JP2010138047A - Method for producing composite activated carbon - Google Patents

Method for producing composite activated carbon Download PDF

Info

Publication number
JP2010138047A
JP2010138047A JP2008318151A JP2008318151A JP2010138047A JP 2010138047 A JP2010138047 A JP 2010138047A JP 2008318151 A JP2008318151 A JP 2008318151A JP 2008318151 A JP2008318151 A JP 2008318151A JP 2010138047 A JP2010138047 A JP 2010138047A
Authority
JP
Japan
Prior art keywords
activated carbon
silica gel
aqueous solution
pores
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008318151A
Other languages
Japanese (ja)
Other versions
JP5323466B2 (en
Inventor
Fujio Watanabe
藤雄 渡邉
Masanobu Katani
昌信 架谷
Katsuhiko Makino
勝彦 牧野
Tamotsu Ogita
保 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Nagoya Denki Educational Foundation
Original Assignee
Aisan Industry Co Ltd
Nagoya Denki Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Nagoya Denki Educational Foundation filed Critical Aisan Industry Co Ltd
Priority to JP2008318151A priority Critical patent/JP5323466B2/en
Priority to US12/372,866 priority patent/US20090209418A1/en
Publication of JP2010138047A publication Critical patent/JP2010138047A/en
Application granted granted Critical
Publication of JP5323466B2 publication Critical patent/JP5323466B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing composite activated carbon by which silica gel is impregnated into fine pores in a short time and further even into micropores. <P>SOLUTION: The method for producing composite activated carbon having fine pores impregnated with silica gel has an impregnation step of: immersing activated carbon 2 into an alkali metal silicate aqueous solution 1 to be a silica gel raw material to impregnate the fine pores of the activated carbon 2 with the silica gel raw material; a solation step of: adding an acid to the activated carbon 2 after the impregnation step; and a gelation step of: solid-liquid separating after the solation and heating and aging the activated carbon 2. In the impregnation step, the activated carbon 2 is immersed in the positive pole 11 side and is impregnated with the aqueous solution 1 by applying electric field. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、細孔内にシリカゲルが添着された複合活性炭の製造方法に関する。   The present invention relates to a method for producing composite activated carbon in which silica gel is impregnated in pores.

活性炭は、その多孔質構造により吸脱着特性を有するため、種々の物質を吸脱着する吸着材として広い分野で使用されている。吸着現象には大きく分けて物理吸着と化学吸着があるが、活性炭ではファン・デル・ワールズ力により生じる可逆的な物理吸着が主となる。この可逆的な物理吸着により、細孔内に吸着した吸着物質を脱着(パージ)できる。ところで、活性炭の内部には種々のサイズの細孔が形成されている。具体的には、細孔直径2nm以下のミクロ孔、細孔直径2〜50nmのメソ孔、細孔直径50nm以上のマクロ孔が混在している。これらの細孔は基本的に各細孔が互いに連続した連続孔となっており、活性炭の内部から表面に向けて細孔直径が大きくなる傾向にある。すなわち活性炭の細孔は模式的に木に例えることができ、木の太い幹に相当するのマクロ孔と、幹から出ている枝に相当するメソ孔と、枝からさらに細かく分かれている多数の小枝に相当するミクロ孔とを有する。   Activated carbon has adsorption / desorption characteristics due to its porous structure, and is therefore used in a wide range of fields as an adsorbent for adsorbing and desorbing various substances. Adsorption phenomena can be broadly divided into physical adsorption and chemical adsorption, but activated carbon mainly uses reversible physical adsorption caused by van der Waals forces. By this reversible physical adsorption, the adsorbed substance adsorbed in the pores can be desorbed (purged). By the way, pores of various sizes are formed inside the activated carbon. Specifically, micropores having a pore diameter of 2 nm or less, mesopores having a pore diameter of 2 to 50 nm, and macropores having a pore diameter of 50 nm or more are mixed. These pores are basically continuous pores in which each pore is continuous, and the pore diameter tends to increase from the inside of the activated carbon toward the surface. In other words, the pores of the activated carbon can be schematically compared to a tree, a macro hole corresponding to a thick trunk of a tree, a meso hole corresponding to a branch coming out of the trunk, and a number of finely divided branches. And micropores corresponding to twigs.

ミクロ孔は強力な吸着力を有しており、比較的分子サイズの小さい物質の吸着サイトになる。メソ孔は、比較的分子サイズの大きな高分子物質の吸着や薬剤等の担持(添着)に利用される。また、活性炭表面に吸着した吸着物のミクロ孔への移動に関与するため、動的吸着特性や吸着速度にも影響する。このように、活性炭に対する吸着物の吸着容量は、ミクロ孔及びメソ孔の容積や分布に大きく影響を受ける。一方、マクロ孔は主として吸着物やイオンが活性炭内部のミクロ孔などに吸着するための通路として機能し、吸着物質にもよるが、吸着容量には直接関与しないことが多い。しかも、マクロ孔容積が大きいと、活性炭の密度も低くなり、硬さも低下する。そのため、吸着材における高い吸脱着特性を確保するには、吸着対象の分子サイズに応じた適切な細孔直径の細孔を多く有する活性炭を使用することが求められる。   The micropores have a strong adsorption force and become an adsorption site for a substance having a relatively small molecular size. The mesopores are used for adsorption of a polymer substance having a relatively large molecular size and loading (attachment) of a drug or the like. In addition, since the adsorbate adsorbed on the activated carbon surface is involved in the movement to the micropores, it also affects the dynamic adsorption characteristics and adsorption rate. Thus, the adsorption capacity of the adsorbate with respect to the activated carbon is greatly influenced by the volume and distribution of the micropores and mesopores. On the other hand, the macropores mainly function as a passage for adsorbed substances and ions to be adsorbed to the micropores inside the activated carbon, and are often not directly related to the adsorption capacity depending on the adsorbed substance. Moreover, when the macropore volume is large, the density of the activated carbon is also lowered and the hardness is also lowered. Therefore, in order to ensure high adsorption / desorption characteristics in the adsorbent, it is required to use activated carbon having many pores having an appropriate pore diameter corresponding to the molecular size of the adsorption target.

例えば、ガソリンが揮発した蒸発燃料を吸着する場合、蒸発燃料の90%以上を占めるブタン、ペンタン、ヘキサンなどの低分子炭化水素に対する有効細孔直径は、BJH解析法で2〜4nm程度であることが知られている。したがって、蒸発燃料を吸脱着するための吸着材として使用する場合は、活性炭の細孔のうち、低分子炭化水素の内部への移動を鑑みても細孔直径10nm以上の細孔領域は、蒸発燃料の吸着量に関して無駄な領域であり、しかも密度や硬さ低下の原因となる。   For example, when adsorbing evaporated fuel that gasoline volatilizes, the effective pore diameter for low-molecular hydrocarbons such as butane, pentane, and hexane, which occupy 90% or more of the evaporated fuel, is about 2 to 4 nm by BJH analysis. It has been known. Therefore, when used as an adsorbent for adsorbing and desorbing evaporated fuel, a pore region having a pore diameter of 10 nm or more is evaporated even in consideration of the movement of low-molecular hydrocarbons into the pores of activated carbon. This is a useless region regarding the amount of fuel adsorbed, and causes a decrease in density and hardness.

しかし、単に各種原料を賦活処理するだけでは細孔直径の制御は困難であり、均一な細孔直径を有する活性炭を得ることはほぼ不可能である。また、比表面積の増大を中心とする改良が検討されているが、比表面積の増大に伴う吸着材の密度減少が容積基準の吸着性能増大を拒むために高性能化には直結していない。そこで、活性炭の細孔内にシリカゲルを添着することで細孔の狭小化を図った複合活性炭として、特許文献1がある。当該特許文献1では、活性炭をケイ酸ナトリウム(ケイ酸ソーダ)水溶液などに浸漬して、活性炭の細孔内にシリカゲルを添着している。具体的には、シリカゲル原料となるケイ酸のアルカリ金属塩水溶液に活性炭を浸漬して、シリカゲル原料を活性炭の細孔内に含浸させる含浸工程と、含浸工程後の活性炭へ酸を添加し、シリカゲル原料をゾル化するゾル化工程と、ゾル化工程後に固液分離して活性炭を加熱熟成し、シリカゾルをゲル化するゲル化工程とを経て複合活性炭を製造している。なお、粒内拡散機構による活性炭の吸脱着速度について検討した文献として、非特許文献1がある。   However, it is difficult to control the pore diameter by simply activating various raw materials, and it is almost impossible to obtain activated carbon having a uniform pore diameter. In addition, improvements centering on an increase in specific surface area have been studied. However, a decrease in the density of the adsorbent accompanying an increase in the specific surface area refuses to increase the adsorption performance on a volume basis, and thus does not directly lead to an increase in performance. Therefore, there is Patent Document 1 as a composite activated carbon in which the pores are narrowed by attaching silica gel into the pores of the activated carbon. In Patent Document 1, activated carbon is immersed in a sodium silicate (sodium silicate) aqueous solution or the like, and silica gel is attached to the pores of the activated carbon. Specifically, the activated carbon is immersed in an alkali metal salt aqueous solution of silicic acid, which is a silica gel raw material, and the silica gel raw material is impregnated in the pores of the activated carbon, and the acid is added to the activated carbon after the impregnation step. The composite activated carbon is manufactured through a sol- lation step in which the raw material is solated, and a gelation step in which the activated carbon is heated and aged by solid-liquid separation after the sol-solu- tion step to gel the silica sol. In addition, there exists a nonpatent literature 1 as literature which examined the adsorption / desorption rate of activated carbon by an intragranular diffusion mechanism.

特開2005−289690号公報JP 2005-289690 A 化学工学論文集、第10巻、第4号、1984、渡辺藤雄ら、P461〜468、Chemical Engineering, Vol. 10, No. 4, 1984, Fujio Watanabe et al., P461-468,

特許文献1では、大きな細孔直径を有する細孔の狭小化と、それ自体も吸脱着機能を有するシリカゲルの添着との相乗効果によって、水に対する吸脱着特性を効果的に向上している。しかし、特許文献1では、活性炭をケイ酸ナトリウム水溶液に浸漬してシリカゲルを活性炭の細孔内に添着させているが、この場合、シリカゲル原料となるケイ酸ナトリウムは、拡散により活性炭の細孔内へ浸入していく。当該拡散浸入は浸入速度が遅いので、細孔深く(奥方)にまで確実に浸入させるには長時間を要する問題がある。例えば非特許文献1には、粒径9mmの活性炭にジシアンジアミドを含浸吸着させる場合、粒子表面近傍の細孔内には比較的短時間でジシアンジアミドを吸着させられるが、20時間活性炭を浸漬しても、粒子中心部には殆どジシアンジアミドが吸着されておらず、48時間後でも粒子中心部には平衡吸着量の18%程度しかジシアンジアミドが吸着されていないという結果が開示されている(図4等参照)。   In Patent Document 1, the adsorption / desorption characteristics with respect to water are effectively improved by a synergistic effect of narrowing the pores having a large pore diameter and the addition of silica gel which itself has an adsorption / desorption function. However, in Patent Document 1, activated carbon is immersed in a sodium silicate aqueous solution and silica gel is attached to the pores of the activated carbon. In this case, sodium silicate as a silica gel raw material is diffused in the pores of the activated carbon by diffusion. Invade into. Since the diffusion infiltration has a low infiltration speed, there is a problem that it takes a long time to surely infiltrate deeply into the pores (back). For example, Non-Patent Document 1 discloses that when dicyandiamide is impregnated and adsorbed on activated carbon having a particle diameter of 9 mm, dicyandiamide can be adsorbed in pores near the particle surface in a relatively short time. The results show that almost no dicyandiamide is adsorbed on the particle center, and only about 18% of the equilibrium adsorption amount is adsorbed on the particle center even after 48 hours (see FIG. 4 and the like). ).

一方、ミクロ孔は吸着特性が高いが、吸着物質に対する有効細孔直径より小さな細孔直径領域が多過ぎると、脱着特性の面で問題が懸念される。すなわち、吸着物質に対する有効細孔直径より小さな細孔直径領域に吸着された吸着物質は、高い吸着力によりパージされ難くなる。そこで、ミクロ孔にもシリカゲルを添着して、吸着物質に対する有効細孔直径より小さな細孔直径領域を埋めることが好ましい。しかし、ケイ酸ナトリウムは水溶液中でコロイド状になりやすいので、特許文献1ではミクロ孔にシリカゲルを添着し難く、吸着物質によっては有効細孔直径より小さな細孔直径領域が残存してしまう。   On the other hand, the micropores have high adsorption characteristics, but if there are too many pore diameter regions smaller than the effective pore diameter for the adsorbing material, there is a concern in terms of desorption characteristics. That is, the adsorbed material adsorbed in the pore diameter region smaller than the effective pore diameter for the adsorbed material becomes difficult to be purged due to the high adsorbing force. Therefore, it is preferable to add silica gel to the micropores to fill a pore diameter region smaller than the effective pore diameter for the adsorbed material. However, since sodium silicate tends to be colloidal in an aqueous solution, it is difficult to attach silica gel to micropores in Patent Document 1, and a pore diameter region smaller than the effective pore diameter remains depending on the adsorbed substance.

そこで、本発明は上記課題を解決するものであって、短時間で細孔内にシリカゲルを添着できると共に、ミクロ孔内にもシリカゲルを添着できる複合活性炭の製造方法を提供することを目的とする。   Therefore, the present invention solves the above-described problems, and an object of the present invention is to provide a method for producing a composite activated carbon that can attach silica gel into pores in a short time and can also attach silica gel into micropores. .

本発明は、シリカゲル原料となるケイ酸のアルカリ金属塩水溶液に活性炭を浸漬して、シリカゲル原料を活性炭の細孔内に含浸させる含浸工程と、前記含浸工程後の活性炭へ酸を添加するゾル化工程と、前記ゾル化工程後に固液分離して、前記活性炭を加熱熟成するゲル化工程と、を有する、細孔内にシリカゲルが添着された複合活性炭の製造方法であって、前記含浸工程は、活性炭を正極側に浸漬して水溶液に電場を印加しながら行うことを特徴とする。ケイ酸のアルカリ金属塩水溶液に電場を印加すると、ケイ酸のアルカリ金属塩は電気分解されてケイ酸イオンとアルカリ金属イオンとに分離し、シリカゲル原料となるケイ酸イオンは正極側へ、アルカリ金属イオンは負極側へ移動する。これにより、正極側へ浸漬された活性炭周囲のケイ酸イオン濃度が増加するので、活性炭の細孔内へシリカゲル原料が効率良く含浸され、含浸時間を短縮できる。また、ケイ酸ナトリウムがコロイド状となることなく、ケイ酸がイオン状態となっているので、ミクロ孔内にもシリカゲル原料を含浸させることができる。   The present invention includes an impregnation step in which activated carbon is immersed in an aqueous solution of an alkali metal salt of silicic acid, which is a silica gel raw material, so that the silica gel raw material is impregnated in the pores of the activated carbon, and a sol formation in which acid is added to the activated carbon after the impregnation step And a gelation step of heating and aging the activated carbon after solid-liquid separation after the sol formation step, and a method for producing composite activated carbon in which silica gel is impregnated in pores, the impregnation step It is characterized by immersing activated carbon on the positive electrode side and applying an electric field to the aqueous solution. When an electric field is applied to an aqueous solution of alkali metal salt of silicic acid, the alkali metal salt of silicic acid is electrolyzed and separated into silicate ions and alkali metal ions. Ions move to the negative electrode side. Thereby, since the silicate ion concentration around the activated carbon immersed in the positive electrode side increases, the silica gel raw material is efficiently impregnated into the pores of the activated carbon, and the impregnation time can be shortened. Further, since the silica is in an ionic state without the sodium silicate being colloidal, the silica gel raw material can be impregnated into the micropores.

活性炭は、必ずしも正極と接触していなくてもよいが、活性炭を正極に接する状態で浸漬するか、活性炭自体を正極とすることが好ましい。活性炭は導電性なので、活性炭にも通電される状態となっていれば、ケイ酸イオンは活性炭に引き寄せられ、より短時間でより細孔の奥方までシリカゲル原料を含浸させることができる。   The activated carbon may not necessarily be in contact with the positive electrode, but it is preferable to immerse the activated carbon in contact with the positive electrode or to use the activated carbon itself as the positive electrode. Since the activated carbon is conductive, if the activated carbon is also energized, the silicate ions are attracted to the activated carbon, and the silica gel raw material can be impregnated into the pores in a shorter time.

また、含浸工程で使用する貯留容器の負極側に、当該貯留容器外からケイ酸のアルカリ金属塩水溶液を導入する導入管と、貯留容器内の水溶液を貯留容器外へ排出する排出管とを対向状に設け、含浸工程では、負極側に導入管から排出管へ至る水流を形成しておくことが好ましい。負極側に貯留容器の内外へ通じる水流が形成されていれば、電気分解によって生じたアルカリ金属イオンが貯留容器外へ排出される。これにより、水溶液中のケイ酸イオン純度が高まり、細孔内へシリカゲルの生成に関係のないものが含浸されることを避け、効率良くシリカゲルを添着できる。   In addition, an introduction pipe for introducing an alkali metal salt aqueous solution of silicic acid from the outside of the storage container and a discharge pipe for discharging the aqueous solution in the storage container to the outside of the storage container are opposed to the negative electrode side of the storage container used in the impregnation process. In the impregnation step, it is preferable to form a water flow from the introduction pipe to the discharge pipe on the negative electrode side. If a water flow leading to the inside and outside of the storage container is formed on the negative electrode side, alkali metal ions generated by electrolysis are discharged out of the storage container. As a result, the purity of silicate ions in the aqueous solution is increased, and it is possible to efficiently impregnate the silica gel while avoiding impregnation of the irrelevant silica gel into the pores.

本発明では、短時間で細孔内にシリカゲルを添着できると共に、ミクロ孔内にもシリカゲルを添着できる。   In the present invention, silica gel can be attached to the pores in a short time, and silica gel can also be attached to the micro pores.

活性炭は、各種原料を賦活処理して得られた炭化物多孔質体である。活性炭の原料としては特に限定されず、公知の動植物系原料や合成樹脂系原料を使用できる。動植物系の原料としては、例えば松などの木質、竹、椰子殻、胡桃殻などの植物質、石炭質、獣骨や血液など動物質などがある。合成樹脂系の原料としては、熱可塑性樹脂や熱硬化性樹脂のいずれも適用できるが、とくに薬品賦活での活性炭収率が大きいポリエステル、ポリカーボネート、フェノール樹脂、又はポリイミドが好ましい。   Activated carbon is a carbide porous body obtained by activating various raw materials. It does not specifically limit as a raw material of activated carbon, A well-known animal and plant type raw material and a synthetic resin type raw material can be used. Examples of animal and plant materials include wood such as pine, plant matter such as bamboo, coconut husk and walnut shell, coal, and animal and animal matter such as animal bones and blood. As the synthetic resin-based raw material, either a thermoplastic resin or a thermosetting resin can be applied, and polyester, polycarbonate, phenol resin, or polyimide, which has a large activated carbon yield especially in chemical activation, is preferable.

賦活処理としては、各種ガスを使用した物理的作用により多孔質化する高温炭化法や、化学薬品を使用する化学法がある。高温炭化法で使用する賦活ガスとしては、水蒸気、二酸化炭素、空気などがある。賦活薬品としては、代表的には水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)、塩化亜鉛(ZnCl)等が挙げられ、その他にもリン酸などのアルカリ金属塩や、アルカリ金属の水酸化物も使用できる。   As the activation treatment, there are a high temperature carbonization method that makes a porous structure by a physical action using various gases, and a chemical method that uses chemicals. Examples of the activation gas used in the high temperature carbonization method include water vapor, carbon dioxide, and air. Typical examples of the activation chemical include potassium hydroxide (KOH), sodium hydroxide (NaOH), zinc chloride (ZnCl), and other alkali metal salts such as phosphoric acid, and alkali metal hydroxides. Things can also be used.

活性炭の形態は特に限定されないが、粉砕された粒子状が好ましい。活性炭を粒子状とする場合は、粒径0.01〜3.0mm程度が好ましい。この範囲であれば、シリカゲル原料を細孔内に容易に浸入させられると共に、根本的な吸脱着特性も良好になる。平均粒子径としては、0.05〜2.0mm程度である。   The form of the activated carbon is not particularly limited, but pulverized particles are preferable. When the activated carbon is in the form of particles, a particle size of about 0.01 to 3.0 mm is preferable. Within this range, the silica gel raw material can be easily infiltrated into the pores, and the fundamental adsorption / desorption characteristics are improved. The average particle diameter is about 0.05 to 2.0 mm.

(製造方法)
活性炭の細孔内にシリカゲルを添着する本発明では、基本的には、シリカゲル原料となるケイ酸のアルカリ金属塩水溶液に活性炭を浸漬して、シリカゲル原料を活性炭の細孔内に含浸させる含浸工程と、含浸工程後の活性炭へ酸を添加するゾル化工程と、ゾル化工程後に固液分離して活性炭を加熱熟成するゲル化工程とを有する、公知の液相法を採用しているが、含浸工程において水溶液に電場を印加している点に特徴を有する。図1に、本発明に係る複合活性炭の製造方法のフローを示し、図2に、含浸工程の概念図を示す。
(Production method)
In the present invention in which silica gel is impregnated into the pores of the activated carbon, basically, the impregnation step of impregnating the silica gel raw material into the pores of the activated carbon by immersing the activated carbon in an aqueous alkali metal salt solution of silicic acid as the silica gel raw material. And adopting a known liquid phase method having a solation step of adding an acid to the activated carbon after the impregnation step and a gelation step of heat-aging the activated carbon by solid-liquid separation after the solification step, It is characterized in that an electric field is applied to the aqueous solution in the impregnation step. FIG. 1 shows a flow of a method for producing composite activated carbon according to the present invention, and FIG. 2 shows a conceptual diagram of an impregnation step.

まず、含浸工程に先だって、賦活処理された活性炭を真空脱気する。加熱条件下で真空脱気することで、活性炭に吸着されている水分等が脱離除去されると共に、後工程においてシリカゲル原料が活性炭の細孔内に侵入し易くなる。加熱条件としては、350〜400K程度とすればよい。脱気時間は、2時間以上が好ましい。   First, prior to the impregnation step, the activated carbon is vacuum degassed. By performing vacuum degassing under heating conditions, moisture and the like adsorbed on the activated carbon are desorbed and removed, and the silica gel raw material easily enters the pores of the activated carbon in a subsequent process. The heating condition may be about 350 to 400K. The deaeration time is preferably 2 hours or more.

(含浸工程)
活性炭から余分な吸着物を脱離できたら、次いで、冷却してから活性炭の細孔内にシリカゲル原料を含浸させる。シリカゲル原料の含浸は、図2に示すように、ケイ酸のアルカリ金属塩水溶液1に、活性炭2を浸漬することで行える。ケイ酸のアルカリ金属塩としては、代表的にはケイ酸ナトリウム(Na2nSiO3)が使用される。ここで、ケイ酸のアルカリ金属塩水溶液1を貯留する貯留容器10内の左右両端には、図2に示されるように、正極11と負極12とが対向状に立設されている。正極11側には、活性炭収容空間13が設けられており、当該活性炭収容空間13内に活性炭2を充填する。活性炭収容空間13は、多数の貫通孔14を有する枠壁15によって区画される。枠壁15は、貯留容器10に一体形成されていてもよいし、貯留容器10とは別体の収容容器を貯留容器10内へ配してもよい。収容容器を使用する場合は、当該収容容器の周壁が枠壁15となる。収容容器は、メッシュ体により形成することもできる。
(Impregnation process)
Once the excess adsorbate has been desorbed from the activated carbon, the silica gel raw material is impregnated into the pores of the activated carbon after cooling. As shown in FIG. 2, the impregnation of the silica gel raw material can be performed by immersing activated carbon 2 in an alkali metal salt aqueous solution 1 of silicic acid. As the alkali metal salt of silicic acid, sodium silicate (Na 2 nSiO 3 ) is typically used. Here, as shown in FIG. 2, a positive electrode 11 and a negative electrode 12 are erected so as to face each other at the left and right ends in the storage container 10 storing the alkali metal salt aqueous solution 1 of silicic acid. An activated carbon accommodation space 13 is provided on the positive electrode 11 side, and the activated carbon 2 is filled in the activated carbon accommodation space 13. The activated carbon housing space 13 is partitioned by a frame wall 15 having a large number of through holes 14. The frame wall 15 may be formed integrally with the storage container 10, or a storage container separate from the storage container 10 may be arranged in the storage container 10. When the storage container is used, the peripheral wall of the storage container becomes the frame wall 15. The storage container can also be formed of a mesh body.

活性炭2は、正極10の近傍に浸漬されていれば必ずしも正極10と接触していなくてもよいが、正極10に接触する状態で浸漬することが好ましい。例えば、枠壁15として収容容器を使用する場合、当該収容容器外近傍に正極10を配しても良いが、収容容器内に正極10を配すことが好ましい。枠壁15を貯留容器10に一体成形する場合は、一枚壁とする。また、貯留容器10の負極側には、貯留容器10外からケイ酸のアルカリ金属塩水溶液を導入する導入管16と、貯留容器10内の水溶液1を貯留容器10外へ排出する排出管17とが、負極12と平行となるよう上下対向状に設けられている。なお、導入管16と排出管17とは、どちらが上になってもよい。   The activated carbon 2 may not necessarily be in contact with the positive electrode 10 as long as it is immersed in the vicinity of the positive electrode 10, but is preferably immersed in a state of being in contact with the positive electrode 10. For example, when a storage container is used as the frame wall 15, the positive electrode 10 may be disposed near the outside of the storage container, but the positive electrode 10 is preferably disposed in the storage container. When the frame wall 15 is formed integrally with the storage container 10, it is a single wall. Further, on the negative electrode side of the storage container 10, an introduction pipe 16 for introducing an alkali metal salt aqueous solution of silicic acid from the outside of the storage container 10, and a discharge pipe 17 for discharging the aqueous solution 1 in the storage container 10 to the outside of the storage container 10; Are provided in a vertically opposed manner so as to be parallel to the negative electrode 12. Note that either the introduction pipe 16 or the discharge pipe 17 may be on the upper side.

活性炭2をケイ酸のアルカリ金属塩水溶液1に浸漬できたら、導入管16と排出管17との間で負極12と平行な水流を発生させながら、正極11及び負極12間に電場を印加する。すると、ケイ酸のアルカリ金属塩水溶液1が電気分解されて、ケイ酸イオンとアルカリ金属イオンとに分離する。例えば、ケイ酸ナトリウム(Na2OSiO2)水溶液に電場を印加すると、ケイ酸イオン((SiO32-)とナトリウムイオン(Na+)に分離する。そして、ケイ酸イオンは正極11側へ引き寄せられ、アルカリ金属塩イオンは負極12側へ引き寄せられる。このとき、活性炭2が正極11と接する状態で浸漬されていれば、当該正極11にも通電されるので、ケイ酸イオンは正極11にも引き寄せられる。各電極11・12及び活性炭2での反応は、次の通りである。
正極・活性炭:2OH-+SiO3 2- → H2O+SiO2+O2+4e-
負極:2H2O+2e− → H2+2OH-
When the activated carbon 2 can be immersed in the alkali metal salt aqueous solution 1 of silicic acid, an electric field is applied between the positive electrode 11 and the negative electrode 12 while a water flow parallel to the negative electrode 12 is generated between the introduction tube 16 and the discharge tube 17. Then, the alkali metal salt aqueous solution 1 of silicic acid is electrolyzed and separated into silicate ions and alkali metal ions. For example, when an electric field is applied to an aqueous solution of sodium silicate (Na 2 OSiO 2 ), it is separated into silicate ions ((SiO 3 ) 2− ) and sodium ions (Na + ). Silicate ions are attracted to the positive electrode 11 side, and alkali metal salt ions are attracted to the negative electrode 12 side. At this time, if the activated carbon 2 is immersed in contact with the positive electrode 11, the positive electrode 11 is also energized, and silicate ions are attracted to the positive electrode 11. Reaction in each electrode 11 * 12 and activated carbon 2 is as follows.
Positive electrode / activated carbon: 2OH + SiO 3 2− → H 2 O + SiO 2 + O 2 + 4e
Negative electrode: 2H2O + 2e− → H 2 + 2OH

このように、水溶液1に電場を印加することで、シリカゲル原料となるケイ酸イオンが正極11側に引き寄せられることで、活性炭2付近のシリカゲル原料濃度が上昇し、効率良く細孔内へシリカゲル原料が含浸され、含浸時間を短縮できる。しかも、活性炭2が正極11に接していれば、シリカゲル原料が活性炭2に直接引き寄せられるので、拡散浸入の場合と比べて飛躍的に含浸時間を短縮できる。そのうえ、シリカゲル原料はイオン状態になっているので、活性炭2のミクロ孔内にもシリカゲル原料を含浸させることができる(図3参照)。同時に、負極12側に貯留容器10の外から内部を通る水流があるので、シリカゲル原料として不要なアルカリ金属イオンを貯留容器10外へ排出でき、より効率良くシリカゲル原料を活性炭2の細孔内へ含浸させられる。   Thus, by applying an electric field to the aqueous solution 1, the silicate ions serving as the silica gel raw material are attracted to the positive electrode 11 side, thereby increasing the concentration of the silica gel raw material in the vicinity of the activated carbon 2 and efficiently bringing the silica gel raw material into the pores. Is impregnated, and the impregnation time can be shortened. Moreover, if the activated carbon 2 is in contact with the positive electrode 11, the silica gel raw material is directly drawn to the activated carbon 2, so that the impregnation time can be drastically shortened compared to the case of diffusion infiltration. In addition, since the silica gel raw material is in an ionic state, the silica gel raw material can also be impregnated into the micropores of the activated carbon 2 (see FIG. 3). At the same time, since there is a water flow passing from the outside to the inside of the storage container 10 on the negative electrode 12 side, alkali metal ions unnecessary as a silica gel material can be discharged to the outside of the storage container 10, and the silica gel material can be more efficiently transferred into the pores of the activated carbon 2. Impregnated.

ケイ酸のアルカリ金属塩水溶液の濃度は特に限定されないが、0.01wt%以上とすればよい。ケイ酸のアルカリ金属塩水溶液の濃度が低すぎると、含浸時間を長くする必要があり、電場を印加した意義が薄れる。または、最終的にシリカゲルの添着量が少なすぎて、細孔の狭小化を的確に行えなくなる。ケイ酸のアルカリ金属塩水溶液の濃度の上限は、20wt%程度とすればよい。これ以上濃度が高くても、含浸時間の短縮効果はあまり上がらないからである。   The concentration of the alkali metal salt aqueous solution of silicic acid is not particularly limited, but may be 0.01 wt% or more. If the concentration of the alkali metal salt solution of silicic acid is too low, it is necessary to lengthen the impregnation time, and the significance of applying an electric field is diminished. Or, finally, the amount of silica gel attached is too small, and the pores cannot be narrowed accurately. The upper limit of the concentration of the alkali metal salt aqueous solution of silicic acid may be about 20 wt%. This is because even if the concentration is higher than this, the effect of shortening the impregnation time does not increase so much.

電場の強さは、0.01〜1.0VA程度が好ましい。電場の強さが0.01VAより低いと、ケイ酸のアルカリ金属塩のイオン化が不充分となる。また、ケイ酸イオンの電気泳動が弱まり、効率良く活性炭の細孔内へシリカゲル原料を導入させ難くなる。電場の強さが1.0VAより高いと操作が困難になる。また、含浸時間は10〜48h程度とする。これより短いと、含浸量が少なすぎる。これより長いと十分に含浸できるが、従来の拡散浸入と含浸時間が同程度になるからである。例えば、活性炭の比表面積(m2/g)に対する複合活性炭の充填密度(g/l)の割合(充填密度/比表面積)が0.14〜0.18となるように、0.3g/ccの割合で活性炭の細孔内にシリカゲルを添着する場合、電場の強さ0.1〜0.5VA程度、含浸時間10〜20h程度とすればよい。 The strength of the electric field is preferably about 0.01 to 1.0 VA. When the strength of the electric field is lower than 0.01 VA, ionization of the alkali metal salt of silicic acid is insufficient. In addition, the electrophoresis of silicate ions is weakened, making it difficult to efficiently introduce the silica gel raw material into the pores of the activated carbon. If the strength of the electric field is higher than 1.0 VA, the operation becomes difficult. The impregnation time is about 10 to 48 hours. If it is shorter than this, the amount of impregnation is too small. If it is longer than this, it can be sufficiently impregnated, but the conventional diffusion penetration and impregnation time are comparable. For example, 0.3 g / cc so that the ratio (packing density / specific surface area) of the packing density (g / l) of the composite activated carbon to the specific surface area (m 2 / g) of the activated carbon is 0.14 to 0.18. When silica gel is impregnated in the pores of the activated carbon at a ratio of about 0.1 to 0.5 VA, the impregnation time may be about 10 to 20 hours.

(定着工程)
活性炭へシリカゲル原料を充分に含浸させたら、次いで、固液分離した活性炭を乾燥することで、シリカゲル原料を活性炭の細孔内に定着させる。固液分離方法としては、一般的な濾過のほか、フィルタープレスや遠心分離などでもよい。乾燥は、加熱状態で行う。常温では、細孔内の水分除去、及びシリカゲル原料の定着が困難だからである。加熱温度は、加熱時間の長短を気にしなければ特に限定されないが、330K以上が好ましく、より好ましくは350K以上である。加熱温度を高くすれば加熱時間を短縮できる。例えば、350〜400K程度の温度で乾燥する場合、乾燥時間は24時間以上が好ましい。一方、加熱温度が高すぎると、シリカゲル原料が変性する恐れがあるので、その上限は500K程度とする。
(Fixing process)
Once the activated carbon is sufficiently impregnated with the silica gel raw material, the solid-liquid separated activated carbon is dried to fix the silica gel raw material in the pores of the activated carbon. As a solid-liquid separation method, in addition to general filtration, a filter press or centrifugation may be used. Drying is performed in a heated state. This is because it is difficult to remove moisture in the pores and fix the silica gel raw material at room temperature. The heating temperature is not particularly limited as long as the length of the heating time is not taken into consideration, but is preferably 330K or higher, more preferably 350K or higher. If the heating temperature is increased, the heating time can be shortened. For example, when drying at a temperature of about 350 to 400K, the drying time is preferably 24 hours or more. On the other hand, if the heating temperature is too high, the silica gel raw material may be denatured, so the upper limit is about 500K.

(ゾル化&洗浄工程)
シリカゲル原料含浸後の活性炭を充分に乾燥できたところで、酸性条件下で活性炭を洗浄する。酸性条件下で洗浄することで、同時にシリカゲル原料がゾル化する。具体的には、シリカゲル原料を含浸させた活性炭を硫酸水溶液に導入する。ゾル化&洗浄の条件としては、pH3〜6において水溶液の電気伝導度が420〜600μS/cm程度になるまで繰り返せばよい。なお、効率的なゾル化&洗浄を行うため、水溶液を撹拌しておくことが好ましい。また、硫酸水溶液のpHによって、シリカゲルの細孔容積や表面積を制御できる。具体的には、pHを比較的高く(例えばpH5〜6程度)すればA型シリカゲルとなり、pHを低く(例えばpH3〜4程度)とすれば、B型シリカゲルとなる。中でも、B型シリカゲルとすることが好ましい。B型シリカゲルは、吸着物質の濃度が高濃度になるにつれて多量の蒸発燃料を吸着する特性を有し、A型シリカゲルと比べて吸着物質の濃度に応じた吸脱着特性が高いからである。
(Solation & cleaning process)
When the activated carbon impregnated with the silica gel raw material has been sufficiently dried, the activated carbon is washed under acidic conditions. By washing under acidic conditions, the silica gel raw material is simultaneously solated. Specifically, activated carbon impregnated with a silica gel raw material is introduced into a sulfuric acid aqueous solution. The conditions of sol formation & washing may be repeated until the electric conductivity of the aqueous solution reaches about 420 to 600 μS / cm at pH 3 to 6. In addition, in order to perform efficient sol formation & washing | cleaning, it is preferable to stir aqueous solution. The pore volume and surface area of silica gel can be controlled by the pH of the sulfuric acid aqueous solution. Specifically, if the pH is relatively high (for example, about pH 5-6), it becomes A-type silica gel, and if the pH is low (for example, about pH 3-4), it becomes B-type silica gel. Among these, B-type silica gel is preferable. This is because the B-type silica gel has a characteristic of adsorbing a large amount of evaporated fuel as the concentration of the adsorbing substance becomes high, and has higher adsorption / desorption characteristics depending on the concentration of the adsorbing substance than the A-type silica gel.

(ゲル化工程)
ゾル化工程後、再度含浸工程後と同じように固液分離および乾燥する。次いで、ゾル化工程にて生成した硫酸ナトリウムを洗浄除去した後、加熱熟成することで、図3に示すように、細孔22〜24内にシリカゲル21が添着された複合活性炭20が得られる。詳しくは、複合活性炭20のマクロ孔22及びメソ孔23は、シリカゲル21によって狭小化されている。一方メソ孔24は、シリカゲル21によって閉塞されている。
(Gelification process)
After the solification step, solid-liquid separation and drying are performed in the same manner as after the impregnation step. Next, after washing and removing the sodium sulfate produced in the sol formation step, the composite activated carbon 20 in which the silica gel 21 is attached in the pores 22 to 24 is obtained as shown in FIG. Specifically, the macropores 22 and the mesopores 23 of the composite activated carbon 20 are narrowed by the silica gel 21. On the other hand, the mesopores 24 are closed by the silica gel 21.

このようにして得られた複合活性炭は、そのまま、若しくは必要に応じてバインダー樹脂と混練した周知の造粒方法によってペレット状等の所定形状に造粒してから、種々の吸着材として使用できる。例えば、自動車のキャニスタに充填することで、蒸発燃料の吸着材として好適に使用される。   The composite activated carbon thus obtained can be used as various adsorbents after being granulated into a predetermined shape such as a pellet by a known granulation method as it is or kneaded with a binder resin as necessary. For example, it is preferably used as an adsorbent for evaporated fuel by filling a canister of an automobile.

(変形例)
上記実施例では、活性炭2とは別に正極11を配したが、これに限らず活性炭自体を正極とすることもできる。例えば、粒子状の活性炭を所定形状に造粒したものや、所定形状の活性炭に直接導線を繋げればよい。所定形状の又は所定形状に造粒した活性炭を正極とする場合は、枠壁15は不要である。または、収容容器に収容した活性炭に、直接導線を繋げてもよい。
(Modification)
In the said Example, although the positive electrode 11 was distribute | arranged separately from the activated carbon 2, not only this but activated carbon itself can also be made into a positive electrode. For example, what is necessary is just to connect a conducting wire directly to what activated the granular activated carbon in the predetermined shape, or the activated carbon of predetermined shape. When activated carbon having a predetermined shape or granulated into a predetermined shape is used as the positive electrode, the frame wall 15 is not necessary. Or you may connect a conducting wire directly to the activated carbon accommodated in the storage container.

また、上記実施例では、電極11・12及び水流を縦方向に設けたが、これに限らず、図4に示すように、電極11・12及び水流を横方向に設けることもできる。具体的には、貯留容器10の底部に正極11を配し、貯留容器10の上部に負極12を配し、導入管16及び排出管17を左右対向状に設ける。この場合、比重が大きくケイ酸のアルカリ金属塩水溶液に沈む活性炭であれば、活性炭は貯留容器10内に沈むので、枠壁15を廃すことができる。比重が小さくケイ酸のアルカリ金属塩水溶液に浮く活性炭であれば、蓋状の枠壁15で押さえておく。   Moreover, in the said Example, although the electrode 11 * 12 and the water flow were provided in the vertical direction, as shown in FIG. 4, not only this but the electrode 11 * 12 and a water flow can also be provided in a horizontal direction. Specifically, the positive electrode 11 is disposed at the bottom of the storage container 10, the negative electrode 12 is disposed at the top of the storage container 10, and the introduction pipe 16 and the discharge pipe 17 are provided in a left-right facing manner. In this case, if the activated carbon has a large specific gravity and sinks into an aqueous alkali metal salt solution of silicic acid, the activated carbon sinks into the storage container 10, so that the frame wall 15 can be eliminated. If the activated carbon has a small specific gravity and floats in an aqueous alkali metal salt solution of silicic acid, it is held by a lid-like frame wall 15.

シリカゲル添着手順のフロー図である。It is a flowchart of a silica gel adhesion procedure. 含浸工程の概念図である。It is a conceptual diagram of an impregnation process. 複合活性炭の要部拡大断面図である。It is a principal part expanded sectional view of composite activated carbon. 含浸工程で使用する装置の変形例を示す概念図である。It is a conceptual diagram which shows the modification of the apparatus used at an impregnation process.

符号の説明Explanation of symbols

1 ケイ酸のアルカリ金属水溶液
2 活性炭
10 貯留容器
11 正極
12 負極
13 活性炭収容空間
14 貫通孔
15 枠壁
16 導入管
17 排出管
20 複合活性炭
21 シリカゲル
22 マクロ孔
23 メソ孔
24 ミクロ孔
DESCRIPTION OF SYMBOLS 1 Alkali metal aqueous solution of silicic acid 2 Activated carbon 10 Storage container 11 Positive electrode 12 Negative electrode 13 Activated carbon accommodation space 14 Through-hole 15 Frame wall 16 Introducing pipe 17 Exhaust pipe 20 Composite activated carbon 21 Silica gel 22 Macro hole 23 Meso hole 24 Micro hole

Claims (4)

シリカゲル原料となるケイ酸のアルカリ金属塩水溶液に活性炭を浸漬して、シリカゲル原料を活性炭の細孔内に含浸させる含浸工程と、
前記含浸工程後の活性炭へ酸を添加するゾル化工程と、
前記ゾル化工程後に固液分離して、前記活性炭を加熱熟成するゲル化工程と、
を有する、細孔内にシリカゲルが添着された複合活性炭の製造方法であって、
前記含浸工程は、活性炭を正極側に浸漬して水溶液に電場を印加しながら行うことを特徴とする、複合活性炭の製造方法。
An impregnation step of immersing activated carbon in an alkali metal salt aqueous solution of silicic acid as a silica gel raw material, and impregnating the silica gel raw material into the pores of the activated carbon;
A solation step of adding an acid to the activated carbon after the impregnation step;
Solid-liquid separation after the sol formation step, and a gelation step of heating and aging the activated carbon;
A method for producing a composite activated carbon having silica gel impregnated in pores,
The method for producing composite activated carbon, wherein the impregnation step is performed while immersing activated carbon on the positive electrode side and applying an electric field to the aqueous solution.
前記活性炭が正極に接する状態で浸漬されている、請求項1に記載の複合活性炭の製造方法。   The manufacturing method of the composite activated carbon of Claim 1 with which the said activated carbon is immersed in the state which contact | connects a positive electrode. 前記活性炭自体が正極とされている、請求項1に記載の複合活性炭の製造方法。   The method for producing composite activated carbon according to claim 1, wherein the activated carbon itself is a positive electrode. 前記含浸工程で使用する貯留容器の負極側には、貯留容器外からケイ酸のアルカリ金属塩水溶液を導入する導入管と、貯留容器内の水溶液を貯留容器外へ排出する排出管とが、対向状に設けられており、
前記含浸工程では、負極側に前記導入管から排出管へ至る水流を形成している、請求項1ないし請求項3のいずれかに記載の複合活性炭の製造方法。


On the negative electrode side of the storage container used in the impregnation step, an introduction pipe for introducing an alkali metal salt aqueous solution of silicate from outside the storage container and a discharge pipe for discharging the aqueous solution in the storage container to the outside of the storage container are opposed to each other. It is provided in the shape,
The method for producing composite activated carbon according to any one of claims 1 to 3, wherein in the impregnation step, a water flow from the introduction pipe to the discharge pipe is formed on the negative electrode side.


JP2008318151A 2008-02-18 2008-12-15 Manufacturing method of composite activated carbon Expired - Fee Related JP5323466B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008318151A JP5323466B2 (en) 2008-12-15 2008-12-15 Manufacturing method of composite activated carbon
US12/372,866 US20090209418A1 (en) 2008-02-18 2009-02-18 Adsorbent and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318151A JP5323466B2 (en) 2008-12-15 2008-12-15 Manufacturing method of composite activated carbon

Publications (2)

Publication Number Publication Date
JP2010138047A true JP2010138047A (en) 2010-06-24
JP5323466B2 JP5323466B2 (en) 2013-10-23

Family

ID=42348513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318151A Expired - Fee Related JP5323466B2 (en) 2008-02-18 2008-12-15 Manufacturing method of composite activated carbon

Country Status (1)

Country Link
JP (1) JP5323466B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580675A (en) * 2012-02-21 2012-07-18 太原理工大学 Modified activated carbon, preparation method thereof and method for adsorbing hydrogen sulfide using modified activated carbon
CN110182801A (en) * 2019-04-01 2019-08-30 复旦大学 A method of granular activated carbon is prepared with biomass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305866A (en) * 1993-04-19 1994-11-01 Nippon Alum Co Ltd Sealing of flame spray coated film and composite film
JPH10114510A (en) * 1996-10-08 1998-05-06 Shinryo Corp Method for modifying activated carbon
JPH10263394A (en) * 1997-03-28 1998-10-06 Kubota Corp Improved adsorbent, its production and adsorption refrigerating machine
JPH11128722A (en) * 1997-08-27 1999-05-18 Toyota Central Res & Dev Lab Inc Minute structure transfer method
JP2003190783A (en) * 2001-12-27 2003-07-08 Takeda Chem Ind Ltd Adsorbent for solvent vapor and method for preparing the same
JP2005289690A (en) * 2004-03-31 2005-10-20 Univ Nagoya Silica gel impregnated activated carbon and adsorption heat pump using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305866A (en) * 1993-04-19 1994-11-01 Nippon Alum Co Ltd Sealing of flame spray coated film and composite film
JPH10114510A (en) * 1996-10-08 1998-05-06 Shinryo Corp Method for modifying activated carbon
JPH10263394A (en) * 1997-03-28 1998-10-06 Kubota Corp Improved adsorbent, its production and adsorption refrigerating machine
JPH11128722A (en) * 1997-08-27 1999-05-18 Toyota Central Res & Dev Lab Inc Minute structure transfer method
JP2003190783A (en) * 2001-12-27 2003-07-08 Takeda Chem Ind Ltd Adsorbent for solvent vapor and method for preparing the same
JP2005289690A (en) * 2004-03-31 2005-10-20 Univ Nagoya Silica gel impregnated activated carbon and adsorption heat pump using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580675A (en) * 2012-02-21 2012-07-18 太原理工大学 Modified activated carbon, preparation method thereof and method for adsorbing hydrogen sulfide using modified activated carbon
CN102580675B (en) * 2012-02-21 2013-06-12 太原理工大学 Modified activated carbon, preparation method thereof and method for adsorbing hydrogen sulfide using modified activated carbon
CN110182801A (en) * 2019-04-01 2019-08-30 复旦大学 A method of granular activated carbon is prepared with biomass

Also Published As

Publication number Publication date
JP5323466B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
US20090209418A1 (en) Adsorbent and method for manufacturing the same
JP5138570B2 (en) Adsorbent comprising composite activated carbon and method for producing the same
CN1113692C (en) Modified carbon adsorbents and process for adsorption
Wu et al. Preparation of novel poly (vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water
Xiaoqi et al. Adsorption of rare earth ions using carbonized polydopamine nano carbon shells
CN109266851A (en) A method of lithium is extracted by magnetic micropore lithium adsorbent
Mahmoudi et al. Preparation and characterization of activated carbon from date pits by chemical activation with zinc chloride for methyl orange adsorption
JP7397093B2 (en) Molecular polar substance adsorption carbon
CN110709162A (en) Adsorbent for treating contaminated liquids
Wenhui et al. Regeneration of spent activated carbon by yeast and chemical method
JP5323466B2 (en) Manufacturing method of composite activated carbon
CN106693893A (en) Novel graphene-molecular sieve composite gas purifying material and preparation method thereof
Asadullah et al. Role of microporosity and surface functionality of activated carbon in methylene blue dye removal from water
KR101723594B1 (en) carbon materials coated by iron oxide as adsorbent for removing heavy metal ions in wastewater
JP2008050237A (en) Spherical porous carbon particle powder and production method therefor
CN109078602A (en) Magnetic micropore lithium adsorbent and the preparation method and application thereof
Yu et al. Single and bicomponent anionic dyes adsorption equilibrium studies on magnolia-leaf-based porous carbons
KR101273494B1 (en) Recycle method of spent carbons by chemical impregnation and heating treatments in vacuum
US20170326527A1 (en) Carbon porous body, production method thereof, ammonia adsorbent material, canister, and production method thereof
Lee et al. Preparation of mesoporous activated carbon by preliminary oxidation of petroleum coke with hydrogen peroxide and its application in capacitive deionization
Chai et al. Bead-type polystyrene/nano-CaCO 3 (PS/nCaCO 3) composite: a high-performance adsorbent for the removal of interleukin-6
JP5487207B2 (en) Oil adsorbent and method for producing oil adsorbent
US10046986B2 (en) Composite material
JP6042922B2 (en) Porous carbon, production method thereof, and ammonia adsorbent
Liu et al. Intestine-like micro/mesoporous carbon built of chemically modified banana peel for size-selective separation of proteins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees