JP2010138419A - Austenitic stainless steel excellent in hot workability - Google Patents

Austenitic stainless steel excellent in hot workability Download PDF

Info

Publication number
JP2010138419A
JP2010138419A JP2008312969A JP2008312969A JP2010138419A JP 2010138419 A JP2010138419 A JP 2010138419A JP 2008312969 A JP2008312969 A JP 2008312969A JP 2008312969 A JP2008312969 A JP 2008312969A JP 2010138419 A JP2010138419 A JP 2010138419A
Authority
JP
Japan
Prior art keywords
hot workability
less
stainless steel
ferrite
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008312969A
Other languages
Japanese (ja)
Inventor
Masaharu Miyauchi
正晴 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2008312969A priority Critical patent/JP2010138419A/en
Publication of JP2010138419A publication Critical patent/JP2010138419A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive austenitic stainless steel which does not contain an expensive amount of Ni, is excellent in hot workability and has corrosion resistance equal to or higher than that of SUS304. <P>SOLUTION: The austenitic stainless steel excellent in hot workability contains, by mass%, 0.03-0.15% C, ≤1.00% Si, 2.00-7.00% Mn, 1.00-4.00% Ni, 15.00-20.00% Cr, 1.00-4.00% Cu, 0.08-0.30% N and the balance Fe with inevitable impurities, wherein a value shown in the following expression (1) is -0.5 to 0.5 and the relationship between the sum of Ni and Mn contents and the Cu content satisfies the ranges in the following expressions (2)-(5) in Fig.1: (1) Ni+27C+23N+0.1Mn+0.3Cu-1.2(Cr+Mo)-0.5Si+10; (2) Cu≥1.00; (3) Cu≤0.4(Ni+Mn)+0.6; (4) Cu≥-0.57(Ni+Mn)+3.0; and (5) Ni+Mn≤9.0. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱間加工性が良好で、かつSUS304と同等以上の耐錆性を有するオーステナイト系ステンレス鋼、特に熱間加工性に優れたオーステナイト系ステンレス棒鋼に関するものである。   The present invention relates to an austenitic stainless steel having good hot workability and having rust resistance equal to or higher than that of SUS304, and particularly to an austenitic stainless steel bar excellent in hot workability.

オーステナイト系ステンレス鋼は、冷間加工性や耐錆性に優れ、様々な製品が化学プラント用のフランジや配管等の様々な用途・環境で使用されており、一般にSUS304に代表されるオーステナイト鋼は、Crを18%以上、Niを8%以上含有している。しかし、近年のNi高騰により、200系ステンレス鋼に類似した化学成分を有する、省Ni型の高Mn高Nオーステナイト鋼が各製造メーカーより開発、推奨されている。これらは、オーステナイト形成元素であるNiを他のオーステナイト形成元素であるMn、Cu、N等で代替するため、Ni高騰による製品価格面での不安定性は解消されるからである。しかし、Mn、Cu、N等を多量に含有し、Niの含有量を低減することから、加工性や耐錆性等の特性はSUS304に及ばないことが多い。   Austenitic stainless steel is excellent in cold workability and rust resistance, and various products are used in various applications and environments such as flanges and piping for chemical plants. Generally, austenitic steel represented by SUS304 is , Cr is contained 18% or more, Ni is contained 8% or more. However, due to the recent rise in Ni, various manufacturers have developed and recommended Ni-saving, high-Mn, high-N austenitic steels having chemical components similar to those of 200 series stainless steel. This is because Ni, which is an austenite-forming element, is replaced with other austenite-forming elements, such as Mn, Cu, and N, so that instability in terms of product price due to a rise in Ni is eliminated. However, since it contains a large amount of Mn, Cu, N, etc. and reduces the content of Ni, characteristics such as workability and rust resistance often do not reach SUS304.

例えば、これら省Ni型の鋼種はNiの含有量の低減による延性の低下、且つCu、Nの含有量の増加による影響から熱間加工性が悪く、熱間圧延時に有害な割れ・疵を生じやすく、製造時において歩留まりの低下や生産性の低下などが発生し、Ni節減による原料コストの低減ほど安価にならないなどの問題がある。   For example, these Ni-type steel types have poor ductility due to Ni content reduction and poor hot workability due to the effect of Cu and N content increase, and cause harmful cracks and flaws during hot rolling. There is a problem that yield is reduced and productivity is lowered at the time of manufacturing, and the cost is not as low as the raw material cost is reduced due to Ni saving.

例えば、特開2007−63632号公報(特許文献1)に開示されている、Ni:2.0%〜5.0%、Mn:3.0%〜7.0%なるNiの含有量を低減し、Mnを多く含有した省Ni型のオーステナイト系ステンレス鋼が提案されている。ここでは、Mn、Cu、Nの適当量の代替によって良好な熱間加工性を維持しつつNiを節減し得る範囲を求め、δフェライト量、N及びSの含有量と熱間加工性の関係を示しているが、Ni、Mn、Cuの適当含有量のバランスが明確ではなくその効果は十分と言えるものではない。   For example, the Ni content of Ni: 2.0% to 5.0% and Mn: 3.0% to 7.0% as disclosed in JP 2007-63632 A (Patent Document 1) is reduced. However, a Ni-saving austenitic stainless steel containing a large amount of Mn has been proposed. Here, the range in which Ni can be saved while maintaining good hot workability by substituting appropriate amounts of Mn, Cu, and N is obtained, and the relationship between the amount of δ ferrite, the contents of N and S, and hot workability However, the balance of the appropriate contents of Ni, Mn, and Cu is not clear and the effect is not sufficient.

また、特開2008−38191号公報(特許文献2)に開示されているような、Ni:2.0〜5.0%、Mn:3.0〜8.0%なる高耐力、ばね性及び加工性に優れたオーステナイト系ステンレス鋼が提案されているが、熱間加工性に関する記述はほとんどされておらず、依然として熱間圧延時の割れ・疵の発生という問題を解消できていない。
特開2007−63632号公報 特開2008−38191号公報
Further, as disclosed in Japanese Patent Application Laid-Open No. 2008-38191 (Patent Document 2), Ni: 2.0 to 5.0%, Mn: 3.0 to 8.0% high proof stress, spring property, and Although austenitic stainless steel with excellent workability has been proposed, there is almost no description on hot workability, and the problem of cracks and flaws during hot rolling has not been solved.
JP 2007-63632 A JP 2008-38191 A

上述のような問題を解消するために、本発明者らは、高価なNiを含まず、安価で熱間加工性に優れ、且つSUS304と同等以上の耐錆性を有するオーステナイト系ステンレス鋼を提供するものである。   In order to solve the above-mentioned problems, the present inventors provide austenitic stainless steel that does not contain expensive Ni, is inexpensive, has excellent hot workability, and has rust resistance equivalent to or higher than SUS304. To do.

上述の観点から、まず、高価なNiを含まず、Ni+27C+23N+0.1Mn+0.3Cu−1.2(Cr+Mo)−0.5Si+10なる(1)式より求められる値を、−0.5〜0.5となるよう成分設計を行うことによって、オーステナイト相中のδフェライト量を制御する。またその成分設計が、NiとMnの含有量の和とCuの含有量の関係を示した図1の式(2)〜(5)に含まれる領域を満足し、且つ鋼塊の加熱温度を1250℃以上、鍛錬比80%以上で熱間圧延を行うことにより、良好な熱間加工性を維持しつつ、耐錆性に優れたオーステナイト鋼を製造することができる。   From the above viewpoint, first, the value obtained from the formula (1) of Ni + 27C + 23N + 0.1Mn + 0.3Cu−1.2 (Cr + Mo) −0.5Si + 10 without expensive Ni is −0.5 to 0.5. The amount of δ ferrite in the austenite phase is controlled by designing the components so as to be. Moreover, the component design satisfies the region included in the equations (2) to (5) in FIG. 1 showing the relationship between the sum of the contents of Ni and Mn and the content of Cu, and the heating temperature of the steel ingot is set. By performing hot rolling at 1250 ° C. or higher and a forging ratio of 80% or higher, austenitic steel having excellent rust resistance can be manufactured while maintaining good hot workability.

その発明の要旨とするところは、
(1)質量%で、C:0.03%〜0.15%、Si:1.00%以下、Mn:2.00%〜7.00%、Ni:1.00%〜4.00%、Cr:15.00%〜20.00%、Cu:1.00%〜4.00%、N:0.08%〜0.30%を含有し、残部Feおよび不可避的不純物からなり、下記(1)式に示す値が−0.5〜0.5であり、且つNiとMnの含有量の和とCuの含有量の関係が図1の式(2)〜(5)に含まれる領域を満足することを特徴とする、熱間加工性に優れたオーステナイト系ステンレス鋼。
Ni+27C+23N+0.1Mn+0.3Cu−1.2(Cr+Mo)−0.5Si+10 … (1)
Cu≧1.00 … (2)
Cu≦0.4(Ni+Mn)+0.6 … (3)
Cu≧−0.57(Ni+Mn)+3.0 … (4)
Ni+Mn≦9.0 … (5)
(2)前記(1)に記載の、P:0.050%以下、S:0.030%以下、Al:0.100%以下、O:0.010%以下を含有させたことを特徴とする、熱間加工性に優れたオーステナイト系ステンレス鋼。
(3)前記(1)または(2)に記載の、Mo:1.00%以下、B:0.001%〜0.010%の1種または2種以上を含有させたことを特徴とする、熱間加工性に優れたオーステナイト系ステンレス鋼にある。
The gist of the invention is that
(1) By mass%, C: 0.03% to 0.15%, Si: 1.00% or less, Mn: 2.00% to 7.00%, Ni: 1.00% to 4.00% , Cr: 15.00% to 20.00%, Cu: 1.00% to 4.00%, N: 0.08% to 0.30%, the balance being Fe and unavoidable impurities, The value shown in the formula (1) is -0.5 to 0.5, and the relationship between the sum of the contents of Ni and Mn and the content of Cu is included in the formulas (2) to (5) in FIG. Austenitic stainless steel with excellent hot workability, characterized by satisfying the area.
Ni + 27C + 23N + 0.1Mn + 0.3Cu-1.2 (Cr + Mo) -0.5Si + 10 (1)
Cu ≧ 1.00 (2)
Cu ≦ 0.4 (Ni + Mn) +0.6 (3)
Cu ≧ −0.57 (Ni + Mn) +3.0 (4)
Ni + Mn ≦ 9.0 (5)
(2) P: 0.050% or less, S: 0.030% or less, Al: 0.100% or less, O: 0.010% or less as described in (1) above. Austenitic stainless steel with excellent hot workability.
(3) One or more of Mo: 1.00% or less and B: 0.001% to 0.010% described in (1) or (2) are contained. Austenitic stainless steel with excellent hot workability.

以上のように、(1)式に示す値が−0.5〜0.5となるよう成分設計を行うことによって、鋼塊状態の鋳込み方向に対し垂直である鋼塊中心切断面の、中周部におけるδフェライト量が1.0%〜4.0%に制御され、オーステナイト相中に存在するこの少量のδフェライト量が熱間加工性を向上させる。またその成分設計が、NiとMnの含有量の和とCuの含有量の関係を示した図1の式(2)〜(5)に含まれる領域を満足し、且つ鋼塊の加熱温度を1250℃以上とすることにより、Cuが熱間加工性に悪影響を与えることなく、良好な熱間圧延製造を行うことができる。また、Cuを含有することにより耐錆性に優れ、鍛錬比を80%以上とすることで、製品状態での中周部のδフェライト量を0.12%とした、SUS304に類似した用途に使用可能である安価なステンレス鋼を供給できる。   As described above, by designing the components so that the value shown in the formula (1) is −0.5 to 0.5, the center of the steel ingot center cut surface is perpendicular to the casting direction of the steel ingot state. The amount of δ ferrite in the periphery is controlled to 1.0% to 4.0%, and this small amount of δ ferrite present in the austenite phase improves hot workability. Moreover, the component design satisfies the region included in the equations (2) to (5) in FIG. 1 showing the relationship between the sum of the contents of Ni and Mn and the content of Cu, and the heating temperature of the steel ingot is set. By setting it as 1250 degreeC or more, favorable hot rolling manufacture can be performed, without Cu having a bad influence on hot workability. Also, by containing Cu, it has excellent rust resistance, and by making the forging ratio 80% or more, the amount of δ ferrite in the middle circumference in the product state is 0.12%, and it is similar to SUS304. We can supply cheap stainless steel that can be used.

以下、本発明についての成分組成の限定理由について説明する。
C:0.03%〜0.15%
Cは、オーステナイト相を安定化させる元素である。しかし、0.03%未満ではその効果が十分でなく、また、その含有量が高すぎると耐錆性を劣化させることから、その上限を0.15%とした。
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
C: 0.03% to 0.15%
C is an element that stabilizes the austenite phase. However, if the content is less than 0.03%, the effect is not sufficient, and if the content is too high, the rust resistance deteriorates, so the upper limit was made 0.15%.

Si:1.00%以下
Siは、脱酸元素として有効な元素である。しかし、δフェライトの発生を抑制し、オーステナイト相を得るためには、1.00%以下とする必要があり、また、1.0%を超える添加は熱間加工性を害することから、その上限を1.00%とした。
Si: 1.00% or less Si is an effective element as a deoxidizing element. However, in order to suppress the generation of δ ferrite and obtain an austenite phase, it is necessary to be 1.00% or less, and addition exceeding 1.0% impairs hot workability, so its upper limit Was 1.00%.

Mn:2.00%〜7.00%
Mnは、オーステナイト相を安定化させる元素である。しかし、2.00%未満ではその効果が十分でなく、また、7.00%以上となると耐錆性を劣化させることから、その範囲を2.00〜7.00%とした。
Mn: 2.00% to 7.00%
Mn is an element that stabilizes the austenite phase. However, if it is less than 2.00%, the effect is not sufficient, and if it is 7.00% or more, the rust resistance deteriorates, so the range was made 2.00 to 7.00%.

Ni:1.00%〜4.00%
Niは、高価な金属であるため、原料のコストを抑えるため、なるべくその使用量を抑制する必要があるが、マルテンサイト変態を抑制し、オーステナイト相を安定化させるための重要な元素である。そのため、本発明では、Niの含有量の上限を4.00%とすることによって、原料のコストを大幅に低減すると共に、ステンレス鋼としての耐錆性を保持することができる。しかし、良好な熱間加工性や冷間加工性を得るためには必要な元素であり、1.00%以上は添加する必要がある。
Ni: 1.00% to 4.00%
Since Ni is an expensive metal, it is necessary to suppress the amount of use as much as possible in order to reduce the cost of raw materials. However, Ni is an important element for suppressing martensitic transformation and stabilizing the austenite phase. Therefore, in the present invention, by setting the upper limit of the Ni content to 4.00%, it is possible to significantly reduce the cost of the raw material and to maintain the rust resistance as stainless steel. However, it is an element necessary for obtaining good hot workability and cold workability, and 1.00% or more needs to be added.

Cr:15.00%〜20.00%
Crは、強力なフェライト形成元素であると同時に保護性の酸化皮膜を生成し、耐錆性を付与する基本元素である。しかし、15.0%未満では耐錆性が不十分である。また、過剰となるとδフェライト相が生成し熱間加工性が悪化することから、δフェライト相を抑制するために、その上限を20.00%とした。
Cr: 15.00% to 20.00%
Cr is a strong ferrite-forming element and at the same time is a basic element that forms a protective oxide film and imparts rust resistance. However, if it is less than 15.0%, the rust resistance is insufficient. Further, if it is excessive, a δ ferrite phase is generated and hot workability deteriorates. Therefore, in order to suppress the δ ferrite phase, the upper limit was made 20.00%.

Cu:1.00%〜4.00%
Cuは、オーステナイト相を安定化と耐錆性を改善する元素である。しかし、1.0%未満ではその効果が十分でなく、4.0%を超えると熱間加工性が悪化することから、その上限を4.0%とした。
Cu: 1.00% to 4.00%
Cu is an element that stabilizes the austenite phase and improves rust resistance. However, if it is less than 1.0%, the effect is not sufficient, and if it exceeds 4.0%, the hot workability deteriorates, so the upper limit was made 4.0%.

N:0.08〜0.30%
Nは、オーステナイト相の安定化と耐錆性を改善する元素である。しかし、0.08%未満ではその効果が十分でなく、0.30%を超えると熱間加工性が悪化することから、その上限を0.30%とした。好ましくは0.08%〜0.25%とする。
N: 0.08 to 0.30%
N is an element that improves the stabilization and rust resistance of the austenite phase. However, if it is less than 0.08%, the effect is not sufficient, and if it exceeds 0.30%, the hot workability deteriorates, so the upper limit was made 0.30%. Preferably, the content is 0.08% to 0.25%.

P:0.050%以下
Pは、熱間加工性には有害な元素であり、特に0.050%を超えると悪影響が顕著となるので、その上限を0.050%以下とした。
S:0.030%以下
Sは、熱間加工性、耐錆性に有害な元素であり、特に、0.030%を超えると悪影響が顕著となるので、その上限を0.030%以下とした。好ましくは0.010%以下とする。
P: 0.050% or less P is an element harmful to hot workability. Particularly, when P exceeds 0.050%, the adverse effect becomes remarkable, so the upper limit was made 0.050% or less.
S: 0.030% or less S is an element harmful to hot workability and rust resistance. In particular, if it exceeds 0.030%, the adverse effect becomes significant, so the upper limit is 0.030% or less. did. Preferably it is 0.010% or less.

Al:0.100%以下
Alは、脱酸、脱窒元素であり、熱間加工性を改善する元素である。しかし、0.100%を超えると二次酸化の危険性が増すため、その上限を0.100%以下とした。
O:0.010%以下
Oは、その含有量を低くするほどよいが、0.010%を超えると熱間加工性が劣化することから、その上限を0.010%とした。
Al: 0.100% or less Al is a deoxidizing and denitrifying element, and an element that improves hot workability. However, if it exceeds 0.100%, the risk of secondary oxidation increases, so the upper limit was made 0.100% or less.
O: 0.010% or less The lower the content of O, the better. However, if it exceeds 0.010%, the hot workability deteriorates, so the upper limit was made 0.010%.

Mo:1.00%以下
Moは、Crの酸化保護皮膜を強固にし、耐錆性を著しく改善する効果がある。しかし、1.00%を超えるとδフェライト相が生成し、熱間加工性が悪化することから、δフェライト相を抑制するために1.00%以下とした。
Mo: 1.00% or less Mo has an effect of strengthening an oxidation protective film of Cr and remarkably improving rust resistance. However, if it exceeds 1.00%, a δ ferrite phase is generated and hot workability is deteriorated, so the content was made 1.00% or less in order to suppress the δ ferrite phase.

B:0.001%〜0.010%
Bは、熱間加工性を改善する元素である。しかし、0.001%未満ではその効果は十分でなく、0.010%を超えると熱間加工性、耐錆性を悪化させるので、その上限を0.010%とした。
B: 0.001% to 0.010%
B is an element that improves hot workability. However, if it is less than 0.001%, the effect is not sufficient, and if it exceeds 0.010%, the hot workability and rust resistance are deteriorated, so the upper limit was made 0.010%.

Ni+27C+23N+0.1Mn+0.3Cu−1.2(Cr+Mo)−0.5Si+10 … (1)
上記(1)式の値が−0.5〜0.5となるように成分設計を行うことによって、鋼塊状態の鋳込み方向に対し垂直である鋼塊中心切断面の、中周部におけるδフェライト量が1.0%〜4.0%に制御される。(1)式の値が−0.5未満ではδフェライト量が4.0%を超え、0.5%を超えるとδフェライト量が1.0%未満となり、共に熱間加工性が悪化することから、(1)式の値を−0.5〜0.5とした。
Ni + 27C + 23N + 0.1Mn + 0.3Cu-1.2 (Cr + Mo) -0.5Si + 10 (1)
By designing the components so that the value of the above equation (1) is −0.5 to 0.5, δ in the middle peripheral portion of the steel ingot center cut surface that is perpendicular to the casting direction of the steel ingot state. The amount of ferrite is controlled to 1.0% to 4.0%. When the value of the formula (1) is less than −0.5, the amount of δ ferrite exceeds 4.0%, and when it exceeds 0.5%, the amount of δ ferrite becomes less than 1.0%, and both hot workability deteriorates. Therefore, the value of the formula (1) was set to -0.5 to 0.5.

図1は、NiとMnの含有量の和とCuの含有量の関係を示す図である。すなわち、図1の式(2)〜(5)に含まれる領域を満足することにより良好な熱間加工性を有するオーステナイト鋼が得られることを示すために図式化した図である。式(2)によって示された線は、Cuの下限添加量である。   FIG. 1 is a diagram showing the relationship between the sum of the contents of Ni and Mn and the content of Cu. That is, it is a diagram schematically shown to show that an austenitic steel having good hot workability can be obtained by satisfying the region included in the equations (2) to (5) in FIG. The line shown by the formula (2) is the lower limit addition amount of Cu.

図1に示す式(3)によって示される線は、製品状態でのδフェライト量が0.12%以下を満足するための、Mn、Ni、Cuの最低限必要とされる含有量を示している。式(3)に示すよりも各元素の含有量が低い場合は、製品状態でのδフェライト量が安定して0.12%以下を満足できない。   The line shown by the equation (3) shown in FIG. 1 indicates the minimum required contents of Mn, Ni, and Cu for satisfying the amount of δ ferrite in a product state of 0.12% or less. Yes. When the content of each element is lower than shown in Formula (3), the amount of δ ferrite in the product state is stable and cannot satisfy 0.12% or less.

また、図1に示す式(4)によって示される線は、NiとMnの含有量の和に対するCuの固溶可能である含有量を示している。オーステナイト相中にCuが完全に固溶されていない場合、Cuは熱間加工性を悪化させる。良好な熱間加工性を有するために、Cuの含有量を式(3)より低くする必要がある。   Moreover, the line shown by Formula (4) shown in FIG. 1 has shown the content which can be dissolved in Cu with respect to the sum of content of Ni and Mn. When Cu is not completely dissolved in the austenite phase, Cu deteriorates hot workability. In order to have good hot workability, it is necessary to make Cu content lower than the formula (3).

さらに、図1に示す式(5)によって示される線は、NiとMnの含有量の和についての上限である。Ni+Mnが9を超えると、鋼塊状態でのδフェライト量が1.0%未満となる恐れがあり、良好な熱間加工性が得られなくなるため、Ni+Mn≦9という式(5)より低い含有量とする必要がある。以上より、式(2)〜(5)で囲まれる図1に示す領域を満足することにより、良好な熱間加工性を有するオーステナイト鋼の成分設計が終了する。   Furthermore, the line shown by Formula (5) shown in FIG. 1 is an upper limit about the sum of content of Ni and Mn. If Ni + Mn exceeds 9, the amount of δ ferrite in the steel ingot state may be less than 1.0%, and good hot workability cannot be obtained. Therefore, the content is lower than the formula (5) where Ni + Mn ≦ 9. It is necessary to make quantity. From the above, the component design of the austenitic steel having good hot workability is completed by satisfying the region shown in FIG. 1 surrounded by the formulas (2) to (5).

鋼塊の加熱温度を1250℃以上として熱間圧延を行うことにより、Cuの固溶量を増加させ、且つ、1.0%〜4.0%存在するδフェライトが熱間加工性を改善し、良好な熱間加工性を得ることが可能となる。   By performing hot rolling at a heating temperature of the steel ingot of 1250 ° C. or higher, the amount of Cu dissolved increases, and 1.0% to 4.0% existing δ ferrite improves hot workability. It is possible to obtain good hot workability.

(1)式の値を−0.5〜0.5とし、図1の式(2)〜(5)に含まれる領域を満足するように成分設計を行い、鋼塊の加熱温度を1250℃以上として熱間圧延を行った後に、80%以上の鍛錬比で熱間圧延を行うことにより、鋼中のδフェライト量が減少し、製品状態での中周部のδフェライト量を0.12%以下とすることができる。これによってオーステナイト系ステンレス鋼の特徴である非磁性を確保することが可能となる。   The value of the formula (1) is set to -0.5 to 0.5, the component design is performed so as to satisfy the region included in the formulas (2) to (5) in FIG. 1, and the heating temperature of the steel ingot is set to 1250 ° C. After hot rolling as described above, by performing hot rolling at a forging ratio of 80% or more, the amount of δ ferrite in the steel is reduced, and the amount of δ ferrite in the middle periphery in the product state is 0.12 % Or less. This makes it possible to ensure non-magnetism, which is a feature of austenitic stainless steel.

以下、本発明について実施例によって具体的に説明する。
(実施例1)
表1に示す成分組成の鋼を真空誘導溶解炉にて溶製して100kgの鋼塊とし、鋼塊状 態のδフェライト量を測定した。また、鋼塊に熱処理(1050℃で3時間保持し、その後水冷)を施し、熱間加工性試験を実施した。その結果を表2に示す。その試験方法を以下に示す。δフェライト量については、真空誘導溶解炉にて100kgの鋼塊を溶製後、鋳込み方向に対し垂直である鋼塊中心切断面の、中周部におけるδフェライト量をフェライトスコープにて測定し、5点平均値を用いた。
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
Steel having the composition shown in Table 1 was melted in a vacuum induction melting furnace to form a 100 kg steel ingot, and the amount of δ ferrite in the steel ingot state was measured. Further, the steel ingot was subjected to heat treatment (held at 1050 ° C. for 3 hours and then water-cooled), and a hot workability test was performed. The results are shown in Table 2. The test method is shown below. For the amount of δ ferrite, after melting a 100 kg steel ingot in a vacuum induction melting furnace, measure the amount of δ ferrite in the middle periphery of the steel ingot center cut surface perpendicular to the casting direction with a ferrite scope, A 5-point average value was used.

また、熱間加工性の調査としては、径6mmで長さ100mmの棒状試験片を作製し、熱処理(1050℃で3時間保持し、その後水冷)を施し試験片を供した後、高温高速引張試験を行い、破断した試験片の絞り値を求めることにより、熱間での材料の加工特性を評価した。すなわち、熱間加工性に優れる材料は、ある試験温度での絞り値は100%に近づくことになる。その試験条件は、10秒で試験片を各試験温度まで加熱し、各試験温度で30秒間保持後、各試験温度にて50mm毎秒で引張りを行い、その評価方法としては、高温高速引張試験から得られた試験温度1000℃〜1250℃での絞り値を、SUS304の絞り値を基準として比較評価を行った。その結果を表2に示す熱間加工性として、◎:優れる(絞り値で5%以上の向上)、○:ほぼ同等(絞り値で5%低下の低下〜5%未満の向上)、△:少し劣る(絞り値で5%を超え10%以下の低下)、×:劣る(絞りで10%を超える低下)で評価した。   In order to investigate hot workability, a rod-shaped test piece having a diameter of 6 mm and a length of 100 mm was prepared, subjected to heat treatment (held at 1050 ° C. for 3 hours and then water-cooled), and then provided with the test piece, followed by high-temperature high-speed tensile The hot working characteristics of the material were evaluated by conducting tests and determining the aperture value of the fractured specimen. That is, a material having excellent hot workability has a drawing value close to 100% at a certain test temperature. The test condition is that the test piece is heated to each test temperature in 10 seconds, held at each test temperature for 30 seconds, and then pulled at 50 mm per second at each test temperature. The obtained aperture value at a test temperature of 1000 ° C. to 1250 ° C. was compared and evaluated based on the aperture value of SUS304. The results of the hot workability shown in Table 2 are as follows: ◎: excellent (improvement of 5% or more in the aperture value), ○: almost equivalent (reduction of 5% decrease to less than 5% in the aperture value), Δ: The evaluation was a little inferior (a reduction of more than 5% in the aperture value and a decrease of 10% or less), x: inferior (a decrease in excess of 10% at the aperture).

Figure 2010138419
Figure 2010138419

Figure 2010138419
表1、表2に示すように、No.1〜13は本発明例であり、No.14〜21は比較例である。
Figure 2010138419
As shown in Tables 1 and 2, no. Nos. 1 to 13 are examples of the present invention. 14 to 21 are comparative examples.

比較例No.14〜No.16、No.19は(1)式、図1ともに満足していないため、δフェライト量が1.0%〜4.0%を満足せず、熱間加工性が劣る。比較例No.17、No.18、No.20、No.21は(1)式もしくは図1を満足していないため、δフェライト量が1.0%〜4.0%を満足した比較例No.17、No.20は熱間加工性が少し劣り、δフェライト量を満足しなかった比較例No.18、No.21は熱間加工性が劣る結果となった。   Comparative Example No. 14-No. 16, no. 19 is not satisfied with both the expression (1) and FIG. 1, the amount of δ ferrite does not satisfy 1.0% to 4.0%, and the hot workability is inferior. Comparative Example No. 17, no. 18, no. 20, no. 21 does not satisfy the formula (1) or FIG. 1, and therefore, Comparative Example No. 21 in which the amount of δ ferrite satisfies 1.0% to 4.0%. 17, no. Comparative Example No. 20 was slightly inferior in hot workability and did not satisfy the amount of δ ferrite. 18, no. No. 21 resulted in poor hot workability.

(実施例2)
実施例1にて、熱処理を施していない鋼塊を1250℃に加熱し、鍛錬比80%以上で鍛伸後、固溶化熱処理(1050℃で20分保持し、その後水冷)を施し、各種試料を作製した。その各種試料のδフェライト量測定、耐錆性試験を実施した。その結果を表3に示す。その試験方法を以下に示す。δフェライト量は、鍛錬比80%以上で鍛伸後、固溶化熱処理(1050℃で20分保持し,その後水冷)を行った後、切断面の中周部のδフェライト量をフェライトスコープにて測定し、5点平均値を用いた。
(Example 2)
In Example 1, the steel ingot not subjected to heat treatment was heated to 1250 ° C., forged at a forging ratio of 80% or more, and then subjected to solution heat treatment (held at 1050 ° C. for 20 minutes and then water-cooled). Was made. The various samples were subjected to δ ferrite content measurement and rust resistance test. The results are shown in Table 3. The test method is shown below. The amount of δ ferrite is forged at a forging ratio of 80% or more, and after solution heat treatment (holding at 1050 ° C. for 20 minutes and then water cooling), the amount of δ ferrite in the middle periphery of the cut surface is measured with a ferrite scope. Measurement was made and a 5-point average value was used.

耐錆性試験としては、鍛錬比80%以上で鍛伸後、固溶化熱処理(1050℃で20分保持し,その後水冷)を行った後、径12mmで長さ21mmの棒状試験片を作製し、表面を#600にて湿式研磨後、試験片を供した。その試験条件は、JIS Z 2371に規定される中性塩水噴霧試験を、試験条件として塩酸0.1mol/lの水溶液を用い、試験時間を96時間で行った。評価方法としては、試験が終了した試験片の外観より、発錆の有無を確認した。その結果を表3に示す耐錆性として、○:発錆なし、△:少し発錆有り(面積で10mm2 未満)、×:広く発錆(面積で10mm2 以上)で評価した。 As a rust resistance test, after forging at a forging ratio of 80% or more, a solid heat treatment (held at 1050 ° C. for 20 minutes and then water cooling) was performed, and then a rod-shaped test piece having a diameter of 12 mm and a length of 21 mm was prepared. After the surface was wet-polished with # 600, a test piece was provided. The test conditions were a neutral salt spray test defined in JIS Z 2371, using an aqueous solution of 0.1 mol / l hydrochloric acid as the test condition, and the test time was 96 hours. As an evaluation method, the presence or absence of rusting was confirmed from the appearance of the test piece after the test. The results were evaluated as rust resistance shown in Table 3, with ◯: no rusting, Δ: little rusting (less than 10 mm 2 in area), x: wide rusting (10 mm 2 or more in area).

Figure 2010138419
表3に示すように、No.1〜13は本発明例であり、No.14〜21は比較例である。
Figure 2010138419
As shown in Table 3, no. Nos. 1 to 13 are examples of the present invention. 14 to 21 are comparative examples.

比較例No.14〜No.16、No.19は(1)式、図1ともに満足していないため、製品状態のδフェライト量が0.12%以上となった。比較例No.15はNiの含有量が低く、局部的に発錆が見られた。比較例No.16はMnの含有量が高く、耐錆性が劣る。比較例No.18、比較例No.20は共にCの含有量が高く、また、比較例No.20はNiの含有量が低いため、耐錆性が劣る結果となった。   Comparative Example No. 14-No. 16, no. Since 19 is not satisfied with both the expression (1) and FIG. 1, the amount of δ ferrite in the product state is 0.12% or more. Comparative Example No. No. 15 had a low Ni content, and local rusting was observed. Comparative Example No. No. 16 has a high Mn content and is inferior in rust resistance. Comparative Example No. 18, Comparative Example No. No. 20 has a high C content. Since No. 20 had a low Ni content, rust resistance was inferior.

以上のように、高価なNiを含有することなく、(1)式に示す値が−0.5〜0.5であり、且つNiとMnの含有量の和とCuの含有量の関係が図1の式(2)〜(5)に含まれる領域を満足することによって、熱間加工性が良好で、かつSUS304と同等以上の耐錆性を有するオーステナイト系ステンレス鋼を提供することができる。   As described above, the value shown in the formula (1) is −0.5 to 0.5 without containing expensive Ni, and the relationship between the sum of the contents of Ni and Mn and the content of Cu is as follows. By satisfying the region included in the formulas (2) to (5) in FIG. 1, it is possible to provide an austenitic stainless steel having good hot workability and having rust resistance equal to or higher than that of SUS304. .

NiとMnの含有量の和とCuの含有量の関係を示す図である。It is a figure which shows the relationship between the sum of content of Ni and Mn, and content of Cu.

Claims (3)

質量%で、
C:0.03%〜0.15%
Si:1.00%以下
Mn:2.00%〜7.00%
Ni:1.00%〜4.00%
Cr:15.00%〜20.00%
Cu:1.00%〜4.00%
N:0.08%〜0.30%
を含有し、残部Feおよび不可避的不純物からなり、下記(1)式に示す値が−0.5〜0.5であり、且つNiとMnの含有量の和とCuの含有量の関係が図1の式(2)〜(5)に含まれる領域を満足することを特徴とする、熱間加工性に優れたオーステナイト系ステンレス鋼。
Ni+27C+23N+0.1Mn+0.3Cu−1.2(Cr+Mo)−0.5Si+10 … (1)
Cu≧1.00 … (2)
Cu≦0.4(Ni+Mn)+0.6 … (3)
Cu≧−0.57(Ni+Mn)+3.0 … (4)
Ni+Mn≦9.0 … (5)
% By mass
C: 0.03% to 0.15%
Si: 1.00% or less Mn: 2.00% to 7.00%
Ni: 1.00% to 4.00%
Cr: 15.00% to 20.00%
Cu: 1.00% to 4.00%
N: 0.08% to 0.30%
The balance is composed of Fe and unavoidable impurities, the value shown in the following formula (1) is -0.5 to 0.5, and the relationship between the sum of the contents of Ni and Mn and the content of Cu is An austenitic stainless steel excellent in hot workability, characterized by satisfying the region included in the formulas (2) to (5) in FIG.
Ni + 27C + 23N + 0.1Mn + 0.3Cu-1.2 (Cr + Mo) -0.5Si + 10 (1)
Cu ≧ 1.00 (2)
Cu ≦ 0.4 (Ni + Mn) +0.6 (3)
Cu ≧ −0.57 (Ni + Mn) +3.0 (4)
Ni + Mn ≦ 9.0 (5)
請求項1に加えて、
P:0.050%以下
S:0.030%以下
Al:0.100%以下
O:0.010%以下
を含有させたことを特徴とする、熱間加工性に優れたオーステナイト系ステンレス鋼。
In addition to claim 1,
P: 0.050% or less S: 0.030% or less Al: 0.100% or less O: Austenitic stainless steel excellent in hot workability characterized by containing 0.010% or less.
請求項1または2に加えて、
Mo:1.00%以下
B:0.001%〜0.010%
の1種または2種以上を含有させたことを特徴とする、熱間加工性に優れたオーステナイト系ステンレス鋼。
In addition to claim 1 or 2,
Mo: 1.00% or less B: 0.001% to 0.010%
An austenitic stainless steel excellent in hot workability, characterized by containing one or more of the above.
JP2008312969A 2008-12-09 2008-12-09 Austenitic stainless steel excellent in hot workability Withdrawn JP2010138419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312969A JP2010138419A (en) 2008-12-09 2008-12-09 Austenitic stainless steel excellent in hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312969A JP2010138419A (en) 2008-12-09 2008-12-09 Austenitic stainless steel excellent in hot workability

Publications (1)

Publication Number Publication Date
JP2010138419A true JP2010138419A (en) 2010-06-24

Family

ID=42348793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312969A Withdrawn JP2010138419A (en) 2008-12-09 2008-12-09 Austenitic stainless steel excellent in hot workability

Country Status (1)

Country Link
JP (1) JP2010138419A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189800A (en) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd LOW Ni AUSTENITIC STAINLESS STEEL SHEET AND MOLDED ARTICLE THEREOF
CN106119734A (en) * 2016-08-23 2016-11-16 合肥东方节能科技股份有限公司 A kind of rustless steel and smelting process thereof
CN106435370A (en) * 2016-10-13 2017-02-22 宝钢轧辊科技有限责任公司 High-speed steel roller special for cold-rolled high-strength car plate and manufacturing method thereof
CN107119236A (en) * 2017-04-17 2017-09-01 中国科学院深圳先进技术研究院 Martensite antimicrobial stainless steel and its heat treatment method and application
CN107164688A (en) * 2016-11-10 2017-09-15 南通江勤美金属制品有限公司 A kind of superhigh intensity steel band and its heat treatment method
CN107254593A (en) * 2017-06-02 2017-10-17 东莞市易合软件科技有限公司 A kind of melting automatic blending method
CN107287519A (en) * 2017-06-15 2017-10-24 河钢股份有限公司承德分公司 800MPa containing vanadium grades of vehicle structure hot-rolled coils, production method and automotive frames
CN109112430A (en) * 2017-06-26 2019-01-01 宝钢不锈钢有限公司 A kind of low-cost high-strength low-nickel austenitic stainless steel and manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189800A (en) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd LOW Ni AUSTENITIC STAINLESS STEEL SHEET AND MOLDED ARTICLE THEREOF
CN106119734A (en) * 2016-08-23 2016-11-16 合肥东方节能科技股份有限公司 A kind of rustless steel and smelting process thereof
CN106435370A (en) * 2016-10-13 2017-02-22 宝钢轧辊科技有限责任公司 High-speed steel roller special for cold-rolled high-strength car plate and manufacturing method thereof
CN107164688A (en) * 2016-11-10 2017-09-15 南通江勤美金属制品有限公司 A kind of superhigh intensity steel band and its heat treatment method
CN107119236A (en) * 2017-04-17 2017-09-01 中国科学院深圳先进技术研究院 Martensite antimicrobial stainless steel and its heat treatment method and application
CN107254593A (en) * 2017-06-02 2017-10-17 东莞市易合软件科技有限公司 A kind of melting automatic blending method
CN107287519A (en) * 2017-06-15 2017-10-24 河钢股份有限公司承德分公司 800MPa containing vanadium grades of vehicle structure hot-rolled coils, production method and automotive frames
CN109112430A (en) * 2017-06-26 2019-01-01 宝钢不锈钢有限公司 A kind of low-cost high-strength low-nickel austenitic stainless steel and manufacturing method

Similar Documents

Publication Publication Date Title
TWI571517B (en) Ferritic-austenitic stainless steel
JP2010138419A (en) Austenitic stainless steel excellent in hot workability
WO2012018074A1 (en) Ferritic stainless steel
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
TWI546389B (en) Fat iron stainless steel plate
CA2875644C (en) Duplex stainless steel
JP6294972B2 (en) Duplex stainless steel
JP2010508439A (en) Duplex stainless steel and use of this steel
CN105452506A (en) Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
JP2007270290A (en) Ferritic stainless steel excellent in corrosion resistance of weld zone
JP5324149B2 (en) Corrosion resistant austenitic stainless steel
JP2018031028A (en) Fe-Ni-Cr-Mo ALLOY AND METHOD FOR PRODUCING THE SAME
JP2007063632A (en) Austenitic stainless steel
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
JP5971415B2 (en) Manufacturing method of martensitic stainless hot-rolled steel strip for welded steel pipe for line pipe
JP2015196894A (en) Two-phase stainless steel
JP2019026940A (en) Two-phase stainless steel welded joint
TW201608040A (en) Duplex stainless steel
JP6587881B2 (en) Ferritic stainless steel wire for fastening parts
JP5365499B2 (en) Duplex stainless steel and urea production plant for urea production plant
JP5202988B2 (en) Duplex stainless steel with excellent overall corrosion resistance
JP2004143576A (en) Low nickel austenitic stainless steel
JP3890223B2 (en) Austenitic stainless steel
JP5890342B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP5992189B2 (en) Stainless steel excellent in high temperature lactic acid corrosion resistance and method of use

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306