wind power generators are urgently needed to be put into practical use as a wide range of energy supply sources for human society, and currently, large machines of 2 MW to 3 MW have been successfully developed. On the other hand, micro-type and small wind power generation (500 W to 10 kW) are inexpensive and easy to handle, and thus have high utility value as a small-scale power supply source.
However, there are frequent blade scattering accidents during strong winds, and so far there are few models that can withstand practical use. Conventionally, a mechanism for suppressing over-rotation of a windmill has been studied. In particular, for large wind turbines, a pitch control method by detecting the wind speed and changing the pitch angle using a motor or hydraulic pressure is common, but such a control method is very applicable to small wind turbines. The cost is high, and the difficulty of maintenance is regarded as a problem.

一方、小型風車においては、回転軸にガバナを取り付け、強風時には、ガバナの作用でピッチ角を制御し一定回転を行う機構も提案されている。しかし、この制御方式も、ある一定以上の風速に対しては過回転になり、その結果、遠心力によるブレードの破壊等の事故が現実に起こっている。
しかしながら、このような強風域における過回転による破損などの問題を効果的に解決できれば、逆に強風を積極的にエネルギー源として有効利用して効率良く発電し、蓄電しておくことが可能となり、理想的な風力発電装置を実現可能となる。
On the other hand, for small wind turbines, a mechanism has been proposed in which a governor is attached to a rotating shaft, and when the wind is strong, the pitch angle is controlled by the action of the governor to perform constant rotation. However, this control system also becomes over-rotated for a wind speed above a certain level, and as a result, accidents such as blade breakage due to centrifugal force actually occur.
However, if problems such as breakage due to over-rotation in such a strong wind region can be effectively solved, it is possible to effectively use the strong wind as an energy source and efficiently generate and store electricity. An ideal wind power generator can be realized.

ところで、小型風車におけるブレードの破壊防止機構として、特許文献1に記載のように、バネ力でブレードを風下側に傾けてフラップ運動させることで、ピッチ角を増大して風車出力を受動式に制御すると共に、台風などの強風時にはパワーシリンダーなどのアクチュェータで強制的にピッチ角を変えて、失速させるアクティブ制御が提案されている。
特許第4104037号
By the way, as described in Patent Document 1, as a mechanism for preventing destruction of a blade in a small windmill, the blade is tilted toward the leeward side by a spring force to perform a flap motion, thereby increasing the pitch angle and passively controlling the windmill output. In addition, active control has been proposed in which a pitch angle is forcibly changed by an actuator such as a power cylinder in a strong wind such as a typhoon, thereby stalling.
Japanese Patent No. 4104037

しかし、このように、強風時にアクチュェータで強制的にピッチ角を変えるには、常に風速を検出してアクチュェータを制御することになるが、構造が複雑化し、経費が高くなるため、一定規模以上の風車でないと適用が難しくなる。
本発明の技術的課題は、10kw程度までの小出力水平軸風車を安価に提供するため、ブレードのピッチ・フラップのパッシブ制御に加えて、各ブレードの受ける風力条件および風車回転数に応じて、強風時および風車過回転時において各ブレードのピッチ角制御もパッシブに行なう直交3軸ダブル失速制御を実現することにある。
However, in this way, in order to force the actuator to change the pitch angle in a strong wind, the wind speed is always detected and the actuator is controlled, but the structure becomes complicated and the cost becomes high, so it exceeds a certain scale. If it is not a windmill, application will become difficult.
The technical problem of the present invention is to provide a low-power horizontal axis wind turbine of up to about 10 kw at low cost, in addition to passive control of blade pitch and flap, depending on the wind conditions and wind turbine rotation speed received by each blade, The object is to realize orthogonal three-axis double stall control that passively controls the pitch angle of each blade during strong winds and wind turbine over-rotation.

本発明の技術的課題は次のような手段によって解決される。請求項1は、風車のブレード軸をピッチ運動可能に支持するブレード軸ホルダーのフラップ支軸をブレード軸と直角方向に設けると共に、前記ホルダーのフラップ支軸を回動可能に支持する支持フレームを風車軸と平行でかつ前記フラップ支軸と直交する前傾制御支軸でナセル側又は組立てフレーム側に回動可能に軸支する構造において、
ブレードが風下側に傾くのを弾力で抑制すると共に、ブレードを風車軸の直径方向よりも前進方向に所定角前傾させるような弾力を常時付与することを特徴とする風車のブレードピッチ角のダブル制御方法である。
The technical problem of the present invention is solved by the following means. According to a first aspect of the present invention, a flap support shaft of a blade shaft holder that supports the blade shaft of the wind turbine so as to be capable of pitch movement is provided in a direction perpendicular to the blade shaft, and a support frame that rotatably supports the flap support shaft of the holder is provided on the wind turbine. In a structure that is pivotally supported to the nacelle side or the assembly frame side by a forward tilt control spindle that is parallel to the axis and orthogonal to the flap spindle,
A double blade pitch angle of a windmill, characterized by restraining the blade from inclining to the leeward side by elasticity, and always imparting elasticity that tilts the blade forward by a predetermined angle in the forward direction relative to the diameter direction of the windmill shaft. It is a control method.

このように、風車のブレード軸をピッチ運動可能に支持するブレード軸ホルダーのフラップ支軸をブレード軸と直角方向に設けると共に、前記ホルダーのフラップ支軸を回動可能に支持する支持フレームを風車軸と平行でかつ前記フラップ支軸と直交する前傾制御支軸でナセル側又は組立てフレーム側に回動可能に軸支する構造を有するため、ブレード軸が常にピッチ運動可能な状態において、自在継手に搭載されているように、フラップ支軸を中心にして風上と風下方向に回転運動でき、しかもブレードの回転方向に対しても、前傾制御支軸を中心にして風車軸の直径方向と前傾角との間で常に往復回転できる。
このような制御機構において、ブレードが風下側に傾くのを弾力で抑制するので、風圧が強くなると、前記弾力に抗してブレードが風下側にパッシブに傾くことができる。また、ブレードを風車軸の直径方向よりも前進方向に所定角前傾させるような弾力を常時付与しているため、風力がアップして、回転数が著しく増加する、すなわち過回転状態になると、弾力に抗してブレードの遠心力で風車軸の直径方向に起こしてピッチ角が変化するので、前記の風下方向へのフラップ動作と相まって、風力と風車回転数に応じた風車の速度制御と強風時の失速制御が可能となる。
In this way, the blade support shaft for supporting the blade shaft of the wind turbine is provided in a direction perpendicular to the blade shaft, and the support frame for rotatably supporting the flap support shaft of the holder is provided on the wind turbine shaft. In the state where the blade shaft is always capable of pitch motion, the universal joint can be connected to the universal joint by the forward tilt control support shaft that is parallel to the flap support shaft and perpendicular to the flap support shaft. As it is mounted, it can rotate in the windward and leeward directions around the flap support shaft, and also the blade rotation direction is centered on the forward tilt control support shaft in the diametrical direction and front of the windmill shaft. It can always reciprocate between tilt angles.
In such a control mechanism, it is possible to elastically suppress the blade from tilting toward the leeward side. Therefore, when the wind pressure increases, the blade can passively tilt toward the leeward side against the elasticity. In addition, since the elasticity that always tilts the blade forward by a predetermined angle in the forward direction from the diameter direction of the windmill shaft is constantly applied, when the wind power is increased and the rotation speed is significantly increased, that is, in an over-rotation state, The pitch angle changes due to the centrifugal force of the blade against the elasticity and changes in the pitch angle. Therefore, coupled with the above-mentioned flap operation in the leeward direction, the wind speed control and the strong wind according to the wind speed and the wind turbine speed Stall control at the time becomes possible.

