JP2010133322A - Exhaust heat recovery turbine device - Google Patents

Exhaust heat recovery turbine device Download PDF

Info

Publication number
JP2010133322A
JP2010133322A JP2008309673A JP2008309673A JP2010133322A JP 2010133322 A JP2010133322 A JP 2010133322A JP 2008309673 A JP2008309673 A JP 2008309673A JP 2008309673 A JP2008309673 A JP 2008309673A JP 2010133322 A JP2010133322 A JP 2010133322A
Authority
JP
Japan
Prior art keywords
preheater
evaporator
heating medium
flow rate
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008309673A
Other languages
Japanese (ja)
Other versions
JP5123148B2 (en
Inventor
Yuji Okumura
雄志 奥村
Seiji Yamashita
誠二 山下
Tadashi Takemura
正 竹村
Naoki Miyake
直樹 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2008309673A priority Critical patent/JP5123148B2/en
Publication of JP2010133322A publication Critical patent/JP2010133322A/en
Priority to US12/875,698 priority patent/US20110162367A1/en
Application granted granted Critical
Publication of JP5123148B2 publication Critical patent/JP5123148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery turbine device decreasing a temperature of hot water returned to a heat source, and suppressing steaming phenomenon of a preheater without changing a flow rate of a heating medium passing through an evaporator. <P>SOLUTION: The exhaust heat recovery turbine device includes: a turbine 4 driven by working medium M; an evaporator 10 evaporating the working medium M by heat exchange with the heating medium H supplied from a first thermal source 20a, and supplying the steam; the preheater 12 preheating the working medium M flowing into the evaporator 10; a preheating passage 22b supplying the heating medium H from the evaporator 10 to the preheater 12; a return passage 22d branched from the preheating passage 22b and returning the heating medium H to a second thermal source 20b; a flow control valve 24 controlling a flow rate of the heating medium H supplied to the preheater 12, by flowing the heating medium H from which the heat is released by the evaporator 10 to the return passage 22d. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水以外の媒体、特に水より沸点の低い媒体を利用する排熱回収タービン装置に関するものである。   The present invention relates to an exhaust heat recovery turbine apparatus that uses a medium other than water, particularly a medium having a lower boiling point than water.

一般に、排熱回収タービン装置では、図7に示すように、熱源100からの熱水ないし温水のような加熱媒体Hを利用し、低沸点の作動媒体Mと熱交換させて、その作動媒体Mを蒸発器101で蒸発させ、気相の作動媒体Mによりタービン102を駆動している。蒸発器101を出た加熱媒体Hは、さらに予熱器103により作動媒体Mと熱交換された後、熱源100に戻される。蒸発器101や予熱器103を流れる熱水Hの流量は、蒸発器101の上流側に設けた流量調節弁104によって行われる(特許文献1)。
特開平5−222906号公報
In general, in the exhaust heat recovery turbine apparatus, as shown in FIG. 7, the heating medium H such as hot water or hot water from the heat source 100 is used to exchange heat with the low boiling point working medium M, and the working medium M Is evaporated by the evaporator 101, and the turbine 102 is driven by the gas phase working medium M. The heating medium H exiting the evaporator 101 is further exchanged with the working medium M by the preheater 103 and then returned to the heat source 100. The flow rate of the hot water H flowing through the evaporator 101 and the preheater 103 is performed by a flow rate adjusting valve 104 provided on the upstream side of the evaporator 101 (Patent Document 1).
JP-A-5-222906

排熱回収タービン装置においては、熱源からより多くの排熱を回収するために、熱源に戻る加熱媒体Hの温度をできるだけ低くしたい。しかしながら、上述の装置では、蒸発器101と予熱器103を流れる加熱媒体Hの流量が同じであるから、蒸発器101と予熱器103間の熱交換のバランスをとるのが難しいので、熱源100に戻る加熱媒体Hの温度を調整することが困難であった。また、予熱器103を流れる加熱媒体Hの流量や温度が変動することで、予熱器103で作動媒体Mが蒸発してしまう、いわゆるスチーミング現象を回避するために、予熱器103に流入する加熱媒体Hの量を制限すると、蒸発器101を通過する加熱媒体Hの流量も絞ることになり、蒸発器101での熱交換量が低下する。   In the exhaust heat recovery turbine device, in order to recover more exhaust heat from the heat source, the temperature of the heating medium H returning to the heat source is desired to be as low as possible. However, in the above-described apparatus, since the flow rate of the heating medium H flowing through the evaporator 101 and the preheater 103 is the same, it is difficult to balance the heat exchange between the evaporator 101 and the preheater 103. It was difficult to adjust the temperature of the heating medium H to return. In addition, in order to avoid a so-called steaming phenomenon in which the working medium M evaporates in the preheater 103 due to fluctuations in the flow rate and temperature of the heating medium H flowing through the preheater 103, the heating flowing into the preheater 103 is avoided. When the amount of the medium H is limited, the flow rate of the heating medium H passing through the evaporator 101 is also reduced, and the amount of heat exchange in the evaporator 101 is reduced.

本発明は、上記課題に鑑みてなされたもので、熱源に戻る加熱媒体の温度を低くすることができ、かつ蒸発器を通過する加熱媒体の流量を変更することなく予熱器のスチーミング現象を抑えることのできる排熱回収タービン装置を提供することを目的としている。   The present invention has been made in view of the above problems, and can reduce the temperature of the heating medium returning to the heat source, and can prevent the steaming phenomenon of the preheater without changing the flow rate of the heating medium passing through the evaporator. It aims at providing the exhaust-heat-recovery turbine apparatus which can be suppressed.

上記目的を達成するために、本発明に係る排熱回収タービン装置は、作動媒体により駆動されるタービンと、熱源から供給される加熱媒体との熱交換により前記作動媒体を蒸気化して前記タービンに供給する蒸発器と、前記蒸発器に流入する作動媒体を予熱する予熱器と、前記加熱媒体を前記蒸発器から予熱器に供給する予熱用通路と、前記予熱用通路の中途から分岐して前記加熱媒体を前記熱源へ戻す戻し通路と、前記蒸発器で放熱した加熱媒体を前記戻し通路に通すことにより、予熱器に供給される加熱媒体の流量を調整する流量調節機構とを備えている。   In order to achieve the above object, an exhaust heat recovery turbine apparatus according to the present invention vaporizes the working medium by heat exchange between a turbine driven by the working medium and a heating medium supplied from a heat source. An evaporator to be supplied; a preheater for preheating the working medium flowing into the evaporator; a preheating passage for supplying the heating medium from the evaporator to the preheater; A return path for returning the heating medium to the heat source, and a flow rate adjusting mechanism for adjusting the flow rate of the heating medium supplied to the preheater by passing the heating medium radiated by the evaporator through the return path.

この構成によれば、流量調節機構により蒸発器で放熱した加熱媒体の一部を戻し通路に通すことで、予熱器に供給される加熱媒体の流量が少なくなるので、予熱器から熱源に戻る熱水の温度を低くすることができる。温度の低い熱水は冷却用に再利用できる。また、流量調節機構は蒸発器の下流側に配置されるので、蒸発器を通過する加熱媒体の流量を低下させることなく、つまりサイクルの出力を低下させることなく、予熱器のスチーミング現象を抑えることができる。   According to this configuration, the flow rate of the heating medium supplied to the preheater is reduced by passing a part of the heating medium radiated from the evaporator by the flow rate adjusting mechanism through the return passage, so that the heat returning from the preheater to the heat source can be reduced. The temperature of water can be lowered. Low temperature hot water can be reused for cooling. In addition, since the flow rate adjusting mechanism is arranged on the downstream side of the evaporator, the steaming phenomenon of the preheater is suppressed without reducing the flow rate of the heating medium passing through the evaporator, that is, without reducing the output of the cycle. be able to.

本発明において、前記流量調節機構は、前記戻し通路に設けられていることが好ましい。この構成によれば、蒸発器を通過した加熱媒体をすべて予熱器に供給する必要がある場合、戻し通路に設けた流量調節機構を遮断して戻し通路に加熱媒体を流さないようにすることで、蒸発器を通過した加熱媒体をすべて予熱器に供給することができる。その場合、加熱媒体は流量調節機構を通過しないので、流量調節機構による予熱用通路内での圧損が生じない。   In the present invention, the flow rate adjusting mechanism is preferably provided in the return passage. According to this configuration, when it is necessary to supply all of the heating medium that has passed through the evaporator to the preheater, the flow rate adjusting mechanism provided in the return passage is shut off so that the heating medium does not flow through the return passage. All of the heating medium that has passed through the evaporator can be supplied to the preheater. In this case, since the heating medium does not pass through the flow rate adjusting mechanism, no pressure loss occurs in the preheating passage by the flow rate adjusting mechanism.

本発明において、前記流量調節機構は、前記予熱用通路に設けられ、前記戻し通路は予熱用通路における流量調節機構の上流側から分岐していてもよい。この構成によれば、予熱器に供給される加熱媒体の流量がより正確に調整され、予熱器から熱源に戻る熱水の温度を精度よく調節できる。   In the present invention, the flow rate adjusting mechanism may be provided in the preheating passage, and the return passage may be branched from the upstream side of the flow adjusting mechanism in the preheating passage. According to this configuration, the flow rate of the heating medium supplied to the preheater is more accurately adjusted, and the temperature of hot water returning from the preheater to the heat source can be adjusted with high accuracy.

本発明において、さらに、前記予熱器の出口の作動媒体の温度を検出する温度センサと、検出された前記温度が所定値を超えないように前記流量調節機構を制御する温度制御手段とを備えることが好ましい。この構成によれば、予熱器内の作動媒体の温度を制御できるので、効率的に予熱器のスチーミング現象を抑えることができる。   In the present invention, it further comprises a temperature sensor for detecting the temperature of the working medium at the outlet of the preheater, and a temperature control means for controlling the flow rate adjusting mechanism so that the detected temperature does not exceed a predetermined value. Is preferred. According to this configuration, since the temperature of the working medium in the preheater can be controlled, the steaming phenomenon of the preheater can be efficiently suppressed.

本発明の好ましい実施形態では、前記予熱器は、シェルにチューブを貫通させてなり、前記チューブに作動媒体を通し、前記シェル内に加熱媒体を通している。一般的には、スチーミングが発生しても気体が作動媒体の通路にべーパーロックを発生させないように、チューブに加熱媒体を通し、シェル内に作動媒体を通しているが、本発明では、スチーミングの発生を防ぐことができるので、この実施形態では、チューブに作動媒体を通し、シェル内に加熱媒体を通している。この構成によれば、作動媒体の保有量を少なくすることができる。   In a preferred embodiment of the present invention, the preheater includes a tube passing through a shell, a working medium is passed through the tube, and a heating medium is passed through the shell. In general, even if steaming occurs, the heating medium is passed through the tube and the working medium is passed through the shell so that the gas does not generate a vapor lock in the passage of the working medium. In this embodiment, since the generation can be prevented, the working medium is passed through the tube and the heating medium is passed through the shell. According to this configuration, the amount of working medium held can be reduced.

本発明によれば、流量調節機構により蒸発器で放熱した加熱媒体の一部を戻し通路に通すことで、予熱器に供給される加熱媒体の流量が少なくなるので、予熱器から熱源に戻る熱水の温度を低くすることができる。また、蒸発器を通過する加熱媒体の流量を低下させることなく、予熱器のスチーミング現象を抑えることができる。   According to the present invention, since the flow rate of the heating medium supplied to the preheater is reduced by passing a part of the heating medium radiated from the evaporator by the flow rate adjusting mechanism through the return passage, the heat returning from the preheater to the heat source is reduced. The temperature of water can be lowered. Further, the steaming phenomenon of the preheater can be suppressed without reducing the flow rate of the heating medium passing through the evaporator.

以下、本発明の好ましい実施形態について図面を参照しながら詳述する。
図1は本発明の第1実施形態に係る排熱回収タービン装置を備えたタービン発電システムの系統図である。タービン発電システム1は、発電機2とこれを駆動するタービン4とを有するタービン発電ユニット6を備え、タービン4の作動媒体Mを循環させる媒体通路8に伝熱管式の蒸発器10、予熱器12、作動媒体供給ポンプ14、凝縮液タンク16および凝縮器18が設けられている。凝縮液タンク16は省略することもできる。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a system diagram of a turbine power generation system including an exhaust heat recovery turbine apparatus according to a first embodiment of the present invention. The turbine power generation system 1 includes a turbine power generation unit 6 having a generator 2 and a turbine 4 that drives the generator 2. A heat transfer tube evaporator 10 and a preheater 12 are provided in a medium passage 8 for circulating a working medium M of the turbine 4. A working medium supply pump 14, a condensate tank 16, and a condenser 18 are provided. The condensate tank 16 can be omitted.

蒸発器10は、熱源20から供給される加熱媒体Hの熱エネルギを熱交換により利用して作動媒体Mを蒸発させ、気相となった作動媒体Mを気相媒体供給通路8aを経由して前記タービン発電ユニット6に供給する。タービン発電ユニット6のタービン4を回転駆動させたのちの作動媒体Mは、気相媒体回収通路8bを経由して凝縮器18に送られ、ここで液化された作動媒体Mが液相媒体供給通路8cに設置された作動媒体供給ポンプ14により昇圧されて蒸発器10に供給される。液相媒体供給通路8cには、作動媒体供給ポンプ14の上流側に、作動媒体供給ポンプ14の吸込圧を安定させるための凝縮液タンク16が、蒸発器10の上流側で作動媒体供給ポンプ14の下流側に、蒸発器10に流入する作動媒体Mを予熱する予熱器12が、それぞれ設置されている。前記気相媒体供給通路8a、気相媒体回収通路8bおよび液相媒体供給通路8cにより、循環経路である媒体通路8が形成されている。作動媒体Mは、媒体通路8、予熱器12、蒸発器10、タービン4および凝縮器18からなる、大気から密封した空間内を循環しているので、作動媒体Mが大気中に流出するのを防止できる。   The evaporator 10 uses the heat energy of the heating medium H supplied from the heat source 20 by heat exchange to evaporate the working medium M, and the working medium M that has become a gas phase passes through the vapor phase medium supply passage 8a. The turbine power generation unit 6 is supplied. The working medium M after rotating the turbine 4 of the turbine power generation unit 6 is sent to the condenser 18 via the vapor phase medium recovery passage 8b, and the liquefied working medium M is supplied to the liquid phase medium supply passage. The pressure is increased by the working medium supply pump 14 installed in 8 c and supplied to the evaporator 10. A condensate tank 16 for stabilizing the suction pressure of the working medium supply pump 14 is provided upstream of the working medium supply pump 14 in the liquid phase medium supply passage 8 c, and upstream of the evaporator 10. The preheaters 12 for preheating the working medium M flowing into the evaporator 10 are respectively installed on the downstream side. A medium passage 8 as a circulation path is formed by the gas phase medium supply passage 8a, the gas phase medium recovery passage 8b, and the liquid phase medium supply passage 8c. Since the working medium M circulates in a space sealed from the atmosphere including the medium passage 8, the preheater 12, the evaporator 10, the turbine 4, and the condenser 18, the working medium M flows out into the atmosphere. Can be prevented.

液相媒体供給通路8cにおける蒸発器10の出口および予熱器12の出口に、作動媒体Mの温度を検出する第1および第2の温度センサT1,T2がそれぞれ設けられている。第1の温度センサT1は省略してもよい。   First and second temperature sensors T1 and T2 for detecting the temperature of the working medium M are respectively provided at the outlet of the evaporator 10 and the outlet of the preheater 12 in the liquid phase medium supply passage 8c. The first temperature sensor T1 may be omitted.

作動媒体Mは、沸点の低い主媒体に潤滑油を混合したもので、主媒体としては、HFE(ハイドロフルオロエーテル)、つまり、一般式C2n+1−O−C2m+1のHを一部Fで置換したものであって、常圧における沸点が25℃を超え100℃未満で、かつ、炭素Cの数が7個以下のもの、例えば、COCH、COCH、COC、C13OCHおよびCHF−CF−O−CH−CFを用いる。このうち、COCHの具体例として住友スリーエム社の商品名ノベック7000がある。この他、代替的に使用できる媒体としては、HFC(ハイドロフルオロカーボン)、つまり、C2n+2のHを一部Fで置換したもの、FE(フルオロエーテル)、つまり、一般式一般式C2n+1−O−C2m+1のHを全部Fで置換したもの、およびフッ化アルコール、つまり、C2n+1−OHのOH以外のHを一部Fで置換したものがある。 The working medium M is a mixture of a lubricating oil to the lower main medium boiling point, as the main medium, HFE (hydrofluoroether), i.e., one general formula C n H 2n + 1 -O- C m H 2m + 1 of H Substituted by part F, having a boiling point at normal pressure of more than 25 ° C. and less than 100 ° C., and having 7 or less carbon C, such as C 3 F 7 OCH 3 , C 4 F 9 OCH 3, C 4 F 9 OC 2 H 5, using the C 6 F 13 OCH 3 and CHF 2 -CF 2 -O-CH 2 -CF 3. Among these, as a specific example of C 3 F 7 OCH 3 , there is a trade name Novec 7000 of Sumitomo 3M Limited. In addition, as a medium that can be used alternatively, HFC (hydrofluorocarbon), that is, C n H 2n + 2 in which H is partially substituted with F, FE (fluoroether), that is, general formula C n H those substituted with 2n + 1 -O-C m H 2m + 1 of H all F, and fluorinated alcohols, that is, there is obtained by substituting a part F of the C n H 2n + 1 -OH H other than OH of.

前記HFE(ハイドロフルオロエーテル)で代表される媒体がタービン発電機システムの媒体として適しているのは、オゾン破壊係数ODP=0であるためオゾン層を破壊しないうえ、地球温暖化係数GWPが小さく、環境性に優れているからである。例えば、前記ノベック7000の地球温暖化係数GWP=370である。その他に、HFEと同様に環境性xに優れた媒体としてHFO(ハイドロオフルオロオレフィン)があり、これも主媒体として使用できる。また、アンモニア、ブタン、ペンタンなどの、いわゆる自然媒体も主媒体として使用できる。   The medium represented by the HFE (hydrofluoroether) is suitable as a medium for the turbine generator system because the ozone depletion coefficient ODP = 0, so that the ozone layer is not destroyed and the global warming potential GWP is small. This is because it is environmentally friendly. For example, the global warming potential GWP = 370 of the Novec 7000. In addition, there is HFO (hydrofluoroolefin) as a medium excellent in environmentality x like HFE, which can also be used as a main medium. Also, so-called natural media such as ammonia, butane and pentane can be used as the main media.

前記凝縮器18は、内部に冷却媒体Cの配管を通した公知の構造のものであり、タービン4を駆動させたのちの気相の作動媒体Mを冷却媒体Cによって冷却することにより液化させる。   The condenser 18 has a known structure in which a cooling medium C pipe is passed through, and the working medium M in a gas phase after driving the turbine 4 is cooled by the cooling medium C to be liquefied.

熱源20は、例えば、製鉄所や窯業などの製造過程で発生する温水等の排熱であり、複数の温度の熱源、例えば、98℃の温水を含む第1の熱源20a、87℃より若干温度の高い温水を含む第2の熱源20b、および77℃より若干温度の高い温水を含む第3の熱源20cを含んでいる。第1の熱源20aからの排熱を含んだ加熱媒体である温水Hは、加熱媒体供給通路22aを通って、蒸発器10内の伝熱管に導入されたのち、予熱用通路22bを通って予熱器12に導入される。加熱媒体供給通路22aにおける蒸発器10の上流側に、図7に示した従来例の場合と同様に、蒸発器10に導入される温水Hの量を調整するための流量調節弁を設けてもよい。   The heat source 20 is, for example, exhaust heat such as hot water generated in a manufacturing process such as an ironworks or a ceramic industry. The heat source 20 includes a plurality of heat sources, for example, a first heat source 20a containing hot water of 98 ° C., and slightly heated from 87 ° C. The second heat source 20b containing hot water having a high temperature and the third heat source 20c containing hot water having a temperature slightly higher than 77 ° C. are included. Hot water H, which is a heating medium including exhaust heat from the first heat source 20a, is introduced into the heat transfer pipe in the evaporator 10 through the heating medium supply passage 22a, and then preheated through the preheating passage 22b. Introduced into the vessel 12. A flow rate adjustment valve for adjusting the amount of hot water H introduced into the evaporator 10 may be provided on the upstream side of the evaporator 10 in the heating medium supply passage 22a as in the case of the conventional example shown in FIG. Good.

予熱器12は、図2に示すように、シェル12aにチューブ12bを貫通させてなり、チューブ12bに作動媒体Mを通し、シェル12a内に、蒸発器10から供給される温水Hを通している。予熱器12のシェル12aを通過した温水Hは、図1の加熱媒体回収通路22cを通って第3の熱源20cへ戻される。予熱用通路22bの中途には、予熱器12に導入される温水Hの量を調整するための流量調節機構として流量調節弁24が設けられている。   As shown in FIG. 2, the preheater 12 has a tube 12b penetrated through a shell 12a, a working medium M is passed through the tube 12b, and hot water H supplied from the evaporator 10 is passed through the shell 12a. The hot water H that has passed through the shell 12a of the preheater 12 is returned to the third heat source 20c through the heating medium recovery passage 22c of FIG. In the middle of the preheating passage 22b, a flow rate adjusting valve 24 is provided as a flow rate adjusting mechanism for adjusting the amount of hot water H introduced into the preheater 12.

予熱用通路22bにおける流量調整弁24の上流側から、温水Hを第2の熱源20bへ戻す戻し通路22dが分岐されており、蒸発器10で放熱した温水Hの一部、すなわち流量調節弁24で調整された残余の温水Hが戻し通路22dを通るようにしている。前記加熱媒体供給通路22a、予熱用通路22b、加熱媒体回収通路22cおよび戻り通路22dにより、第1の熱源20aから供給された温水が第2、第3の熱源20b、20cに回収される加熱媒体循環通路22が形成されている。   A return passage 22d for returning the hot water H to the second heat source 20b is branched from the upstream side of the flow rate adjusting valve 24 in the preheating passage 22b, and a part of the hot water H radiated by the evaporator 10, that is, the flow rate adjusting valve 24 is branched. The remaining hot water H adjusted in step 1 passes through the return passage 22d. The heating medium in which the hot water supplied from the first heat source 20a is recovered by the second and third heat sources 20b and 20c by the heating medium supply passage 22a, the preheating passage 22b, the heating medium recovery passage 22c and the return passage 22d. A circulation passage 22 is formed.

流量調節弁24は温度制御手段30により制御されている。また、第1および第2の温度センサT1,T2の出力は温度制御手段30に入力されている。つまり、第1および第2の温度センサT1,T2の出力に基づいて、流量調節弁24が制御されている。具体的には、第1および第2の温度センサT1,T2の検出する温度をそれぞれt1、t2とすると、t1がt2よりもある一定値以上に大きくなるように、好ましくは、t1−t2が+5〜8℃となるように、流量調節弁24が制御される。第1の温度センサT1を省略する場合は、作動媒体Mの沸点v1と第2の温度センサT2の検出する温度t2との差が上記値になるように制御される。   The flow control valve 24 is controlled by the temperature control means 30. The outputs of the first and second temperature sensors T1 and T2 are input to the temperature control means 30. That is, the flow rate adjustment valve 24 is controlled based on the outputs of the first and second temperature sensors T1, T2. Specifically, when the temperatures detected by the first and second temperature sensors T1 and T2 are t1 and t2, respectively, preferably t1−t2 is set so that t1 is larger than a certain value than t2. The flow rate adjustment valve 24 is controlled so as to be +5 to 8 ° C. When the first temperature sensor T1 is omitted, the difference between the boiling point v1 of the working medium M and the temperature t2 detected by the second temperature sensor T2 is controlled to be the above value.

上記システムの動作について、図1を参照しながら説明する。まず、作動媒体Mの動作を説明する。図1は、常圧(1気圧)での沸点が34℃のHFEからなる作動媒体Mを用いている。第1の熱源20aから導出された98℃の温水Hが加熱媒体供給通路22aから蒸発器10に導入され、導入された蒸発器10内の作動流体Mが、導入された温水Hとの熱交換により、つまり、温水Hからの受熱により蒸気化されて、80℃、415kPaA(絶対圧)の高圧の気相となる。   The operation of the system will be described with reference to FIG. First, the operation of the working medium M will be described. FIG. 1 uses a working medium M made of HFE having a boiling point of 34 ° C. at normal pressure (1 atm). The hot water H of 98 ° C. derived from the first heat source 20a is introduced into the evaporator 10 from the heating medium supply passage 22a, and the working fluid M in the introduced evaporator 10 exchanges heat with the introduced hot water H. That is, it is vaporized by receiving heat from the hot water H and becomes a high-pressure gas phase of 80 ° C. and 415 kPaA (absolute pressure).

気相となった作動流体Mは、蒸発器10の上部から取り出され、気相媒体供給通路8aを通ってタービン発電ユニット6のタービン4に供給され、タービン4を駆動する。これにより、タービン4と回転軸で連結された発電機2が駆動されて発電が行われる。タービン4でエネルギを放出した作動媒体Mは、57℃、88kPaAまで降圧し、気相媒体回収通路8bを通って凝縮器18に入り、20℃の冷却媒体Cとの熱交換によって冷却されて液化される。こうして、30℃の液相となった作動媒体Mが液相媒体供給通路8cを通り、作動媒体供給ポンプ14により昇圧され、予熱器12に供給され、予熱器12内で蒸発器10を通過した87℃の温水Hとの熱交換により72℃まで予熱されたのち、蒸発器10へ戻る。   The working fluid M that has become a gas phase is taken out from the upper part of the evaporator 10, supplied to the turbine 4 of the turbine power generation unit 6 through the gas phase medium supply passage 8 a, and drives the turbine 4. Thereby, the generator 2 connected with the turbine 4 by the rotating shaft is driven, and electric power generation is performed. The working medium M that has released energy by the turbine 4 is stepped down to 57 ° C. and 88 kPaA, enters the condenser 18 through the gas phase medium recovery passage 8b, and is cooled and liquefied by heat exchange with the cooling medium C at 20 ° C. Is done. Thus, the working medium M that has become a liquid phase of 30 ° C. passes through the liquid medium supply passage 8 c, is pressurized by the working medium supply pump 14, is supplied to the preheater 12, and passes through the evaporator 10 in the preheater 12. After preheating up to 72 ° C. by heat exchange with warm water H of 87 ° C., the process returns to the evaporator 10.

つぎに、加熱媒体である温水Hの動作を説明する。98℃の温水Hが、第1の熱源20aから加熱媒体供給通路22aを通って蒸発器10に導入され、作動媒体Mと熱交換され、87℃まで降温される。87℃の温水Hは予熱用通路22bを通って、流量調節弁24で調整された流量だけ予熱器12に導入され、その他の温水Hは戻り通路22dを通って、第2の熱源20bに戻される。予熱器12に導入された温水Hは作動媒体Mと熱交換され、77℃まで降温されたのち、加熱媒体回収通路22cを通って、第3の熱源20cに戻される。   Next, the operation of the hot water H that is a heating medium will be described. Hot water H of 98 ° C. is introduced into the evaporator 10 from the first heat source 20a through the heating medium supply passage 22a, is heat-exchanged with the working medium M, and is cooled to 87 ° C. The warm water H at 87 ° C. is introduced into the preheater 12 by the flow rate adjusted by the flow rate control valve 24 through the preheating passage 22b, and the other hot water H is returned to the second heat source 20b through the return passage 22d. It is. The hot water H introduced into the preheater 12 is heat-exchanged with the working medium M, lowered to 77 ° C., and then returned to the third heat source 20 c through the heating medium recovery passage 22 c.

図7の従来例において、図1の実施形態と同様に、常圧(1気圧)での沸点が34℃のHFEからなる作動媒体Mと、加熱媒体として98℃の温水Hを用いた場合は、熱源100に戻される温水Hの温度は83℃と比較的高温になる。これに対し、図1の実施形態では、第3の熱源20cに回収される温水Hの温度を77℃まで下げることができる。   In the conventional example of FIG. 7, as in the embodiment of FIG. 1, when a working medium M made of HFE having a boiling point of 34 ° C. at normal pressure (1 atm) and hot water H of 98 ° C. is used as a heating medium, The temperature of the hot water H returned to the heat source 100 is as high as 83 ° C. On the other hand, in the embodiment of FIG. 1, the temperature of the hot water H recovered by the third heat source 20c can be lowered to 77 ° C.

上記構成において、流量調節弁24により蒸発器10で放熱した温水Hの一部を戻し通路22dに通すことで、予熱器12に供給される温水Hの流量が少なくなるので、予熱器12から熱源20に戻る温水Hの温度を低くすることができ、例えば、それを転炉のような冷却対象の冷却に再利用できる。流量調節弁24を全開にした場合には、温水Hの全量を予熱器12に供給することができ、全閉とした場合には、温水Hの全量を戻り通路22dに供給する。また、流量調節弁24は蒸発器10の下流側に配置されるので、蒸発器10を通過する温水Hの流量を低下させることなく、つまり、サイクルの出力を低下させることなく、予熱器12のスチーミング現象を抑えることができる。   In the above configuration, the flow rate of the hot water H supplied to the preheater 12 is reduced by passing a part of the hot water H radiated from the evaporator 10 by the flow rate adjusting valve 24 through the return passage 22d. The temperature of the hot water H returning to 20 can be lowered, and for example, it can be reused for cooling an object to be cooled such as a converter. When the flow control valve 24 is fully opened, the entire amount of hot water H can be supplied to the preheater 12, and when fully closed, the entire amount of warm water H is supplied to the return passage 22d. Further, since the flow rate adjusting valve 24 is disposed on the downstream side of the evaporator 10, the flow rate of the warm water H passing through the evaporator 10 is not reduced, that is, the output of the cycle is not reduced. The steaming phenomenon can be suppressed.

さらに、流量調節弁24は、予熱用通路22bに設けられ、戻し通路22dが予熱用通路22bにおける流量調節弁24の上流側から分岐しているので、予熱器12に供給される温水Hの流量がより正確に調整され、予熱器12から熱源20に戻る温水Hの温度を精度よく調節できる。   Further, the flow rate adjusting valve 24 is provided in the preheating passage 22b, and the return passage 22d is branched from the upstream side of the flow rate adjusting valve 24 in the preheating passage 22b, so the flow rate of the hot water H supplied to the preheater 12 Is adjusted more accurately, and the temperature of the hot water H returning from the preheater 12 to the heat source 20 can be adjusted with high accuracy.

また、蒸発器10と予熱器12の出口における作動媒体Mの温度を検出する温度センサT1,T2をそれぞれ設け、検出される各温度t1、t2の差が所定値を超えないように、温度制御手段30により流量調節弁24を制御することで、予熱器12内の作動媒体Mの温度を調整できるので、効率的に予熱器12のスチーミング現象を抑えることができる。   In addition, temperature sensors T1 and T2 for detecting the temperature of the working medium M at the outlets of the evaporator 10 and the preheater 12 are provided, and temperature control is performed so that the difference between the detected temperatures t1 and t2 does not exceed a predetermined value. Since the temperature of the working medium M in the preheater 12 can be adjusted by controlling the flow rate adjusting valve 24 by the means 30, the steaming phenomenon of the preheater 12 can be efficiently suppressed.

一般的には、スチーミングが発生しても蒸気が作動媒体Mの通路にベーパーロックを発生させないように、チューブに加熱媒体を通し、シェル内に作動媒体を通しているのに対し、上記構成では、スチーミングの発生を防ぐことができるので、チューブ12bに作動媒体Mを通し、シェル12a内に温水Hを通している。これにより、作動媒体Mの保有量を少なくすることができ、その結果、オゾン層破壊の防止、温暖化防止等に貢献できる。   In general, in order to prevent vapor from generating vapor lock in the passage of the working medium M even when steaming occurs, the heating medium is passed through the tube and the working medium is passed through the shell. Since the occurrence of steaming can be prevented, the working medium M is passed through the tube 12b, and the hot water H is passed through the shell 12a. Thereby, the holding amount of the working medium M can be reduced, and as a result, it can contribute to prevention of ozone layer destruction, prevention of global warming, and the like.

図3は、第2実施形態に係る排熱回収タービン装置を備えたタービン発電システムの加熱媒体循環通路22の系統図である。図示していない加熱媒体循環通路22以外の構成は第1実施形態と同様である。本実施形態では、流量調節弁24を戻り通路22dに設けて、戻り通路22dを流れる温水Hの量を調整することで、間接的に予熱器12に供給される温水Hの流量を調整している。本実施形態によれば、蒸発器10を通過した温水Hをすべて予熱器12に供給する必要がある場合、戻し通路22dに設けた流量調節弁24を遮断して戻し通路22dに温水Hを流さないようにすることで、蒸発器10を通過した温水Hをすべて予熱器12に供給することができる。このとき、温水Hは流量調節弁24を通過しないので、流量調節弁24による予熱用通路22b内での圧損が生じない。加熱媒体循環通路22における圧力損失が問題とならない場合には、図1のように流量調節弁24を予熱用通路22bに設けて、予熱器12に供給される温水Hを直接調節できる。   FIG. 3 is a system diagram of the heating medium circulation passage 22 of the turbine power generation system provided with the exhaust heat recovery turbine apparatus according to the second embodiment. The configuration other than the heating medium circulation passage 22 not shown is the same as that of the first embodiment. In the present embodiment, the flow rate adjusting valve 24 is provided in the return passage 22d, and the flow rate of the hot water H supplied to the preheater 12 is adjusted indirectly by adjusting the amount of the hot water H flowing through the return passage 22d. Yes. According to this embodiment, when it is necessary to supply all the hot water H that has passed through the evaporator 10 to the preheater 12, the flow rate adjustment valve 24 provided in the return passage 22d is shut off and the hot water H is allowed to flow through the return passage 22d. By making it not to exist, all the warm water H which has passed through the evaporator 10 can be supplied to the preheater 12. At this time, since the hot water H does not pass through the flow rate control valve 24, no pressure loss occurs in the preheating passage 22b by the flow rate control valve 24. When the pressure loss in the heating medium circulation passage 22 does not become a problem, the flow rate adjustment valve 24 is provided in the preheating passage 22b as shown in FIG. 1, and the hot water H supplied to the preheater 12 can be directly adjusted.

図4は、第3実施形態に係る排熱回収タービン装置を備えたタービン発電システムの加熱媒体循環通路22の系統図である。本実施形態では、予熱用通路22bと戻り通路22dとの分岐箇所に流量調節機構として三方弁26を設け、温度制御手段30(図1)からの信号により予熱用通路22bと戻り通路22dを流れる温水Hの量を調整している。本実施形態によれば、第1実施形態と同様の効果も奏する。   FIG. 4 is a system diagram of the heating medium circulation passage 22 of the turbine power generation system provided with the exhaust heat recovery turbine apparatus according to the third embodiment. In this embodiment, a three-way valve 26 is provided as a flow rate adjusting mechanism at a branch point between the preheating passage 22b and the return passage 22d, and flows through the preheating passage 22b and the return passage 22d by a signal from the temperature control means 30 (FIG. 1). The amount of hot water H is adjusted. According to the present embodiment, the same effects as those of the first embodiment are also achieved.

図5は、第4実施形態に係る排熱回収タービン装置を備えたタービン発電システムの加熱媒体循環通路22の系統図である。本実施形態では、流量調節機構として可変容量ポンプ28を予熱用通路22bに設け、戻し通路22bを予熱用通路22bにおける可変容量ポンプ28の上流側から分岐している。温度制御手段30(図1)からの信号により可変容量ポンプ28のモータの回転数制御を行って、予熱器12に供給する温水Hの量を調整している。本実施形態においても、第1実施形態と同様の効果を奏する。   FIG. 5 is a system diagram of the heating medium circulation passage 22 of the turbine power generation system including the exhaust heat recovery turbine apparatus according to the fourth embodiment. In this embodiment, the variable displacement pump 28 is provided in the preheating passage 22b as a flow rate adjusting mechanism, and the return passage 22b is branched from the upstream side of the variable displacement pump 28 in the preheating passage 22b. The number of hot water H supplied to the preheater 12 is adjusted by controlling the rotational speed of the motor of the variable displacement pump 28 by a signal from the temperature control means 30 (FIG. 1). Also in this embodiment, there exists an effect similar to 1st Embodiment.

図6は、第5実施形態に係る排熱回収タービン装置を備えたタービン発電システムの加熱媒体循環通路22の系統図である。本実施形態では、流量調節機構として可変容量ポンプ28を戻り通路22dに設け、戻り通路22dを流れる温水Hの量を調整することで、間接的に予熱器12に供給される温水Hの流量を調整している。本実施形態においても、第2実施形態と同様の効果を奏する。   FIG. 6 is a system diagram of the heating medium circulation passage 22 of the turbine power generation system including the exhaust heat recovery turbine apparatus according to the fifth embodiment. In this embodiment, the variable capacity pump 28 is provided in the return passage 22d as a flow rate adjusting mechanism, and the flow rate of the hot water H supplied to the preheater 12 is indirectly adjusted by adjusting the amount of the hot water H flowing through the return passage 22d. It is adjusted. Also in this embodiment, there exists an effect similar to 2nd Embodiment.

以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention. Therefore, such a thing is also included in the scope of the present invention.

本発明の第1実施形態に係る排熱回収タービン装置を備えたタービン発電システムの系統図である。1 is a system diagram of a turbine power generation system including an exhaust heat recovery turbine apparatus according to a first embodiment of the present invention. 同上タービン発電システムの予熱器の断面図である。It is sectional drawing of the preheater of a turbine electric power generation system same as the above. 本発明の第2実施形態に係る排熱回収タービン装置を備えたタービン発電システムの温水循環通路の系統図である。It is a systematic diagram of the hot water circulation channel | path of the turbine electric power generation system provided with the exhaust heat recovery turbine apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る排熱回収タービン装置を備えたタービン発電システムの温水循環通路の系統図である。It is a systematic diagram of the hot water circulation passage of the turbine power generation system provided with the exhaust heat recovery turbine device according to the third embodiment of the present invention. 本発明の第4実施形態に係る排熱回収タービン装置を備えたタービン発電システムの温水循環通路の系統図である。It is a systematic diagram of the hot water circulation path of the turbine electric power generation system provided with the exhaust heat recovery turbine apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る排熱回収タービン装置を備えたタービン発電システムの温水循環通路の系統図である。It is a systematic diagram of the hot water circulation channel | path of the turbine electric power generation system provided with the exhaust-heat-recovery turbine apparatus which concerns on 5th Embodiment of this invention. 従来の一実施形態に係る排熱回収タービン装置を備えたタービン発電システムの系統図である。It is a systematic diagram of the turbine electric power generation system provided with the exhaust-heat recovery turbine apparatus which concerns on one conventional embodiment.

符号の説明Explanation of symbols

4 タービン
10 蒸発器
12 予熱器
12a シェル
12b チューブ
20 熱源
22b 予熱用通路
22d 戻し通路
24 流量調節弁(流量調節機構)
26 三方弁(流量調節機構)
28 可変容量ポンプ(流量調節機構)
30 温度制御手段
H 加熱媒体(温水)
M 作動媒体
T1 第1の温度センサ
T2 第2の温度センサ
4 Turbine 10 Evaporator 12 Preheater 12a Shell 12b Tube 20 Heat source 22b Preheating passage 22d Return passage 24 Flow control valve (flow control mechanism)
26 Three-way valve (flow rate adjustment mechanism)
28 Variable displacement pump (flow rate adjustment mechanism)
30 Temperature control means H Heating medium (hot water)
M working medium T1 first temperature sensor T2 second temperature sensor

Claims (5)

作動媒体により駆動されるタービンと、
熱源から供給される加熱媒体との熱交換により前記作動媒体を蒸気化して前記タービンに供給する蒸発器と、
前記蒸発器に流入する作動媒体を予熱する予熱器と、
前記加熱媒体を前記蒸発器から予熱器に供給する予熱用通路と、
前記予熱用通路の中途から分岐して前記加熱媒体を前記熱源へ戻す戻し通路と、
前記蒸発器で放熱した加熱媒体を前記戻し通路に通すことにより、予熱器に供給される加熱媒体の流量を調整する流量調節機構と、
を備えた排熱回収タービン装置。
A turbine driven by a working medium;
An evaporator that vaporizes the working medium by heat exchange with a heating medium supplied from a heat source and supplies the working medium to the turbine;
A preheater for preheating the working medium flowing into the evaporator;
A preheating passage for supplying the heating medium from the evaporator to a preheater;
A return passage that branches off from the preheating passage and returns the heating medium to the heat source;
A flow rate adjusting mechanism for adjusting the flow rate of the heating medium supplied to the preheater by passing the heating medium radiated by the evaporator through the return passage;
An exhaust heat recovery turbine device comprising:
請求項1において、前記流量調節機構は、前記戻し通路に設けられている排熱回収タービン装置。   The exhaust heat recovery turbine apparatus according to claim 1, wherein the flow rate adjusting mechanism is provided in the return passage. 請求項1において、前記流量調節機構は、前記予熱用通路に設けられ、前記戻し通路は予熱用通路における流量調節機構の上流側から分岐している排熱回収タービン装置。   2. The exhaust heat recovery turbine apparatus according to claim 1, wherein the flow rate adjusting mechanism is provided in the preheating passage, and the return passage is branched from an upstream side of the flow adjusting mechanism in the preheating passage. 請求項1,2または3において、さらに、前記予熱器の出口の作動媒体の温度を検出する温度センサと、検出された前記温度が所定値を超えないように前記流量調節機構を制御する温度制御手段とを備えた排熱回収タービン装置。   4. The temperature sensor according to claim 1, further comprising a temperature sensor that detects a temperature of a working medium at an outlet of the preheater, and a temperature control that controls the flow rate adjusting mechanism so that the detected temperature does not exceed a predetermined value. And a waste heat recovery turbine device. 請求項1から4のいずれか一項において、前記予熱器は、シェルにチューブを貫通させてなり、前記チューブに作動媒体を通し、前記シェル内に加熱媒体を通している排熱回収タービン装置。   5. The exhaust heat recovery turbine apparatus according to claim 1, wherein the preheater includes a tube passing through a shell, a working medium is passed through the tube, and a heating medium is passed through the shell.
JP2008309673A 2008-12-04 2008-12-04 Waste heat recovery turbine equipment Active JP5123148B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008309673A JP5123148B2 (en) 2008-12-04 2008-12-04 Waste heat recovery turbine equipment
US12/875,698 US20110162367A1 (en) 2008-12-04 2010-09-03 Waste heat recovery turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309673A JP5123148B2 (en) 2008-12-04 2008-12-04 Waste heat recovery turbine equipment

Publications (2)

Publication Number Publication Date
JP2010133322A true JP2010133322A (en) 2010-06-17
JP5123148B2 JP5123148B2 (en) 2013-01-16

Family

ID=42344832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309673A Active JP5123148B2 (en) 2008-12-04 2008-12-04 Waste heat recovery turbine equipment

Country Status (2)

Country Link
US (1) US20110162367A1 (en)
JP (1) JP5123148B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124568A (en) * 2011-12-14 2013-06-24 Takuma Co Ltd Waste power generation system
JP2016118161A (en) * 2014-12-22 2016-06-30 株式会社神戸製鋼所 Thermal energy recovery device
JP2022517033A (en) * 2019-01-14 2022-03-03 レフィンクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Devices and methods for recovering heat from liquid media

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083240A (en) * 2011-09-26 2013-05-09 Toyota Industries Corp Waste heat recovery device
US10955130B1 (en) 2019-05-21 2021-03-23 Marine Turbine Technologies, LLC Exhaust powered liquid evaporator apparatus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296704A (en) * 1985-10-23 1987-05-06 Toshiba Corp Hot water turbine plant
JPH01267306A (en) * 1988-04-15 1989-10-25 Toshiba Corp Flow controller for heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867988A (en) * 1994-01-18 1999-02-09 Ormat Industries Ltd. Geothermal power plant and method for using the same
JP3706475B2 (en) * 1997-10-08 2005-10-12 三菱重工業株式会社 Heavy oil emulsion fuel evaporator system and operating method thereof
US6571548B1 (en) * 1998-12-31 2003-06-03 Ormat Industries Ltd. Waste heat recovery in an organic energy converter using an intermediate liquid cycle
US6960839B2 (en) * 2000-07-17 2005-11-01 Ormat Technologies, Inc. Method of and apparatus for producing power from a heat source
US6539718B2 (en) * 2001-06-04 2003-04-01 Ormat Industries Ltd. Method of and apparatus for producing power and desalinated water
JP4495004B2 (en) * 2005-02-24 2010-06-30 株式会社日立製作所 Heavy oil reformed fuel-fired gas turbine system and operation method thereof
US7387090B2 (en) * 2005-12-23 2008-06-17 Russoniello Fabio M Method for control of steam quality on multipath steam generator
CA2679612C (en) * 2007-03-02 2018-05-01 Victor Juchymenko Controlled organic rankine cycle system for recovery and conversion of thermal energy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296704A (en) * 1985-10-23 1987-05-06 Toshiba Corp Hot water turbine plant
JPH01267306A (en) * 1988-04-15 1989-10-25 Toshiba Corp Flow controller for heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124568A (en) * 2011-12-14 2013-06-24 Takuma Co Ltd Waste power generation system
JP2016118161A (en) * 2014-12-22 2016-06-30 株式会社神戸製鋼所 Thermal energy recovery device
JP2022517033A (en) * 2019-01-14 2022-03-03 レフィンクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Devices and methods for recovering heat from liquid media
JP7205945B2 (en) 2019-01-14 2023-01-17 レフィンクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Apparatus and method for recovering heat from liquid media

Also Published As

Publication number Publication date
US20110162367A1 (en) 2011-07-07
JP5123148B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP6245404B1 (en) Combustion equipment and power generation equipment
US8181463B2 (en) Direct heating organic Rankine cycle
JP6086726B2 (en) Power generation system and power generation method
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
US9863280B2 (en) Combined heat and power system
JP2011032954A (en) Combined power generation system using cold of liquefied gas
JP5123148B2 (en) Waste heat recovery turbine equipment
KR101135686B1 (en) Control method of Organic Rankine Cycle System flowemeter
JP2007064050A (en) Waste heat utilizing facility for steam turbine plant
JP6021526B2 (en) COOLING WATER SUPPLY SYSTEM AND BINARY POWER GENERATOR HAVING THE SAME
JP6819323B2 (en) Thermal cycle equipment
KR101902083B1 (en) Waste heat recovery system using absorption heat pump
JP2014190277A (en) Organic Rankine cycle system
KR20150138661A (en) The Coolant Waste Heat Recovery of Coal Fired Power Plant and Control Method
US20160061530A1 (en) Combined heat and power system
KR101135685B1 (en) Control method of Organic Rankine Cycle System Pump
JP2008267341A (en) Exhaust heat recovering device
JP2015004357A (en) Operation method of binary power generation device
KR101135682B1 (en) Control method of Organic Rankine Cycle System working fluid quality
KR101013526B1 (en) A boiler-waste heat recovery hot-water generating device
KR20110079448A (en) Organic rankine cycle system
JP2011064417A (en) Steam generator
JP6161357B2 (en) Power generation system
JP2016151191A (en) Power generation system
JP2002156493A (en) Site heat supply equipment of nuclear power station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5123148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250