JP2010137244A - Metal bonded body, and method for manufacturing the same - Google Patents

Metal bonded body, and method for manufacturing the same Download PDF

Info

Publication number
JP2010137244A
JP2010137244A JP2008314412A JP2008314412A JP2010137244A JP 2010137244 A JP2010137244 A JP 2010137244A JP 2008314412 A JP2008314412 A JP 2008314412A JP 2008314412 A JP2008314412 A JP 2008314412A JP 2010137244 A JP2010137244 A JP 2010137244A
Authority
JP
Japan
Prior art keywords
aluminum
copper
oxygen concentration
ppm
aluminum member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008314412A
Other languages
Japanese (ja)
Inventor
Akira Maeda
晃 前田
Chisako Maeda
智佐子 前田
Takeshi Araki
健 荒木
Akira Yamada
朗 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008314412A priority Critical patent/JP2010137244A/en
Publication of JP2010137244A publication Critical patent/JP2010137244A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively manufacturing a metal bonded body which does not require any ultrasonic oscillation device or any plating apparatus, and a metal bonded body capable of suppressing degradation of the bonding strength caused by the long time use under a high-temperature and high-humid environment. <P>SOLUTION: The method includes: a pretreatment step of setting the oxygen concentration in a surface of a copper member and a surface of an aluminum member to be ≤5,000 ppm; and a heating step of executing the heating at the temperature equal to or higher than the melting point of a bonded body and equal to or lower than the melting point of the aluminum member in the atmosphere of the oxygen concentration of ≤1,000 ppm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、アルミニウム部材と銅部材とが接合された金属接合体およびその製造方法に関する。   The present invention relates to a metal joined body in which an aluminum member and a copper member are joined, and a manufacturing method thereof.

伝熱性や熱放散性に優れるが軽量化の点で課題のある銅部材と、軽量化に優れ伝熱性や熱放散性が銅に次いで優れるアルミニウム製のアルミニウム部材とを接合した金属接合体は、電子機器、通信機器、航空機、自動車などの熱交換器、ヒートパイプ、ヒートシンクなどに幅広く用いられている。例えば熱交換器の銅配管とアルミニウム製ヒートシンクとがろう付けやカシメなどで接合された金属接合体が用いられている。   A metal joined body obtained by joining a copper member that is excellent in heat transfer and heat dissipation but has a problem in terms of weight reduction and an aluminum aluminum member that is excellent in weight reduction and heat transfer and heat dissipation is next to copper. Widely used in heat exchangers, heat pipes, heat sinks, etc. for electronic devices, communication devices, aircraft, automobiles, etc. For example, a metal joined body in which a copper pipe of a heat exchanger and an aluminum heat sink are joined by brazing or caulking is used.

一方、モータなどマグネットワイヤとしては、主にエナメルなどで絶縁被覆された銅線が用いられているが、近年低コスト化が可能なアルミニウム製のマグネットワイヤの適用も検討され、これを錫主成分とするはんだで銅電極に接合することも行われている。しかしながら、アルミニウムは電気化学的に碑な電位を有しており、瞬時に酸化皮膜が形成されるため、はんだ付けが非常に困難で十分な信頼性を確保することが課題であった。   On the other hand, copper wires with insulation coating such as enamel are mainly used as magnet wires for motors, but in recent years, the application of aluminum magnet wires, which can reduce costs, has been studied. Joining to a copper electrode is also performed with the solder. However, since aluminum has an electrochemically-potential potential and an oxide film is instantaneously formed, soldering is extremely difficult and ensuring sufficient reliability is a problem.

これを解決するためのはんだ材料として、例えば錫または錫合金からなるはんだ材料に0.005質量%のアルミニウムを添加したものが開示されている(例えば特許文献1参照)。また、接合するアルミニウム部材の接合面にニッケル、銅あるいは錫をめっきしてはんだ付けをおこなう方法が開示されている(例えば特許文献2参照)。   As a solder material for solving this problem, for example, a solder material made of tin or a tin alloy with 0.005% by mass of aluminum added is disclosed (for example, see Patent Document 1). In addition, a method is disclosed in which nickel, copper, or tin is plated on the joint surfaces of the aluminum members to be joined and soldered (see, for example, Patent Document 2).

特開2007−190603号公報(4頁)JP 2007-190603 A (page 4) 特開2003−62664号公報(2頁)JP 2003-62664 A (page 2)

しかしながら、従来の0.005質量%のアルミニウムを添加したはんだ材料を用いる場合、はんだ材料またはアルミニウム部材に超音波振動を印加しながら行なう必要があった。また、接合面にニッケル、銅あるいは錫をめっきする方法では、めっき処理する装置が必要であった。このように従来の方法においては、超音波振動装置やめっき処理装置が必要であり、余分なコストがかかるという問題があった。また、そのような装置を用いないと、高温多湿な環境下における長期間の使用によって接合強度が低下するという問題もあった。   However, when using a conventional solder material added with 0.005% by mass of aluminum, it is necessary to apply the ultrasonic vibration to the solder material or the aluminum member. In addition, in the method of plating nickel, copper, or tin on the joint surface, a plating apparatus is required. As described above, the conventional method requires an ultrasonic vibration device and a plating processing device, and there is a problem in that extra cost is required. Further, if such an apparatus is not used, there is a problem that the bonding strength is lowered by long-term use in a high temperature and humidity environment.

この発明は、上述のような課題を解決するためになされたもので、超音波振動装置やめっき処理装置が不要で、低コストの金属接合体の製造方法を提供することを目的としている。また、高温多湿な環境下における長期間の使用による接合強度の低下を抑制することができる金属接合体を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a low-cost manufacturing method of a metal joined body that does not require an ultrasonic vibration device or a plating processing device. Another object of the present invention is to provide a metal joined body that can suppress a reduction in joining strength due to long-term use in a high temperature and humidity environment.

この発明に係る金属接合体の製造方法は、銅を主成分とする銅部材の表面とアルミニウムを主成分とするアルミニウム部材の表面との酸素濃度を5000ppm以下にする前処理工程と、当該前処理工程が施された銅部材の表面とアルミニウム部材の表面とに錫を主成分とする接合材を接触させる接触工程と、当該接触工程の後に銅部材とアルミニウム部材と接合材とを酸素濃度1000ppm以下の雰囲気において接合材の融点以上でアルミニウム部材の融点以下の温度で加熱する加熱工程と、当該加熱工程の後に接合材を冷却固化させる固化工程とを含んでいる。   The method for producing a metal joined body according to the present invention includes a pretreatment step in which the oxygen concentration between the surface of a copper member containing copper as a main component and the surface of an aluminum member containing aluminum as a main component is 5000 ppm or less, and the pretreatment A contact step in which a bonding material mainly composed of tin is brought into contact with the surface of the copper member subjected to the process and the surface of the aluminum member; and after the contact step, the copper member, the aluminum member, and the bonding material have an oxygen concentration of 1000 ppm or less. A heating step of heating at a temperature not lower than the melting point of the bonding material and not higher than the melting point of the aluminum member in this atmosphere, and a solidification step of cooling and solidifying the bonding material after the heating step.

また、この発明における金属接合体は、銅を主成分とする銅部材と、この銅部材に銅と錫との拡散層を介して接合された錫を主成分とする接合材と、この接合材にアルミニウムと錫との拡散層を介して接合ざれたアルミニウムを主成分とするアルミニウム部材とを備えた金属接合体において、アルミニウムと錫との拡散層の任意の断面接合界面における厚さ50nm以上のアルミニウム酸化物の存在する接合界面長の総和が、前記断面接合界面の全接合界面長の60%以下としたものである。   Further, the metal joined body in the present invention includes a copper member mainly composed of copper, a joining material mainly composed of tin joined to the copper member via a diffusion layer of copper and tin, and the joining material. A metal joined body comprising an aluminum member mainly composed of aluminum bonded to each other through a diffusion layer of aluminum and tin, and having a thickness of 50 nm or more at an arbitrary cross-sectional bonding interface of the diffusion layer of aluminum and tin The sum total of the junction interface length in which the aluminum oxide exists is 60% or less of the total junction interface length of the cross-section junction interface.

この発明における金属接合体の製造方法は、銅部材の表面とアルミニウム部材の表面との酸素濃度を5000ppm以下にする前処理工程と、酸素濃度1000ppm以下の雰囲気において接合材の融点以上でアルミニウム部材の融点以下の温度で加熱する加熱工程とを備えているので、超音波振動装置やめっき処理装置が不要となる。   The method for producing a metal joined body according to the present invention includes a pretreatment step in which the oxygen concentration between the surface of the copper member and the surface of the aluminum member is 5000 ppm or less; And a heating step of heating at a temperature below the melting point, an ultrasonic vibration device and a plating apparatus are not required.

また、この発明における金属接合体は、アルミニウムと錫との拡散層の任意の断面接合界面における厚さ50nm以上のアルミニウム酸化物の存在する接合界面長の総和が、前記断面接合界面の全接合界面長の60%以下としたので、高温多湿な環境下における長期間の使用による接合強度の低下を抑制することができる。   Further, in the metal joined body according to the present invention, the total sum of the joining interface lengths in which the aluminum oxide having a thickness of 50 nm or more exists at the arbitrary sectional joining interface of the diffusion layer of aluminum and tin is the total joining interface of the sectional joining interface. Since it is 60% or less of the length, it is possible to suppress a decrease in bonding strength due to long-term use in a hot and humid environment.

実施の形態1.
この発明を実施するための実施の形態1について説明する。なお、本実施の形態においては、この発明に係る金属接合体の接合方法を模擬的に行なったものである。アルミニウム部材として外形φ0.6mmで長さ20mmのAl線と、銅部材として厚さが0.5mmの無酸素銅板を10mm×50mmの立方体に切り出したCuブロックとを用意する。接合材として日本アルミット(株)製のSn系はんだ材T−235(Sn−9Zn:wt%)を厚さ100μmで3mm×3mmのペレット状に加工したものを用意する。また、雰囲気制御できる加熱装置して、山陽精工(株)製の高温観察装置SK−8000を用意した。本装置は、ステージサイズが50mm×50mmで、最大800℃まで均一に加熱することが可能で、最大250℃/minの昇温速度で加熱することが可能である。また、3MPaまでの減圧も可能であり、窒素雰囲気による酸素濃度制御も可能である。
Embodiment 1 FIG.
Embodiment 1 for carrying out the present invention will be described. In the present embodiment, the joining method of the metal joined body according to the present invention is simulated. An aluminum wire having an outer diameter of 0.6 mm and a length of 20 mm is prepared as an aluminum member, and a Cu block obtained by cutting an oxygen-free copper plate having a thickness of 0.5 mm into a 10 mm × 50 mm cube as a copper member. As a bonding material, a Sn-based solder material T-235 (Sn-9Zn: wt%) manufactured by Nippon Almit Co., Ltd., processed into a 3 mm × 3 mm pellet shape with a thickness of 100 μm is prepared. Moreover, Sanyo Seiko Co., Ltd. high temperature observation apparatus SK-8000 was prepared as a heating apparatus which can control atmosphere. This apparatus has a stage size of 50 mm × 50 mm, can be uniformly heated up to 800 ° C., and can be heated at a maximum temperature increase rate of 250 ° C./min. Further, the pressure can be reduced to 3 MPa, and the oxygen concentration can be controlled by a nitrogen atmosphere.

まず始めに、Al線材を#1200の紙やすりで磨き、エチルアルコールで洗浄後、Al線材の表面の酸素濃度を、オージェ電子分光分析装置を用いて測定し、約4000ppmの酸素濃度であることを確認した。   First, after polishing the Al wire with # 1200 sandpaper and washing with ethyl alcohol, the oxygen concentration on the surface of the Al wire is measured using an Auger electron spectroscopic analyzer, and the oxygen concentration is about 4000 ppm. confirmed.

次に、Cuブロックを上述の高温観察装置内のステージの上に配置する。このCuブロックの上に上述のペレット状のSn系はんだ材を載せ、さらにその上にAl線材を載せる。次に、高温観察装置内の雰囲気を制御して窒素を主成分として酸素濃度が約500ppmの雰囲気とした。その後ステージの温度を250℃まで90秒で上昇させたのちに250℃で10秒間保持し、ステージの加熱を止めて約5分間で室温まで冷却した。このようにして、銅部材であるCuブロックとアルミニウム部材であるAl線材とを接合材であるSn系はんだ材で接合したサンプルを作製した。   Next, the Cu block is placed on the stage in the above-described high-temperature observation apparatus. The above-mentioned pellet-shaped Sn-based solder material is placed on the Cu block, and an Al wire is placed thereon. Next, the atmosphere in the high-temperature observation apparatus was controlled to obtain an atmosphere having nitrogen as a main component and an oxygen concentration of about 500 ppm. Thereafter, the temperature of the stage was raised to 250 ° C. in 90 seconds, then held at 250 ° C. for 10 seconds, heating of the stage was stopped, and the temperature was cooled to room temperature in about 5 minutes. In this way, a sample was prepared in which a Cu block as a copper member and an Al wire as an aluminum member were joined with an Sn-based solder material as a joining material.

得られたサンプルのAl線をプルテスタでCuブロックから破断させて破断強度を測定したところ、初期の破断強度は30Nであった。また、同様にして作製したサンプルを85℃/85%RHの高温高湿の環境下で1000時間放置した後、同様の破断強度の測定を行ったところ、高温高湿処理後の破断強度は25Nであった。上述のような接合方法で得られたサンプルを今後実施例1と記載する。   When the Al wire of the obtained sample was broken from the Cu block with a pull tester and the breaking strength was measured, the initial breaking strength was 30N. Further, when the sample prepared in the same manner was allowed to stand for 1000 hours in a high temperature and high humidity environment of 85 ° C./85% RH and then measured for the same breaking strength, the breaking strength after the high temperature and high humidity treatment was 25 N. Met. A sample obtained by the joining method as described above will be referred to as Example 1 hereinafter.

比較として次のようなサンプルを作製した。上述のAl線を紙やすりで磨く工程を除き、それ以外は実施例1と同様な方法で作製したサンプルを比較例1とする。このとき、Al線の表面の酸素濃度を実施例1と同様にオージェ電子分光分析装置を用いて測定したところ、約10000ppmであった。次に、高温観察装置内の酸素濃度を1300ppmとし、それ以外は実施例1と同様な方法で作製したサンプルを比較例2とする。さらに、Al線を紙やすりで磨く工程を除くとともに高温観察装置内の酸素濃度を1300ppmとし、それ以外は実施例1と同様な方法で作製したサンプルを比較例3とする。   For comparison, the following samples were prepared. A sample produced by the same method as in Example 1 except for the above-described process of polishing the Al wire with sandpaper is referred to as Comparative Example 1. At this time, when the oxygen concentration on the surface of the Al wire was measured using an Auger electron spectroscopic analyzer in the same manner as in Example 1, it was about 10,000 ppm. Next, a sample produced by the same method as in Example 1 except that the oxygen concentration in the high-temperature observation apparatus is 1300 ppm is referred to as Comparative Example 2. Furthermore, a sample produced by the same method as in Example 1 except that the step of polishing the Al wire with sandpaper is excluded and the oxygen concentration in the high-temperature observation apparatus is 1300 ppm.

次に、比較例1、2および3のサンプルにおいて、実施例1と同様に初期の破断強度と、85℃/85%RHの高温高湿の環境下で1000時間放置した後の高温高湿処理後の破断強度とを測定した。その結果、比較例1の初期の破断強度は22Nであり、高温高湿処理後の破断強度は10Nと大幅に低下した。また、比較例2の初期の破断強度は29Nであり、高温高湿処理後の破断強度は4Nと大幅に低下した。さらに、比較例3の初期の破断強度は10Nであり、高温高湿処理後の破断強度は2Nと大幅に低下した。   Next, in the samples of Comparative Examples 1, 2, and 3, high-temperature and high-humidity treatment after leaving for 1000 hours in the high-temperature and high-humidity environment of 85 ° C./85% RH in the same manner as in Example 1 The subsequent breaking strength was measured. As a result, the initial breaking strength of Comparative Example 1 was 22N, and the breaking strength after the high temperature and high humidity treatment was greatly reduced to 10N. Moreover, the initial breaking strength of Comparative Example 2 was 29N, and the breaking strength after the high temperature and high humidity treatment was greatly reduced to 4N. Furthermore, the initial breaking strength of Comparative Example 3 was 10 N, and the breaking strength after the high temperature and high humidity treatment was greatly reduced to 2 N.

本実施の形態において、高温高湿の環境下での破断強度の低下原因がアルミニウム部材と接合材との接合界面の構造にあると予想して分析を行なった。本実施の形態で得られた実施例1および比較例1〜3を、それぞれエポキシ樹脂に埋め込み、断面研磨を実施後、日本電子(株)製の電界放出型電子銃を持つ電子顕微鏡付特性X線分析装置JXA8500Fを用いて、アルミニウム部材と接合材との接合界面の断面における酸素元素の分布をマッピングした画像と二次電子像を取得し、全接合界面長に対する、厚さ50nm以上の酸素元素の分布を示す領域の長さの総和の割合(以下、酸化率と記す)を算出した。また、このような酸化率の分析は、初期のサンプルおよび高温高湿処理後のサンプルについて行なった。   In this embodiment, the analysis was performed assuming that the cause of the decrease in fracture strength in a high-temperature and high-humidity environment lies in the structure of the bonding interface between the aluminum member and the bonding material. Example 1 and Comparative Examples 1 to 3 obtained in this embodiment were embedded in an epoxy resin, and after cross-section polishing, characteristics X with an electron microscope having a field emission electron gun manufactured by JEOL Ltd. Using a line analyzer JXA8500F, an image and a secondary electron image obtained by mapping the distribution of oxygen elements in the cross section of the bonding interface between the aluminum member and the bonding material are obtained, and the oxygen element having a thickness of 50 nm or more with respect to the total bonding interface length The ratio of the sum of the lengths of the regions showing the distribution (hereinafter referred to as the oxidation rate) was calculated. Further, such an analysis of the oxidation rate was performed on the initial sample and the sample after the high temperature and high humidity treatment.

実施例1の酸化率は、初期が50%で高温高湿処理後が65%であった。また、比較例1の酸化率は、初期が65%で高温高湿処理後が80%であった。また、比較例2の酸化率は、初期が67%で高温高湿処理後が85%であった。さらに、比較例3の酸化率は、初期が75%で高温高湿処理後が90%であった。これらのことから、接合強度低下の原因は、アルミニウム部材と接合材との接合界面に生成する酸化物層が高温高湿下で増加し、これが亀裂発生の起点となって剥離などが発生して接合強度が低下することをつきとめた。したがって、このアルミニウム部材と接合材との界面に生成する酸化物層が少なくなるようにはんだ付けを行うことが、初期接合信頼性および長期信頼性を高めることなる。   The oxidation rate of Example 1 was 50% in the initial stage and 65% after the high temperature and high humidity treatment. Moreover, the oxidation rate of Comparative Example 1 was 65% in the initial stage and 80% after the high temperature and high humidity treatment. Moreover, the oxidation rate of Comparative Example 2 was 67% in the initial stage and 85% after the high temperature and high humidity treatment. Furthermore, the oxidation rate of Comparative Example 3 was 75% in the initial stage and 90% after the high temperature and high humidity treatment. Therefore, the cause of the decrease in bonding strength is that the oxide layer generated at the bonding interface between the aluminum member and the bonding material increases under high temperature and high humidity. It was found that the bonding strength was reduced. Therefore, performing the soldering so that the oxide layer generated at the interface between the aluminum member and the bonding material is reduced increases the initial bonding reliability and the long-term reliability.

本実施の形態においては、接合前のアルミニウム部材の表面の酸素濃度を約4000ppmとし、加熱接合時の雰囲気の酸素濃度を約500ppmとしているので、アルミニウム部材と接合材との界面の酸化物層の生成を抑制することができ、高温多湿な環境下における長期間の使用による接合強度の低下を抑制することができる。   In the present embodiment, the oxygen concentration on the surface of the aluminum member before bonding is about 4000 ppm, and the oxygen concentration in the atmosphere at the time of heat bonding is about 500 ppm. Therefore, the oxide layer at the interface between the aluminum member and the bonding material Generation | occurrence | production can be suppressed and the fall of the joint strength by long-term use in a hot and humid environment can be suppressed.

なお、本実施の形態においては、アルミニウム部材としてAl線、銅部材としてCuブロックを用いたが、アルミニウム部材や銅部材は、純Alや純Cuである必要はなく、アルミニウム部材としてAl−Cu系合金やAl−Mg系合金のようなAlを主成分とする材料、銅部材としてリン青銅や黄銅のようなCuを主成分とする材料を用いても、同様な効果が得られる。   In this embodiment, an Al wire is used as the aluminum member and a Cu block is used as the copper member. However, the aluminum member and the copper member do not need to be pure Al or pure Cu. Similar effects can be obtained by using a material mainly containing Al, such as an alloy or an Al-Mg alloy, and a material mainly containing Cu, such as phosphor bronze or brass, as the copper member.

実施の形態2.
実施の形態2においては、接合前のアルミニウム部材の表面の酸素濃度を変化させて金属接合体を作製し、初期のサンプルおよび高温高湿処理後のサンプルにおける破断強度と酸化率との関係を調べたものである。
Embodiment 2. FIG.
In Embodiment 2, a metal joined body is produced by changing the oxygen concentration on the surface of the aluminum member before joining, and the relationship between the breaking strength and the oxidation rate in the initial sample and the sample after the high temperature and high humidity treatment is examined. It is a thing.

本実施の形態においては、実施の形態1と同様な方法で金属接合体を作製するが、接合前のアルミニウム部材であるAl線の表面の酸素濃度は、エチルアルコール洗浄後ある程度の時間放置して所定の酸素濃度になったのちに高温観察装置に投入して制御した。また、加熱接合時の雰囲気の酸素濃度は、高温観察装置に接続された窒素ボンベと酸素ボンベからの窒素と酸素との流量を調整して制御した。表1は、本実施の形態における金属接合体の特性を示したものである。なお、表1には、実施の形態1で説明した実施例1および比較例1〜3も合せて示している。   In the present embodiment, a metal joined body is manufactured by the same method as in the first embodiment, but the oxygen concentration on the surface of the Al wire, which is the aluminum member before joining, is allowed to stand for a certain period of time after washing with ethyl alcohol. After reaching a predetermined oxygen concentration, it was put into a high-temperature observation apparatus and controlled. Further, the oxygen concentration in the atmosphere at the time of heat bonding was controlled by adjusting the flow rate of nitrogen and oxygen from the nitrogen cylinder connected to the high temperature observation apparatus and the oxygen cylinder. Table 1 shows the characteristics of the metal joined body in the present embodiment. In Table 1, Example 1 and Comparative Examples 1 to 3 described in the first embodiment are also shown.

Figure 2010137244
Figure 2010137244

図2は、表1における実施例1、実施例3、比較例2および比較例6から、Al線表面の酸素濃度が4000ppmの場合に、加熱接合時の酸素濃度に対する破断強度の特性図である。図1からわかるように、初期の破断強度は加熱接合時の酸素濃度が高い場合でも大きな低下はないが、高温高湿処理後の破断強度は加熱接合時の酸素濃度が1000ppmを超えると急激に低下する。したがって、加熱接合時の酸素濃度は、1000ppm以下が好ましい。   FIG. 2 is a characteristic diagram of the breaking strength with respect to the oxygen concentration at the time of heat bonding when the oxygen concentration on the surface of the Al wire is 4000 ppm from Example 1, Example 3, Comparative Example 2 and Comparative Example 6 in Table 1. . As can be seen from FIG. 1, the initial breaking strength does not decrease greatly even when the oxygen concentration at the time of heat bonding is high, but the breaking strength after the high temperature and high humidity treatment increases rapidly when the oxygen concentration at the time of heat bonding exceeds 1000 ppm. descend. Therefore, the oxygen concentration at the time of heat bonding is preferably 1000 ppm or less.

図2は、表1における実施例1、実施例2、比較例1および比較例4〜5から、加熱接合時の酸素濃度が500ppmの場合に、Al線表面の酸素濃度に対する破断強度の特性図である。図2からわかるように、初期の破断強度および高温高湿処理後の破断強度はAl線表面の酸素濃度が5000ppmを超えると急激に低下する。したがって、Al線表面の酸素濃度は、5000ppm以下が好ましい。   FIG. 2 is a characteristic diagram of the breaking strength with respect to the oxygen concentration on the surface of the Al wire when the oxygen concentration at the time of heat bonding is 500 ppm from Example 1, Example 2, Comparative Example 1 and Comparative Examples 4 to 5 in Table 1. It is. As can be seen from FIG. 2, the initial breaking strength and the breaking strength after the high-temperature and high-humidity treatment rapidly decrease when the oxygen concentration on the Al wire surface exceeds 5000 ppm. Therefore, the oxygen concentration on the Al wire surface is preferably 5000 ppm or less.

実施の形態3.
実施の形態1においては、はんだ材との接合時にフラックスを用いなかったが、実施の形態3においては、接合信頼性を向上させるために、フラックスを用いたものである。
Embodiment 3 FIG.
In the first embodiment, the flux is not used at the time of joining with the solder material. However, in the third embodiment, the flux is used in order to improve the joining reliability.

Al線をエチルアルコールで洗浄したのちに、Al線のはんだ材と接触する面にフラックスを塗布した。フラックスとしては、例えば日本アルミット(株)製TFフラックスを用いることができる。それ以外は実施の形態1の実施例1と同様にして金属接合体を作製した。また、このようにして作製したサンプルの酸化率の測定、初期の破断強度および高温高湿処理後の破断強度の測定を、実施の形態1と同様な方法で行なった。   After the Al wire was washed with ethyl alcohol, a flux was applied to the surface of the Al wire that was in contact with the solder material. As the flux, for example, TF flux manufactured by Nippon Almit Co., Ltd. can be used. Other than that was carried out similarly to Example 1 of Embodiment 1, and produced the metal joining body. Further, the measurement of the oxidation rate, the initial breaking strength, and the breaking strength after the high-temperature and high-humidity treatment of the sample thus prepared were performed in the same manner as in the first embodiment.

本実施の形態で作製された金属接合体における初期の破断強度は32N、高温高湿処理後の破断強度は30N、初期の酸化率は35%、高温高湿処理後の酸化率は50%であった。このように、アルミニウム部材に適したフラックスを使用することにより、さらに接合信頼性を向上させることができる。   The metal bonded body produced in this embodiment has an initial breaking strength of 32 N, a breaking strength after high temperature and high humidity treatment of 30 N, an initial oxidation rate of 35%, and an oxidation rate after high temperature and high humidity treatment of 50%. there were. Thus, joint reliability can be further improved by using the flux suitable for the aluminum member.

実施の形態4.
実施の形態1においては、アルミニウム部材であるAl線と銅部材であるCuブロックの間に接合材であるはんだ材を固体状態のペレットを挟んだ後にはんだ材を加熱溶融したが、実施の形態4においては、溶融状態のはんだ材を用いたものである。
Embodiment 4 FIG.
In the first embodiment, the solder material is heated and melted after the solid material pellets are sandwiched between the Al wire that is the aluminum member and the Cu block that is the copper member. In the method, a molten solder material is used.

まず始めに、窒素ガスを流して酸素濃度を1000ppm以下に調整したグローブボックス内で、はんだ溶融バスの中に入れたSUSカップ内で日本アルミット(株)製のSn系はんだ材T−235はんだを約300g溶融させ、300℃に保っておく。次に、実施の形態1で用いたものと同様のAl線の表面をカッターの刃で軽く削り、アルコールで洗浄後実施の形態1と同様にオージェ分析により表面酸素濃度が5000ppm以下であることを確認した。また、銅部材として、厚さが0.2mmの無酸素銅板を10mm×50mmに切り出したCu板を用意する。次に、表面酸素濃度が5000ppm以下の表面がCu板と接触するようにAl線とCu板とをピンセットで挟み、グローブボックス内のはんだ材の溶融物の中に2秒間浸漬させた後、溶融物から取り出してはんだ材を固化させて金属接合体を作製した。Al線とCu板とをピンセットで挟んだ状態でも、Al線とCu板とは完全に接合面が密着した状態とはならないので、溶融したはんだ材はAl線とCu板との隙間に十分浸透していくことができる。   First, Sn-type solder material T-235 solder manufactured by Nippon Almit Co., Ltd. was placed in a SUS cup placed in a solder melting bath in a glove box adjusted to 1000 ppm or less by flowing nitrogen gas. About 300 g is melted and kept at 300 ° C. Next, the surface of the Al wire similar to that used in the first embodiment is lightly shaved with a cutter blade, and after washing with alcohol, the surface oxygen concentration is 5000 ppm or less by Auger analysis as in the first embodiment. confirmed. Moreover, a Cu plate obtained by cutting an oxygen-free copper plate having a thickness of 0.2 mm into 10 mm × 50 mm is prepared as a copper member. Next, the Al wire and the Cu plate are sandwiched with tweezers so that the surface having a surface oxygen concentration of 5000 ppm or less is in contact with the Cu plate, immersed in the solder material melt in the glove box for 2 seconds, and then melted. It was taken out from the object and the solder material was solidified to produce a metal joined body. Even when the Al wire and the Cu plate are sandwiched by tweezers, the Al wire and the Cu plate are not completely in contact with each other, so the molten solder material sufficiently penetrates the gap between the Al wire and the Cu plate. Can continue.

このようにして作製したサンプルの酸化率の測定、初期の破断強度および高温高湿処理後の破断強度の測定を、実施の形態1と同様な方法で行なった。本実施の形態で作製された金属接合体における初期の破断強度は32N、高温高湿処理後の破断強度は28N、初期の酸化率は53%、高温高湿処理後の酸化率は67%であった。   The measurement of the oxidation rate, the initial breaking strength, and the breaking strength after the high-temperature and high-humidity treatment of the sample thus produced were performed in the same manner as in the first embodiment. In the metal joined body manufactured in this embodiment, the initial breaking strength is 32 N, the breaking strength after high temperature and high humidity treatment is 28 N, the initial oxidation rate is 53%, and the oxidation rate after high temperature and high humidity treatment is 67%. there were.

本実施の形態においては、Al線とCu板とを所定の間隔で固定した後に、溶融したはんだ材に浸漬することにより、実施の形態1の実施例1と同様な金属接合体が得られ、高温多湿な環境下における長期間の使用による接合強度の低下を抑制することができる。   In the present embodiment, after fixing the Al wire and the Cu plate at a predetermined interval, a metal joined body similar to Example 1 of the first embodiment is obtained by immersing in a molten solder material, It is possible to suppress a decrease in bonding strength due to long-term use in a hot and humid environment.

実施の形態5.
実施の形態5は、実施の形態4において、Al線とCu板とを溶融したはんだ材に浸漬させる前に、Al線とCu板とを過熱する工程を加えたものである。
Embodiment 5 FIG.
In the fifth embodiment, before the Al wire and the Cu plate are immersed in the molten solder material in the fourth embodiment, a step of heating the Al wire and the Cu plate is added.

本実施の形態においては、実施の形態4において、グローブボックス内に300℃に保たれたホットプレートを用意する。Al線とCu板とをそれぞれピこのホットプレートに約5秒間載置することによって加熱し、その後すぐにAl線とCu板とをピンセットで挟み、グローブボックス内のはんだ材の溶融物の中に2秒間浸漬させた後、溶融物から取り出してはんだ材を固化させて金属接合体を作製した。   In the present embodiment, a hot plate maintained at 300 ° C. is prepared in the glove box in the fourth embodiment. The Al wire and the Cu plate are heated by placing them on the hot plate for about 5 seconds, and immediately after that, the Al wire and the Cu plate are sandwiched with tweezers, and in the solder material melt in the glove box. After being immersed for 2 seconds, it was taken out from the melt and the solder material was solidified to produce a metal joined body.

このようにして作製したサンプルの酸化率の測定、初期の破断強度および高温高湿処理後の破断強度の測定を、実施の形態1と同様な方法で行なった。本実施の形態で作製された金属接合体における初期の破断強度は45N、高温高湿処理後の破断強度は38N、初期の酸化率は35%、高温高湿処理後の酸化率は48%であった。   The measurement of the oxidation rate, the initial breaking strength, and the breaking strength after the high-temperature and high-humidity treatment of the sample thus produced were performed in the same manner as in the first embodiment. In the metal joined body produced in this embodiment, the initial breaking strength is 45 N, the breaking strength after high temperature and high humidity treatment is 38 N, the initial oxidation rate is 35%, and the oxidation rate after high temperature and high humidity treatment is 48%. there were.

本実施の形態においては、Al線とCu板と加熱したことにより、溶融したはんだ材の濡れ性が向上してはんだ材の付着量が増加した。その結果、実施の形態1の実施例1よりも破断強度が高くなり、高温多湿な環境下における長期間の使用による接合強度の低下をさらに抑制することができる。   In the present embodiment, heating with the Al wire and the Cu plate improved the wettability of the molten solder material and increased the amount of solder material deposited. As a result, the breaking strength is higher than that of Example 1 of the first embodiment, and a decrease in bonding strength due to long-term use in a high temperature and high humidity environment can be further suppressed.

実施の形態6.
実施の形態6においては、実施の形態1で得られた実施例1の金属接合体の接合部に防湿剤を塗布したものである。
Embodiment 6 FIG.
In the sixth embodiment, a moisture-proofing agent is applied to the joint portion of the metal joined body of Example 1 obtained in the first embodiment.

実施の形態1で得られた実施例1の金属接合体において、接合部を完全に被覆するように防湿剤を塗布した。防湿剤としては、例えばサンユレック(株)製EC−200を用いることができる。   In the metal joined body of Example 1 obtained in Embodiment 1, a moisture-proofing agent was applied so as to completely cover the joint. As the moisture-proofing agent, for example, EC-200 manufactured by Sanyu Rec Co., Ltd. can be used.

このように構成することにより、高温多湿な環境下における長期間の使用による接合強度の低下をさらに抑制することができる。   By comprising in this way, the fall of the joint strength by the long-term use in a hot and humid environment can further be suppressed.

なお、上述の実施の形態においては、金属接合体の接合方法を模擬的に行なうため、オージェ電子分光分析装置、高温観察装置やチャンバーなどを用いて説明したが、工業的に実施する場合のアルミニウム部材の表面の酸素濃度を5000ppm以下にする工程は、被覆剥離機などで被覆付Al線の被覆を剥離したのちにエチルアルコールで表面を洗浄した後にはんだ材と接触させるまでの時間を所定時間以下で行なうことでも可能である。また、加熱接合時の酸素濃度1000ppm以下の雰囲気に制御する方法も、加熱接合を行なうときに窒素ガスを吹き付ける方法などを採用することができ、適宜コストのかからない方法を採用することが可能である。   In the above-described embodiment, in order to simulate the joining method of the metal joined body, the Auger electron spectroscopic analysis apparatus, the high-temperature observation apparatus, the chamber, and the like have been described. The step of reducing the oxygen concentration on the surface of the member to 5000 ppm or less is a predetermined time or less after the surface of the coated Al wire is removed with a coating peeling machine and the surface is washed with ethyl alcohol and then contacted with the solder material. It is also possible to do it. Further, as a method of controlling the atmosphere with an oxygen concentration of 1000 ppm or less at the time of heat bonding, a method of blowing nitrogen gas at the time of heat bonding can be adopted, and a method that does not cost appropriately can be adopted. .

この発明の実施の形態1の金属接合体の特性図である。It is a characteristic view of the metal joined body of Embodiment 1 of this invention. この発明の実施の形態1の金属接合体の特性図である。It is a characteristic view of the metal joined body of Embodiment 1 of this invention.

Claims (6)

銅を主成分とする銅部材の表面とアルミニウムを主成分とするアルミニウム部材の表面との酸素濃度を5000ppm以下にする前処理工程と、
当該前処理工程が施された前記銅部材の表面と前記アルミニウム部材の表面とに錫を主成分とする接合材を接触させる接触工程と、
当該接触工程の後に前記銅部材と前記アルミニウム部材と接合材とを酸素濃度1000ppm以下の雰囲気において前記接合材の融点以上で前記アルミニウム部材の融点以下の温度で加熱する加熱工程と、
当該加熱工程の後に前記接合材を冷却固化させる固化工程と
を含んだことを特徴とする金属接合体の製造方法。
A pretreatment step in which the oxygen concentration between the surface of the copper member containing copper as a main component and the surface of the aluminum member containing aluminum as a main component is 5000 ppm or less;
A contact step in which a bonding material mainly composed of tin is brought into contact with the surface of the copper member and the surface of the aluminum member subjected to the pretreatment step;
A heating step of heating the copper member, the aluminum member, and the bonding material after the contact step at a temperature not lower than the melting point of the bonding member and not higher than the melting point of the aluminum member in an atmosphere having an oxygen concentration of 1000 ppm or less;
And a solidifying step of cooling and solidifying the bonding material after the heating step.
前処理工程と接触工程との間に、当該前処理工程が施された前記銅部材の表面と前記アルミニウム部材の表面とにフラックスを塗布する塗布工程を加えたことを特徴とする請求項1記載の金属接合体の製造方法。 2. An application step of applying a flux to the surface of the copper member and the surface of the aluminum member that have been subjected to the pretreatment step is added between the pretreatment step and the contact step. Manufacturing method of metal joints. 銅を主成分とする銅部材の表面とアルミニウムを主成分とするアルミニウム部材の表面との酸素濃度を5000ppm以下にする前処理工程と、
当該前処理工程が施された前記銅部材の表面と前記アルミニウム部材の表面とを所定の間隔で固定する固定工程と、
当該当該工程で固定された前記銅部材と前記アルミニウム部材とを酸素濃度1000ppm以下の雰囲気において錫を主成分とする接合材の融点以上で前記アルミニウム部材の融点以下の温度に溶融された前記接合材に浸漬させる浸漬工程と、
当該浸漬工程の後に前記銅部材の表面と前記アルミニウム部材の表面との間の前記接合材を冷却固化させる固化工程と
を含んだことを特徴とする金属接合体の製造方法。
A pretreatment step in which the oxygen concentration between the surface of the copper member containing copper as a main component and the surface of the aluminum member containing aluminum as a main component is 5000 ppm or less;
A fixing step of fixing the surface of the copper member subjected to the pretreatment step and the surface of the aluminum member at a predetermined interval;
The bonding material in which the copper member and the aluminum member fixed in the step are melted to a temperature not lower than the melting point of the bonding material mainly composed of tin and not higher than the melting point of the aluminum member in an atmosphere having an oxygen concentration of 1000 ppm or less. Dipping process to immerse in,
A method for producing a metal joined body comprising a solidifying step of cooling and solidifying the bonding material between the surface of the copper member and the surface of the aluminum member after the dipping step.
前処理工程と浸漬工程との間に、当該前処理工程が施された前記銅部材の表面と前記アルミニウム部材の表面とにフラックスを塗布する塗布工程を加えたことを特徴とする請求項3記載の金属接合体の製造方法。 4. An application step of applying a flux to the surface of the copper member and the surface of the aluminum member that have been subjected to the pretreatment step is added between the pretreatment step and the dipping step. Manufacturing method of metal joints. 浸漬工程における銅部材とアルミニウム部材とが加熱されていることを特徴とする請求項3記載の金属接合体の製造方法。 The method for producing a metal joined body according to claim 3, wherein the copper member and the aluminum member in the dipping step are heated. 銅を主成分とする銅部材と、
この銅部材に銅と錫との拡散層を介して接合された錫を主成分とする接合材と、
この接合材にアルミニウムと錫との拡散層を介して接合されたアルミニウムを主成分とするアルミニウム部材と
を備えた金属接合体において、
前記アルミニウムと錫との拡散層の任意の断面接合界面における厚さ50nm以上のアルミニウム酸化物の存在する接合界面長の総和が、前記断面接合界面の全接合界面長の60%以下であることを特徴とする金属接合体。
A copper member mainly composed of copper;
A bonding material mainly composed of tin bonded to the copper member via a diffusion layer of copper and tin;
In a metal joined body comprising an aluminum member mainly composed of aluminum joined to the joining material via a diffusion layer of aluminum and tin,
The total sum of the junction interface lengths of the aluminum oxide having a thickness of 50 nm or more at the arbitrary cross-section junction interface of the diffusion layer of aluminum and tin is 60% or less of the total junction interface length of the cross-section junction interface. Characteristic metal joint.
JP2008314412A 2008-12-10 2008-12-10 Metal bonded body, and method for manufacturing the same Pending JP2010137244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314412A JP2010137244A (en) 2008-12-10 2008-12-10 Metal bonded body, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314412A JP2010137244A (en) 2008-12-10 2008-12-10 Metal bonded body, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010137244A true JP2010137244A (en) 2010-06-24

Family

ID=42347831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314412A Pending JP2010137244A (en) 2008-12-10 2008-12-10 Metal bonded body, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010137244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518897A (en) * 2013-04-05 2016-06-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Gradient coil assembly with an outer coil comprising aluminum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518897A (en) * 2013-04-05 2016-06-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Gradient coil assembly with an outer coil comprising aluminum

Similar Documents

Publication Publication Date Title
JP6355092B1 (en) Solder alloy and joint structure using the same
US20100193801A1 (en) Solder material, method for manufacturing the same, joined body, method for manufacturing the same, power semiconductor module, and method for manufacturing the same
JP5359644B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
WO2015034078A1 (en) Electronic-component-equipped substrate and method for producing same
JP2017163169A (en) Bonding wire for semiconductor device
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
JP6083634B2 (en) Heat dissipation substrate and method for manufacturing the heat dissipation substrate
JP2010000513A (en) Method of manufacturing joined structure
JP2018047500A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP2008080392A (en) Joining body and joining method
JP6355091B1 (en) Solder alloy and joint structure using the same
CN109570813B (en) Solder alloy and bonded structure using same
JP2010137244A (en) Metal bonded body, and method for manufacturing the same
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
TWI647317B (en) Soldering alloys and electronic parts for electroplating
JP2015080812A (en) Joint method
JP2018047499A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP2010137251A (en) Metal bonded body, and method for manufacturing the same
JP5526997B2 (en) Electronic component and substrate for Bi-based solder bonding and electronic component mounting substrate
JP2022026896A (en) Solder alloy and molding solder
Nishikawa et al. Effect of heating method on microstructure of Sn-3.0 Ag-0.5 Cu solder on Cu substrate
JP2014024109A (en) Bi-Sb-BASED Pb-FREE SOLDER ALLOY
JP2022026897A (en) Laminate and method for manufacturing laminate
JP2017147285A (en) CONJUGATE JOINED BY CLAD MATERIAL OF Pb-free Zn-Al-based ALLOY SOLDER AND METAL BASE MATERIAL
JP2016111328A (en) Heat-dissipating substrate, and semiconductor package and semiconductor module using the same