請求項2は、ブレードが風下側に傾くのを抑制する弾性手段とブレードを前進方向に所定角前傾させるための弾性手段が、風力の増大と風車回転数に応じて同時に連動するように、若しくは独立に作用するように、又は単一の弾性手段で兼ねるように、ばね力並びに各部の寸法を設定することを特徴とする請求項1に記載の風車のブレードピッチダブル制御方法である。
このように、ブレードが風下側に傾くのを抑制する弾性手段とブレードを前進方向に所定角前傾させるための弾性手段が、風力の増大と風車回転数に応じて同時に連動するように、ばね力並びに各部の寸法を設定すると、風力でブレードが風下側に傾くフラップ運動とブレードが回転による遠心力で起立する動作が同時にパッシブに可能となる。
また、ブレードが風下側に傾くのを抑制する弾性手段とブレードを前進方向に所定角前傾させるための弾性手段が、独立に段階的に作用するように設定しておくと、風下側に傾くフラップ運動とブレードが遠心力で起立する動作を独立して制御できる。
ブレードが風下側に傾くのを抑制する弾性手段とブレードを前進方向に所定角前傾させる弾性手段を、単一の弾性手段で兼ねさせると、当然、ブレードが風下側に傾くフラップ動作とブレードが起立する動作が同時にパッシブに行われる。
According to a second aspect of the present invention, the elastic means for suppressing the blade from inclining to the leeward side and the elastic means for inclining the blade forward by a predetermined angle in the forward direction are simultaneously interlocked according to the increase in the wind force and the windmill rotational speed. 2. The wind turbine blade pitch double control method according to claim 1, wherein the spring force and the size of each part are set so as to act independently or to serve as a single elastic means.
As described above, the spring is configured so that the elastic means for suppressing the blade from tilting toward the leeward side and the elastic means for tilting the blade forward by a predetermined angle in the forward direction are simultaneously interlocked according to the increase in wind power and the windmill rotational speed. When the force and the dimensions of each part are set, the flap motion in which the blade is inclined to the leeward side by the wind force and the operation in which the blade is raised by the centrifugal force due to the rotation can be made passive at the same time.
Further, if the elastic means for suppressing the blade from tilting to the leeward side and the elastic means for tilting the blade forward by a predetermined angle in the forward direction are set to act independently in a stepwise manner, the blade tilts to the leeward side. It is possible to independently control the flap motion and the operation of the blade standing by centrifugal force.
When the elastic means for suppressing the blade from tilting to the leeward side and the elastic means for tilting the blade forward by a predetermined angle in the forward direction are combined with a single elastic means, naturally, the flap operation and the blade are inclined to the leeward side. The standing operation is performed passively at the same time.

請求項3は、風車のブレード軸をピッチ運動可能に支持するブレード軸ホルダーのフラップ支軸をブレード軸と直角方向に設けると共に、前記ホルダーのフラップ支軸を回動可能に支持する支持フレームを風車軸と平行でかつ前記フラップ支軸と直交する前傾制御支軸でナセル側又は組立てフレーム側に回動可能に軸支する構造において、
ブレードが風下側に傾くのを抑制するバネ手段を有し、かつブレードを風車軸の直径方向よりも前進方向に所定角前傾させるような弾力を常時付与するための弾性手段を有することを特徴とする風車のブレードピッチダブル制御機構である。
According to a third aspect of the present invention, a flap support shaft of a blade shaft holder that supports the blade shaft of the wind turbine so as to be capable of pitch movement is provided in a direction perpendicular to the blade shaft, and a support frame that rotatably supports the flap support shaft of the holder is provided on the wind turbine. In a structure that is pivotally supported to the nacelle side or the assembly frame side by a forward tilt control spindle that is parallel to the axis and orthogonal to the flap spindle,
It has spring means for suppressing the blade from tilting toward the leeward side, and has elastic means for constantly applying elasticity that causes the blade to tilt forward by a predetermined angle in the forward direction relative to the diameter direction of the windmill shaft. The blade pitch double control mechanism of the wind turbine.

このように、風車のブレード軸をピッチ運動可能に支持するブレード軸ホルダーのフラップ支軸をブレード軸と直角方向に設けると共に、前記ホルダーのフラップ支軸を回動可能に支持する支持フレームを風車軸と平行でかつ前記フラップ支軸と直交する前傾制御支軸でナセル側又は組立てフレーム側に回動可能に軸支する構造を有するため、ブレード軸は常にピッチ運動可能な状態において、フラップ支軸を中心にして風上と風下方向に回転運動でき、しかもブレードの回転方向に対しても、前傾制御支軸を中心にして風車軸の直径方向と前傾角との間で常に往復回転できる。
しかも、ブレードが風下側に傾くのを抑制するバネ手段を有しているので、風圧が強くなると、前記バネ手段に抗してブレードが風下側にパッシブに傾くことができる。加えて、ブレードを風車軸の直径方向よりも前進方向に所定角前傾させるような弾力を常時付与するための弾性手段を有しているので、風力がアップすると、弾性手段の弾力に抗して、ブレードの遠心力で風車軸の直径方向に起こしてピッチ角が変化するので、前記の風下方向へのフラップ動作と相まって、風力に応じた風車の速度制御と強風時の失速制御が可能となる。
In this way, the blade support shaft for supporting the blade shaft of the wind turbine is provided in a direction perpendicular to the blade shaft, and the support frame for rotatably supporting the flap support shaft of the holder is provided on the wind turbine shaft. Since the blade shaft is always capable of pitch motion, the flap support shaft is supported by a forward tilt control support shaft that is parallel to the flap support shaft and orthogonal to the flap support shaft. , And the blades can always rotate back and forth between the diameter direction of the wind turbine shaft and the forward tilt angle with respect to the forward tilt control support shaft.
In addition, since the blade includes spring means for suppressing the blade from tilting toward the leeward side, the blade can passively tilt toward the leeward side against the spring means when the wind pressure increases. In addition, since it has elastic means for always applying elasticity that tilts the blade forward by a predetermined angle in the forward direction relative to the diameter direction of the wind turbine shaft, when the wind power increases, it resists the elasticity of the elastic means. Since the pitch angle changes due to the centrifugal force of the blade in the diameter direction of the windmill shaft, coupled with the flap operation in the leeward direction, it is possible to control the speed of the windmill according to the wind force and the stall control during strong winds. Become.

請求項4は、前記のブレード軸ホルダーから風車軸側に突出したブレード軸に直角方向の連接体を固設し、その先端にブレード軸と平行に固定した平行体と軸受け手段を介して連結した首振り体を、ナセル側又は組立てフレーム側に揺動可能に支持してあることを特徴とする請求項3に記載の風車のブレードピッチダブル制御機構である。
このように、前記のブレード軸ホルダーから風車軸側に突出したブレード軸に直角方向の連接体を固設し、その先端にブレード軸と平行に固定した平行体と軸受け手段を介して連結した首振り体を、ナセル側又は組立てフレーム側に揺動可能に支持してあるため、ブレード軸は前記のようなフラップ動作や回転方向の前傾動作や起立動作に支障を生じさせずに、ブレード軸の先端を支持することによって、安定性の悪いブレードを安定良く支持することができる。
According to a fourth aspect of the present invention, a connecting member in a direction perpendicular to the blade shaft protruding from the blade shaft holder toward the wind turbine shaft is fixed and connected to a tip of the connecting member through a bearing means fixed in parallel to the blade shaft. 4. The wind turbine blade pitch double control mechanism according to claim 3, wherein the head swinging body is swingably supported on the nacelle side or the assembly frame side.
In this way, a connecting body perpendicular to the blade shaft protruding from the blade shaft holder to the windmill shaft side is fixed, and a neck fixed to the tip of the blade shaft in parallel with the blade shaft via a bearing means. Since the swinging body is swingably supported on the nacelle side or the assembly frame side, the blade shaft does not interfere with the flap operation, the forward tilting operation in the rotational direction, and the standing operation, and the blade shaft By supporting the tip of the blade, it is possible to stably support a blade having poor stability.

