JP2010133190A - Sewage treatment system and operating method and improving method of the system - Google Patents

Sewage treatment system and operating method and improving method of the system Download PDF

Info

Publication number
JP2010133190A
JP2010133190A JP2008312143A JP2008312143A JP2010133190A JP 2010133190 A JP2010133190 A JP 2010133190A JP 2008312143 A JP2008312143 A JP 2008312143A JP 2008312143 A JP2008312143 A JP 2008312143A JP 2010133190 A JP2010133190 A JP 2010133190A
Authority
JP
Japan
Prior art keywords
combined
sewage treatment
facility
rainwater storage
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008312143A
Other languages
Japanese (ja)
Other versions
JP5189968B2 (en
Inventor
Shinichiro Ogi
新一郎 苧木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008312143A priority Critical patent/JP5189968B2/en
Publication of JP2010133190A publication Critical patent/JP2010133190A/en
Application granted granted Critical
Publication of JP5189968B2 publication Critical patent/JP5189968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improvement means for a combined sewer system which suppresses the use of the land, reduced in load on each family, prevents environmental pollution even in heavy rain, and prevents damage caused by flood. <P>SOLUTION: This sewage treatment system includes a system having a rainwater storage facility with a conversion improvement and flood prevention measures which branches initial polluted water from the system of a normal sewage treatment facility during a rainfall time and accepts and stores the branched water and a high-speed filtrating facility which treats the initial polluted water stored in the rainwater storage facility by a conversion improvement and flood prevention measures and discharges the treated water without allowing the treated water to pass the normal sewage treatment facility. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、汚水と雨水とを同じ管渠(合流管等)で排除する合流式下水道にかかる下水処理システムと、それを運用する方法、更には、既存の下水処理システムを改善する方法に関する。   The present invention relates to a sewage treatment system for a combined sewer that removes sewage and rainwater with the same pipe (such as a merging pipe), a method for operating the sewage treatment system, and a method for improving an existing sewage treatment system.

合流式下水道には、トイレの水洗化と浸水対策を同時に実現することが出来、管が1系統であることから工事が経済的で容易である、という利点がある。そのため、戦後、早くから下水道整備に着手した大都市の多くで採用され、都市で生活する人々の快適で衛生的な暮らしを支えてきた。   The combined sewer system has the advantage that the toilet can be flushed and flooded at the same time, and the construction is economical and easy because there is only one pipe. For this reason, it has been adopted in many large cities that have begun construction of sewers since the end of the war, and has supported the comfortable and hygienic lives of people living in the city.

しかし、合流式下水道では、汚水と雨水とを同じ管渠で処理するため、大雨の時には、下水処理場において、下水(汚水と雨水)の全量を一定の水質を満たすように処理することが出来ず、一部はそのまま河川に放流される場合があり、雨量によっては、民家の浸水被害を招くおそれもある。   However, in the combined sewer system, sewage and rainwater are treated with the same pipe, so in heavy rain, the entire amount of sewage (sewage and rainwater) can be treated to meet a certain level of water quality at the sewage treatment plant. However, some of them may be discharged directly into rivers, and depending on the amount of rainfall, there is a risk of inundation damage to private houses.

一般に、下水処理場では、降雨時の時間あたり最大流入量(水量)を、晴天時(降雨なし)の時間あたり最大流入量である設計水量Qの3倍の3Qに規制している。例えば、最初沈殿池、反応槽(エアレーションタンク)、及び最終沈殿池からなる下水処理設備においては、降雨があってもQを超えない限り晴天時と同じ処理を行なうことが出来るが、降雨によって水量がQを超えた場合には、3Qまでは、最初沈殿池に過負荷をかけて沈殿をさせた後で放流するという簡易処理で対応し、更に、水量が3Qを超えた場合には、簡易処理も行なわず、そのまま放流(放出)しているのが実情である。これでは、多量の汚濁物質が河川等へ、あるいは民家へと流入し、水質汚染、公衆衛生の悪化を招来することになる。   Generally, in a sewage treatment plant, the maximum inflow amount (water amount) per hour at the time of rain is restricted to 3Q, which is three times the design water amount Q, which is the maximum inflow amount per hour at a fine weather (no rain). For example, in a sewage treatment facility consisting of a first sedimentation basin, a reaction tank (aeration tank), and a final sedimentation basin, even if it rains, the same treatment can be performed as if it is fine weather as long as Q is not exceeded. When Q exceeds Q, it corresponds to the simple process of discharging after overloading the first sedimentation basin until the third Q, and when the amount of water exceeds 3Q, it is simplified. The actual situation is that it is discharged without any treatment. As a result, a large amount of pollutants flow into rivers or private houses, leading to water pollution and deterioration of public health.

近年、ウォーターフロントの再開発が進むとともに、人々の環境意識が高まってきたことから、上記のような状況は大きな問題となり、下水道法施行令の改正によって、合流式下水道の改善が義務付けられることとなった。   In recent years, as the waterfront redevelopment has progressed and people's environmental awareness has increased, the above situation has become a major problem, and the revision of the Enforcement Ordinance of the Sewerage Law requires the improvement of the combined sewerage system. became.

公に挙げられている既存の合流式下水道の改善対策としては、例えば、(A)雨水貯留設備を増設して下水を一時的に貯める能力を高めて降雨終了後に処理する方法、(B)雨水を合流管に入れないように土中に浸透させる方法、(C)雨水吐(雨水吐室)にスクリーンを設置してごみを流出させない方法、(D)分流化、がある。又、関連する先行文献として、例えば、特許文献1〜5を挙げることが出来る。   Publicly listed improvement measures for existing combined sewer systems include, for example, (A) a method of increasing rainwater storage facilities to increase the ability to temporarily store sewage and processing after rain, (B) rainwater There is a method of infiltrating the soil into the soil so as not to enter the junction pipe, (C) a method of installing a screen in the rainwater discharge (rainwater discharge chamber) and preventing the waste from flowing out, and (D) diversion. Moreover, patent documents 1-5 can be mentioned as related prior literature, for example.

特開2002−298063号公報JP 2002-298063 A 特開平11−190056号公報Japanese Patent Laid-Open No. 11-190056 特開2007−146423号公報JP 2007-146423 A 特許第3824583号公報Japanese Patent No. 3824583 特許第3853738号公報Japanese Patent No. 3853738

しかしながら、合流式下水道が採用されている地域は都市部であることから、土地代が高い。そのため、コンクリート製の大きな貯槽の作製も含め、上記(A)の方法ではコストが問題となる。特に、浸水対策を含めた水量の貯槽は非常に大きな容量となるため、土地の取得、コストの上昇を、無視することは出来ない。又、(B)の方法は、雨水が合流管に入る前に行なうものであるため、宅地内の費用は各家庭の分担となり、理解を得て実際に工事を進めることは容易ではない。これは、(D)の方法も同様である。更に、(C)の方法は、水質改善に一定の効果があるが、溶解物、半溶解物の除去は困難である。   However, the land cost is high because the area where the combined sewer system is adopted is an urban area. Therefore, the cost of the method (A), including the production of a large concrete storage tank, is a problem. In particular, water storage tanks, including countermeasures against inundation, have extremely large capacities, so land acquisition and cost increases cannot be ignored. In addition, since the method (B) is performed before rainwater enters the junction pipe, the cost in the residential land is shared by each household, and it is not easy to actually proceed with the construction with understanding. The same applies to the method (D). Furthermore, the method (C) has a certain effect on improving the water quality, but it is difficult to remove dissolved and semi-dissolved materials.

本発明は、このような事情に鑑みてなされたものであり、その課題は、土地の利用を抑え、各家庭の負担もなく、大雨があっても環境汚染を防止することが出来るとともに、浸水被害を防止可能な、合流式下水道の改善手段を提供することである。研究が重ねられた結果、予め見積もった初期雨水(降り始めの雨水)の水量に相当する処理能力を有する高速濾過設備を下水処理システムに付加し、その高速濾過設備によって初期雨水相当分の初期汚濁水を処理して放流することによって、上記目的を達成することが出来ることを見出し、本発明を完成させた。   This invention is made | formed in view of such a situation, The subject is suppressing the use of land, there is no burden of each household, it can prevent environmental pollution even if there is heavy rain, and it is flooded. It is to provide a means to improve the combined sewer system that can prevent damage. As a result of repeated research, a high-speed filtration facility with a treatment capacity equivalent to the amount of initial rainwater (rainwater at the beginning of rain) estimated in advance was added to the sewage treatment system, and the initial pollution corresponding to the initial rainwater by the high-speed filtration facility. The present inventors have found that the above object can be achieved by treating and discharging water, thereby completing the present invention.

尚、既存の合流式下水道の改善ではなく、新たに下水道を構築する場合においても、下水処理場において、上記した高速濾過設備を組み合わせることによって、小さな容量の雨水貯留設備であっても、十分な降雨(大雨)対応能力を具備する合流式下水道を構築し得ることはいうまでもない。   In addition to improving the existing combined sewer system, even when constructing a new sewer system, combining the high-speed filtration equipment described above in the sewage treatment plant, even with a small-capacity rainwater storage facility, is sufficient. Needless to say, it is possible to construct a combined sewer system capable of handling rain (heavy rain).

即ち、本発明によれば、先ず、汚水と雨水とが合流した下水を受け入れ処理する通常下水処理設備に加えて、降雨時(大雨を含む)に初期汚濁水を、通常下水処理設備の系から分岐させて受け入れ貯留する合流改善浸水対策併用雨水貯留設備と、その合流改善浸水対策併用雨水貯留設備に貯留された、初期汚濁水を処理し、通常下水処理設備を通さずに放流する高速濾過設備と、を備えた系を有する下水処理システムが提供される。   That is, according to the present invention, first, in addition to the normal sewage treatment facility that receives and treats the sewage combined with the sewage and the rainwater, the initial contaminated water is removed from the system of the normal sewage treatment facility during the rain (including heavy rain). Combined improved inundation combined rainwater storage facility that accepts and stores it, and high-speed filtration facility that treats the initial polluted water stored in the combined improved inundation combined rainwater storage facility and discharges it without passing through the normal sewage treatment facility And a sewage treatment system having a system comprising:

本明細書にいう合流改善浸水対策併用雨水貯留設備は、合流改善利用と、浸水対策利用と、を兼ねた雨水貯留設備である。後述する合流改善用雨水貯留設備は、合流改善利用のみ(合流改善専用)の雨水貯留設備であり、浸水対策用雨水貯留設備は、浸水対策利用のみ(浸水対策専用)の雨水貯留設備である。   The combined storm improvement inundation countermeasure combined use rainwater storage facility referred to in this specification is a rainwater storage facility that serves as both merging improvement utilization and inundation countermeasure utilization. A rainwater storage facility for confluence improvement described later is a rainwater storage facility for only confluence improvement (dedicated for confluence improvement), and a rainwater storage facility for inundation countermeasure is a rainwater storage facility for inundation countermeasure use only (dedicated for inundation measures).

本明細書にいう通常下水処理設備は、例えば、主に沈砂池、最初沈殿池、反応槽(エアレーションタンク、好気性生物処理等)、最終沈殿池で構成される設備である。通常下水処理設備には、多くは、他に、汚泥(沈殿物)処理装置が含まれる。本発明に係る下水処理システムでは、雨水貯留設備、高速濾過設備、及び通常下水処理設備の他に、硝化脱窒処理、脱燐処理、オゾン処理、活性炭処理等で構成される高度処理設備を具備していてもよい。又、本発明に係る下水処理システムにおいて、装置や設備には、配管、ポンプ、計器、制御装置等が含まれるものとする。   The normal sewage treatment facility referred to in the present specification is, for example, a facility mainly composed of a sand basin, a first sedimentation basin, a reaction tank (aeration tank, aerobic biological treatment, etc.), and a final sedimentation basin. In general, the sewage treatment facilities often include a sludge (precipitate) treatment device. The sewage treatment system according to the present invention includes advanced treatment equipment composed of nitrification denitrification treatment, dephosphorization treatment, ozone treatment, activated carbon treatment, etc. in addition to rainwater storage equipment, high-speed filtration equipment, and normal sewage treatment equipment. You may do it. In the sewage treatment system according to the present invention, the apparatus and equipment include piping, a pump, a meter, a control device, and the like.

本明細書において、初期汚濁水とは、降り始めの汚濁した雨水(初期雨水)と、汚水と、が合流した下水であって、初期雨水が大部分を占めるもの、を意味する。又、降雨時には、大雨である場合を含む。   In the present specification, the initial polluted water means sewage in which polluted rainwater (initial rainwater) at the beginning of falling and sewage merge, and the initial rainwater occupies most of the sewage. Moreover, it includes the case of heavy rain when it rains.

本明細書において、合流改善とは、広く合流式下水道の改善全般を指すものではなく、通常下水処理設備の能力を越えているが浸水まで至らない水量の下水を無処理で河川等に放流されないように(下水を)貯留することを指す。浸水対策とは、浸水に至る水量の下水が放流されないように(下水を)貯留すること(合流改善の分を除く)を意味する。   In this specification, merging improvement does not generally refer to the improvement of merging sewerage in general, but the amount of sewage that exceeds the capacity of ordinary sewage treatment facilities but does not reach inundation is not discharged into rivers without treatment. It means to store (sewage) like. Inundation countermeasures mean storing the sewage so that the amount of water that reaches the inundation is not discharged (excluding merging improvement).

本発明に係る下水処理システムにおいては、上記合流改善浸水対策併用雨水貯留設備(そのうちの貯槽)が、(貯留すべき下水の)入口側から出口側に向けて複数の仕切りが設けられた構造を有することが好ましい。   In the sewage treatment system according to the present invention, the rainwater storage facility (the storage tank) in which the combined improvement and inundation countermeasures are combined has a structure in which a plurality of partitions are provided from the inlet side (sewage to be stored) toward the outlet side. It is preferable to have.

即ち、この合流改善浸水対策併用雨水貯留設備は、受け入れ貯留された順に、初期汚濁水を分離することが出来る貯留設備である。本発明に係る下水処理システムでは、上記合流改善浸水対策併用雨水貯留設備が、滞水池や貯留管や流下貯留管を有するものであってもよい。   That is, this combined rain improvement inundation countermeasure rainwater storage facility is a storage facility that can separate the initial polluted water in the order in which it is received and stored. In the sewage treatment system according to the present invention, the combined storm improvement inundation countermeasure combined rainwater storage facility may include a reservoir, a storage pipe, and a falling storage pipe.

本発明に係る下水処理システムにおいては、上記高速濾過設備が、浮上濾材層を有し、その浮上濾材層の上側のみにスクリーンが配置され、上向流で初期汚濁水が処理されるとともに、浮上濾材層の逆洗手段を備えることが好ましい。   In the sewage treatment system according to the present invention, the high-speed filtration facility has a floating filter medium layer, a screen is disposed only above the floating filter medium layer, and the initial polluted water is treated in an upward flow, It is preferable to provide backwashing means for the filter medium layer.

このような高速濾過設備として、例えば、特許文献4、特許文献5で開示された濾過設備を挙げることが出来る。高速濾過設備の能力は、SS除去率30%以上、BOD除去率30%以上であることが好ましく、SS除去率50%以上、BOD除去率50%以上であることがより好ましく、SS除去率は70%以上であることが特に好ましい。   Examples of such high-speed filtration equipment include the filtration equipment disclosed in Patent Document 4 and Patent Document 5. The capability of the high-speed filtration equipment is preferably an SS removal rate of 30% or more and a BOD removal rate of 30% or more, more preferably an SS removal rate of 50% or more, and a BOD removal rate of 50% or more. It is especially preferable that it is 70% or more.

本発明に係る下水処理システムにおいては、少なくとも、降雨情報と、汚水と雨水とが合流した下水が流れる合流管情報と、を入力し、これらの情報を解析して、合流改善浸水対策併用雨水貯留設備における現在及び将来の貯留量を求める解析手段を有することが好ましい。   In the sewage treatment system according to the present invention, at least rainfall information and merge pipe information in which sewage and sewage merge together flow, and these information are analyzed and combined rainwater storage combined rainwater storage It is preferable to have an analysis means for determining the current and future storage amount in the facility.

次に、本発明によれば、上記した何れかの下水処理システムにおいて、気象情報により次の降雨が予想される場合に、前の降雨によるものを含む初期汚濁水を、通常下水処理設備の系から分岐させて合流改善浸水対策併用雨水貯留設備に受け入れて貯留し、その合流改善浸水対策併用雨水貯留設備に貯留された、初期汚濁水を、高速濾過設備で処理し、合流改善浸水対策併用雨水貯留設備の貯留可能水量を増やす下水処理システムの運用方法が提供される。   Next, according to the present invention, in any of the above-described sewage treatment systems, when the next rainfall is predicted by the weather information, the initial polluted water including the one caused by the previous rainfall is removed from the normal sewage treatment facility system. The sewage is stored in the rainwater storage facility combined with the combined improvement inundation countermeasures, and the initial polluted water stored in the rainwater storage facility combined with the combined improvement inundation countermeasures is treated with the high-speed filtration facility and rainwater combined with the combined improvement inundation countermeasures. A method of operating a sewage treatment system that increases the amount of water that can be stored in a storage facility is provided.

本発明に係る下水処理システムの運用方法においては、(運用する下水処理システムが)上記合流改善浸水対策併用雨水貯留設備が、入口側から出口側に向けて複数の仕切りが設けられた構造を有するものであり、初期汚濁水を、通常下水処理設備の系から分岐させて、仕切りが設けられた合流改善浸水対策併用雨水貯留設備に貯留し、その貯留された、初期汚濁水を、希薄なものから、順次、高速濾過設備で処理することが好ましい。   In the operation method of the sewage treatment system according to the present invention, (the sewage treatment system to be operated) has a structure in which the rainwater storage facility combined with the combined improvement inundation countermeasure is provided with a plurality of partitions from the inlet side toward the outlet side. The initial polluted water is diverted from the normal sewage treatment facility system and stored in the rainwater storage facility combined with the combined improvement inundation measures provided with the partition, and the stored initial polluted water is diluted. From the above, it is preferable to sequentially process with high-speed filtration equipment.

本発明に係る下水処理システムの運用方法においては、(運用する下水処理システムが)上記解析手段を有するものであり、少なくとも、降雨情報と、汚水と雨水とが合流した下水が流れる合流管情報と、を基に、これらの情報を解析して、合流改善浸水対策併用雨水貯留設備における現在及び将来の貯留量を求め、その求められた現在及び将来の貯留量に基づいて、通常下水処理設備の系から分岐させて合流改善浸水対策併用雨水貯留設備に受け入れ貯留すべき初期汚濁水の量、及び、高速濾過設備で処理すべき初期汚濁水の量、のうち何れか又は両方を決定することが好ましい。   In the operation method of the sewage treatment system according to the present invention, (the sewage treatment system to be operated) has the analysis means described above, and at least the rainfall information and the merged pipe information in which the sewage combined with the sewage and the rainwater flows. Based on the above, this information is analyzed to determine the current and future storage volume in the combined rainwater storage facilities combined with inundation measures, and based on the calculated current and future storage volume, It is possible to determine either or both of the amount of initial polluted water to be received and stored in the rainwater storage facility combined with the combined improvement inundation countermeasures branched from the system and the amount of initial polluted water to be processed by the high-speed filtration facility preferable.

本発明に係る下水処理システム及び下水処理システムの運用方法において、合流改善浸水対策併用雨水貯留設備における現在及び将来の貯留量を求めることが出来るが、これは、合流改善浸水対策併用雨水貯留設備の貯留量の現在からの変化を予測出来ることを意味し、変化を予測出来ることから、上記の通り、受け入れ貯留すべき初期汚濁水の量、及び、高速濾過設備で処理すべき初期汚濁水の量、を決定することが可能となる。   In the operation method of the sewage treatment system and the sewage treatment system according to the present invention, it is possible to obtain the present and future storage amount in the combined rainwater storage facility combined rainwater storage facility, This means that the change in the storage volume from the present can be predicted and the change can be predicted. As described above, the amount of the initial polluted water to be received and stored and the amount of the initial polluted water to be processed by the high-speed filtration equipment , Can be determined.

次に、本発明によれば、汚水と雨水とが合流した下水を受け入れ処理する通常下水処理設備と、降雨時に初期汚濁水を、通常下水処理設備の系から分岐させて受け入れて貯留する合流改善浸水対策併用雨水貯留設備と、を既に有する下水処理システムにおいて、合流改善浸水対策併用雨水貯留設備に貯留された、初期汚濁水を処理し、通常下水処理設備を通さずに放流する高速濾過設備を増設し、気象情報により次の降雨が予想される場合に、前の降雨によるものを含む初期汚濁水を、通常下水処理設備の系から分岐させて合流改善浸水対策併用雨水貯留設備に受け入れて貯留し、その合流改善浸水対策併用雨水貯留設備に貯留された、初期汚濁水を、高速濾過設備で処理し、合流改善浸水対策併用雨水貯留設備の貯留可能水量を増やす下水処理システムの改善方法が提供される。   Next, according to the present invention, the normal sewage treatment facility that accepts and treats sewage combined with sewage and rainwater, and the merge improvement that accepts and stores the initial polluted water from the system of the normal sewage treatment facility when it rains In a sewage treatment system that already has a rainwater storage facility combined with inundation countermeasures, a high-speed filtration facility that treats the initial polluted water stored in the combined rainwater storage facility with improved flooding countermeasures and discharges it without passing through the normal sewage treatment facility. When the next rainfall is predicted by meteorological information, the initial polluted water, including that from the previous rain, is branched from the normal sewage treatment facility system and received and stored in the rainwater storage facility combined with combined improvement inundation measures. Sewage that treats the initial polluted water stored in the rainwater storage facility combined with the combined improvement inundation measures with a high-speed filtration facility to increase the amount of water that can be stored in the rainwater storage facility combined with the combined improvement inundation measures Method for improving the management system is provided.

上記改善方法は、下水処理システムに既に高速濾過設備が備わっている場合の方法である。下水処理システムに高速濾過設備が備わっていない場合、あるいは、高速濾過設備が既に備わっていても、新たな高速濾過設備を設ける場合には、以下の改善方法を採る。   The above improvement method is a method when the sewage treatment system is already equipped with a high-speed filtration facility. When the sewage treatment system is not equipped with a high-speed filtration facility, or when a new high-speed filtration facility is provided even if a high-speed filtration facility is already provided, the following improvement method is adopted.

即ち、本発明によれば、汚水と雨水とが合流した下水を受け入れ処理する既存の通常下水処理設備に、降雨時に初期汚濁水を、通常下水処理設備の系から分岐させて受け入れて貯留する合流改善浸水対策併用雨水貯留設備と、その合流改善浸水対策併用雨水貯留設備に貯留された、初期汚濁水を処理し、通常下水処理設備を通さずに放流する高速濾過設備と、を増設し、気象情報により次の降雨が予想される場合に、前の降雨によるものを含む初期汚濁水を、通常下水処理設備の系から分岐させて合流改善浸水対策併用雨水貯留設備に受け入れて貯留し、その合流改善浸水対策併用雨水貯留設備に貯留された、初期汚濁水を、高速濾過設備で処理し、合流改善浸水対策併用雨水貯留設備の貯留可能水量を増やす下水処理システムの改善方法が提供される。   That is, according to the present invention, in the existing normal sewage treatment facility that receives and treats sewage combined with sewage and rainwater, the initial polluted water is branched from the system of the normal sewage treatment facility and received and stored at the time of rainfall. The rainwater storage facility combined with improved inundation countermeasures and the high-speed filtration facility that treats the initial polluted water stored in the combined rainwater storage facility combined with improved inundation countermeasures and discharges it without passing through the normal sewage treatment facility are installed, and the weather When the next rainfall is predicted based on the information, the initial polluted water including the one due to the previous rain is branched off from the normal sewage treatment facility system, and is received and stored in the rainwater storage facility combined with the combined improvement inundation countermeasure. There is a method of improving the sewage treatment system that treats the initial polluted water stored in the rainwater storage facility combined with improved inundation countermeasures with the high-speed filtration facility and increases the amount of water that can be stored in the combined rainwater storage facility combined with improved inundation countermeasures. It is subjected.

本発明に係る下水処理システムの改善方法において、上記合流改善浸水対策併用雨水貯留設備を、入口側から出口側に向けて複数の仕切りが設けられた構造を有するものとして構成し、初期汚濁水を、通常下水処理設備の系から分岐させて、仕切りが設けられた合流改善浸水対策併用雨水貯留設備に貯留し、その貯留された、初期汚濁水を、希薄なものから、順次、高速濾過設備で処理することが好ましい。   In the improvement method of the sewage treatment system according to the present invention, the rainwater storage facility combined with the combined improvement inundation countermeasure is configured as having a structure in which a plurality of partitions are provided from the inlet side toward the outlet side, and the initial polluted water is Diverge from the normal sewage treatment system, and store it in the rainwater storage facility combined with the improved inundation countermeasures provided with the partition, and the stored initial polluted water in order from the dilute to the high-speed filtration facility. It is preferable to process.

本発明に係る下水処理システムの改善方法において、上記高速濾過設備が、浮上濾材層を有し、その浮上濾材層の上側のみにスクリーンが配置され、上向流で初期汚濁水が処理されるとともに、浮上濾材層の逆洗手段を備えることが好ましい。   In the method for improving a sewage treatment system according to the present invention, the high-speed filtration facility has a floating filter medium layer, a screen is disposed only on the floating filter medium layer, and initial polluted water is treated in an upward flow. It is preferable to provide a backwashing means for the floating filter material layer.

初期汚濁水につき、前の降雨によるものを含む、としているのは、予想された(次の)降雨が実際に始まってしまう場合があるからである。次の降雨が始まる前であれば、前の降雨による初期汚濁水、である。   The reason for the initial polluted water, including that from the previous rain, is that the expected (next) rain may actually start. If it is before the next rain starts, it is the initial polluted water from the previous rain.

本発明に係る下水処理システムは、降雨時に初期汚濁水を、通常下水処理設備の系から分岐させて受け入れ貯留する合流改善浸水対策併用雨水貯留設備と、その合流改善浸水対策併用雨水貯留設備に貯留された、初期汚濁水を処理し、通常下水処理設備を通さずに放流する高速濾過設備と、を備えた系を有するので、気象情報により次の降雨が予想される場合に、前の降雨によるものを含む初期汚濁水を、通常下水処理設備の系から分岐させて合流改善浸水対策併用雨水貯留設備に受け入れて貯留し、その合流改善浸水対策併用雨水貯留設備に貯留された、初期汚濁水を、高速濾過設備で処理し放流することによって、初期汚濁水のうちその処理し放流した水量の分だけ、合流改善浸水対策併用雨水貯留設備が空くことになるから、合流改善浸水対策併用雨水貯留設備の貯留可能水量を増やすことが出来る。従って、合流改善浸水対策併用雨水貯留設備における浸水対策のための実質的な貯留量を増加させることが出来、通常下水処理設備の処理能力以上の降雨が予測(予想)された場合であっても、環境汚染及び浸水被害を軽減することが可能である。   The sewage treatment system according to the present invention stores the initial polluted water in the rainwater storage facility combined with the combined improvement inundation countermeasures for receiving and storing the initial polluted water from the system of the normal sewage treatment facility and the rainwater storage facility combined with the combined improvement inundation countermeasures during the rain. The system is equipped with a high-speed filtration facility that treats the initial polluted water and discharges it normally without passing through the sewage treatment facility. The initial polluted water containing water is diverted from the normal sewage treatment facility system, received and stored in the rainwater storage facility combined with the combined improvement inundation countermeasure, and the initial contaminated water stored in the rainwater storage facility combined with the combined improvement inundation countermeasure is stored. By treating and discharging with a high-speed filtration facility, the rainwater storage facility combined with combined improvement and inundation measures will be emptied by the amount of the initial polluted water that has been processed and discharged. Reservoir water volume of water measures combined rainwater storage facility can be increased. Therefore, it is possible to increase the substantial storage amount for inundation countermeasures in the rainwater storage facility combined with the combined improvement inundation countermeasures, even if it is predicted (predicted) that the rainfall exceeds the processing capacity of the normal sewage treatment facility. It is possible to reduce environmental pollution and flood damage.

従来の下水処理システムにおいても、合流改善及び浸水対策の水量に相当する容量を有する合流改善浸水対策併用雨水貯留設備が設けられる場合があるが、本発明に係る下水処理システムは、上記のように浸水対策のための実質的な貯留量を増加させ得るものであるから、合流改善及び浸水対策のための水量を同一とすれば、本発明に係る下水処理システムの合流改善浸水対策併用雨水貯留設備の容量は、従来の下水処理システムの合流改善浸水対策併用雨水貯留設備の容量と比べて、小さくなる。従って、必要な土地は小さくてよく、高速濾過設備を考慮しても、下水処理システム構築に要するコストは抑制される。   In a conventional sewage treatment system, there is a case where a combined rain improvement inundation countermeasure rainwater storage facility having a capacity corresponding to the amount of water for improvement of merge and countermeasure against inundation may be provided, but the sewage treatment system according to the present invention is as described above. Since the substantial storage amount for inundation countermeasures can be increased, if the water amount for confluence improvement and inundation countermeasures is the same, the rainwater storage facility combined with infiltration improvement inundation countermeasures of the sewage treatment system according to the present invention The capacity of the sewage treatment system is smaller than the capacity of the rainwater storage facility combined with the combined improvement inundation measures of the conventional sewage treatment system. Therefore, the required land may be small, and the cost required for constructing a sewage treatment system is suppressed even if high-speed filtration facilities are taken into consideration.

上記のように、従来の下水処理システムにおいても、合流改善及び浸水対策の水量に相当する容量の合流改善浸水対策併用雨水貯留設備が設けられていたが、これまでは、浸水を引き起こすような降雨が予測(予想)されるときは、初期汚濁水を、合流改善浸水対策併用雨水貯留設備に受け入れず、そのまま放流して、合流改善浸水対策併用雨水貯留設備の空きを確保して、浸水を引き起こす降雨に備える場合があった。これでは、無処理で放流されるため、合流式下水道の雨天時の放流水質基準を守れないおそれがある。本発明に係る下水処理システムによれば、初期汚濁水を高速濾過設備で処理し放流するから、このような問題を回避することが出来る。一方、降雨時に初期汚濁水を受け入れた場合において、浸水を引き起こすまでの降雨がなかったが総降雨量が(例えば)10〜30mmになったときには、その場合に適用される合流式下水道の雨天時の放流水質基準を守れないおそれがあったが、本発明に係る下水処理システムによれば、初期汚濁水を高速濾過設備で処理し放流するから、雨天時の放流水質基準を守ることが可能である。   As described above, the conventional sewage treatment system also has a rainwater storage facility with a combined improvement and inundation countermeasure that has a capacity equivalent to the amount of water for improvement and inundation countermeasures. Is expected (predicted), the initial polluted water is not accepted into the rainwater storage facility combined with combined improvement inundation measures, but is discharged as it is, and the rainwater storage facility combined with combined improvement inundation measures is secured to cause inundation. There was a case to prepare for rain. In this case, since it is discharged without treatment, there is a risk that it will not be possible to comply with the discharged water quality standards when the combined sewers are raining. According to the sewage treatment system according to the present invention, the initial polluted water is treated and discharged by the high-speed filtration equipment, so that such a problem can be avoided. On the other hand, when the initial polluted water was accepted at the time of raining, there was no rain to cause inundation, but when the total rainfall reached (for example) 10-30 mm, it was raining in the combined sewer system applied in that case However, according to the sewage treatment system according to the present invention, the initial polluted water is treated and discharged using a high-speed filtration facility, so it is possible to observe the discharged water quality standard in rainy weather. is there.

又、降雨により、一旦、初期汚濁水を合流改善浸水対策併用雨水貯留設備に受け入れた場合に、従来は、沈砂池へ戻すか最初沈殿池へ送り、最初沈殿池、反応槽、最終沈殿池を経て放流していた。しかし、最初沈殿池、反応槽、最終沈殿池の処理能力を越える水量を返送することは不可能であるため、次の降雨までの間隔が短い場合には、合流改善浸水対策併用雨水貯留設備の水量を減らすことが出来ず、次の降雨において、初期汚濁水を受け入れることが出来なかった。そうすると、無処理で放流せざるを得ず、放流水質基準を守れないおそれがある。これに対し、本発明に係る下水処理システムによれば、合流改善浸水対策併用雨水貯留設備に受け入れた初期汚濁水を高速濾過設備で処理し放流することが出来、初期汚濁水のうちその処理し放流した水量は通常下水処理設備の系に返送して処理する必要がない。従って、次の降雨までの間隔が短くても、合流改善浸水対策併用雨水貯留設備に、新たに、初期汚濁水を受け入れることが出来る。例えば、次の降雨が4時間以上で24時間以内継続すると予測される場合に、初期汚濁水を高速濾過設備で処理し放流することが好ましい。そうすれば、降雨のないときに、初期汚濁水を、沈砂池へ戻すか最初沈殿池へ送り、最初沈殿池、反応槽、最終沈殿池を経て放流させることが可能となる。   Also, once the initial polluted water is received by the rainwater storage facility combined with the combined improvement inundation measures due to rain, it is conventionally returned to the sedimentation basin or sent to the first sedimentation basin, and the first sedimentation basin, reaction tank, and final sedimentation basin are provided. It was released after that. However, it is impossible to return the amount of water exceeding the capacity of the first sedimentation tank, reaction tank, and final sedimentation tank. The amount of water could not be reduced and the initial polluted water could not be accepted in the next rainfall. If it does so, it will be forced to discharge without processing, and there is a possibility that the quality standard of discharged water cannot be observed. On the other hand, according to the sewage treatment system according to the present invention, it is possible to treat and discharge the initial polluted water received in the rainwater storage facility combined with the combined improvement inundation countermeasure with the high-speed filtration facility, and to treat the initial polluted water. The discharged water usually does not need to be sent back to the sewage treatment system. Therefore, even if the interval until the next rainfall is short, the initial polluted water can be newly received in the rainwater storage facility combined with the combined improvement inundation countermeasure. For example, when it is predicted that the next rainfall will continue for 4 hours or longer and within 24 hours, it is preferable to treat and discharge the initial polluted water with a high-speed filtration facility. Then, when there is no rain, the initial polluted water can be returned to the sedimentation basin or sent to the first sedimentation basin and discharged through the first sedimentation basin, the reaction tank, and the final sedimentation basin.

更に、従来、初期汚濁水が合流改善浸水対策併用雨水貯留設備に受け入れられ貯留された状態で、次の降雨が発生した場合には、その降雨に対しての浸水対策は全く行うことが出来ない。本発明に係る下水処理システムは、高速濾過設備を備えているので、例えば、予備ポンプの駆動、又はポンプの新設等によって、高速濾過設備で処理し、浸水に備えて合流改善浸水対策併用雨水貯留設備に空き容量(貯留可能容量)を確保するといった緊急対応を取ることが可能である。この場合、高速濾過設備の設計値に対し過剰な水量を流す(処理する)ことになるが、無処理で放流するのに比すれば、放流水質基準を守れる可能性は高い。   Furthermore, conventionally, when the next rainfall occurs in the state where the initial polluted water is received and stored in the rainwater storage facility combined with the combined improvement inundation countermeasures, it is not possible to take any countermeasures against the inundation. . Since the sewage treatment system according to the present invention is equipped with a high-speed filtration facility, for example, it is treated with a high-speed filtration facility by driving a spare pump or a new pump, etc. It is possible to take emergency measures such as securing free capacity (capacity that can be stored) in equipment. In this case, an excessive amount of water is allowed to flow (process) with respect to the design value of the high-speed filtration equipment, but it is highly possible that the discharged water quality standard can be maintained as compared with discharging without treatment.

本発明に係る下水処理システムは、その好ましい態様において、合流改善浸水対策併用雨水貯留設備が、入口側から出口側に向けて複数の仕切りが設けられたものであり、受け入れ貯留された順に、初期汚濁水を分離することが出来るので、より後に貯留された汚濁負荷(SS、BOD等)の少ない初期汚濁水を、優先的に、高速濾過設備で処理し放流することが出来る。従って、放流水質基準を確実に守れるとともに、高速濾過設備の連続稼動が可能となる(例えば、高速濾過設備において、その逆洗回数が少なくなる)。   In a preferred embodiment of the sewage treatment system according to the present invention, the combined rainwater inundation countermeasure rainwater storage facility is provided with a plurality of partitions from the inlet side to the outlet side, and in the order in which they are received and stored, Since the polluted water can be separated, the early polluted water with less pollutant load (SS, BOD, etc.) stored later can be preferentially treated and discharged by the high-speed filtration equipment. Accordingly, it is possible to reliably observe the effluent quality standard and to continuously operate the high-speed filtration facility (for example, the number of backwashing operations is reduced in the high-speed filtration facility).

本発明に係る下水処理システムは、その好ましい態様において、高速濾過設備が、浮上濾材層を有し、その浮上濾材層の上側のみにスクリーンが配置され、上向流で初期汚濁水が処理されるとともに、浮上濾材層の逆洗手段を備えたものであるので、放流水質基準を確実に守ることが出来る。   In a preferred embodiment of the sewage treatment system according to the present invention, the high-speed filtration facility has a floating filter medium layer, and a screen is disposed only above the floating filter medium layer, so that the initial polluted water is treated in an upward flow. At the same time, since it is provided with means for backwashing the floating filter media layer, it is possible to reliably keep the discharged water quality standard.

本発明に係る下水処理システムの運用方法は、上記の本発明に係る下水処理システムの優れた効果を現に導く手段であり、その点に効果が認められる。   The operation method of the sewage treatment system according to the present invention is a means for actually leading the excellent effect of the sewage treatment system according to the present invention, and the effect is recognized in that respect.

本発明に係る下水処理システムの改善方法は、既存の下水処理システムにおいて、上記の本発明に係る下水処理システムの優れた効果を発現せしめる手段であり、その点に効果が認められる。既述のように、既存の下水処理システムにおいて、合流改善及び浸水対策の水量に相当する容量の合流改善浸水対策併用雨水貯留設備が設けられる場合があるので、それを本発明に係る下水処理システムにおける合流改善浸水対策併用雨水貯留設備として転用してもよく、別途新たに、合流改善浸水対策併用雨水貯留設備を設けてもよい。   The improvement method of the sewage treatment system according to the present invention is a means for causing the above-described excellent effect of the sewage treatment system according to the present invention in the existing sewage treatment system, and the effect is recognized in that respect. As described above, in the existing sewage treatment system, there is a case where a rainwater storage facility combined with the combined improvement and inundation countermeasures having a capacity corresponding to the amount of water for improvement and inundation countermeasures may be provided. May be diverted as a rainwater storage facility combined with improved flooding countermeasures, or a rainwater storage facility combined with improved flooding countermeasures may be newly provided.

以下、本発明について、適宜、図面を参酌しながら、実施形態を説明するが、本発明はこれらに限定されて解釈されるべきものではない。本発明に係る要旨を損なわない範囲で、当業者の知識に基づいて、種々の変更、修正、改良、置換を加え得るものである。例えば、図面は、好適な本発明に係る実施形態を表すものであるが、本発明は図面に表される態様や図面に示される情報により制限されない。本発明を実施し又は検証する上では、本明細書中に記述されたものと同様の手段若しくは均等な手段が適用され得るが、好適な手段は、以下に記述される手段である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate, but the present invention should not be construed as being limited thereto. Various changes, modifications, improvements, and substitutions can be added based on the knowledge of those skilled in the art without departing from the scope of the present invention. For example, the drawings show preferred embodiments of the present invention, but the present invention is not limited by the modes shown in the drawings or the information shown in the drawings. In practicing or verifying the present invention, the same means as described in this specification or equivalent means can be applied, but preferred means are those described below.

[下水処理システムの効果]先ず、既に説明した本発明に係る下水処理システムの効果を、あらためて図面を参酌しながら、説明する。図1〜図3は、本発明に係る下水処理システムの効果を具体的に表した図である。図1には、当初設計値に基づく合流改善浸水対策併用雨水貯留設備の目的別容量が表され、図2には、合流改善浸水対策併用雨水貯留設備に貯められた初期汚濁水を高速濾過設備で処理する様子が表され、図3には、浸水対策のための容量を増加させた後の、合流改善浸水対策併用雨水貯留設備の目的別容量が表されている。   [Effects of Sewage Treatment System] First, the effects of the sewage treatment system according to the present invention described above will be described with reference to the drawings again. 1 to 3 are diagrams specifically showing the effects of the sewage treatment system according to the present invention. Fig. 1 shows the capacity of each rainwater storage facility with combined improvement and inundation measures based on the original design values, and Fig. 2 shows the high-speed filtration facility for the initial polluted water stored in the rainwater storage facility with combined improvement and inundation measures. FIG. 3 shows the capacity for each purpose of the rainwater storage facility combined with the improved flooding countermeasures after increasing the capacity for flooding countermeasures.

従来の下水処理システムでは、雨水貯留設備を合流改善浸水対策併用とした場合に、その合流改善浸水対策併用雨水貯留設備の合流改善及び浸水対策のための容量(貯留水量)は、当初設計値のままの固定値である(図1を参照)。従来の下水処理システムにおいて、合流改善浸水対策併用雨水貯留設備は、設計通りに、降雨による下水の流量の増加を吸収すべく合流改善浸水対策併用雨水貯留設備に貯め、貯められた初期汚濁水は、晴れのときに、通常下水処理設備に返送して処理される。従って、次の降雨までの間隔が短い場合には、合流改善浸水対策併用雨水貯留設備の水量を減らすことが出来ず、次の降雨において、初期汚濁水を受け入れることが出来ない。又、浸水を引き起こすような降雨が予測(予想)されるときに、その雨量が、当初設計値より多かった場合に、浸水対策のための容量を増加させることは出来ない。   In the conventional sewage treatment system, when the rainwater storage facility is used together with the confluence improvement inundation countermeasure, the capacity (reserved water amount) for the confluence improvement and inundation countermeasure of the confluence improvement inundation countermeasure combined use of the rainwater storage facility is the initial design value. It remains a fixed value (see FIG. 1). In the conventional sewage treatment system, the rainwater storage facility combined with the combined improvement inundation countermeasures is stored in the rainwater storage facility combined with the combined improvement inundation countermeasures to absorb the increase in the flow of sewage due to the rain as designed. When it is sunny, it is usually returned to the sewage treatment facility for processing. Therefore, when the interval until the next rain is short, the amount of water in the rainwater storage facility combined with the combined improvement inundation countermeasure cannot be reduced, and the initial polluted water cannot be accepted in the next rain. In addition, when rainfall that causes inundation is predicted (predicted), if the amount of rain is greater than the initial design value, the capacity for countermeasures against inundation cannot be increased.

本発明に係る下水処理システムでは、初期汚濁水の流入中においても(流入していなくても)、既に貯められた前の降雨による初期汚濁水を高速濾過設備で処理し放流することが可能であり(図2を参照)、それによって合流改善浸水対策併用雨水貯留設備の水量を減らすことが出来るので、次の降雨までの間隔が短くても、次の降雨において初期汚濁水を受け入れることが可能である。又、浸水を引き起こすような降雨が予測(予想)されるときに、その雨量が、当初設計値より多かった場合でも、浸水対策のための容量(貯留水量)を増加させることが出来る(図3を参照)。図3において合流改善のための容量が減っているようにみえるが、そうではなく、処理されて放流されたのであり、当初設計値通りの合流改善のための下水(初期汚濁水を含む)は、合流改善浸水対策併用雨水貯留設備に受け入れられている。尚、図1〜図3には合流改善浸水対策併用雨水貯留設備の一部としての貯槽が示されているが、滞水池、貯留管、流下貯留管、等であってもよい。   In the sewage treatment system according to the present invention, even when the initial polluted water is flowing in (even if it is not flowing in), it is possible to treat the initial polluted water from the previous rainfall that has already been stored with a high-speed filtration facility and discharge it. Yes (see Fig. 2), which can reduce the amount of water in the rainwater storage facility combined with combined improvement inundation countermeasures, so even if the interval until the next rain is short, it is possible to accept the initial polluted water in the next rain It is. In addition, when rainfall that causes inundation is predicted (estimated), even if the amount of rainfall is greater than the initial design value, the capacity (amount of stored water) for countermeasures against inundation can be increased (FIG. 3). See). In FIG. 3, it seems that the capacity for improvement of confluence is reduced, but it is not so, but it is treated and discharged, and sewage (including initial polluted water) for improvement of confluence as originally designed is It is accepted by the rainwater storage facility combined with inundation improvement combined use measures. Although FIG. 1 to FIG. 3 show a storage tank as a part of the combined improvement and inundation countermeasure rainwater storage facility, a reservoir, a storage pipe, a downstream storage pipe, and the like may be used.

[下水処理システムのシステム構成(フロー)]次に、本発明に係る下水処理システムの構成とそのフローについて説明し、併せて、比較のために従来の下水処理システムについても説明する。   [System Configuration (Flow) of Sewage Treatment System] Next, the configuration and flow of the sewage treatment system according to the present invention will be described, and a conventional sewage treatment system will also be described for comparison.

図4は、合流式下水道全体の系を表す構成図であり、図5及び図6は、本発明に係る下水処理システムの一実施形態を示すフロー図である。住居地域である排水区において、汚水と雨水とを受け入れる合流管が配設され、合流管は、通常、河川近傍の下水処理場内の下水処理システムに接続される(図4を参照)。尚、下水処理システムの一部は、下水処理場外に設けられていてもよい。   FIG. 4 is a block diagram showing the system of the entire combined sewer system, and FIGS. 5 and 6 are flowcharts showing an embodiment of the sewage treatment system according to the present invention. In a drainage area that is a residential area, a merging pipe that receives sewage and rainwater is disposed, and the merging pipe is usually connected to a sewage treatment system in a sewage treatment plant near a river (see FIG. 4). A part of the sewage treatment system may be provided outside the sewage treatment plant.

図5に示される下水処理システム5では、合流管は、(例えば)図示されない沈砂池へ接続され、下水は、その沈砂池に送られる。通常(晴天時)、下水(雨水は含まれない)は、その沈砂池に設けられた汚水ポンプによって、(遮集管を通じて)通常下水処理設備(最初沈殿池、エアレーションタンク(反応槽)、最終沈殿池)へ送られ、処理されて河川等へ放流される。   In the sewage treatment system 5 shown in FIG. 5, the merge pipe is connected (for example) to a sand basin (not shown), and the sewage is sent to the sand basin. Normally (when the weather is fine), sewage (not including rainwater) is treated by a sewage pump installed in the sedimentation basin (through a interception pipe), usually with sewage treatment facilities (first sedimentation basin, aeration tank (reaction tank), final Sedimentation basin), processed, and discharged into rivers.

下水処理システム5は、合流改善と浸水対策との併用目的としての合流改善浸水対策併用雨水貯留設備51と、高速濾過設備53と、を備える。合流改善浸水対策併用雨水貯留設備51は、高速濾過設備53との組み合わせにより、より大容量の合流改善浸水対策併用雨水貯留設備と同等の効果を発揮する。降雨時には、先ず、初期汚濁水は、汚水ポンプによって、(最初沈殿池ではなく)合流改善浸水対策併用雨水貯留設備51に送られる。合流改善浸水対策併用雨水貯留設備51が満水になった場合には、初期汚濁水は高速濾過設備53で処理され、放流される。初期汚濁水の流入量が汚水ポンプの能力を超えた場合には、沈砂池に設けられた雨水ポンプが稼動し、(放流管を通じて)初期汚濁水は、直接、放流される。初期汚濁水の流入量が雨水ポンプの能力を超えた場合には、初期汚濁水は雨水吐から分岐して、(高速濾過設備53で処理されて空きが出た)合流改善浸水対策併用雨水貯留設備51に送られ貯留される。   The sewage treatment system 5 includes a combined rain improvement inundation countermeasure rainwater storage facility 51 and a high-speed filtration facility 53 as a combined purpose of improvement in merger and countermeasure for inundation. The rainwater storage facility 51 combined with the combined improvement and inundation countermeasure exhibits the same effect as the rainwater storage facility combined with the combined improvement and inundation countermeasure when combined with the high-speed filtration facility 53. At the time of rainfall, first, the initial polluted water is sent to the combined-improvement inundation countermeasure rainwater storage facility 51 (not the first sedimentation basin) by a sewage pump. When the rainwater storage facility 51 combined with combined improvement inundation measures becomes full, the initial polluted water is processed by the high-speed filtration facility 53 and discharged. When the amount of initial polluted water inflow exceeds the capacity of the sewage pump, the rainwater pump provided in the sedimentation basin is activated, and the initial polluted water is discharged directly (through the discharge pipe). When the amount of initial polluted water inflow exceeds the capacity of the rainwater pump, the initial polluted water branches off from the rainwater spout and is treated with the high-speed filtration facility 53 to be freed. It is sent to the facility 51 and stored.

図6に示される下水処理システム6は、雨水貯留設備を、合流改善利用のものと、浸水対策利用のものと、の2つ有する点が下水処理システム5とは異なり、他は下水処理システム5と同じである。下水処理システム5と同様に、下水処理システム6では、合流管は、(例えば)図示しない沈砂池へ接続され、下水は、その沈砂池に送られる。通常(晴天時)、下水(雨水は含まれない)は、沈砂池に設けられた汚水ポンプによって、通常下水処理設備(最初沈殿池、エアレーションタンク、最終沈殿池)へ送られ、処理されて河川等へ放流される。   The sewage treatment system 6 shown in FIG. 6 is different from the sewage treatment system 5 in that it has two rainwater storage facilities, one that uses merging improvement and one that uses countermeasures against inundation. Is the same. Similar to the sewage treatment system 5, in the sewage treatment system 6, the merge pipe is connected (for example) to a sand basin (not shown), and the sewage is sent to the sand basin. Normally (when the weather is fine), sewage (not including rainwater) is sent to a normal sewage treatment facility (first sedimentation basin, aeration tank, final sedimentation basin) by a sewage pump installed in the sedimentation basin, where it is treated and river To be released.

下水処理システム6において、降雨時には、先ず、初期汚濁水は、汚水ポンプによって、合流改善用雨水貯留設備61に送られる。合流改善用雨水貯留設備61が満水になった場合には、初期汚濁水は高速濾過設備63で処理され、放流される。初期汚濁水の流入量が汚水ポンプの能力を超えた場合には、沈砂池に設けられた雨水ポンプが稼動し、初期汚濁水は、直接、放流される。初期汚濁水の流入量が雨水ポンプ能力を超えた場合には、初期汚濁水は雨水吐から分岐して浸水対策用雨水貯留設備62に送られ貯留される。   In the sewage treatment system 6, at the time of rainfall, first, the initial polluted water is first sent to the merging improvement rainwater storage facility 61 by the sewage pump. When the rainwater storage facility 61 for confluence improvement is full, the initial polluted water is processed by the high-speed filtration facility 63 and discharged. When the amount of initial polluted water inflow exceeds the capacity of the sewage pump, the rainwater pump provided in the sand basin is operated, and the initial polluted water is directly discharged. When the amount of initial polluted water inflow exceeds the rainwater pump capacity, the initial polluted water branches off from the rainwater spout and is sent to the inundation countermeasure rainwater storage facility 62 for storage.

図7及び図8は、従来の下水処理システムの一例を示すフロー図である。図7に示される下水処理システム7は、高速濾過設備が存在しない点が下水処理システム5とは異なり、他は下水処理システム5と同じである。下水処理システム5,6と同様に、下水処理システム7では、合流管は、(例えば)図示しない沈砂池へ接続され、下水は、その沈砂池に送られる。通常(晴天時)、下水(雨水は含まれない)は、その沈砂池に設けられた汚水ポンプによって、通常下水処理設備(最初沈殿池、エアレーションタンク、最終沈殿池)へ送られ、処理されて河川等へ放流される。   7 and 8 are flowcharts showing an example of a conventional sewage treatment system. The sewage treatment system 7 shown in FIG. 7 is the same as the sewage treatment system 5 except that the high-speed filtration facility does not exist, and the others are the same. Similar to the sewage treatment systems 5 and 6, in the sewage treatment system 7, the merge pipe is connected (for example) to a sand basin (not shown), and the sewage is sent to the sand basin. Normally (when the weather is fine), sewage (not including rainwater) is sent to a normal sewage treatment facility (first sedimentation basin, aeration tank, final sedimentation basin) and processed by a sewage pump installed in the sand basin. Released into rivers.

下水処理システム7は、合流改善と浸水対策との併用目的とした合流改善浸水対策併用雨水貯留設備71を備える。降雨時には、先ず、初期汚濁水は、汚水ポンプによって、合流改善浸水対策併用雨水貯留設備71に送られる。合流改善浸水対策併用雨水貯留設備71が満水になった場合には、初期汚濁水は最初沈殿池のみを通され、簡易処理されて、放流される。初期汚濁水の流入量が汚水ポンプの能力を超えた場合には、沈砂池に設けられた雨水ポンプが稼動し、初期汚濁水は、直接、放流される。初期汚濁水の流入量が雨水ポンプ能力を超えた場合には、初期汚濁水は雨水吐から分岐して、(簡易処理されて空きが出た)合流改善浸水対策併用雨水貯留設備71に送られ貯留される。   The sewage treatment system 7 includes a combined storm improvement inundation countermeasure combined use rainwater storage facility 71 for the combined use of merging improvement and inundation countermeasures. At the time of rainfall, first, the initial polluted water is sent to the combined-improvement inundation countermeasure rainwater storage facility 71 by a sewage pump. When the rainwater storage facility 71 combined with inundation improvement inundation countermeasures is full, the initial polluted water is passed through only the first sedimentation basin, is simply processed and discharged. When the amount of initial polluted water inflow exceeds the capacity of the sewage pump, the rainwater pump provided in the sand basin is operated, and the initial polluted water is directly discharged. When the amount of initial polluted water inflow exceeds the rainwater pumping capacity, the initial polluted water branches off from the rainwater spout and is sent to the rainwater storage facility 71 combined with combined improvement inundation measures (which has been emptied by simple processing). Stored.

図8に示される下水処理システム8は、高速濾過設備が存在しない点が下水処理システム6とは異なり、他は下水処理システム6と同じである。下水処理システム5,6と同様に、下水処理システム8では、合流管は、(例えば)図示しない沈砂池へ接続され、下水は、その沈砂池に送られる。通常(晴天時)、下水(雨水は含まれない)は、その沈砂池に設けられた汚水ポンプによって、通常下水処理設備(最初沈殿池、エアレーションタンク、最終沈殿池)へ送られ、処理されて河川等へ放流される。   The sewage treatment system 8 shown in FIG. 8 is the same as the sewage treatment system 6 except that the high-speed filtration facility does not exist and the sewage treatment system 6 is otherwise. Similar to the sewage treatment systems 5 and 6, in the sewage treatment system 8, the merge pipe is connected to a sand basin (not shown) and the sewage is sent to the sand basin. Normally (when the weather is fine), sewage (not including rainwater) is sent to a normal sewage treatment facility (first sedimentation basin, aeration tank, final sedimentation basin) and processed by a sewage pump installed in the sand basin. Released into rivers.

下水処理システム8において、降雨時には、先ず、初期汚濁水は、汚水ポンプによって、合流改善用雨水貯留設備81に送られる。合流改善用雨水貯留設備81が満水になった場合には、初期汚濁水は最初沈殿池のみを通され、簡易処理されて、放流される。初期汚濁水の流入量が汚水ポンプの能力を超えた場合には、沈砂池に設けられた雨水ポンプが稼動し、初期汚濁水は、直接、放流される。初期汚濁水の流入量が雨水ポンプ能力を超えた場合には、初期汚濁水は雨水吐から分岐して浸水対策用雨水貯留設備82に送られ貯留される。   In the sewage treatment system 8, during rainfall, first, the initial polluted water is first sent to the confluence improving rainwater storage facility 81 by the sewage pump. When the rainwater storage facility 81 for confluence improvement is full, the initial polluted water passes through only the first sedimentation basin, is simply processed, and is discharged. When the amount of initial polluted water inflow exceeds the capacity of the sewage pump, the rainwater pump provided in the sand basin is operated, and the initial polluted water is directly discharged. When the inflow amount of the initial polluted water exceeds the rainwater pumping capacity, the initial polluted water branches from the rainwater spout and is sent to the inundation countermeasure rainwater storage facility 82 for storage.

[下水処理システムにおける情報処理]次に、本発明に係る下水処理システムにおける情報処理について説明する。   [Information Processing in Sewage Treatment System] Next, information processing in the sewage treatment system according to the present invention will be described.

本発明に係る下水処理システムを運用する上では、特に気象情報(降雨の予想を含む気象データ)や降雨情報(実際の降雨量等のデータ)の授受と、それらの情報の解析が重要である。又、浸水対策にかかる情報は、市民へ公開することが必要である。このような下水処理システムにおける情報処理は、例えば、下水処理場の管理施設の制御用コンピュータや、下水処理場内又は外に配設される情報収集サーバ、情報提供サーバ、及び一般公開用サーバで構成されるネットワークシステムにおいて、以下のように行なわれる。   In operating the sewage treatment system according to the present invention, it is particularly important to send and receive meteorological information (meteorological data including rainfall forecasts) and rainfall information (data such as actual rainfall) and to analyze such information. . In addition, it is necessary to disclose information on flood countermeasures to the public. Information processing in such a sewage treatment system includes, for example, a control computer for a management facility of a sewage treatment plant, an information collection server arranged in or outside the sewage treatment plant, an information providing server, and a public server. In the network system, the following is performed.

図13は、下水処理システムにおける情報処理を表す図であり、情報の流れが上から下へ示されたフロー図である。下水処理システムを適切に運転するために必要な情報として、例えば、気象データ(地点毎の天気予報等)、降雨データ(地点毎の降雨量等)、水位データ(合流管内水位、放流先(河川、海域等)水位等)、施設運転データ(各種ポンプ(汚水ポンプ、雨水ポンプ等)の運転状況、雨水堰の高さ等)を挙げることが出来る。これらの情報は、例えば制御用コンピュータを経て、情報収集サーバに入力される。気象データは、時差をなくすため、直接、情報収集サーバへ入力することが好ましい。これらの気象データや降雨データは、例えば、気象庁、民間気象会社、(直接に)レーダ等より集められる。水位データや施設運転データは、それぞれの場所に設けられた検出器や、制御用コンピュータ、ポンプ動力盤等より集められる。   FIG. 13 is a diagram showing information processing in the sewage treatment system, and is a flowchart showing the flow of information from top to bottom. Information necessary to properly operate the sewage treatment system includes, for example, meteorological data (such as weather forecasts for each point), rainfall data (such as the amount of rainfall at each point), water level data (the water level in the combined pipe, discharge destination (river) , Sea level, etc.), water level, etc.), facility operation data (operating status of various pumps (sewage pump, rainwater pump, etc.), height of rainwater weir, etc.). These pieces of information are input to the information collection server via, for example, a control computer. It is preferable to input the weather data directly to the information collecting server in order to eliminate the time difference. These meteorological data and rainfall data are collected from, for example, the Japan Meteorological Agency, private weather companies, (directly) radar, and the like. Water level data and facility operation data are collected from detectors, control computers, pump power panels, etc. provided at the respective locations.

具体的な入力データとしては、降雨データは、例えば、地点A、地点B、地点Cにおける10分毎の降雨量(mm/10分間)であり、水位データは、例えば、地点D、地点Eにおける10分毎の水位(m、TP(東京湾平均海面))であり、施設運転データは、雨水ポンプ1号、2号、3号の10分毎の送水量(m/10分間)である。 As specific input data, the rainfall data is, for example, the amount of rainfall every 10 minutes (mm / 10 minutes) at points A, B, and C, and the water level data is, for example, at points D and E. 10 minutes for each of the water level is (m, TP (Tokyo Bay mean sea level)), the facility operating data, rainwater pump No. 1, No. 2 is the water supply quantity for each 10 minutes of No. 3 (m 3/10 min) .

各種データは、情報収集サーバから、情報提供サーバへ送られ、そこで、種々の解析がなされる。そして、必要な情報が関係各部署へ送られるとともに、住民へ開示すべき情報は一般公開用サーバを介して公開される。関係各部署へ送られる情報としては、流量データ(合流管内任意地点流量、沈砂池(ポンプ場)流量等)、(例えば)合流改善浸水対策併用雨水貯留設備の貯留量データ(現在及び将来の貯留量)を挙げることが出来る。又、住民へ開示すべき情報は、例えば浸水位データである。   Various data is sent from the information collection server to the information providing server, where various analysis is performed. Necessary information is sent to the related departments, and information to be disclosed to the residents is disclosed via a public server. Information sent to the relevant departments includes flow rate data (flow rate at arbitrary points in the merge pipe, flow rate of the sedimentation basin (pumping station), etc.) (for example) storage data for rainwater storage facilities combined with combined improvement inundation measures (current and future storage) Amount). The information to be disclosed to the residents is, for example, inundation level data.

具体的な出力データとしては、合流改善浸水対策併用雨水貯留設備の貯留量データは、例えば、貯槽の10分間毎の貯留量(m)であり、流量データは、例えば、地点H、地点Iにおいて10分毎の瞬時の合流管内流量(m/秒)であり、浸水位データは、例えば、地点K、地点L、地点Mにおける10分毎の浸水位(m)である。 As specific output data, the storage amount data of the combined improvement and inundation countermeasure rainwater storage facility is, for example, the storage amount (m 3 ) of the storage tank every 10 minutes, and the flow rate data is, for example, the point H and the point I , The instantaneous flow rate (m 3 / sec) in the merging pipe every 10 minutes, and the inundation level data are, for example, the inundation levels (m) every 10 minutes at point K, point L, and point M.

関係各部署へ送られる情報及び住民へ開示すべき情報は、送られた降雨データ、水位データ、施設運転データを基に、解析装置において、降雨量予測モデル、地表面流出モデル、管内水理モデル、地表面氾濫モデル等によって解析され、出力すべき流量データ、合流改善浸水対策併用雨水貯留設備の貯留量データ、浸水位データとなる。   The information sent to each department and the information to be disclosed to the residents are based on the sent rainfall data, water level data, and facility operation data. It is analyzed by the ground surface inundation model, etc., and becomes the flow rate data to be output, the storage amount data of the rainwater storage facility combined with the combined improvement inundation countermeasure, and the inundation level data.

図14は、解析装置において用いられる降雨量予測モデルの一例(簡易式)の概要を示すグラフである。実測された過去の雨量データから降雨量の上昇率を算出し、その上昇率に時間を乗じることで、予測雨量を求めることが出来る。例えば、グラフ上において、2分前から現在値までを直線で結び、これを15分先まで伸ばし、15分先からは30分先に降雨量が0(零)となるように直線を引けば、30分先までの合計の雨量を予測することが出来る。   FIG. 14 is a graph showing an outline of an example (simple formula) of a rainfall prediction model used in the analysis apparatus. The predicted rainfall can be obtained by calculating the rate of increase in rainfall from the actually measured past rainfall data and multiplying that rate by time. For example, on the graph, if you connect the current value to the current value from 2 minutes before, extend it to 15 minutes ahead, and draw a straight line so that the rainfall will be 0 (zero) 30 minutes from 15 minutes ahead The total rainfall up to 30 minutes ahead can be predicted.

図15A〜図19は、解析装置において用いられる地表面流出モデルの一例の概要を示す図である。この地表面流出モデルは、降雨損失要素を組み込んだ有効降雨モデルと、有効降雨を流入マンホール地点でのハイドログラフに変換する地表面流下モデルと、の2つから構成される。   15A to 19 are diagrams showing an outline of an example of a ground surface runoff model used in the analysis apparatus. This ground surface runoff model is composed of two types: an effective rainfall model incorporating a rainfall loss factor and a ground surface flow model that converts effective rainfall into a hydrograph at the inflow manhole point.

図15A〜図15Cは、有効降雨モデルの一例の概念を示す説明図であり、図16A〜図16Dは、有効降雨モデルの一例の概念を示すグラフである。図15A〜図15C及び図16A〜図16Cに示されるように、有効降雨(降雨量)は、実降雨のあった場所が、浸透域、半浸透域、不浸透域の何れであるかによって異なり、又、有効降雨(降雨量)を求めるに際しては、凹地貯留(損失)分が除外される。例えば、100mmの実降雨があったとして、不浸透面積率が50%である不浸透域(図15A及び図16Aを参照)では、浸透損失がないので、50mm(=100mm×50%)から、凹地貯留損失3.00mmを減じた47.00mmが有効降雨となり、有効降雨は多い。しかし、例えば、不浸透面積率が30%である浸透域(図15C及び図16Cを参照)では、30mm(=100mm×30%)のうち凹地貯留損失1.80mmを減じた28.20mm全てが浸透し、(地域全体としての)有効降雨は少ない。又、不浸透面積率が20%である半浸透域(図15B及び図16Bを参照)では有効降雨もその中間になる。即ち、20mm(=100mm×20%)のうち凹地貯留損失1.20mmを減じた18.80mmの半分である9.40mmが浸透する。   15A to 15C are explanatory diagrams illustrating an example of an effective rainfall model, and FIGS. 16A to 16D are graphs illustrating an example of an effective rainfall model. As shown in FIG. 15A to FIG. 15C and FIG. 16A to FIG. 16C, the effective rainfall (rainfall amount) varies depending on whether the place where the actual rainfall occurred is an infiltration area, a semi-infiltration area, or an impermeable area. In addition, when obtaining effective rainfall (rainfall), concave storage (loss) is excluded. For example, if there is actual rainfall of 100 mm, there is no penetration loss in the impervious area where the impervious area rate is 50% (see FIG. 15A and FIG. 16A), so from 50 mm (= 100 mm × 50%), The effective rainfall is 47.00 mm, which is a reduction of the concave storage loss of 3.00 mm, and there is a lot of effective rainfall. However, for example, in the infiltration area where the impervious area ratio is 30% (see FIG. 15C and FIG. 16C), all 28.20 mm obtained by reducing the concave storage loss 1.80 mm out of 30 mm (= 100 mm × 30%) Permeates and has less effective rainfall (as a whole area). Further, in the semi-penetrated area (see FIGS. 15B and 16B) where the impervious area ratio is 20%, the effective rainfall is in the middle. That is, 9.40 mm which is a half of 18.80 mm obtained by subtracting 1.20 mm of the concave storage loss permeates 20 mm (= 100 mm × 20%).

尚、図15Aと図16Aは、不浸透域における有効降雨を説明するための図であるが、概念を説明するための図であり、図15Aと図16Aは同じ状況を示しているわけではない。図15Bと図16B(半浸透域)、図15Cと図16C(浸透域)についても、同様である。又、図16Dは、浸透域、半浸透域、不浸透域を合わせた、流域全体の有効降雨モデルを表している。   In addition, although FIG. 15A and FIG. 16A are figures for demonstrating the effective rainfall in an impermeable area, it is a figure for demonstrating a concept, and FIG. 15A and FIG. 16A do not necessarily show the same situation. . The same applies to FIGS. 15B and 16B (semi-penetration zone) and FIGS. 15C and 16C (penetration zone). FIG. 16D shows an effective rainfall model of the entire basin, including the infiltration region, the semi-infiltration region, and the non-infiltration region.

具体的には、有効降雨モデルにおける有効降雨R(t)は、実降雨Rr(t)から初期損失Qiniである凹地貯留(損失)を差し引き、浸透損失を考慮した不浸透面積率を乗じて算定することが出来る。有効降雨R(t)は、実降雨Rr(t)が初期損失Qini以下であるときは0(零)であり、実降雨Rr(t)が初期損失Qini超えたときに、次の(1)式で求められる。(1)式において、実流域で観測された流出率と、不浸透面積率と、の比を低減係数と定義すると、(2)式が求められる。換言すれば、低減係数は、流出率と、地図等から推定した不浸透面積率と、を整合させるための補正係数である。又、(2)式における不浸透面積率は、(3)式で求められる。 Specifically, the effective rainfall R (t) in the effective rainfall model is obtained by subtracting the concave storage (loss), which is the initial loss Qini , from the actual rainfall Rr (t) and multiplying by the impervious area rate considering the infiltration loss. Can be calculated. Effective rainfall R (t), when the actual rainfall Rr (t) is less than the initial loss Q ini is 0 (zero), when the actual rainfall Rr (t) exceeds the initial loss Q ini, the following ( It is obtained by the equation (1). In equation (1), if the ratio between the outflow rate observed in the actual watershed and the impervious area rate is defined as a reduction factor, equation (2) is obtained. In other words, the reduction coefficient is a correction coefficient for matching the outflow rate with the impervious area rate estimated from a map or the like. Further, the impervious area ratio in the equation (2) is obtained by the equation (3).

有効降雨R(t) = 実降雨Rr(t)×流出率 ・・・(1) Effective rainfall R (t) = Actual rainfall Rr (t) x Runoff rate (1)

有効降雨R(t) = 実降雨Rr(t)×不浸透面積率Imp×低減係数Qred
・・・(2)
Effective rainfall R (t) = actual rainfall Rr (t) × impervious area ratio I mp × reduction factor Q red
... (2)

Figure 2010133190
Figure 2010133190

図17及び図19は、地表面流下モデルの一例の概念を示すグラフであり、図18は、地表面流下モデルの一例の概念を示す説明図である。地表面流下モデルでは、先に算定された有効降雨に基づいて、流域形状、流入時間を考慮した時間/面積曲線により、流入ハイドロの算定を行なう。流域は、流入マンホールを中心点とする同心円状の多くのセルに分割される。図17には、流入時間を区分した単位時間(シミュレーション時間間隔Δt)あたりの有効降雨(降雨量)が表されており、図18には、流入マンホールまでの到達時間が等しい時間(上記の単位時間(シミュレーション時間間隔Δt))毎の流域が表されており(即ち、図18は等到達時間域図であり)、図19には、流入ハイドロの算定が表されている。   FIGS. 17 and 19 are graphs showing the concept of an example of the ground surface flow model, and FIG. 18 is an explanatory diagram showing the concept of an example of the ground surface flow model. In the ground surface flow model, the inflow hydro is calculated by the time / area curve considering the basin shape and the inflow time based on the previously calculated effective rainfall. The basin is divided into many concentric cells centered on the inflow manhole. FIG. 17 shows the effective rainfall (rainfall amount) per unit time (simulation time interval Δt) into which the inflow time is divided, and FIG. 18 shows the time (the above-described unit of arrival time to the inflow manhole). The basin for each time (simulation time interval Δt) is shown (that is, FIG. 18 is an equi-arrival time zone diagram), and FIG. 19 shows the calculation of inflow hydro.

具体的には、セル数nは、次の(4)式から算定され、流入ハイドロは、(5)式で求められる。   Specifically, the number of cells n is calculated from the following equation (4), and the inflow hydro is determined by equation (5).

Figure 2010133190
Figure 2010133190

Figure 2010133190
Figure 2010133190

合流管内の流れを計算する管内水理モデルは、サンブナン式(Dynamic wave法)を用いて構築することが出来る、サンブナン式は、質量と運動量の保存則から、次の(6)式(連続の式)、(7)式(運動方程式)で表される。   The in-pipe hydraulic model for calculating the flow in the confluence pipe can be constructed by using the Samvenin formula (Dynamic wave method). The Sambunan formula is based on the conservation law of mass and momentum, and the following formula (6) (continuous (Expression), (7) (Expression of motion).

Figure 2010133190
Figure 2010133190

Figure 2010133190
Figure 2010133190

図20及び図21は、地表面氾濫モデルの一例の概念を示す説明図である。地表面氾濫モデルによれば、降雨量が多いために、合流管から溢れた下水(主に初期汚濁水)が地表面を流下し移動する態様(流路、流量)を求めることが出来る。合流管から溢れた下水は、地盤の高低差によって、流下、移動するが、地表面氾濫モデルでは、流域の地形をデータ(標高を持った2次元の地表面データ)として備え、その流域の地形を考慮して、浸水の移動を表現(再現)することが出来る。地表面氾濫モデルは、質量保存式(連続式)、運動方程式(X方向及びY方向)によって表現することが可能である。   20 and 21 are explanatory views showing the concept of an example of the ground surface flooding model. According to the ground surface inundation model, since the amount of rainfall is large, it is possible to obtain a mode (flow path, flow rate) in which sewage overflowing from the junction pipe (mainly initial polluted water) flows down the ground surface and moves. The sewage overflowing from the merging pipe flows down and moves depending on the ground level difference, but the surface inundation model has the terrain of the basin as data (two-dimensional surface data with elevation), and the terrain of the basin. Can be used to express (reproduce) the inundation movement. The ground surface inundation model can be expressed by a mass conservation equation (continuous equation) and a motion equation (X direction and Y direction).

以下、本発明を、シミュレーション(本明細書における実施例とする)により具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described by simulation (referred to as examples in the present specification), but the present invention is not limited to these examples.

以下に示す実施例1〜4及び比較例1〜4では、共通して、排水区の面積を300ha(直接雨水流入区域 36ha)と想定し、通常下水処理設備の処理水量(能力)を6000m/日とした。 In Examples 1 to 4 and Comparative Examples 1 to 4 shown below, it is assumed that the area of the drainage area is 300 ha (direct rainwater inflow area 36 ha), and the amount of treated water (capacity) of the normal sewage treatment facility is 6000 m 3. / Day.

[コスト及び面積の比較]先ず、設備(イニシャル)コスト費及び必要な土地の面積の比較を行なった。以下の条件において、コスト比は、下水処理システム8を100とすると、下水処理システム5は概ね84であった。面積比は、下水処理システム8を100とすると、下水処理システム5は概ね97であった。   [Comparison of cost and area] First, the cost of equipment (initial) was compared with the required land area. Under the following conditions, the cost ratio was approximately 84 for the sewage treatment system 5 where the sewage treatment system 8 was 100. When the sewage treatment system 8 is 100, the area ratio is approximately 97 for the sewage treatment system 5.

後述する比較例1〜4で用いられる既述の下水処理システム8(図8を参照)において、合流改善用雨水貯留設備の容量を9000m、浸水対策用雨水貯留設備の容量を4500mとした。 In the above-described sewage treatment system 8 (see FIG. 8) used in Comparative Examples 1 to 4 described later, the capacity of the rainwater storage facility for confluence improvement is 9000 m 3 , and the capacity of the rainwater storage facility for inundation countermeasures is 4500 m 3 . .

合流改善用雨水貯留設備の容量は、年間の雨天時BOD総流出負荷量と雨水貯留設備の容量との関係(国土交通省合流改善検討委員会資料、平成13年)に基づき、分流式と同等の、雨天時BOD総流出負荷量75kg/年/haとするために、雨水貯留設備の容量は面積あたり3mm必要として、300ha(300万m)×3mm=9000m、より求めた。 The capacity of the rainwater storage facility for confluence improvement is the same as that of the diversion type, based on the relationship between the total outflow load of BOD during rainy season and the capacity of the rainwater storage facility (Ministry of Land, Infrastructure, Transport and Tourism Consortium Improvement Study Committee data, 2001) In order to obtain a total BOD outflow load of 75 kg / year / ha during rainy weather, the capacity of the rainwater storage facility is 3 mm per area, and 300 ha (3 million m 2 ) × 3 mm = 9000 m 3 was obtained.

浸水対策用雨水貯留設備の容量は、合流管の流下能力を越えて計画降雨(ピーク流出量)が発生したときに、浸水が生じないように、次の(8)式に基づいて求めた。(8)式において、任意降雨継続時間の降雨強度r1(mm/h)を45、合流管の流下能力r2(mm/h)を40、任意降雨継続時間t(分)を60、流出係数fを0.5、直接雨水流入区域の面積A(ha)を36とすれば、容量V=4500m、が求まる。
V=(r1−r2×1/2)×60×t×f×A×1/360 ・・・ (8)
The capacity of the rainwater storage facility for inundation measures was calculated based on the following equation (8) so that inundation would not occur when the planned rainfall (peak runoff) occurred exceeding the flow capacity of the junction pipe. In equation (8), the rainfall intensity r1 (mm / h) of the arbitrary rainfall duration is 45, the flow capacity r2 (mm / h) of the junction pipe is 40, the arbitrary rainfall duration t (min) is 60, and the runoff coefficient f Is 0.5, and the area A (ha) of the direct rainwater inflow area is 36, the capacity V = 4500 m 3 is obtained.
V = (r1-r2 * 1/2) * 60 * t * f * A * 1/360 (8)

後述する実施例1〜4で用いられる既述の下水処理システム5(図5を参照)において、合流改善と浸水対策との併用目的の合流改善浸水対策併用雨水貯留設備の容量を6000m、高速濾過設備は、その濾過面積を72m、濾過水量(処理能力)を3000m/時とした。 In the above-described sewage treatment system 5 (see FIG. 5) used in Examples 1 to 4 described later, the capacity of the rainwater storage facility combined with the combined improvement inundation countermeasure for the purpose of combined use with the combined improvement and the inundation countermeasure is 6000 m 3 , high speed The filtration facility had a filtration area of 72 m 2 and a filtered water amount (treatment capacity) of 3000 m 3 / hour.

上記の条件において、下水処理システム5は、下水処理システム8と概ね同等の合流改善及び浸水対策能力を有する下水処理システムとなる。即ち、下水処理システム8における合流改善用雨水貯留設備と浸水対策用雨水貯留設備の合計容量が13500m(=9000m+4500m)であるのに対し、下水処理システム5では、合流改善浸水対策併用雨水貯留設備を1つとして、その容量を6000mと仮定し、これに7500m(=13500m−6000m)分の貯槽容量に相当する能力の高速濾過設備を付加した。 Under the above-described conditions, the sewage treatment system 5 is a sewage treatment system having the same merging improvement and inundation countermeasure capability as the sewage treatment system 8. That is, while the total volume of the confluence for improving rainwater storage facilities flooding countermeasure rainwater storage equipment in sewage treatment system 8 is 13500m 3 (= 9000m 3 + 4500m 3), the sewage treatment system 5, the merging improved flood protection combination one rainwater storage facility, assume the capacity and 6000 m 3, to which was added a fast filtration equipment capable of corresponding to the reservoir volume of 7500m 3 (= 13500m 3 -6000m 3 ) minutes.

次に、4つの降雨パターンを想定して、下水処理システム5及び下水処理システム8の対応についてシミュレーションを試みた。尚、実際には、降雨パターンは、既述の下水処理システムにおける情報処理(解析を含む)によって、予測(予想)される。   Next, assuming four rainfall patterns, a simulation was attempted on the correspondence between the sewage treatment system 5 and the sewage treatment system 8. Actually, the rainfall pattern is predicted (predicted) by information processing (including analysis) in the sewage treatment system described above.

[1回の小降雨のケース]図9は、6時間の小降雨の際の対応の一例を示すタイムチャートである。降雨が1回の小降雨であると予測(予想)される場合、合流改善のみを行なえばよく、浸水対策は不要である。   [Case of Single Rainfall] FIG. 9 is a time chart showing an example of correspondence in the case of 6 hours of light rain. When it is predicted (predicted) that the rainfall is one small rain, it is only necessary to improve the merge, and no inundation measures are required.

(比較例1)下水処理システム8による1回の小降雨の際の対応は、先ず、初期汚濁水を、概ね4.5時間、汚水ポンプで合流改善用雨水貯留設備81へ送る。合流改善用雨水貯留設備81が満水(9000m)になるので、小降雨が終わるまで(概ね2時間)、初期汚濁水を通常下水処理設備に戻し、反応槽の能力を超える水量を最初沈殿池のみを通す簡易処理によって、放流する。小降雨が止んだら、初期汚濁水を、合流改善用雨水貯留設備81から通常下水処理設備へ送り、36時間かけて、通常下水処理設備全てによる通常処理を行なって、河川等へ放流する。 (Comparative example 1) The response | compatibility in the case of one small rainfall by the sewage treatment system 8 first sends initial polluted water to the rainwater storage facility 81 for confluence improvement with a sewage pump for approximately 4.5 hours. Since the rainwater storage facility 81 for confluence improvement is full (9000 m 3 ), the initial polluted water is returned to the normal sewage treatment facility until the end of the light rain (approximately 2 hours), and the amount of water exceeding the capacity of the reaction tank is initially set in the basin Discharge by simple processing that passes only through. When the light rain stops, the initial polluted water is sent from the merging improvement rainwater storage facility 81 to the normal sewage treatment facility, and is subjected to normal treatment by all the normal sewage treatment facilities over 36 hours, and is discharged to a river or the like.

(実施例1)下水処理システム5による1回の小降雨の際の対応は、先ず、初期汚濁水を、概ね3時間、汚水ポンプで合流改善浸水対策併用雨水貯留設備51へ送る。合流改善浸水対策併用雨水貯留設備51が満水(6000m)になるので、小降雨の中、小降雨が終わるまで(概ね3時間)、反応槽の能力を超える水量の初期汚濁水を高速濾過設備53で処理し、放流する。雨が止んだら、(次の降雨が予想されなければ、初期汚濁水を高速濾過設備53で処理する必要はなく)初期汚濁水を、合流改善浸水対策併用雨水貯留設備51から通常下水処理設備へ送り、24時間かけて、通常下水処理設備全てによる通常処理を行なって、河川等へ放流する。 (Embodiment 1) In the case of one small rainfall by the sewage treatment system 5, first, the initial polluted water is sent to the combined rainwater storage facility 51 using the sewage pump for about 3 hours. Since the rainwater storage facility 51 combined with inundation measures and flooding countermeasures is full (6000 m 3 ), high-speed filtration equipment can remove the initial polluted water that exceeds the capacity of the reaction tank until the light rain ends (approximately 3 hours). Process at 53 and discharge. When the rain stops, it is not necessary to treat the initial polluted water with the high-speed filtration facility 53 if the next rain is not expected. It takes 24 hours to carry out normal treatment by all normal sewage treatment facilities and discharges it to rivers and the like.

[連続した小降雨のケース]図10は、6時間の小降雨の後、5時間雨が止み、更に6時間の小降雨があった際の対応の一例を示すタイムチャートである。小降雨が続くと予測(予想)される場合には、合流改善のみを行なえばよく、浸水対策は不要である。   [Continuous Light Rain Case] FIG. 10 is a time chart showing an example of a response when 5 hours of rain has stopped after 6 hours of light rain and another 6 hours of light rain has occurred. When it is predicted (predicted) that light rain will continue, it is only necessary to improve the confluence, and no inundation measures are required.

(比較例2)下水処理システム8による連続した小降雨への対応は、先ず、初期汚濁水を、概ね4.5時間、汚水ポンプで合流改善用雨水貯留設備81へ送る。合流改善用雨水貯留設備81が満水(9000m)になるので、小降雨の中、小降雨が終わるまで(概ね2時間)、初期汚濁水を通常下水処理設備に戻し、反応槽の能力を超える水量を最初沈殿池のみを通す簡易処理によって、放流する。雨が止んだら、初期汚濁水を、通常下水処理設備へ送り、(例えば)1000mを処理して、河川等へ放流する。そして、再び小降雨があったら、通常下水処理設備による初期汚濁水の処理を止め、初期汚濁水を、汚水ポンプで合流改善用雨水貯留設備81へ送る。合流改善用雨水貯留設備81には、先の通常下水処理設備による処理で1000mの空きがある。しかし、やがて、合流改善用雨水貯留設備81は満水になるので、小降雨の中、小降雨が終わるまで、初期汚濁水を通常下水処理設備に戻し、そのうちの最初沈殿池のみを通す簡易処理によって、放流する。小降雨が止んだら、初期汚濁水を、合流改善用雨水貯留設備81から通常下水処理設備へ送り、36時間かけて、通常下水処理設備全てによる通常処理を行なって、河川等へ放流する。 (Comparative example 2) The response | compatibility to the continuous small rainfall by the sewage treatment system 8 first sends initial polluted water to the rainwater storage facility 81 for merging improvement with a sewage pump for approximately 4.5 hours. Because the rainwater storage facility 81 for confluence improvement is full (9000 m 3 ), the initial polluted water is returned to the normal sewage treatment facility until the rain finishes (approximately 2 hours) in the light rain, exceeding the capacity of the reaction tank. The amount of water is discharged by a simple treatment that only passes through the first settling basin. When the rain stops, the initial polluted water is sent to a normal sewage treatment facility, and (for example) 1000 m 3 is treated and discharged to a river or the like. And if there is a small rain again, the treatment of the initial polluted water by the normal sewage treatment facility is stopped, and the initial polluted water is sent to the rainwater storage facility 81 for confluence improvement by the sewage pump. The rainwater storage facility 81 for improving confluence has a space of 1000 m 3 as a result of processing by the normal sewage treatment facility. Eventually, however, the rainwater storage facility 81 for confluence improvement will become full, so the initial polluted water will be returned to the normal sewage treatment facility until the end of the light rain. , Release. When the light rain stops, the initial polluted water is sent from the merging improvement rainwater storage facility 81 to the normal sewage treatment facility, and is subjected to normal treatment by all the normal sewage treatment facilities over 36 hours, and is discharged to a river or the like.

(実施例2)下水処理システム5による連続した小降雨の際の対応は、先ず、初期汚濁水を、概ね3時間、汚水ポンプで合流改善浸水対策併用雨水貯留設備51へ送る。合流改善浸水対策併用雨水貯留設備51が満水(6000m)になるので、小降雨の中、小降雨が終わるまで(概ね3時間)、反応槽の能力を超える水量の初期汚濁水を高速濾過設備53で処理し、放流する。雨が止んだら、合流改善浸水対策併用雨水貯留設備51に貯留された初期汚濁水を、通常下水処理設備へ送り、(例えば)500mだけを処理して、河川等へ放流する。次の小降雨が予想された場合、通常下水処理設備による初期汚濁水の処理を止め、小降雨があるまでは、合流改善浸水対策併用雨水貯留設備51に貯留された初期汚濁水を、高速濾過設備53で処理する。そして、再び小降雨があったら、初期汚濁水を、汚水ポンプで合流改善浸水対策併用雨水貯留設備51へ送る。通常下水処理設備による処理、直前の高速濾過設備53による処理によって、合流改善浸水対策併用雨水貯留設備51には空きがある。しかし、やがて、合流改善浸水対策併用雨水貯留設備51は満水になるので、降雨の中、降雨が終わるまで、反応槽の能力を超える水量の初期汚濁水を高速濾過設備53で処理し、放流する。小降雨が止んだら、(その次の降雨が予想されなければ、初期汚濁水を高速濾過設備53で処理する必要はなく)初期汚濁水を、合流改善浸水対策併用雨水貯留設備51から通常下水処理設備へ送り、24時間かけて、通常下水処理設備全てによる通常処理を行なって、河川等へ放流する。 (Embodiment 2) In the case of continuous small rain by the sewage treatment system 5, first, the initial polluted water is sent to the combined rainwater storage facility 51 with the combined improvement inundation countermeasure by a sewage pump for approximately 3 hours. Since the rainwater storage facility 51 combined with inundation measures and flooding countermeasures is full (6000 m 3 ), high-speed filtration equipment can remove the initial polluted water that exceeds the capacity of the reaction tank until the light rain ends (approximately 3 hours). Treat with 53 and discharge. When the rain stops, the initial polluted water stored in the combined improvement and inundation countermeasure rainwater storage facility 51 is sent to the normal sewage treatment facility, and only (for example) 500 m 3 is processed and discharged to a river or the like. When the next small rainfall is expected, the treatment of the initial polluted water by the normal sewage treatment facility is stopped, and the initial polluted water stored in the rainwater storage facility 51 combined with the combined improvement inundation measures is filtered at high speed until there is a small rainfall. Process in the facility 53. Then, if there is a small rain again, the initial polluted water is sent to the combined improved inundation countermeasure rainwater storage facility 51 with a sewage pump. There is a vacancy in the rainwater storage facility 51 combined with the combined improvement inundation countermeasures by the processing by the normal sewage treatment facility and the processing by the high-speed filtration facility 53 just before. However, since the rainwater storage facility 51 combined with inundation countermeasure inundation measures eventually becomes full of water, the initial polluted water whose amount exceeds the capacity of the reaction tank is treated and discharged by the high-speed filtration facility 53 until the rain finishes. . When light rain stops, it is not necessary to treat the initial polluted water with the high-speed filtration facility 53 if the next rain is not expected. It is sent to the facility, and the normal treatment is performed by all the usual sewage treatment facilities over 24 hours, and then discharged into a river or the like.

[小降雨の後に続けて大雨が発生するケース]図11は、6時間の小降雨の後に続けて5時間の大雨(30mm/時以上)が発生した際の対応の一例を示すタイムチャートである。小降雨、大雨が続くと予測(予想)される場合、合流改善及び浸水対策を施す必要がある。   [Case where heavy rain occurs after light rain] FIG. 11 is a time chart showing an example of a response when heavy rain (more than 30 mm / hour) occurs for 5 hours after light rain for 6 hours. . When it is predicted (expected) that light rain and heavy rain will continue, it is necessary to take measures to improve confluence and to prevent inundation.

(比較例3)下水処理システム8による小降雨、大雨が続く場合の対応は、先ず、初期汚濁水を、概ね4.5時間、汚水ポンプで合流改善用雨水貯留設備81へ送る。合流改善用雨水貯留設備81が満水(9000m)になるので、小降雨とその後の大雨が終わるまで(概ね7.5時間)、初期汚濁水を通常下水処理設備に戻し、そのうちの最初沈殿池のみを通す簡易処理によって、放流する。大雨により初期汚濁水の流入量が汚水ポンプの能力を超えるので、雨水ポンプを稼動させ、初期汚濁水を放流する。更に、続く大雨によって初期汚濁水の流入量が雨水ポンプ能力を超えると、初期汚濁水は雨水吐の(例えば)堰を越えて、浸水対策用雨水貯留設備82に送られる。雨が止んだら、初期汚濁水を、合流改善用雨水貯留設備81から通常下水処理設備へ送り、36時間かけて、通常下水処理設備全てによる通常処理を行なって、河川等へ放流する。 (Comparative example 3) The response | compatibility when the small rainfall and heavy rain continue by the sewage treatment system 8 first sends initial polluted water to the rainwater storage facility 81 for confluence improvement with a sewage pump for approximately 4.5 hours. Since the rainwater storage facility 81 for confluence improvement is full (9000 m 3 ), the initial polluted water is returned to the normal sewage treatment facility until the end of the light rain and the subsequent heavy rain (approximately 7.5 hours). Discharge by simple processing that passes only through. Because the amount of inflow of initial polluted water exceeds the capacity of the sewage pump due to heavy rain, the storm water pump is operated and the initial polluted water is discharged. Furthermore, when the amount of inflow of initial polluted water exceeds the rainwater pumping capacity due to heavy rain that follows, the initial polluted water is sent to the rainwater storage facility 82 for inundation countermeasures over the rainwater spout (for example). When the rain stops, the initial polluted water is sent from the confluence improving rainwater storage facility 81 to the normal sewage treatment facility, and is subjected to normal treatment by all the normal sewage treatment facilities over 36 hours, and is discharged to a river or the like.

(実施例3)下水処理システム5による小降雨、大雨が続く場合の対応は、先ず、初期汚濁水を、概ね3時間、汚水ポンプで合流改善浸水対策併用雨水貯留設備51へ送る。合流改善浸水対策併用雨水貯留設備51が満水(6000m)になるので、小降雨とその後の大雨が終わるまで(概ね9時間)、合流改善浸水対策併用雨水貯留設備51の初期汚濁水を高速濾過設備53で処理し、放流する。合流改善浸水対策併用雨水貯留設備51が空になった場合は、反応槽の能力を超える水量の初期汚濁水を高速濾過設備53で処理し、放流する。初期汚濁水を高速濾過設備53で処理し合流改善浸水対策併用雨水貯留設備51に空きが生じても、大雨により初期汚濁水の流入量が汚水ポンプの能力を超えると、合流改善浸水対策併用雨水貯留設備51へ初期汚濁水を送れなくなるので、雨水ポンプを稼動させ、初期汚濁水を放流する。更に、続く大雨によって初期汚濁水の流入量が雨水ポンプ能力を超えると、初期汚濁水は雨水吐の(例えば)堰を越えて、合流改善浸水対策併用雨水貯留設備51に送られる。降雨が止んだら、(その次の降雨が予測(予想)されなければ、初期汚濁水を高速濾過設備53で処理する必要はなく)初期汚濁水を、通常下水処理設備へ送り、24時間かけて、通常下水処理設備全てによる通常処理を行なって、河川等へ放流する。 (Embodiment 3) In the case where small rainfall and heavy rain continue by the sewage treatment system 5, first, the initial polluted water is sent to the combined improved inundation countermeasure rainwater storage facility 51 with a sewage pump for approximately 3 hours. Since the rainwater storage facility 51 combined with improved flooding countermeasures becomes full (6000 m 3 ), the initial polluted water of the rainwater storage facility 51 combined with improved flooding countermeasures 51 is filtered at high speed until the end of the light rain and the subsequent heavy rain (approximately 9 hours). Treated with facility 53 and discharged. When the rainwater storage facility 51 combined with the combined improvement inundation countermeasure is emptied, the initial polluted water with the amount of water exceeding the capacity of the reaction tank is processed by the high-speed filtration facility 53 and discharged. Even if the initial polluted water is processed by the high-speed filtration facility 53 and the rainwater storage facility 51 combined with the combined improvement inundation countermeasures is vacant, if the inflow of the initial polluted water exceeds the capacity of the sewage pump due to heavy rain, the combined improvement inundation countermeasures combined rainwater Since the initial polluted water cannot be sent to the storage facility 51, the rainwater pump is operated to discharge the initial polluted water. Furthermore, when the amount of inflow of initial polluted water exceeds the rainwater pumping capacity due to heavy rain, the initial polluted water is sent to the rainwater storage facility 51 combined with the combined improvement inundation countermeasures over the rainwater discharge (for example) weir. When the rain stops (if the next rain is not predicted (predicted), it is not necessary to treat the initial polluted water with the high-speed filtration facility 53), the initial polluted water is sent to the normal sewage treatment facility and takes 24 hours. Then, normal treatment is performed by all normal sewage treatment facilities and discharged into rivers.

[大雨の後に再び大雨が発生するケース]図12は、1時間の小降雨、3時間の大雨(30mm/時以上)、4時間の小降雨、及び3時間の大雨が、連続して発生した際の対応の一例を示すタイムチャートである。小降雨と大雨が交互に2回続くと予測(予想)される場合、浸水対策のみを考慮し、これを施す必要がある。   [Case where heavy rain occurs again after heavy rain] Fig. 12 shows that 1 hour of light rain, 3 hours of heavy rain (over 30 mm / hour), 4 hours of light rain, and 3 hours of heavy rain occurred continuously. It is a time chart which shows an example of correspondence at the time. If it is predicted (forecast) that light rain and heavy rain will continue twice, it is necessary to consider this only in consideration of inundation measures.

(比較例4)下水処理システム8による小降雨、大雨が交互に2回続く場合の対応は、最初から、初期汚濁水を、汚水ポンプで通常下水処理設備へ送り、そのうちの最初沈殿池のみを通す簡易処理によって、放流する。併せて、大雨により初期汚濁水の流入量が汚水ポンプの能力を超えるので、雨水ポンプを稼動させ、初期汚濁水を放流する。更に、続く大雨によって初期汚濁水の流入量が雨水ポンプ能力を超えると、初期汚濁水は雨水吐の(例えば)堰を越えて、浸水対策用雨水貯留設備82に送られる。降雨が止んだら、初期汚濁水を、浸水対策用雨水貯留設備82から通常下水処理設備へ送り、通常下水処理設備全てによる通常処理を経て、河川等へ放流する。   (Comparative example 4) In the case where light rain and heavy rain are alternately repeated twice by the sewage treatment system 8, the initial polluted water is sent from the beginning to the normal sewage treatment facility by the sewage pump, and only the first sedimentation basin of them is sent. Discharge by simple processing. At the same time, since the amount of initial polluted water inflow exceeds the capacity of the sewage pump due to heavy rain, the storm water pump is operated to discharge the initial polluted water. Furthermore, when the amount of inflow of initial polluted water exceeds the rainwater pumping capacity due to heavy rain that follows, the initial polluted water is sent to the rainwater storage facility 82 for inundation countermeasures over the rainwater spout (for example). When the rain stops, the initial polluted water is sent from the inundation countermeasure rainwater storage facility 82 to the normal sewage treatment facility, and is discharged to a river or the like through normal treatment by all the normal sewage treatment facilities.

(実施例4)下水処理システム5による小降雨、大雨が交互に2回続く場合の対応は、先ず、初期汚濁水の流入量が汚水ポンプの能力を超えた段階で、雨水ポンプを稼動させ、初期汚濁水を放流する。続く大雨によって初期汚濁水の流入量が雨水ポンプ能力を超えると、初期汚濁水は雨水吐の(例えば)堰を越えて、合流改善浸水対策併用雨水貯留設備51に送られる。合流改善浸水対策併用雨水貯留設備51が浸水対策の分の水量((例えば)4500m)を貯留したら、小降雨のときに、合流改善浸水対策併用雨水貯留設備51の初期汚濁水を高速濾過設備53で処理し、放流する。続く大雨によって初期汚濁水の流入量が汚水ポンプの能力を超えるので、雨水ポンプを稼動させ、初期汚濁水を放流する。再度、大雨になったら、続く大雨によって初期汚濁水の流入量が雨水ポンプ能力を超えると、初期汚濁水は雨水吐の(例えば)堰を越えて、合流改善浸水対策併用雨水貯留設備51に送られる。合流改善浸水対策併用雨水貯留設備51が浸水対策の分の水量を貯留したら、小降雨のときに、合流改善浸水対策併用雨水貯留設備51の初期汚濁水を高速濾過設備53で処理し、放流する。 (Embodiment 4) In the case where small rainfall and heavy rain continue alternately twice by the sewage treatment system 5, first, when the amount of initial polluted water inflow exceeds the capacity of the sewage pump, the rainwater pump is operated, Release initial polluted water. If the amount of inflow of the initial polluted water exceeds the rainwater pumping capacity due to the heavy rain that follows, the initial polluted water passes over the rainwater discharge (for example) weir and is sent to the rainwater storage facility 51 combined with the combined improvement inundation countermeasure. When the rainwater storage facility 51 combined with the combined improvement inundation countermeasure 51 stores the amount of water (for example, 4500 m 3 ) for the inundation countermeasure, the initial polluted water of the combined rainwater storage facility 51 combined with the combined improvement inundation countermeasure 51 is filtered at high speed when there is a small rainfall. Process at 53 and discharge. The inflow of initial polluted water exceeds the capacity of the sewage pump due to the heavy rain that follows, so the storm water pump is operated and the initial polluted water is discharged. When heavy rain starts again, if the amount of inflow of initial polluted water exceeds the capacity of the rainwater pump due to continued heavy rain, the initial polluted water will pass the rainwater discharge (for example) weir and will be sent to the rainwater storage facility 51 combined with combined improvement inundation measures. Be When the rainwater storage facility 51 combined with the combined improvement inundation countermeasure stores the amount of water for the inundation countermeasure, the initial polluted water of the combined rainwater storage facility 51 with the combined improvement inundation countermeasure 51 is processed and discharged in the case of a small rain. .

(考察)以上の通り、コストが廉価で省スペースの下水処理システム5は、下水処理システム8と同等以上の合流改善及び浸水対策の能力を有する。   (Consideration) As described above, the low-cost and space-saving sewage treatment system 5 has the ability to improve confluence and inundation measures equivalent to or more than the sewage treatment system 8.

又、従来の下水処理システム8による場合には、降雨が止んでからでないと通常処理をすることが出来ないので、降雨の予測(予想)が外れたときの対応に柔軟性が全くなく、降雨の予測(予想)が外れた場合に初期汚濁水による浸水被害発生のおそれが高い。これに対し、本発明に係る下水処理システムである下水処理システム5による場合には、降雨中にも高速濾過設備で初期汚濁水を処理し放流することが可能であり、それによって合流改善浸水対策併用雨水貯留設備における受入可能容量を確保することが出来、降雨の予測(予想)が外れた場合であっても初期汚濁水による浸水被害発生を防止し得る。   In addition, in the case of the conventional sewage treatment system 8, since it is not possible to perform normal treatment until the rain has stopped, there is no flexibility in dealing with when the prediction (prediction) of the rain falls. There is a high risk of inundation damage due to the initial polluted water if the prediction (prediction) of this is not met. On the other hand, in the case of the sewage treatment system 5 which is the sewage treatment system according to the present invention, it is possible to treat and discharge the initial polluted water with the high-speed filtration equipment even during the rain, thereby improving the combined flooding countermeasure. The capacity that can be received in the combined rainwater storage facility can be ensured, and even if the rainfall prediction (forecast) is not met, the occurrence of inundation damage due to the initial polluted water can be prevented.

本発明に係る下水処理システム及びその運用方法は、新たに合流式下水道を構築する際の下水処理システム及びその運用手段として、好適に利用される。本発明に係る下水処理システムの改善方法は、既存の合流式下水道を改善する手段として、好適に利用される。   The sewage treatment system and its operation method according to the present invention are suitably used as a sewage treatment system and its operation means when a new combined sewer is constructed. The method for improving a sewage treatment system according to the present invention is suitably used as a means for improving an existing combined sewer.

本発明に係る下水処理システムの効果を表す図であり、当初設計値に基づく合流改善浸水対策併用雨水貯留設備の目的別容量を表す説明図である。It is a figure showing the effect of the sewage treatment system which concerns on this invention, and is explanatory drawing showing the capacity | capacitance according to the purpose of the rainwater storage facility combined with a confluence improvement inundation countermeasure based on an initial design value. 本発明に係る下水処理システムの効果を表す図であり、合流改善浸水対策併用雨水貯留設備に貯められた雨水を高速濾過設備で処理する様子を表す説明図である。It is a figure showing the effect of the sewage treatment system which concerns on this invention, and is explanatory drawing showing a mode that the rainwater stored in the rainwater storage facility combined with a confluence improvement inundation countermeasure is processed with a high-speed filtration facility. 本発明に係る下水処理システムの効果を表す図であり、浸水対策のための容量を増加させた後の、合流改善浸水対策併用雨水貯留設備の目的別容量を表す説明図である。It is a figure showing the effect of the sewage treatment system which concerns on this invention, and is explanatory drawing showing the capacity | capacitance according to the purpose of the rainwater storage facility combined with infiltration improvement inundation countermeasures after increasing the capacity | capacitance for inundation countermeasures. 合流式下水道全体の系を表す構成図である。It is a block diagram showing the whole system of a combined sewer. 本発明に係る下水処理システムの一実施形態を示すフロー図である。It is a flow figure showing one embodiment of a sewage treatment system concerning the present invention. 本発明に係る下水処理システムの一実施形態を示すフロー図である。It is a flow figure showing one embodiment of a sewage treatment system concerning the present invention. 従来の下水処理システムの一例を示すフロー図である。It is a flowchart which shows an example of the conventional sewage treatment system. 従来の下水処理システムの一例を示すフロー図である。It is a flowchart which shows an example of the conventional sewage treatment system. 実施例のうち比較例1及び実施例1における下水処理システムの処理過程を示すタイムチャートである。It is a time chart which shows the process of the sewage treatment system in the comparative example 1 and Example 1 among an Example. 実施例のうち比較例2及び実施例2における下水処理システムの処理過程を示すタイムチャートである。It is a time chart which shows the process of the sewage treatment system in the comparative example 2 and Example 2 among an Example. 実施例のうち比較例3及び実施例3における下水処理システムの処理過程を示すタイムチャートである。It is a time chart which shows the process of the sewage treatment system in the comparative example 3 and Example 3 among an Example. 実施例のうち比較例4及び実施例4における下水処理システムの処理過程を示すタイムチャートである。It is a time chart which shows the process of the sewage treatment system in the comparative example 4 and Example 4 among an Example. 本発明に係る下水処理システムにおける情報処理を表すフロー図である。It is a flowchart showing the information processing in the sewage treatment system which concerns on this invention. 本発明に係る下水処理システムにおける解析装置で用いられる降雨量予測モデルの一例(簡易式)の概要を示すグラフである。It is a graph which shows the outline | summary of an example (simple formula) of the precipitation prediction model used with the analyzer in the sewage treatment system which concerns on this invention. 本発明に係る下水処理システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示す説明図であり、不浸透域における損失(凹地貯留、浸透)をイメージで表した図である。It is explanatory drawing which shows the concept of an example of the effective rainfall model used with the analyzer in the sewage treatment system which concerns on this invention, and is the figure showing the loss (concave storage, infiltration) in an impermeable area with the image. 本発明に係る下水処理システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示す説明図であり、半浸透域における損失(凹地貯留、浸透)をイメージで表した図である。It is explanatory drawing which shows the concept of an example of the effective rainfall model used with the analyzer in the sewage treatment system which concerns on this invention, and is the figure showing the loss (concave storage, infiltration) in a semi-infiltration area by the image. 本発明に係る下水処理システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示す説明図であり、浸透域における損失(凹地貯留、浸透)をイメージで表した図である。It is explanatory drawing which shows the concept of an example of the effective rainfall model used with the analyzer in the sewage treatment system which concerns on this invention, and is the figure showing the loss (concave storage, infiltration) in an infiltration area with an image. 本発明に係る下水処理システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示すグラフ図であり、不浸透域における損失(凹地貯留、浸透)を時間経過毎の降雨量で表したグラフである。It is a graph which shows the concept of an example of the effective rainfall model used with the analyzer in the sewage treatment system which concerns on this invention, and is the graph which represented the loss (concave storage, infiltration) in an impermeable area with the rainfall every time passage. is there. 本発明に係る下水処理システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示すグラフ図であり、半浸透域における損失(凹地貯留、浸透)を時間経過毎の降雨量で表したグラフである。It is a graph which shows the concept of an example of the effective rainfall model used with the analyzer in the sewage treatment system which concerns on this invention, and is the graph which represented the loss (concave storage, infiltration) in a semi-infiltration area by the rainfall every time passage. is there. 本発明に係る下水処理システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示すグラフ図であり、浸透域における損失(凹地貯留、浸透)を時間経過毎の降雨量で表したグラフである。It is a graph which shows the concept of an example of the effective rainfall model used with the analyzer in the sewage treatment system which concerns on this invention, and is the graph which represented the loss (concave storage, infiltration) in an infiltration area by the amount of rainfall for every time passage. . 本発明に係る下水処理システムにおける解析装置で用いられる有効降雨モデルの一例の概念を示すグラフ図であり、全域(流域全体)における損失(凹地貯留、浸透)を時間経過毎の降雨量で表したグラフである。It is a graph which shows the concept of an example of the effective rainfall model used with the analyzer in the sewage treatment system which concerns on this invention, and represented the loss (concave storage, infiltration) in the whole area (whole basin) with the rainfall every time passage. It is a graph. 本発明に係る下水処理システムにおける解析装置で用いられる地表面流下モデルの一例の概念を示すグラフである。It is a graph which shows the concept of an example of the ground surface downflow model used with the analyzer in the sewage treatment system which concerns on this invention. 本発明に係る下水処理システムにおける解析装置で用いられる地表面流下モデルの一例の概念を示す説明図である。It is explanatory drawing which shows the concept of an example of the ground surface downflow model used with the analyzer in the sewage treatment system which concerns on this invention. 本発明に係る下水処理システムにおける解析装置で用いられる地表面流下モデルの一例の概念を示すグラフである。It is a graph which shows the concept of an example of the ground surface downflow model used with the analyzer in the sewage treatment system which concerns on this invention. 本発明に係る下水処理システムにおける解析装置で用いられる地表面氾濫モデルの一例の概念を示す説明図である。It is explanatory drawing which shows the concept of an example of the ground surface inundation model used with the analyzer in the sewage treatment system which concerns on this invention. 本発明に係る下水処理システムにおける解析装置で用いられる地表面氾濫モデルの一例の概念を示す説明図である。It is explanatory drawing which shows the concept of an example of the ground surface inundation model used with the analyzer in the sewage treatment system which concerns on this invention.

符号の説明Explanation of symbols

5,6:(本発明に係る)下水処理システム
7,8:(従来の)下水処理システム
5, 6: Sewage treatment system (according to the present invention) 7, 8: (Conventional) sewage treatment system

Claims (11)

汚水と雨水とが合流した下水を受け入れ処理する通常下水処理設備に加えて、
降雨時に初期汚濁水を、前記通常下水処理設備の系から分岐させて受け入れ貯留する合流改善浸水対策併用雨水貯留設備と、
その合流改善浸水対策併用雨水貯留設備に貯留された、前記初期汚濁水を処理し、前記通常下水処理設備を通さずに放流する高速濾過設備と、
を備えた系を有する下水処理システム。
In addition to normal sewage treatment facilities that accept and treat sewage combined with sewage and rainwater,
A rainwater storage facility combined with improved inundation measures for receiving and storing the initial polluted water from the system of the normal sewage treatment facility when it rains, and
A high-speed filtration facility that treats the initial polluted water stored in the combined rainwater storage facility combined with the combined improvement flooding and discharges it without passing through the normal sewage treatment facility,
A sewage treatment system having a system comprising:
前記合流改善浸水対策併用雨水貯留設備が、
入口側から出口側に向けて複数の仕切りが設けられた構造を有する請求項1に記載の下水処理システム。
The combined rain improvement flooding combined rainwater storage equipment,
The sewage treatment system according to claim 1, having a structure in which a plurality of partitions are provided from the inlet side toward the outlet side.
前記高速濾過設備が、
浮上濾材層を有し、その浮上濾材層の上側のみにスクリーンが配置され、上向流で前記初期汚濁水が処理されるとともに、浮上濾材層の逆洗手段を備える請求項1又は2に記載の下水処理システム。
The high-speed filtration equipment is
It has a floating filter medium layer, a screen is arranged only on the upper side of the floating filter medium layer, the initial polluted water is treated in an upward flow, and backflushing means for the floating filter medium layer is provided. Sewage treatment system.
少なくとも、降雨情報と、前記汚水と雨水とが合流した下水が流れる合流管情報と、を入力し、これらの情報を解析して、前記合流改善浸水対策併用雨水貯留設備における現在及び将来の貯留量を求める解析手段を有する請求項1〜3の何れか一項に記載の下水処理システム。   Input at least rainfall information and merge pipe information through which sewage combined with the sewage and rainwater flows, analyze these information, and present and future storage volume in the combined rainwater storage facilities combined with improved inundation measures The sewage treatment system as described in any one of Claims 1-3 which has an analysis means which calculates | requires. 請求項1〜4の何れか一項に記載の下水処理システムにおいて、
気象情報により次の降雨が予想される場合に、前の降雨によるものを含む初期汚濁水を、前記通常下水処理設備の系から分岐させて前記合流改善浸水対策併用雨水貯留設備に受け入れて貯留し、
その合流改善浸水対策併用雨水貯留設備に貯留された、前記初期汚濁水を、前記高速濾過設備で処理し、前記合流改善浸水対策併用雨水貯留設備の貯留可能水量を増やす下水処理システムの運用方法。
In the sewage treatment system according to any one of claims 1 to 4,
When the next rainfall is predicted based on the weather information, the initial polluted water including the one due to the previous rainfall is branched from the normal sewage treatment system and received and stored in the combined rainwater storage facility. ,
A method for operating a sewage treatment system, wherein the initial polluted water stored in the combined rainwater storage facility combined rainwater storage facility is processed by the high-speed filtration facility to increase the storable amount of water in the combined rainwater storage facility combined rainwater storage facility.
前記下水処理システムは請求項2に記載の下水処理システムであり、
前記初期汚濁水を、前記通常下水処理設備の系から分岐させて、前記仕切りが設けられた合流改善浸水対策併用雨水貯留設備に貯留し、
その貯留された、前記初期汚濁水を、希薄なものから、順次、前記高速濾過設備で処理する請求項5に記載の下水処理システムの運用方法。
The sewage treatment system is a sewage treatment system according to claim 2,
The initial polluted water is branched from the system of the normal sewage treatment facility, and stored in the combined improved inundation countermeasure rainwater storage facility provided with the partition,
The operation method of the sewage treatment system according to claim 5, wherein the stored initial polluted water is sequentially processed by the high-speed filtration facility from a dilute one.
前記下水処理システムは請求項4に記載の下水処理システムであり、
少なくとも、降雨情報と、前記汚水と雨水とが合流した下水が流れる合流管情報と、を基に、これらの情報を解析して、前記合流改善浸水対策併用雨水貯留設備における現在及び将来の貯留量を求め、
その求められた現在及び将来の貯留量に基づいて、前記通常下水処理設備の系から分岐させて前記合流改善浸水対策併用雨水貯留設備に受け入れ貯留すべき初期汚濁水の量、及び、前記高速濾過設備で処理すべき初期汚濁水の量、のうち何れか又は両方を決定する請求項5に記載の下水処理システムの運用方法。
The sewage treatment system is a sewage treatment system according to claim 4,
Based on at least rainfall information and merge pipe information in which the sewage combined with the sewage and the sewage flows, this information is analyzed, and the current and future storage amount in the rainwater storage facility combined with the combined improvement inundation countermeasure Seeking
Based on the obtained current and future storage amount, the amount of initial polluted water that should be received and stored in the rainwater storage facility combined with the combined improvement inundation countermeasures branched from the system of the normal sewage treatment facility, and the high-speed filtration The method for operating a sewage treatment system according to claim 5, wherein either or both of the amounts of initial polluted water to be treated by the facility are determined.
汚水と雨水とが合流した下水を受け入れ処理する通常下水処理設備と、
降雨時に初期汚濁水を、前記通常下水処理設備の系から分岐させて受け入れて貯留する合流改善浸水対策併用雨水貯留設備と、を既に有する下水処理システムにおいて、
前記合流改善浸水対策併用雨水貯留設備に貯留された、前記初期汚濁水を処理し、前記通常下水処理設備を通さずに放流する高速濾過設備を増設し、
気象情報により次の降雨が予想される場合に、前の降雨によるものを含む初期汚濁水を、前記通常下水処理設備の系から分岐させて前記合流改善浸水対策併用雨水貯留設備に受け入れて貯留し、
その合流改善浸水対策併用雨水貯留設備に貯留された、前記初期汚濁水を、前記高速濾過設備で処理し、前記合流改善浸水対策併用雨水貯留設備の貯留可能水量を増やす下水処理システムの改善方法。
Normal sewage treatment equipment for receiving and treating sewage combined with sewage and rainwater;
In the sewage treatment system that already has the combined polluted inundation countermeasure rainwater storage facility for branching from the normal sewage treatment facility system and receiving and storing the initial polluted water at the time of rainfall,
Treating the initial polluted water stored in the rainwater storage facility combined with the combined improvement inundation countermeasures, adding a high-speed filtration facility for discharging without passing through the normal sewage treatment facility,
When the next rainfall is predicted based on the weather information, the initial polluted water including the one due to the previous rainfall is branched from the normal sewage treatment system and received and stored in the combined rainwater storage facility. ,
The improvement method of the sewage treatment system which processes the said initial stage polluted water stored in the rainwater storage facility with the combined improvement inundation countermeasure combined use with the said high-speed filtration facility, and increases the storable water amount of the said rainwater storage facility with the combined improvement inundation countermeasure combined use.
汚水と雨水とが合流した下水を受け入れ処理する既存の通常下水処理設備に、
降雨時に初期汚濁水を、前記通常下水処理設備の系から分岐させて受け入れて貯留する合流改善浸水対策併用雨水貯留設備と、
その合流改善浸水対策併用雨水貯留設備に貯留された、前記初期汚濁水を処理し、前記通常下水処理設備を通さずに放流する高速濾過設備と、を増設し、
気象情報により次の降雨が予想される場合に、前の降雨によるものを含む初期汚濁水を、前記通常下水処理設備の系から分岐させて前記合流改善浸水対策併用雨水貯留設備に受け入れて貯留し、
その合流改善浸水対策併用雨水貯留設備に貯留された、前記初期汚濁水を、前記高速濾過設備で処理し、前記合流改善浸水対策併用雨水貯留設備の貯留可能水量を増やす下水処理システムの改善方法。
In the existing normal sewage treatment facility that accepts and treats sewage combined with sewage and rainwater,
A rainwater storage facility combined with an improved inundation countermeasure for storing and accepting and storing initial polluted water from the system of the normal sewage treatment facility when raining,
A high-speed filtration facility that treats the initial polluted water stored in the combined rainwater storage facility combined with the combined improvement flooding and discharges it without passing through the normal sewage treatment facility.
When the next rainfall is predicted based on the weather information, the initial polluted water including the one due to the previous rainfall is branched from the normal sewage treatment system and received and stored in the combined rainwater storage facility. ,
The improvement method of the sewage treatment system which processes the said initial stage polluted water stored in the rainwater storage facility with the combined improvement inundation countermeasure combined use with the said high-speed filtration facility, and increases the storable water amount of the said rainwater storage facility with the combined improvement inundation countermeasure combined use.
前記合流改善浸水対策併用雨水貯留設備を、
入口側から出口側に向けて複数の仕切りが設けられた構造を有するものとして構成し、
前記初期汚濁水を、前記通常下水処理設備の系から分岐させて、前記仕切りが設けられた合流改善浸水対策併用雨水貯留設備に貯留し、
その貯留された、前記初期汚濁水を、希薄なものから、順次、前記高速濾過設備で処理する請求項8及び請求項9に記載の下水処理システムの改善方法。
The rainwater storage facility combined with the combined improvement inundation measures,
It is configured as having a structure in which a plurality of partitions are provided from the inlet side toward the outlet side,
The initial polluted water is branched from the system of the normal sewage treatment facility, and stored in the combined improved inundation countermeasure rainwater storage facility provided with the partition,
The method for improving a sewage treatment system according to claim 8 and 9, wherein the stored initial polluted water is sequentially processed by the high-speed filtration equipment from a dilute one.
前記高速濾過設備が、
浮上濾材層を有し、その浮上濾材層の上側のみにスクリーンが配置され、上向流で前記初期汚濁水が処理されるとともに、浮上濾材層の逆洗手段を備える請求項8又は9に記載の下水処理システムの改善方法。
The high-speed filtration equipment is
The float filter medium layer is provided, the screen is disposed only on the float filter medium layer, the initial polluted water is treated in an upward flow, and the filter medium layer is backwashed. To improve the sewage treatment system.
JP2008312143A 2008-12-08 2008-12-08 Sewage treatment system and its operation method and improvement method Active JP5189968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312143A JP5189968B2 (en) 2008-12-08 2008-12-08 Sewage treatment system and its operation method and improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312143A JP5189968B2 (en) 2008-12-08 2008-12-08 Sewage treatment system and its operation method and improvement method

Publications (2)

Publication Number Publication Date
JP2010133190A true JP2010133190A (en) 2010-06-17
JP5189968B2 JP5189968B2 (en) 2013-04-24

Family

ID=42344721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312143A Active JP5189968B2 (en) 2008-12-08 2008-12-08 Sewage treatment system and its operation method and improvement method

Country Status (1)

Country Link
JP (1) JP5189968B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505749A (en) * 2011-09-30 2012-06-20 江苏大学 Combined sewage pipe network time-staggered flow distribution control system and control method
CN103215985A (en) * 2013-04-18 2013-07-24 中国地质大学(武汉) Community rainwater utilization system based on secondary split-flow of rainwater and sewage
KR101360154B1 (en) * 2010-09-01 2014-02-12 한국건설기술연구원 Non point pollution reducing treatment facilities and treatment method using weather information and modeling system
WO2014034827A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Fresh water generation method
CN111413941A (en) * 2020-04-30 2020-07-14 北京博纳菲德科技有限公司 Industrial circulation energy-saving water supply and drainage control system
CN111827457A (en) * 2020-07-20 2020-10-27 樊翠珍 Ecological retention belt applied to municipal engineering and installation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824583B2 (en) * 2001-04-04 2006-09-20 日本碍子株式会社 Rainwater treatment device in combined sewer and its backwash method
JP2007146423A (en) * 2005-11-25 2007-06-14 Toshiba Corp Rainwater storage facility operational system
JP2008150793A (en) * 2006-12-14 2008-07-03 Japan Institute Of Wastewater Engineering Technology Liquid storage structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824583B2 (en) * 2001-04-04 2006-09-20 日本碍子株式会社 Rainwater treatment device in combined sewer and its backwash method
JP2007146423A (en) * 2005-11-25 2007-06-14 Toshiba Corp Rainwater storage facility operational system
JP2008150793A (en) * 2006-12-14 2008-07-03 Japan Institute Of Wastewater Engineering Technology Liquid storage structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360154B1 (en) * 2010-09-01 2014-02-12 한국건설기술연구원 Non point pollution reducing treatment facilities and treatment method using weather information and modeling system
CN102505749A (en) * 2011-09-30 2012-06-20 江苏大学 Combined sewage pipe network time-staggered flow distribution control system and control method
CN102505749B (en) * 2011-09-30 2013-11-20 江苏大学 Combined sewage pipe network time-staggered flow distribution control system and control method
WO2014034827A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Fresh water generation method
JPWO2014034827A1 (en) * 2012-08-31 2016-08-08 東レ株式会社 Fresh water generation method
CN103215985A (en) * 2013-04-18 2013-07-24 中国地质大学(武汉) Community rainwater utilization system based on secondary split-flow of rainwater and sewage
CN111413941A (en) * 2020-04-30 2020-07-14 北京博纳菲德科技有限公司 Industrial circulation energy-saving water supply and drainage control system
CN111827457A (en) * 2020-07-20 2020-10-27 樊翠珍 Ecological retention belt applied to municipal engineering and installation method
CN111827457B (en) * 2020-07-20 2022-04-15 樊翠珍 Ecological retention belt applied to municipal engineering and installation method

Also Published As

Publication number Publication date
JP5189968B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
KR101030860B1 (en) System and method for decreasing nonpoint pollution source with water storage tank and artificial marsh
JP5189968B2 (en) Sewage treatment system and its operation method and improvement method
JP2009257005A (en) Rainwater utilization system for elevated road
Słyś et al. Development of mathematical model for sewage pumping-station in the modernized combined sewage system for the town of Przemyśl
KR101361272B1 (en) Equipment and method for decrease non­point pollution sources using vegetation waterway
Armitage, N.* & Rooseboom The removal of urban litter from stormwater conduits and streams: Paper 3-Selecting the most suitable trap
Arifjanov et al. Resource-building structures hydraulic account for treatment of vehicle washing stations wastewater
Maruejouls et al. Characterization of the potential impact of retention tank emptying on wastewater primary treatment: a new element for CSO management
Kandasamy et al. Stormwater sand filters in water-sensitive urban design
KR20150049738A (en) Water-quality management system and water-quality management method for retarding basin
Mrowiec Road runoff management using improved infiltration ponds
JP4358101B2 (en) Sewage inflow water quality prediction method and rainwater drainage support system
KR20200035535A (en) Reduction of pollution load and Blocking system using Waterfront space
JP2005350867A (en) Rainwater utilization system
Brombach Urban Storm Water Practice in Germany (Keynote Paper)
KR101532191B1 (en) Filter backwash function blocks system for nonpoint pollution and construction method
KR101311001B1 (en) Equipment and method for decrease non­point pollution sources using sand filtering tank
Zukovs et al. Planning and design of combined sewer overflow treatment
Mikkelsen et al. BMPs in urban stormwater management in Denmark and Sweden
JP4475896B2 (en) Combined sewage method
Fujita Full-Fledged Movement on Improvement of the Combined Sewer System and Flood Control Underway in Japan (Keynote Paper)
Im et al. Evaluation of capacity adequacy in LID according to LID structure
KR101376446B1 (en) First rainwater induction pipe construction with bridge and equipment for decrease non-point pollution sources including the construction
Ha et al. Reductive characteristics of washed-off pollution loads by best management practices
Chang The Process of Water Flowing through Control Structures and Treatment Facilities in a Developed Area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250