請求項5は、ブレードが風下側に傾くのを抑制する方向に作用するバネ手段を、ブレード軸の風車軸寄りの先端又は前記の支持フレームに取付けてあることを特徴とする請求項3または請求項4に記載の風車のブレードピッチダブル制御機構である。バネ手段は、引っ張りコイルバネでもよく、圧縮コイルバネでもよい。しかも、コイルバネに限定されない。
このように、ブレードが風下側に傾くのを抑制する方向に作用するバネ手段を、ブレード軸の風車軸寄りの先端又は前記の支持フレームに取付けてあるため、ブレードを効果的にパッシブにフラップ制御できる。
According to a fifth aspect of the present invention, the spring means acting in a direction to suppress the blade from tilting toward the leeward side is attached to the tip of the blade shaft near the wind turbine shaft or the support frame. Item 5. A windmill blade pitch double control mechanism according to Item 4. The spring means may be a tension coil spring or a compression coil spring. And it is not limited to a coil spring.
Thus, since the spring means acting in the direction to suppress the blade from tilting toward the leeward side is attached to the tip of the blade shaft near the wind turbine shaft or the support frame, the blade is effectively passively controlled to flap. it can.

請求項6は、ブレードを風車軸の直径方向よりも前進方向に所定角前傾させる方向の弾力を常時付与するための弾性手段を、ブレード軸の風車軸寄りの先端又は前記の支持フレームに取付けてあることを特徴とする請求項3、請求項4または請求項5に記載の風車のブレードピッチダブル制御機構である。
このように、ブレードを風車軸の直径方向よりも前進方向に所定角前傾させる方向の弾力を付与するための弾性手段を、ブレード軸の風車軸寄りの先端又は前記の支持フレームに取付けてあるため、ブレードを前進方向に前傾させたり遠心力で直径方向に起立させたり、効果的にパッシブ制御できる。
According to a sixth aspect of the present invention, an elastic means for always applying elasticity in a direction in which the blade is inclined forward by a predetermined angle in the forward direction relative to the diameter direction of the wind turbine shaft is attached to the tip of the blade shaft near the wind turbine shaft or the support frame. The blade pitch double control mechanism for a wind turbine according to claim 3, 4 or 5, wherein
As described above, the elastic means for applying the elasticity in the direction in which the blade is inclined forward by a predetermined angle in the forward direction from the diameter direction of the windmill shaft is attached to the tip of the blade shaft near the windmill shaft or the support frame. Therefore, the blade can be tilted forward in the forward direction or can be erected in the diametrical direction by centrifugal force, and passive control can be effectively performed.

請求項1のように、風車のブレード軸をピッチ運動可能に支持するブレード軸ホルダーのフラップ支軸をブレード軸と直角方向に設けると共に、前記ホルダーのフラップ支軸を回動可能に支持する支持フレームを風車軸と平行でかつ前記フラップ支軸と直交する前傾制御支軸でナセル側又は組立てフレーム側に回動可能に軸支する構造を有するため、ブレード軸が常にピッチ運動可能な状態において、自在継手に搭載されているように、フラップ支軸を中心にして風上と風下方向に回転運動でき、しかもブレードの回転方向に対しても、前傾制御支軸を中心にして風車軸の直径方向と前傾角との間で常に往復回転できる。
このような制御機構において、ブレードが風下側に傾くのを弾力で抑制するので、風圧が強くなると、前記弾力に抗してブレードが風下側にパッシブに傾くことができる。また、ブレードを風車軸の直径方向よりも前進方向に所定角前傾させるような弾力を常時付与しているため、風力がアップして、回転数が著しく増加する、すなわち過回転状態になると、弾力に抗してブレードの遠心力で風車軸の直径方向に起こしてピッチ角が変化するので、前記の風下方向へのフラップ動作と相まって、風力と風車回転数に応じた風車の速度制御と強風時の失速制御が可能となる。
The support frame for supporting the blade shaft of the wind turbine in a direction perpendicular to the blade shaft and rotatably supporting the flap shaft of the holder as in claim 1. In a state in which the blade shaft is always capable of pitch motion, because it has a structure that is pivotally supported on the nacelle side or the assembly frame side by a forward tilt control support shaft that is parallel to the wind turbine shaft and orthogonal to the flap support shaft. As mounted on the universal joint, it can rotate in the windward and leeward directions around the flap support shaft, and the windmill shaft diameter is also centered on the forward tilt control support shaft in the blade rotation direction. It can always rotate back and forth between the direction and the forward tilt angle.
In such a control mechanism, it is possible to elastically suppress the blade from tilting toward the leeward side. Therefore, when the wind pressure increases, the blade can passively tilt toward the leeward side against the elasticity. In addition, since the elasticity that always tilts the blade forward by a predetermined angle in the forward direction from the diameter direction of the windmill shaft is constantly applied, when the wind power is increased and the rotation speed is significantly increased, that is, in an over-rotation state, The pitch angle changes due to the centrifugal force of the blade against the elasticity and changes in the pitch angle. Therefore, coupled with the above-mentioned flap operation in the leeward direction, the wind speed control and the strong wind according to the wind speed and the wind turbine speed Stall control at the time becomes possible.

請求項2のように、ブレードが風下側に傾くのを抑制する弾性手段とブレードを前進方向に所定角前傾させるための弾性手段が、風力の増大と風車回転数に応じて同時に連動するように、ばね力並びに各部の寸法を設定すると、風力でブレードが風下側に傾くフラップ運動とブレードが回転による遠心力で起立する動作が同時にパッシブに可能となる。
また、ブレードが風下側に傾くのを抑制する弾性手段とブレードを前進方向に所定角前傾させるための弾性手段が、独立に段階的に作用するように設定しておくと、風下側に傾くフラップ運動とブレードが遠心力で起立する動作を独立して制御できる。
ブレードが風下側に傾くのを抑制する弾性手段とブレードを前進方向に所定角前傾させる弾性手段を、単一の弾性手段で兼ねさせると、当然、ブレードが風下側に傾くフラップ動作とブレードが起立する動作が同時にパッシブに行われる。
As in claim 2, the elastic means for suppressing the blade from inclining to the leeward side and the elastic means for inclining the blade forward by a predetermined angle in the forward direction are simultaneously interlocked according to the increase in wind power and the wind turbine rotational speed. In addition, when the spring force and the dimensions of each part are set, the flap motion in which the blade is tilted to the leeward side by wind force and the operation in which the blade is raised by the centrifugal force due to the rotation can be simultaneously made passive.
Further, if the elastic means for suppressing the blade from tilting to the leeward side and the elastic means for tilting the blade forward by a predetermined angle in the forward direction are set to act independently in a stepwise manner, the blade tilts to the leeward side. It is possible to independently control the flap motion and the operation of the blade standing by centrifugal force.
When the elastic means for suppressing the blade from tilting to the leeward side and the elastic means for tilting the blade forward by a predetermined angle in the forward direction are combined with a single elastic means, naturally, the flap operation and the blade are inclined to the leeward side. The standing operation is performed passively at the same time.

請求項3のように、風車のブレード軸をピッチ運動可能に支持するブレード軸ホルダーのフラップ支軸をブレード軸と直角方向に設けると共に、前記ホルダーのフラップ支軸を回動可能に支持する支持フレームを風車軸と平行でかつ前記フラップ支軸と直交する前傾制御支軸でナセル側又は組立てフレーム側に回動可能に軸支する構造を有するため、ブレード軸は常にピッチ運動可能な状態において、フラップ支軸を中心にして風上と風下方向に回転運動でき、しかもブレードの回転方向に対しても、前傾制御支軸を中心にして風車軸の直径方向と前傾角との間で常に往復回転できる。
しかも、ブレードが風下側に傾くのを抑制するバネ手段を有しているので、風圧が強くなると、前記バネ手段に抗してブレードが風下側にパッシブに傾くことができる。加えて、ブレードを風車軸の直径方向よりも前進方向に所定角前傾させるような弾力を常時付与するための弾性手段を有しているので、風力がアップすると、弾性手段の弾力に抗して、ブレードの遠心力で風車軸の直径方向に起こしてピッチ角が変化するので、前記の風下方向へのフラップ動作と相まって、風力や回転数に応じた風車の速度制御と強風時の失速制御が可能となる。
5. A support frame as claimed in claim 3, wherein a flap support shaft of a blade shaft holder that supports the blade shaft of the wind turbine so as to be capable of pitch movement is provided in a direction perpendicular to the blade shaft, and the flap support shaft of the holder is rotatably supported. In a state in which the blade shaft is always pitch-movable, because the blade shaft is pivotally supported on the nacelle side or the assembly frame side by a forward tilt control support shaft that is parallel to the wind turbine shaft and orthogonal to the flap support shaft. Can rotate in the windward and leeward direction around the flap support shaft, and always reciprocates between the diametrical direction and the forward tilt angle of the windmill shaft around the forward tilt control support shaft in the blade rotation direction. Can rotate.
In addition, since the blade includes spring means for suppressing the blade from tilting toward the leeward side, the blade can passively tilt toward the leeward side against the spring means when the wind pressure increases. In addition, since it has elastic means for always applying elasticity that tilts the blade forward by a predetermined angle in the forward direction relative to the diameter direction of the wind turbine shaft, when the wind power increases, it resists the elasticity of the elastic means. Since the pitch angle changes due to the centrifugal force of the blade and changes in the wind turbine shaft diameter direction, the wind turbine speed control according to the wind force and the rotational speed and the stall control in the strong wind are combined with the above-described flap operation in the leeward direction. Is possible.

請求項4のように、前記のブレード軸ホルダーから風車軸側に突出したブレード軸に直角方向の連接体を固設し、その先端にブレード軸と平行に固定した平行体と軸受け手段を介して連結した首振り体を、ナセル側又は組立てフレーム側に揺動可能に支持してあるため、ブレード軸は前記のようなフラップ動作や回転方向の前傾動作や起立動作に支障を生じさせずに、ブレード軸の先端を支持することによって、安定性の悪いブレードを安定良く支持することができる。 As in claim 4, a connecting member in a direction perpendicular to the blade shaft protruding from the blade shaft holder to the wind turbine shaft side is fixed, and a parallel body fixed in parallel to the blade shaft at the tip and bearing means Since the connected swinging body is swingably supported on the nacelle side or the assembly frame side, the blade shaft does not interfere with the flap operation, the forward tilting operation in the rotational direction, and the standing operation as described above. By supporting the tip of the blade shaft, it is possible to stably support a blade having poor stability.

請求項5のように、ブレードが風下側に傾くのを抑制する方向に作用するバネ手段を、ブレード軸の風車軸寄りの先端又は前記の支持フレームに取付けてあるため、ブレードを効果的にパッシブにフラップ制御できる。 According to the fifth aspect of the present invention, since the spring means acting in the direction for suppressing the blade from tilting toward the leeward side is attached to the tip of the blade shaft near the wind turbine shaft or the support frame, the blade is effectively passive. The flap can be controlled.

請求項6のように、ブレードを風車軸の直径方向よりも前進方向に所定角前傾させる方向の弾力を付与するための弾性手段を、ブレード軸の風車軸寄りの先端又は前記の支持フレームに取付けてあるため、ブレードを前進方向に前傾させたり遠心力で直径方向に起立させたり、効果的にパッシブ制御できる。 According to a sixth aspect of the present invention, an elastic means for applying elasticity in a direction in which the blade is tilted forward by a predetermined angle in the forward direction from the diameter direction of the windmill shaft is provided on the tip of the blade shaft near the windmill shaft or the support frame. Since it is attached, the blade can be tilted forward in the forward direction or can be raised in the diametrical direction by centrifugal force, and passive control can be effectively performed.

次に本発明による風車のブレードピッチダブル制御機構が実際上どのように具体化されるか実施形態を説明する。図1は3枚羽根の風車の正面図であり、風車の回転軸1とブレードBとの間に本発明によるブレードピッチダブル制御機構Mを介在させてある。いま、風車を正面から見た場合、矢印a1のように右回転するものとすると、ブレードBに固設されたブレード軸bが制御機構Mを貫通し、その回転軸1寄りの先端に引っ張りコイルバネ2を取付けて、支軸4を中心に、ブレードBが回転方向a1にβ(例えば3度)傾くように引っ張っている。 Next, an embodiment of how the blade pitch double control mechanism of the wind turbine according to the present invention is actually realized will be described. FIG. 1 is a front view of a wind turbine having three blades, and a blade pitch double control mechanism M according to the present invention is interposed between a rotating shaft 1 and a blade B of the wind turbine. Now, when the windmill is viewed from the front, if it rotates to the right as shown by an arrow a1, the blade shaft b fixed to the blade B penetrates the control mechanism M, and a tension coil spring is attached to the tip near the rotation shaft 1. 2 is attached, and the blade B is pulled around the support shaft 4 so as to be inclined β (for example, 3 degrees) in the rotation direction a1.

ブレード軸bが貫通しているブレード軸ホルダーHとブレード軸bとの間にスラストベアリング3を介在させてブレードの重量を受けると共に、ブレードBがブレード軸bと共に回転してピッチ角を制御可能にしてある。
ブレード軸bのホルダーHは、後述する支持フレームfを介して、紙面と垂直方向の支軸4で回動可能に支持されているので、ブレード軸bをホルダーHと共に回転方向a1に引っ張りコイルバネ2の弾力で常時βだけ前傾されている。
The thrust shaft 3 is interposed between the blade shaft holder H through which the blade shaft b passes and the blade shaft b to receive the weight of the blade, and the blade B rotates together with the blade shaft b so that the pitch angle can be controlled. It is.
Since the holder H of the blade shaft b is rotatably supported by a support shaft 4 perpendicular to the paper surface via a support frame f to be described later, the blade shaft b is pulled in the rotational direction a1 together with the holder H, and the coil spring 2 is pulled. Is always tilted forward by β.

図2は、図1における上側の1個の制御機構部Mの右側面図であり、ブレード軸bが貫通しているホルダーHが前後(図の左右)方向に回動可能に支軸5で支持フレームfに支持してある。そして、ブレード軸bの下端に別の引っ張りコイルバネ6を取付けて、ブレードBが実線で示すように、風車回転軸1に対し常に垂直方向に直立するように弾力を付与している。
いま、矢印a2のように正面から風力を受けると、引っ張りコイルバネ6の引っ張り力に抗して、ブレードBが鎖線で示すように風下側に押されてαだけ傾くが、その際の回転中心が前記のフラップ支軸5である。
FIG. 2 is a right side view of one control mechanism M on the upper side in FIG. 1, and a holder H through which the blade shaft b passes is supported by the support shaft 5 so as to be rotatable in the front-rear (left-right) direction. It is supported by the support frame f. Then, another tension coil spring 6 is attached to the lower end of the blade shaft b, and elasticity is applied so that the blade B is always upright in the vertical direction with respect to the wind turbine rotating shaft 1 as indicated by a solid line.
Now, when receiving wind force from the front as shown by the arrow a2, the blade B is pushed to the leeward side and tilted by α as shown by a chain line against the pulling force of the tension coil spring 6, but the rotation center at that time is This is the flap support shaft 5 described above.

図3に示すように、ブレード軸bに固設されたれ連接金具7の先端に平行体8を固設して、その先端に設けた球面軸受け9を介して首振り体10を連結してある。以上のメカニズムは、4角(すみ)を間隔バー12…で連結した前後の組立てフレームF1、F2間に組み込まれており、正面側の組立てフレームF1に、自在継手11を介して、ブレード軸bと直交方向の前記首振り体10の基端側が連結されている。
なお、両側の組立てフレームF1、F2は、風車のナセル側に取付け固定されるが、組立てフレームF1、F2とナセルとを兼ねさせることも可能である。
As shown in FIG. 3, a parallel body 8 is fixed to the tip of a connecting fitting 7 fixed to the blade shaft b, and a swinging body 10 is connected via a spherical bearing 9 provided at the tip. . The above mechanism is incorporated between the front and rear assembly frames F1 and F2 in which four corners are connected by the spacing bars 12, and the blade shaft b is connected to the front assembly frame F1 via the universal joint 11. The base end side of the swinging body 10 in the direction orthogonal to the head is connected.
The assembly frames F1 and F2 on both sides are attached and fixed to the nacelle side of the windmill, but the assembly frames F1 and F2 can also serve as the nacelle.

図3は、図1、図2の制御機構Mの斜視図であり、ブレード軸ホルダーHの左右両端が、フラップ支軸5で支持フレームfに支持されているため、正面から受けた風圧でブレードBが押されると、ブレード軸先端の引っ張りコイルバネ6に抗して、図2に鎖線で示すように風下側にαだけ傾いてフラップ角が増大すると同時にピッチ角も増大し、風車の出力トルクをパッシブに低下させる。
次いで、風圧が低下すると、引っ張りコイルバネ6に引っ張られて元の実線で示す直立位置に戻り、ホルダーH中でブレード軸bが回動してピッチ角も元に戻る。このようなフラップ動作の際のブレードBの回転中心が前記の支軸5である。
FIG. 3 is a perspective view of the control mechanism M of FIGS. 1 and 2. Since the left and right ends of the blade shaft holder H are supported by the support frame f by the flap support shaft 5, the blade pressure is received by the wind pressure received from the front. When B is pushed, against the tension coil spring 6 at the tip of the blade shaft, as shown by a chain line in FIG. 2, the flap angle is increased and the pitch angle is increased at the same time as the angle of inclination toward the leeward side, and the output torque of the windmill is increased. Reduce passively.
Next, when the wind pressure is reduced, the tension coil spring 6 is pulled back to the upright position indicated by the original solid line, and the blade shaft b is rotated in the holder H so that the pitch angle is also restored. The center of rotation of the blade B during such a flap operation is the support shaft 5.

図4は、ブレードBの回転時の状態を示す正面図で、通常の風速で回転している場合は、図1のように、ブレード軸bの先端が引っ張りコイルバネ2で引っ張られて、実線で示すように、風車軸1の直径方向に対し進行方向にβ(約3度)傾いている。
いま、風速が増大して強風域に達すると、前傾状態のブレードBが、その遠心力によって、鎖線で示すように、風車軸1の直径方向に支軸4を中心に起こされる。この際に、ブレードBのピッチがパッシブ変化し、しかも前記のようにブレードBが風下側にαだけ傾斜するために逆ピッチとなって失速が増幅され、ブレードの回転が停止する。
図7の特性試験グラフにおいて、約150秒後に1回だけ、突風による失速停止が発生して、出力電力0を示している。
FIG. 4 is a front view showing the rotating state of the blade B. When the blade B rotates at a normal wind speed, the tip of the blade shaft b is pulled by the tension coil spring 2 as shown in FIG. As shown, it is inclined β (about 3 degrees) in the traveling direction with respect to the diameter direction of the wind turbine shaft 1.
Now, when the wind speed increases and reaches a strong wind region, the forwardly inclined blade B is caused by the centrifugal force about the support shaft 4 in the diameter direction of the windmill shaft 1 as indicated by a chain line. At this time, the pitch of the blade B changes passively, and as described above, the blade B is inclined by α to the leeward side, so that the reverse pitch is generated, the stall is amplified, and the rotation of the blade is stopped.
In the characteristic test graph of FIG. 7, a stall stop due to a gust of wind occurs only once after about 150 seconds, and the output power is 0.

通常風速に戻ると、ブレードBの遠心力より引っ張りコイルバネ2の引っ張り力が勝って、支軸4を中心に前傾状態に戻る。
このように、本発明の場合は、従来のように設定風速を越えた時点でアクチュェータで強制的にピッチ角制御する方式と違って、図7の特性試験グラフからも明らかなように、刻々変化する風速に即応して2方向の引っ張りコイルバネ2、6のばね力でアナログ的に反応できるので、風速変化に忠実なパッシブ制御が可能となり、小型風車による強風時の風力発電の実用化が期待できる。
When returning to the normal wind speed, the pulling force of the pulling coil spring 2 wins over the centrifugal force of the blade B, and the state returns to the forward tilted state around the support shaft 4.
Thus, in the case of the present invention, unlike the conventional method in which the pitch angle is forcibly controlled by the actuator when the set wind speed is exceeded, as is apparent from the characteristic test graph of FIG. Because it can react in analogy with the spring force of the two-way tension coil springs 2 and 6 in response to the wind speed, passive control that is faithful to changes in wind speed is possible, and the practical application of wind power generation in strong winds with small wind turbines can be expected .

各ブレードBのブレード軸bが、自在継手作用をする支軸4、5だけで支持されていると、1点支持となって安定性が悪いので、本発明の場合は、前記のようにブレード軸b先端に固設した連接金具7の先端に平行体8を固設して、その先端の球面軸受け9を、フレームF1に自在継手11で取付けた首振り体10の先端と連結して、首振り揺動させる。
その結果、ブレード軸bの先端側でも、球面軸受け9、自在継手11を介して揺動自在にフレームF1側に連結されていて、常に2点で支持されるので、ブレードBが安定的に制御される。
If the blade shaft b of each blade B is supported only by the support shafts 4 and 5 that act as universal joints, it becomes one-point support and the stability is poor. The parallel body 8 is fixed to the tip of the connecting fitting 7 fixed to the tip of the shaft b, and the spherical bearing 9 at the tip is connected to the tip of the swinging body 10 attached to the frame F1 by the universal joint 11, Swing the head.
As a result, even on the tip side of the blade shaft b, the blade B is slidably connected to the frame F1 side via the spherical bearing 9 and the universal joint 11, and is always supported at two points. Is done.

ブレードが風下側に傾くのを抑制する方向に作用する引っ張りコイルバネ6は、図示例では、ブレード軸bの風車軸1寄りの先端に取付けて引っ張っているが、支持フレームfの風車軸1寄りに取付けることも可能である。この場合、支持フレームfから風車軸1寄りに延長したレバーを引っ張る構造でもよい。
また、ブレードBを風車軸1の直径方向から前傾させる引っ張りコイルバネ2は、図1のようにブレード軸bの風車軸寄りの先端に取付けてもよいが、図3のように、支持フレームfの風車軸1寄りに取付けることも可能である。この場合、支持フレームfから風車軸1寄りに延長したレバーを引っ張る構造でもよい。
なお、以上の構造は、引っ張りコイルバネ6や2で引っ張る構造であるが、逆に圧縮コイルバネで逆方向から弾圧する構造も可能である。
In the illustrated example, the tension coil spring 6 acting in a direction to suppress the blade from tilting toward the leeward side is attached and pulled at the tip of the blade shaft b close to the wind turbine shaft 1, but is close to the wind turbine shaft 1 of the support frame f. It is also possible to install. In this case, a structure may be employed in which a lever extending from the support frame f toward the wind turbine shaft 1 is pulled.
The tension coil spring 2 that tilts the blade B forward from the diameter direction of the wind turbine shaft 1 may be attached to the tip of the blade shaft b near the wind turbine shaft as shown in FIG. 1, but as shown in FIG. It is also possible to attach it near the wind turbine shaft 1. In this case, a structure may be employed in which a lever extending from the support frame f toward the wind turbine shaft 1 is pulled.
In addition, although the above structure is a structure pulled with the tension coil springs 6 and 2, conversely, a structure in which the compression coil springs are used to repress from the opposite direction is also possible.

図5は、2方向の2本の引っ張りコイルバネ6と2を1本で代用する実施形態であり、ブレード軸bの先端に取付けた引っ張りコイルバネ2によって、ブレード軸bを前傾方向と逆向きa3に引っ張り、互いに直交方向の引っ張りコイルバネ6によって、ブレードBを風下方向a4に引っ張る構造になっている。
従って、矢印a3方向とa4方向との合成力が得られるように矢印a5方向に引っ張る引っ張りコイルバネを設ければ、1本で代用できる。圧縮コイルバネを使用する場合は、ブレード軸bの背部を矢印a5方向に弾圧すれば足りる。
FIG. 5 shows an embodiment in which two tension coil springs 6 and 2 in two directions are replaced by one. The tension coil spring 2 attached to the tip of the blade axis b causes the blade axis b to be opposite to the forward tilt direction a3. The blade B is pulled in the leeward direction a4 by the tension coil springs 6 orthogonal to each other.
Therefore, if a tension coil spring is provided that pulls in the direction of the arrow a5 so that a combined force of the direction of the arrow a3 and the direction of a4 can be obtained, one can be substituted. When a compression coil spring is used, it is sufficient to repress the back of the blade shaft b in the direction of the arrow a5.

図1〜図3のような首振り機構に代えて、図6のようなガイド溝(スリットでもよい)を形成して、その中にブレード軸bの先端を挿入することも可能である。従って、図3の引っ張りコイルバネ6の位置に、ガイド溝つきのガイド板を設け、左右の組立てフレームF1、F2間に固定しておく。
図6(1)は、図5の矢印a5方向に直線状のガイド溝G1を形成して、その中にブレード軸bの先端をボールベアリング13を介して挿入してある。低風速の場合は、引っ張りコイルバネ6と2で矢印a5方向にブレード軸b端が引っ張られているので、ガイド溝G1の後端に位置しているが、強風になると、ブレードが風下側a2に押されると共に、ブレードの遠心力で風車軸の直径方向に起こされるので、ブレード軸b先端は、矢印a5と逆方向に移動する。このとき、直線状のガイド溝G1にガイドされながら移動するので、ブレードBのフラップ動作やピッチ角制御動作が安定的に行われる。
Instead of the swing mechanism as shown in FIGS. 1 to 3, it is also possible to form a guide groove (may be a slit) as shown in FIG. 6 and insert the tip of the blade shaft b therein. Therefore, a guide plate with a guide groove is provided at the position of the tension coil spring 6 in FIG. 3, and is fixed between the left and right assembly frames F1 and F2.
6A, a straight guide groove G1 is formed in the direction of arrow a5 in FIG. 5 and the tip of the blade shaft b is inserted through the ball bearing 13 therein. When the wind speed is low, the end of the blade shaft b is pulled in the direction of the arrow a5 by the tension coil springs 6 and 2, so it is located at the rear end of the guide groove G1, but when the wind is strong, the blade moves to the leeward side a2. Since the blade is pushed and raised in the diameter direction of the wind turbine shaft by the centrifugal force of the blade, the tip of the blade shaft b moves in the direction opposite to the arrow a5. At this time, since it moves while being guided by the linear guide groove G1, the flap operation and pitch angle control operation of the blade B are stably performed.

風車の設置地域の気象的な特性や地形的な特殊性から、フラップ動作を優先したいとか、遠心力によるブレード起立動作を優先したいとか、別々に制御したい場合は、図6(2)(3)のように曲がったガイド溝形状が有効である。
図6(2)のガイド溝G2は、風速が高速になると、低風速時のブレード軸b端位置から、前後方向の溝G3→湾曲溝G4→風車回転方向の溝G5の順にブレード軸b端が移動するので、最初はフラップ動作が優先して、ブレードが風下側に傾き、さらに風車が高速回転して遠心力が増大したら、フラップ動作の終了前に、ブレードが直径方向に起立する。
If you want to prioritize the flap operation or the blade stand-up operation by centrifugal force due to the meteorological characteristics and topographical specialities of the windmill installation area, or if you want to control them separately, see Fig. 6 (2) (3) A bent guide groove shape is effective.
When the wind speed becomes high, the guide groove G2 in FIG. 6 (2) starts from the blade shaft b end position at the low wind speed in the order of the groove G3 in the front-rear direction, the curved groove G4, and the groove G5 in the windmill rotating direction. Therefore, when the blade is tilted toward the leeward side and the wind turbine rotates at a high speed and the centrifugal force increases, the blade stands up in the diametrical direction before the end of the flap operation.

図6(3)のガイド溝G6は、低風速時のブレード軸b端位置から、風車回転方向の溝G7→湾曲溝G8→前後方向の溝G9の順にブレード軸b端が移動するので、最初はブレードの遠心力による起立動作が起き、さらに風速が速くなるとフラップ動作によって、ブレードが風下側に傾く。
図6(2)(3)のようにガイド溝が曲がっている場合は、引っ張り方向が矢印a3、a4と異なる2方向の引っ張りコイルバネ2、6を使用するのが効果的である。なお、優先する方のバネ力を強くすることも可能である。
In the guide groove G6 in FIG. 6 (3), the blade shaft b end moves from the blade shaft b end position at the time of low wind speed in order of the wind turbine rotating direction groove G7 → curved groove G8 → front / rear direction groove G9. The blades stand up by centrifugal force, and when the wind speed is increased, the blades tilt to the leeward side by the flap operation.
When the guide groove is bent as shown in FIGS. 6 (2) and 6 (3), it is effective to use the tension coil springs 2 and 6 in two directions whose pulling directions are different from the arrows a3 and a4. It is also possible to increase the priority spring force.

風速が低下すると、ガイド溝G1、G2、G6中でブレード軸b端が逆向きに移動するが、(2)図のガイド溝G2と(3)図のガイド溝G6を連結して環状溝にすると、風速の増加時と低下時とで、別の経路を移動するような制御も可能である。
このようにガイド溝G1、G2、G6でブレード軸b端の移動を規制すると、風向きの変化によってブレード軸bに多少無理な力が作用することは避けられないが、ガイド溝G1、G2、G6がブレード軸bのストッパー機能を兼ねるので、構造を簡素化できる。
図3では、ブレード軸ホルダーHの前後に配設したストッパーピンP1・P2を支持フレームfに固定し、ブレードBの風上・風下方向の動きを規制している。また、支持フレームfの下部に固設したバネ取付けボルト14が突出しているガイドスリット15のスリット長によって、ブレードの前傾角と風車軸の直径方向の角度との間の動きを規制している。しかし、図1では、ブレード軸bの下端とフレームF1後方に延びた取付けアーム16との間に引っ張りコイルバネ2を取付けてある。
When the wind speed decreases, the blade shaft b end moves in the opposite direction in the guide grooves G1, G2, and G6. However, the guide groove G2 in FIG. 2 and the guide groove G6 in FIG. Then, it is also possible to perform control such that another route is moved when the wind speed increases and decreases.
When the movement of the end of the blade shaft b is restricted by the guide grooves G1, G2, and G6 as described above, it is inevitable that a somewhat excessive force acts on the blade shaft b due to a change in the wind direction, but the guide grooves G1, G2, and G6 are unavoidable. Since it also serves as a stopper function for the blade shaft b, the structure can be simplified.
In FIG. 3, stopper pins P <b> 1 and P <b> 2 disposed before and after the blade shaft holder H are fixed to the support frame f to restrict the movement of the blade B in the windward and leeward directions. Further, the movement between the forward tilt angle of the blade and the diametrical angle of the wind turbine shaft is restricted by the slit length of the guide slit 15 from which the spring mounting bolt 14 fixed to the lower portion of the support frame f projects. However, in FIG. 1, the tension coil spring 2 is attached between the lower end of the blade shaft b and the attachment arm 16 extending rearward of the frame F1.

最後に、ブレード軸bホルダーHのフラップ制御軸5とホルダーH支持フレームfのブレード前傾制御支軸4による自在継手構造の具体構造は、種々可能であるが、図示例の場合、ブレード軸bを内部のスラストベアリングで支持しているブレード軸ホルダーHの左右両端とホルダーH支持フレームfとの間をフラップ制御軸5で、回動可能に支持してある。
そして、ホルダーH支持フレームfの前後両端と前後の組立てフレームF1、F2との間を支軸4で軸支して、ブレード軸bすなわちブレードBが前傾運動可能に支持している。
このようにブレード軸Bがピッチ角変化可能にスラストベアリング3を受けているブレード軸bのホルダーHが、フラップ運動可能でかつホルダーHが、風車回転方向に前傾も可能に軸支する機構は、図示例に限定されない。
Finally, there are various concrete structures of the universal joint structure by the flap control shaft 5 of the blade shaft b holder H and the blade forward tilt control support shaft 4 of the holder H support frame f, but in the case of the illustrated example, the blade shaft b Is supported by the flap control shaft 5 so as to be rotatable between the left and right ends of the blade shaft holder H and the holder H support frame f.
The holder H support frame f is pivotally supported by the support shaft 4 between the front and rear ends of the holder H and the front and rear assembly frames F1 and F2, and the blade shaft b, that is, the blade B is supported so as to be able to tilt forward.
Thus, the mechanism in which the holder H of the blade shaft b receiving the thrust bearing 3 so that the blade shaft B can change the pitch angle is capable of performing a flap motion and the holder H can be tilted forward in the windmill rotating direction is also provided. The invention is not limited to the illustrated example.

以上のように、本発明によると、ブレードが風下方向に傾かないように、かつ前傾するように弾性手段で付勢することによって、風力の変化に応じて連続的にブレードを風下側に傾けたり、遠心力で直径方向に起立させ、強風時の速度制御や失速制御ができるため、アクティブ制御方式と違って、各ブレードの受ける風力条件に応じて忠実に、強風時の各ブレードのフラップ制御とピッチ制御が同時に可能で、ダブル失速制御の実用化が期待できる。
従って、本発明の風力発電機は、湾岸や山岳部などの強風地域で特に有効で、一般の風力発電装置が、カットオフ風速15m/s程度であるのに対し、本風力発電装置は25〜30m/sと、高速回転に耐えうる構造である。その結果、高風速領域における運転が可能で、従来の風力発電装置に比較し、発電効率が格段に上昇する。
本風力発電装置の活用事例としては、離島や山岳地域における集落の独立型発電システムや、農業用灌漑動力として、また、都市部においても、商業用発電や自家用発電システムとしての活用が充分期待できる。
現在、この試作機の実証実験を行って、その性能を評価しているが、図7のように、ダブルピッチ制御の効果が顕著に表れていることが確認できた。また、プレード引っ張り試験でも25tN(回転速度1000r.p.m.)の耐荷重性能を保証できた。
As described above, according to the present invention, the blade is continuously tilted toward the leeward side according to the change of the wind force by urging the blade with the elastic means so as not to tilt in the leeward direction and forwardly. Unlike the active control method, the blades can stand up in the diametrical direction with centrifugal force, and unlike the active control method, the flap control of each blade during strong winds is faithful according to the wind conditions received by each blade. And pitch control are possible at the same time, and the practical application of double stall control can be expected.
Therefore, the wind power generator of the present invention is particularly effective in strong wind regions such as the bay and mountains, and the general wind power generator has a cut-off wind speed of about 15 m / s, whereas the wind power generator has 25 to 25 m / s. The structure can withstand high-speed rotation of 30 m / s. As a result, operation in a high wind speed region is possible, and the power generation efficiency is significantly increased as compared with the conventional wind power generator.
As examples of the use of this wind power generator, it can be expected to be used as a stand-alone power generation system for villages in remote islands and mountain areas, as irrigation power for agriculture, and as a commercial power generation or private power generation system in urban areas. .
At present, the performance of this prototype is evaluated and its performance is evaluated. As shown in FIG. 7, it was confirmed that the effect of the double pitch control was remarkably exhibited. Also, a load resistance performance of 25 tN (rotational speed 1000 rpm) was assured in the blade tensile test.

本発明による3枚羽根風車の制御機構部の正面図である。It is a front view of the control mechanism part of the 3-blade windmill by this invention. 図1における上側の1個の制御機構部の右側面図である。FIG. 2 is a right side view of one control mechanism unit on the upper side in FIG. 1. 図1、図2の制御機構部の斜視図である。It is a perspective view of the control mechanism part of FIG. 1, FIG. ブレードの回転時の状態を示す正面図である。It is a front view which shows the state at the time of rotation of a braid | blade. 2方向の2本の引っ張りコイルバネを1本で代用する実施形態を示す斜視図である。It is a perspective view showing an embodiment which substitutes two tension coil springs in two directions with one. 首振り機構の代用のガイド溝で、(1)は直線状のガイド溝、(2)は凸湾曲状のガイド溝、(3)は凹湾曲状のガイド溝である。A substitute guide groove for the swing mechanism, (1) is a linear guide groove, (2) is a convex curved guide groove, and (3) is a concave curved guide groove. 本発明による風力発電装置の特性試験の結果を示すグラフで、上側の波形が風速、下側の波形が出力電力である。It is a graph which shows the result of the characteristic test of the wind power generator by this invention, an upper waveform is a wind speed and a lower waveform is output electric power.

符号の説明Explanation of symbols

1 風車の回転軸
B ブレード
b ブレード軸
M ブレードピッチダブル制御機構部
H ブレードホルダー
f 支持フレーム
2 前傾用の引っ張りコイルバネ
3 スラストベアリング
4 前傾制御支軸
5 フラップ制御用の支軸
6 フラップ制御用の引っ張りコイルバネ
7 連接金具
8 平行体
9 球面軸受け
10 首振り体
11 自在継手
12… 間隔バー
F1・F2 組立てフレーム
13 ボールベアリング
G1・G2・G6 ガイド溝
DESCRIPTION OF SYMBOLS 1 Rotating shaft B of a windmill Blade b Blade shaft M Blade pitch double control mechanism H Blade holder f Support frame 2 Tension coil spring 3 for forward tilting Thrust bearing 4 Forward tilting control shaft 5 Support shaft 6 for flap control For flap control Pulling coil spring 7 Connecting metal fitting 8 Parallel body 9 Spherical bearing 10 Swing body 11 Universal joint 12 ... Spacing bar F1, F2 Assembly frame 13 Ball bearing G1, G2, G6 Guide groove

Claims (6)

風車のブレード軸をピッチ運動可能に支持するブレード軸ホルダーのフラップ支軸をブレード軸と直角方向に設けると共に、前記ホルダーのフラップ支軸を回動可能に支持する支持フレームを風車軸と平行でかつ前記フラップ支軸と直交する前傾制御支軸でナセル側又は組立てフレーム側に回動可能に軸支する構造において、
ブレードが風下側に傾くのを弾力で抑制すると共に、ブレードを風車軸の直径方向よりも前進方向に所定角前傾させるような弾力を常時付与することを特徴とする風車のブレードピッチダブル制御方法。
A blade support shaft for supporting the blade shaft of the wind turbine so as to be capable of pitch movement is provided in a direction perpendicular to the blade shaft, and a support frame for rotatably supporting the flap support shaft of the holder is parallel to the wind turbine shaft and In the structure that is pivotally supported on the nacelle side or the assembly frame side with the forward tilt control spindle orthogonal to the flap spindle,
A windmill blade pitch double control method characterized in that the blade is restrained from inclining to the leeward side by elasticity, and elastic force is always given to tilt the blade forward by a predetermined angle in the forward direction relative to the diameter direction of the windmill shaft. .
ブレードが風下側に傾くのを抑制する弾性手段とブレードを前進方向に所定角前傾させるための弾性手段が、風力の増大に応じて同時に連動するように、若しくは独立に段階的に作用するように、又は単一の弾性手段で兼ねるように、ばね力並びに各部の寸法を設定することを特徴とする請求項1に記載の風車のブレードピッチダブル制御方法。 The elastic means for suppressing the blade from tilting to the leeward side and the elastic means for tilting the blade forward by a predetermined angle in the forward direction are operated simultaneously in response to an increase in wind force, or act independently in stages. 2. The wind turbine blade pitch double control method according to claim 1, wherein the spring force and the dimensions of each part are set so as to be combined with each other or with a single elastic means. 風車のブレード軸をピッチ運動可能に支持するブレード軸ホルダーのフラップ支軸をブレード軸と直角方向に設けると共に、前記ホルダーのフラップ支軸を回動可能に支持する支持フレームを風車軸と平行でかつ前記フラップ支軸と直交する前傾制御支軸でナセル側又は組立てフレーム側に回動可能に軸支する構造において、
ブレードが風下側に傾くのを抑制するバネ手段を有し、かつブレードを風車軸の直径方向よりも前進方向に所定角前傾させるような弾力を常時付与するための弾性手段を有することを特徴とする風車のブレードピッチダブル制御機構。
A blade support shaft for supporting the blade shaft of the wind turbine so as to be capable of pitch movement is provided in a direction perpendicular to the blade shaft, and a support frame for rotatably supporting the flap support shaft of the holder is parallel to the wind turbine shaft and In the structure that is pivotally supported on the nacelle side or the assembly frame side with the forward tilt control spindle orthogonal to the flap spindle,
It has spring means for suppressing the blade from tilting toward the leeward side, and has elastic means for constantly applying elasticity that causes the blade to tilt forward by a predetermined angle in the forward direction relative to the diameter direction of the windmill shaft. Windmill blade pitch double control mechanism.
前記のブレード軸ホルダーから風車軸側に突出したブレード軸に直角方向の連接体を固設し、その先端にブレード軸と平行に固定した平行体と軸受け手段を介して連結した首振り体を、ナセル側又は組立てフレーム側に揺動可能に支持してあることを特徴とする請求項3に記載の風車のブレードピッチダブル制御機構。 A connecting body in a direction perpendicular to the blade shaft protruding from the blade shaft holder to the wind turbine shaft side is fixed, and a swinging body connected to the tip of the blade shaft in parallel with the blade shaft via a bearing means, The wind turbine blade pitch double control mechanism according to claim 3, wherein the blade pitch double control mechanism is swingably supported on the nacelle side or the assembly frame side. ブレードが風下側に傾くのを抑制する方向に作用するバネ手段を、ブレード軸の風車軸寄りの先端とナセル側又は組立てフレームとの間に取付けてあることを特徴とする請求項3または請求項4に記載の風車のブレードピッチダブル制御機構。 The spring means acting in a direction to suppress the blade from tilting toward the leeward side is attached between the tip of the blade shaft near the windmill shaft and the nacelle side or the assembly frame. 5. A windmill blade pitch double control mechanism according to 4. ブレードを風車軸の直径方向よりも前進方向に所定角前傾させる方向の弾力を常時付与するための弾性手段を、ブレード軸の風車軸寄りの先端又は前記の支持フレームに取付けてあることを特徴とする請求項3、請求項4または請求項5に記載の風車のブレードピッチダブル制御機構。 An elastic means for constantly applying elasticity in a direction in which the blade is inclined forward by a predetermined angle in the forward direction from the diameter direction of the windmill shaft is attached to the tip of the blade shaft near the windmill shaft or the support frame. The blade pitch double control mechanism for a wind turbine according to claim 3, 4 or 5.
JP2008314822A 2008-12-10 2008-12-10 Windmill blade pitch double control mechanism Expired - Fee Related JP4649570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314822A JP4649570B2 (en) 2008-12-10 2008-12-10 Windmill blade pitch double control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314822A JP4649570B2 (en) 2008-12-10 2008-12-10 Windmill blade pitch double control mechanism

Publications (2)

Publication Number Publication Date
JP2010138768A true JP2010138768A (en) 2010-06-24
JP4649570B2 JP4649570B2 (en) 2011-03-09

Family

ID=42349111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314822A Expired - Fee Related JP4649570B2 (en) 2008-12-10 2008-12-10 Windmill blade pitch double control mechanism

Country Status (1)

Country Link
JP (1) JP4649570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141901A (en) * 2013-01-22 2014-08-07 Fukushima Univ Wind turbine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282372U (en) * 1985-11-13 1987-05-26
JPH0434466U (en) * 1990-07-17 1992-03-23
JPH074345A (en) * 1993-06-18 1995-01-10 Mitsubishi Heavy Ind Ltd Variable pitch mechanism of wind power prime mover
JP2004308498A (en) * 2003-04-03 2004-11-04 Mie Tlo Co Ltd Wind power generation device
JP4104037B2 (en) * 2000-02-04 2008-06-18 独立行政法人科学技術振興機構 Passive active pitch flap mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282372U (en) * 1985-11-13 1987-05-26
JPH0434466U (en) * 1990-07-17 1992-03-23
JPH074345A (en) * 1993-06-18 1995-01-10 Mitsubishi Heavy Ind Ltd Variable pitch mechanism of wind power prime mover
JP4104037B2 (en) * 2000-02-04 2008-06-18 独立行政法人科学技術振興機構 Passive active pitch flap mechanism
JP2004308498A (en) * 2003-04-03 2004-11-04 Mie Tlo Co Ltd Wind power generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141901A (en) * 2013-01-22 2014-08-07 Fukushima Univ Wind turbine

Also Published As

Publication number Publication date
JP4649570B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
US6979175B2 (en) Downstream wind turbine
EP2472105B1 (en) Wind turbine - floating platform assembly and method for orienting said assembly
KR101268466B1 (en) Slanted windmill
KR100720287B1 (en) Wind power generator
US9909569B2 (en) Tilting wind turbine
JP4982733B2 (en) Vertical-axis linear blade wind turbine with aerodynamic speed control mechanism
JP2006046306A (en) Windmill for wind power generation, and power generator driving method
CN102348889A (en) Folding blade turbine
JP7140331B2 (en) Lift type vertical axis wind turbine
EP2577054B1 (en) Wind turbine with a centrifugal force driven adjustable pitch angle and blades retained by cables
KR20110007118U (en) Wind-powered generator
KR20120027335A (en) Vertical wind power gernerator
JPS59183085A (en) Windmill equipped with rotating speed control device for rotor
JP5685699B2 (en) Variable pitch device
JP4649570B2 (en) Windmill blade pitch double control mechanism
JPH03202679A (en) Vertical windmill
WO2020187374A1 (en) A vertical axis power turbine and use of a vertical axis power turbine
JP2006307816A (en) Horizontal/vertical windmill for wind power generation having variable blade length and pitch
KR20100077361A (en) Apparatus for adding wind power and for removing wind friction for vertical wind power generation
JPH06288336A (en) Wind power-generating device
JP4361063B2 (en) Wind power generator
KR20110113290A (en) Apparatus for adding wind power of vertical wind power generation
JP2010159657A (en) Wind power generator
JPH01366A (en) wind power generator
US20090148288A1 (en) Vertical furling for wind turbines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100419

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees