JP2010129398A - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP2010129398A
JP2010129398A JP2008303310A JP2008303310A JP2010129398A JP 2010129398 A JP2010129398 A JP 2010129398A JP 2008303310 A JP2008303310 A JP 2008303310A JP 2008303310 A JP2008303310 A JP 2008303310A JP 2010129398 A JP2010129398 A JP 2010129398A
Authority
JP
Japan
Prior art keywords
coil
heating
ring
coils
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008303310A
Other languages
Japanese (ja)
Other versions
JP5063566B2 (en
Inventor
Koji Nakajima
浩二 中島
Tetsuya Matsuda
哲也 松田
Hiroyasu Shiichi
広康 私市
Haruo Sakurai
治夫 櫻井
Satoshi Nomura
智 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2008303310A priority Critical patent/JP5063566B2/en
Publication of JP2010129398A publication Critical patent/JP2010129398A/en
Application granted granted Critical
Publication of JP5063566B2 publication Critical patent/JP5063566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating cooker capable of changing heat generation distribution on the pan bottom without lowering heating efficiency. <P>SOLUTION: An induction heating device includes: heating coils 3 which are wound in a substantially plane shape for induction-heating a heated object 1; a plurality of ring-shaped coils 71, 72, 73 disposed in parallel and concentrically with extending surfaces of the heating coils in the vicinity of these heating coils; and a switching means 8 by which connections of coil ends of the plurality of the ring-shaped coils are selectively switched so that a secondary current induced in a predetermined ring-shaped coil among the plurality of the ring-shaped coils flows in the direction opposite to the secondary current induced in the other ring-shaped coils. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は電磁誘導作用により、例えば鍋などの調理器具を加熱して種々の調理を行う誘導加熱調理器等として好ましく用いることができる誘導加熱装置に関する。   The present invention relates to an induction heating apparatus that can be preferably used as an induction heating cooker or the like that performs various cooking by heating a cooking utensil such as a pan by electromagnetic induction.

従来の誘導加熱装置である誘導加熱調理器として、一平面内にて渦巻き状に巻回された加熱コイルに交番電流を通電し、周囲に発生する交番磁界の作用により、前記加熱コイルの一側に近接する導電材料製の容器に収納された被加熱物を加熱調理する誘導加熱調理器において、前記加熱コイルと略平行な面内に近接配置され、該加熱コイルと略同心をなす導電材料製のリングを具備し、またその導電性リングの通電抵抗を変更する手段を備えることで、加熱コイルへの通電により発生する磁界強度の分布を平坦化し被加熱物の加熱むらの発生を緩和する一方、均等な加熱と加熱むらのある局所加熱状態とを選択し得るようにしたものがある(例えば特許文献1参照)。   As an induction heating cooker that is a conventional induction heating device, an alternating current is passed through a heating coil wound in a single plane, and one side of the heating coil is generated by the action of an alternating magnetic field generated around the coil. In an induction heating cooker that heats and heats an object to be heated stored in a container made of a conductive material adjacent to the heating material, the conductive heating material is disposed in the vicinity of a plane substantially parallel to the heating coil and is substantially concentric with the heating coil. And a means for changing the energization resistance of the conductive ring to flatten the distribution of magnetic field strength generated by energizing the heating coil and alleviate the occurrence of uneven heating of the object to be heated. There is one in which uniform heating and local heating with uneven heating can be selected (for example, see Patent Document 1).

特開平7−122353号公報(第1頁、図1)JP-A-7-122353 (first page, FIG. 1)

上記のような従来技術においては、導電材料製のリング(以下、リング状コイルという)には加熱コイルで発生した磁界の作用により、2次電流が発生し、リング状コイル近傍の磁界を弱めることで、鍋底の発熱分布の変化を実現しているが、リング状コイルには2次電流による発熱が発生し、加熱効率が低下するという問題があった。また、リング状コイルを冷却するために、強力な冷却ファンが必要となり、さらには冷却風路が複雑化するなど、製品が高コスト化する要因になるという課題があった。   In the prior art as described above, a secondary current is generated in a ring made of a conductive material (hereinafter referred to as a ring-shaped coil) due to the action of the magnetic field generated by the heating coil, thereby weakening the magnetic field in the vicinity of the ring-shaped coil. However, although the heat distribution at the bottom of the pan is changed, there is a problem in that the ring coil generates heat due to the secondary current and the heating efficiency decreases. In addition, in order to cool the ring-shaped coil, a powerful cooling fan is required, and the cooling air passage is complicated, which causes a cost increase of the product.

この発明は、かかる従来技術の課題を解消するためになされたもので、リング状コイルによる発熱が低減され、加熱効率を低下させること無く、被加熱物の発熱分布を変化させることができる誘導加熱装置を得ることを目的としている。   The present invention has been made to solve the problems of the prior art, and heat generation by the ring-shaped coil is reduced, and induction heating that can change the heat generation distribution of the object to be heated without lowering the heating efficiency. The purpose is to obtain a device.

この発明に係る誘導加熱装置は、被加熱物を誘導加熱するための平面状に卷回された加熱コイルと、この加熱コイルの近傍に該加熱コイルの成す面と略平行に同心状に配置された複数のリング状コイルと、これら複数のリング状コイルに誘起される2次電流の向きを、所定のリング状コイルについては他のリング状コイルとは逆方向に流れるように、該複数のリング状コイルのコイル端相互の接続を選択的に切り換える切換手段を備えるように構成した。   An induction heating apparatus according to the present invention is arranged in a concentric manner in a vicinity of a heating coil wound in a plane for induction heating of an object to be heated, and in a vicinity of the heating coil and substantially parallel to a surface formed by the heating coil. The plurality of ring-shaped coils and the direction of the secondary current induced in the plurality of ring-shaped coils so that the predetermined ring-shaped coil flows in a direction opposite to that of the other ring-shaped coils. And a switching means for selectively switching the connection between the coil ends of the coil-like coil.

この発明においては、複数のリング状コイルに誘起される2次電流の向きを、切換手段によって所定のリング状コイルについては他のリング状コイルとは逆方向に流れるようにしたので、少ない2次電流でも、局部的な発熱集中をもった発熱分布を得ることができる。それにより、リング状コイルによる発熱を低減することができるため、加熱効率を低下させること無く、被加熱物の発熱分布を変化させることができる。   In this invention, since the direction of the secondary current induced in the plurality of ring-shaped coils is made to flow in the direction opposite to that of the other ring-shaped coils for the predetermined ring-shaped coil by the switching means, the secondary current is small. Even with an electric current, a heat generation distribution having local heat generation concentration can be obtained. Thereby, since heat generation by the ring coil can be reduced, the heat generation distribution of the object to be heated can be changed without lowering the heating efficiency.

実施の形態1.
図1〜図11はこの発明の実施の形態1に係る誘導加熱装置としての誘導加熱調理器を説明する図であり、図1は誘導加熱調理器の要部構成を示す回路図、図2は図1に示された複数のリング状コイルの構成と、そのリング状コイルに流れる2次電流の向きが一部のリング状コイルでは逆方向になるように切り換える切換手段を概念的に示す回路図、図3〜図5はリング状コイルに流れる電流経路と調理器具の底部の加熱分布を説明する図、図6〜図11はゼロクロス検出回路の具体例とその動作を説明する図である。なお、各図を通じて同一または相当部分には同一符号が付されている。
Embodiment 1 FIG.
1-11 is a figure explaining the induction heating cooking appliance as an induction heating apparatus which concerns on Embodiment 1 of this invention, FIG. 1 is a circuit diagram which shows the principal part structure of an induction heating cooking appliance, FIG. 1 is a circuit diagram conceptually showing the configuration of a plurality of ring-shaped coils shown in FIG. 1 and switching means for switching so that the direction of secondary current flowing in the ring-shaped coils is reversed in some ring-shaped coils. 3 to 5 are diagrams for explaining a current path flowing through the ring-shaped coil and a heating distribution at the bottom of the cooking utensil, and FIGS. 6 to 11 are diagrams for explaining a specific example of the zero cross detection circuit and its operation. Note that the same or corresponding parts are denoted by the same reference numerals throughout the drawings.

図において誘導加熱調理器は、被加熱物としてのアルミ、銅、鉄等の導電性材料を用いた鍋等の調理器具1を載せる耐熱ガラス製のトッププレート2と、トッププレート2の下部に配設され調理器具1を誘導加熱するための、円形の渦巻き状に卷回され外観が略平面状に形成された加熱コイル3と、この加熱コイル3を付勢するための高周波変換回路4と、この高周波変換回路4に整流出力を供給する商用交流電源入力部5に接続された整流手段6と、上記加熱コイル3とトッププレート2の間に設けられ、加熱コイル3の成す面と略平行で、同心状に配置された複数のリング状コイルである第1コイル71、第2コイル72、及び第3コイル73(以下、包括してリング状コイル7と呼ぶことがある)と、この複数のリング状コイル7相互の接続を切り換える切替手段8と、交流電源の電圧のゼロクロス点またはその近傍を検出するゼロクロス検出手段9と、切替手段8を制御する制御手段10と、制御電圧生成手段11などから構成されている。   In the figure, an induction heating cooker is arranged on a top plate 2 made of heat-resistant glass on which a cooking utensil 1 such as a pan using a conductive material such as aluminum, copper, or iron as an object to be heated is placed, and a lower portion of the top plate 2. A heating coil 3 that is wound in a circular spiral shape and has a substantially flat appearance for induction heating of the cooking utensil 1, and a high-frequency conversion circuit 4 for energizing the heating coil 3, A rectifying means 6 connected to a commercial AC power supply input section 5 for supplying a rectified output to the high-frequency conversion circuit 4 is provided between the heating coil 3 and the top plate 2 and is substantially parallel to a surface formed by the heating coil 3. The first coil 71, the second coil 72, and the third coil 73 (hereinafter, collectively referred to as the ring-shaped coil 7), which are a plurality of concentric ring-shaped coils, Ring coil 7 mutual A switching means 8 for switching the connection, the zero-cross detecting means 9 for detecting a zero-cross point or near the voltage of the AC power supply, a control unit 10 for controlling the switching means 8, and a like control voltage generating means 11.

上記加熱コイル3は、図3に示すように中心部に配置された径小の加熱コイル31と、この径小の加熱コイル31の周りに同心円状に配設された径大の加熱コイル32が直列に接続されてなり、径小の加熱コイル31と径大の加熱コイル32との間には空間部Aが設けられている。上記整流手段6はダイオードブリッジ61と、力率コンデンサ62と、ダイオードブリッジ61と力率コンデンサ62との間に接続されたチョークコイル63によって構成されている。なお、この例では力率コンデンサ62として9μF、チョークコイル63として100μHのものが用いられている。   As shown in FIG. 3, the heating coil 3 includes a small-diameter heating coil 31 disposed in the center, and a large-diameter heating coil 32 concentrically disposed around the small-diameter heating coil 31. A space A is provided between the small diameter heating coil 31 and the large diameter heating coil 32 connected in series. The rectifying means 6 includes a diode bridge 61, a power factor capacitor 62, and a choke coil 63 connected between the diode bridge 61 and the power factor capacitor 62. In this example, a power factor capacitor 62 of 9 μF and a choke coil 63 of 100 μH are used.

高周波変換回路4は直列に接続されたスイッチング素子(IGBT)41、42と、該スイッチング素子41、42に対して各並列に接続されたダイオード43、44と、低電位側のスイッチング素子42と並列に接続されたスナバコンデンサ45と、加熱コイル3との直列接続体を構成し、その直列接続体として低電位側のスイッチング素子42に対して並列に接続されると共に力率コンデンサ62の低電位側に接続された共振コンデンサ46と、スイッチング素子41、42のオンオフを制御するスイッチング素子駆動回路47から構成されている。   The high-frequency conversion circuit 4 includes switching elements (IGBTs) 41 and 42 connected in series, diodes 43 and 44 connected in parallel to the switching elements 41 and 42, and a switching element 42 on the low potential side in parallel. Is connected in parallel to the low-potential side switching element 42 and the low-potential side of the power factor capacitor 62. And a switching element driving circuit 47 for controlling on / off of the switching elements 41 and 42.

上記リング状コイル7(第1コイル71、第2コイル72、及び第3コイル73)は、互いに径の異なる1ターンのリング状ないしはループ状に形成されてなり、トッププレート2と加熱コイル3の間における該加熱コイル3の延在面に近接する平行な面内に互いに同心に、加熱コイル3とも略同心をなして配置されている。そして、第1コイル71、第2コイル72、及び第3コイル73は、導電性材料からなる平板を用いて形成されており、この例では図2に示すように中心部が広く開き、各コイル端71a及び71b、72a及び72b、73a及び73b相互が離れて形成され、そのコイル端71a及び71b、72a及び72b、73a及び73bに切替手段8が接続されている。なお、第1コイル71のコイル端71aと第3コイル73のコイル端73aはリング電流制限抵抗85を介して接続されている。   The ring-shaped coil 7 (the first coil 71, the second coil 72, and the third coil 73) is formed in a ring shape or a loop shape with different diameters, and the top plate 2 and the heating coil 3 They are arranged concentrically with each other in a parallel plane close to the extending surface of the heating coil 3 in between, and also substantially concentric with the heating coil 3. The first coil 71, the second coil 72, and the third coil 73 are formed by using a flat plate made of a conductive material. In this example, as shown in FIG. The ends 71a and 71b, 72a and 72b, 73a and 73b are formed apart from each other, and the switching means 8 is connected to the coil ends 71a and 71b, 72a and 72b, 73a and 73b. The coil end 71 a of the first coil 71 and the coil end 73 a of the third coil 73 are connected via a ring current limiting resistor 85.

上記切替手段8は、第1コイル71のコイル端71bと第2コイル72のコイル端72bとの間に電気的に接続された第1のスイッチ81と、第1コイル71のコイル端71bと第2コイル72のコイル端72aとの間に電気的に接続された第2のスイッチ82と、第2コイル72のコイル端72bと第3コイル73のコイル端73bとの間に電気的に接続された第3のスイッチ83と、第2コイル72のコイル端72aと第3コイル73のコイル端73bとの間に電気的に接続された第4のスイッチ84とで構成されている。なお、各コイル端71a及び71b、72a及び72b、73a及び73bと、第1〜第4のスイッチ81〜84、及びリング電流制限抵抗85との電気的な接続は、特に限定されるものではなく、例えば銅線などの導電性材料をはんだ付けや圧接することで行なわれる。   The switching means 8 includes a first switch 81 electrically connected between the coil end 71 b of the first coil 71 and the coil end 72 b of the second coil 72, the coil end 71 b of the first coil 71, The second switch 82 electrically connected between the coil ends 72 a of the two coils 72 and the coil switch 72 b of the second coil 72 and the coil end 73 b of the third coil 73 are electrically connected. The third switch 83 and a fourth switch 84 electrically connected between the coil end 72 a of the second coil 72 and the coil end 73 b of the third coil 73. The electrical connections between the coil ends 71a and 71b, 72a and 72b, 73a and 73b, the first to fourth switches 81 to 84, and the ring current limiting resistor 85 are not particularly limited. For example, it is performed by soldering or pressing a conductive material such as a copper wire.

上記ゼロクロス検出手段9は、例えば図8に示すゼロクロス検出回路あるいは図10に示す商用電圧比較回路などを好ましく用いることができる。図8に示すゼロクロス検出回路は、商用交流電源の電圧のゼロクロス点を検出するもので、フォトカプラ91と、商用電圧を半波整流する半波整流ダイオード92と、この半波整流ダイオード92とフォトカプラ91と直列に接続され、フォトカプラ91に流れる電流を制限するフォトカプラ電流制限抵抗93と、プルアップ抵抗94から構成されている。なお、プルアップ抵抗94とフォトカプラ91の接続点の電圧は制御手段10へ出力される。   As the zero cross detection means 9, for example, a zero cross detection circuit shown in FIG. 8 or a commercial voltage comparison circuit shown in FIG. 10 can be preferably used. The zero cross detection circuit shown in FIG. 8 detects a zero cross point of the voltage of the commercial AC power supply. The photo coupler 91, a half wave rectifier diode 92 for half-wave rectifying the commercial voltage, the half-wave rectifier diode 92 and the photo A photocoupler current limiting resistor 93 that is connected in series with the coupler 91 and limits the current flowing through the photocoupler 91 and a pull-up resistor 94 are included. The voltage at the connection point between the pull-up resistor 94 and the photocoupler 91 is output to the control means 10.

そして、ゼロクロス検出手段9の出力は図9に示すように、商用電圧が正であるときはLレベル、商用電圧が負であるときはHレベルとなり、LレベルからHレベルへの切り替わりの瞬間、及びHレベルからLレベルへの切り替わりの瞬間が商用電圧のゼロクロス点となる。なお、後述するように制御手段10はゼロクロス検出手段9の出力がHレベルからLレベルへの切替わりの瞬間、またはLレベルからHレベルへの切り替わりの瞬間に、切替手段8を構成する第1〜第4のスイッチ81〜84の開閉の切り替えを行う。   As shown in FIG. 9, the output of the zero cross detection means 9 is L level when the commercial voltage is positive, H level when the commercial voltage is negative, and the moment of switching from the L level to the H level, And the instant of switching from the H level to the L level becomes the zero cross point of the commercial voltage. As will be described later, the control means 10 forms the first switching means 8 at the moment when the output of the zero cross detection means 9 is switched from the H level to the L level, or the moment when the output from the L level to the H level is switched. -The opening and closing of the fourth switches 81 to 84 are switched.

一方、図10に示すゼロクロス検出手段9としての商用電圧比較回路は、商用交流電源の電圧の絶対値が所定値を下回ったことを検出する電圧絶対値検出手段95と比較手段96から構成されている。図において、電圧絶対値検出手段95は商用電圧を整流するダイオードブリッジ951と、このダイオードブリッジ951の出力に接続される分圧抵抗952と検出抵抗953の直列接続体と、検出抵抗953に並列に接続されたノイズ除去コンデンサ954を用いて構成されている。そして、比較手段96は比較器961と、直列に接続された2つの比較抵抗962、963で構成されている。上記2つの比較抵抗962、963の接続点は比較器961の非反転入力ピンに接続され、検出抵抗953と分圧抵抗952の接続点は比較器961の反転入力ピンに接続される。そして、比較器961の出力、即ち比較手段96の出力は制御手段10へ出力される。   On the other hand, the commercial voltage comparison circuit as the zero cross detection means 9 shown in FIG. 10 is composed of a voltage absolute value detection means 95 and a comparison means 96 for detecting that the absolute value of the voltage of the commercial AC power supply has fallen below a predetermined value. Yes. In the figure, the voltage absolute value detection means 95 includes a diode bridge 951 for rectifying a commercial voltage, a series connection body of a voltage dividing resistor 952 and a detection resistor 953 connected to the output of the diode bridge 951, and a detection resistor 953 in parallel. A noise removal capacitor 954 connected is used. The comparison unit 96 includes a comparator 961 and two comparison resistors 962 and 963 connected in series. The connection point between the two comparison resistors 962 and 963 is connected to the non-inverting input pin of the comparator 961, and the connection point between the detection resistor 953 and the voltage dividing resistor 952 is connected to the inverting input pin of the comparator 961. Then, the output of the comparator 961, that is, the output of the comparison means 96 is output to the control means 10.

上記電圧絶対値検出手段95においては、商用電圧はダイオードブリッジ951によって全波整流され、全波整流された電圧は分圧抵抗952と検出抵抗953の比で分圧され、検出抵抗953の両端にその分圧された電圧が発生する。比較手段96の出力電圧は、図11に示すように検出抵抗953の両端の電圧が2つの比較抵抗962、963の分圧電圧よりも低いときにHレベルを出力し、高いときにLレベルを出力する。比較手段96の出力がHレベルになるのは、図11に示すように商用電圧のゼロクロス近傍となる。なお、ゼロクロス近傍の範囲は分圧抵抗952と検出抵抗953と比較抵抗962、963の値によって決定される。   In the voltage absolute value detection means 95, the commercial voltage is full-wave rectified by the diode bridge 951, and the full-wave rectified voltage is divided by the ratio of the voltage dividing resistor 952 and the detection resistor 953. The divided voltage is generated. As shown in FIG. 11, the output voltage of the comparison means 96 is H level when the voltage across the detection resistor 953 is lower than the divided voltage of the two comparison resistors 962 and 963, and L level when the voltage is high. Output. The output of the comparing means 96 becomes H level in the vicinity of the zero cross of the commercial voltage as shown in FIG. The range in the vicinity of the zero cross is determined by the values of the voltage dividing resistor 952, the detection resistor 953, and the comparison resistors 962 and 963.

例えば、比較抵抗962、963の分圧電圧を0.5V、分圧抵抗952と検出抵抗953の抵抗比を99:1とすると、商用電圧の瞬時値が50V以下となる時に比較手段96の出力がHレベルとなる。なお、上記比較手段96の出力がHレベルとなる商用電圧の絶対値は、その電圧値で第1〜第4のスイッチ81〜84の開閉の切替えを行っても、これら第1〜第4のスイッチ81〜84、及び高周波変換回路4に劣化が生じないように分圧抵抗952と検出抵抗953と比較抵抗962、963の値を設定すればよく、当然のことながら、上記例示した設定値に限定されるものではない。   For example, when the divided voltage of the comparison resistors 962 and 963 is 0.5 V and the resistance ratio of the voltage dividing resistor 952 and the detection resistor 953 is 99: 1, the output of the comparison unit 96 when the instantaneous value of the commercial voltage is 50 V or less. Becomes H level. Note that the absolute value of the commercial voltage at which the output of the comparison means 96 is at the H level is the first to fourth even if the first to fourth switches 81 to 84 are switched to open / close at that voltage value. The values of the voltage dividing resistor 952, the detection resistor 953, and the comparison resistors 962 and 963 may be set so that the switches 81 to 84 and the high-frequency conversion circuit 4 are not deteriorated. It is not limited.

上記制御手段10は、スイッチング素子駆動回路47を制御して加熱コイル3に流れる高周波電流を制御すると共に、切替手段8を制御して第1コイル71〜第3コイル73に流れる電流を制御する。なお、鍋底など調理器具1の底部への加熱量は、加熱コイル3に流れる高周波電流に比例して大きくなるが、その制御方法は公知の技術を適宜選択して用いることができるものであるので、詳細な説明を省略する。また、制御手段10、切替手段8、スイッチング素子駆動回路47、及びゼロクロス検出手段9に必要な直流電圧は制御電圧生成手段11から供給される(詳細は図示省略)。その他、電源スイッチ、操作ボタン類、表示手段等の構成は、従来技術による例えば公知の誘導加熱調理器と同様であるので、図示及び説明を省略する。   The control means 10 controls the switching element drive circuit 47 to control the high-frequency current flowing through the heating coil 3, and also controls the switching means 8 to control the current flowing through the first coil 71 to the third coil 73. The amount of heating to the bottom of the cooking utensil 1 such as the bottom of the pot increases in proportion to the high-frequency current flowing through the heating coil 3, but the control method can be appropriately selected from known techniques. Detailed description will be omitted. Further, a DC voltage necessary for the control means 10, the switching means 8, the switching element drive circuit 47, and the zero cross detection means 9 is supplied from the control voltage generation means 11 (details are not shown). In addition, since configurations of the power switch, operation buttons, display means, and the like are the same as those of a known induction heating cooker according to the prior art, illustration and description are omitted.

次に、上記のように構成された実施の形態1の動作について説明する。まず、商用交流電源入力部5から入力された商用電圧は、整流手段6とゼロクロス検出手段9と制御電圧生成手段11に供給される。整流手段6によって整流された整流出力は加熱コイル3を駆動するための高周波電流を発生させる高周波変換回路4に供給される。なお、高周波変換回路4の動作、及び加熱コイル3の制御などは、例えば公知の一般的なものと同様であるので、詳細な説明は省略する。次に切替手段8の制御方法と調理器具1の底の加熱分布について詳細に説明する。制御手段10は使用者が例えば煮込み調理開始操作などを行ったときに、使用者の選択により、あるいは予め設定された加熱パターンやプログラムなどにより調理器具1の底に加熱分布に変化がつくように切替手段8が制御される。   Next, the operation of the first embodiment configured as described above will be described. First, the commercial voltage input from the commercial AC power supply input unit 5 is supplied to the rectifier 6, the zero cross detector 9, and the control voltage generator 11. The rectified output rectified by the rectifying means 6 is supplied to a high frequency conversion circuit 4 that generates a high frequency current for driving the heating coil 3. Note that the operation of the high-frequency conversion circuit 4 and the control of the heating coil 3 are the same as, for example, a known general one, and a detailed description thereof will be omitted. Next, the control method of the switching means 8 and the heating distribution on the bottom of the cooking utensil 1 will be described in detail. For example, when the user performs a stewed cooking start operation or the like, the control means 10 changes the heating distribution on the bottom of the cooking utensil 1 by the user's selection or by a preset heating pattern or program. The switching means 8 is controlled.

図3は第1〜第4のスイッチ81〜84が全て開状態のとき(第1のモード)の第1コイル71〜第3コイル73に流れる電流経路と調理器具1の底の加熱分布を説明する図である。一般的に、加熱コイル3と調理器具1との間に導電材料製の閉ループのリング状コイルが存在する場合、そのリング状コイルには加熱コイル3に流れる電流と逆向きに2次電流が流れ、加熱コイル3に流れる電流によって発生した磁界を打ち消し、リング状コイルの上部にある調理器具1の底の加熱を弱める。   FIG. 3 illustrates the current path flowing through the first coil 71 to the third coil 73 and the heating distribution at the bottom of the cooking utensil 1 when the first to fourth switches 81 to 84 are all open (first mode). It is a figure to do. In general, when a closed loop ring coil made of a conductive material exists between the heating coil 3 and the cooking utensil 1, a secondary current flows through the ring coil in the direction opposite to the current flowing through the heating coil 3. The magnetic field generated by the current flowing through the heating coil 3 is canceled out, and the heating of the bottom of the cooking utensil 1 at the top of the ring coil is weakened.

しかし、図3に示すように第1〜第4のスイッチ81〜84が全て開状態の第1のモードの場合は、第1コイル71〜第3コイル73が閉路となっていないため、2次電流が流れる経路が無い。そのため、加熱コイル3に流れる電流によって発生した磁界は打ち消されずに調理器具1まで達し、調理器具1の底を加熱する。従って、調理器具1の底の加熱は加熱コイル3の上部で強く、加熱コイル3から離れるほど加熱は弱くなり、図3(b)に示すように加熱コイル3による加熱は、径小の加熱コイル31と径大の加熱コイル32による加熱分布が合成され、調理器具1の底の加熱分布はほぼ均一なものとなる。   However, in the first mode in which all of the first to fourth switches 81 to 84 are all open as shown in FIG. 3, the first coil 71 to the third coil 73 are not closed, so the secondary There is no path for current flow. Therefore, the magnetic field generated by the current flowing through the heating coil 3 reaches the cooking utensil 1 without being canceled, and heats the bottom of the cooking utensil 1. Therefore, the heating of the bottom of the cooking utensil 1 is strong at the upper part of the heating coil 3, and the heating is weaker as the distance from the heating coil 3 increases. As shown in FIG. 31 and the heating distribution by the heating coil 32 having a large diameter are combined, and the heating distribution on the bottom of the cooking utensil 1 becomes substantially uniform.

図4(a)は第1のスイッチ81と第4のスイッチ84が開状態、第2のスイッチ82と第3のスイッチ83が閉状態のとき(第2のモード)の第1コイル71〜第3コイル73に流れる電流経路を示し、図4(b)はそのときの調理器具1の底の加熱分布を示している。第1コイル71〜第3コイル73には2次電流が加熱コイル3に流れる電流と逆向きの方向に流れようとするが、図4に示す第1〜第4のスイッチ81〜84の接続状態では、2次電流の流れる方向が他とは逆向きに流れるように接続されているリング状コイル(第3コイル73)があるので、そのように流れることはできない。   FIG. 4A illustrates the first coil 71 to the first coil when the first switch 81 and the fourth switch 84 are in the open state, and the second switch 82 and the third switch 83 are in the closed state (second mode). A current path flowing through the three coils 73 is shown, and FIG. 4B shows a heating distribution at the bottom of the cooking utensil 1 at that time. Although the secondary current tends to flow in the first coil 71 to the third coil 73 in the direction opposite to the current flowing in the heating coil 3, the connection state of the first to fourth switches 81 to 84 shown in FIG. Then, since there is a ring-shaped coil (third coil 73) connected so that the direction in which the secondary current flows is opposite to the other direction, it cannot flow as such.

ここで、第1コイル71と第2コイル72の、加熱コイル3に流れる電流と逆向きに流れようとするエネルギーの和は、第3コイル73において加熱コイル3に流れる電流と逆向きに流れようとするエネルギーよりも大きいため、第3コイル73には、第1コイル71と第2コイル72の加熱コイル3に流れる電流と逆向きに流れようとするエネルギーによって、加熱コイル3に流れる電流と同じ向きに流れる。そのため、加熱コイル3に流れる電流によって発生する磁界は第1コイル71と第2コイル72の上部で打ち消され、第3コイル73の上部で強められることになる。このとき、図4(b)に示すように調理器具1の底の加熱分布は底の中心部の加熱が強く、底の外周部の加熱が弱い加熱分布となる。第1コイル71〜第3コイル73に流れる2次電流は、一部が逆方向に流れるようにしたので小さくなるが、該2次電流が小さくても調理器具1底部に局部的な発熱集中をもった発熱分布が得られる。   Here, the sum of the energy of the first coil 71 and the second coil 72 that flows in the direction opposite to the current flowing in the heating coil 3 flows in the direction opposite to the current flowing in the heating coil 3 in the third coil 73. Therefore, the third coil 73 has the same current that flows through the heating coil 3 due to energy that tends to flow in the opposite direction to the current that flows through the heating coil 3 of the first coil 71 and the second coil 72. It flows in the direction. Therefore, the magnetic field generated by the current flowing through the heating coil 3 is canceled out at the top of the first coil 71 and the second coil 72 and is strengthened at the top of the third coil 73. At this time, as shown in FIG. 4B, the heating distribution at the bottom of the cooking utensil 1 is a heating distribution in which the heating at the center of the bottom is strong and the heating at the outer periphery of the bottom is weak. The secondary current that flows through the first coil 71 to the third coil 73 is small because a part of the secondary current flows in the opposite direction, but even if the secondary current is small, local heat concentration is concentrated at the bottom of the cooking utensil 1. An exothermic distribution is obtained.

図5(a)は第1のスイッチ81と第4のスイッチ84が閉状態、第2のスイッチ82と第3のスイッチ83が開状態のとき(第3のモード)の第1コイル71〜第3コイル73に流れる電流経路を示す図。図5(b)はそのときの調理器具1の底の加熱分布を示す図である。第1コイル71〜第3コイル73には、2次電流が加熱コイル3に流れる電流と逆向きに流れようとするが、図4の場合と同様に第1〜第4のスイッチ81〜84の接続状態ではそのように流れることはできない。   FIG. 5A illustrates the first coil 71 to the first coil 71 when the first switch 81 and the fourth switch 84 are closed and the second switch 82 and the third switch 83 are opened (third mode). The figure which shows the electric current path which flows into 3 coils 73. FIG.5 (b) is a figure which shows the heating distribution of the bottom of the cooking utensil 1 at that time. Although the secondary current tends to flow in the first coil 71 to the third coil 73 in the direction opposite to the current flowing in the heating coil 3, the first to fourth switches 81 to 84 are similar to the case of FIG. 4. It cannot flow that way in a connected state.

図5(a)においては、第2コイル72と第3コイル73の、加熱コイル3に流れる電流と逆向きに流れようとする2次電流のエネルギーの和は、第1コイル71の加熱コイル3に流れる電流と逆向きに流れようとする2次電流のエネルギーに対して大きいため、第1コイル71に流れる2次電流は第2コイル72と第3コイル73の加熱コイル3に流れる電流と逆向きに流れようとするエネルギーによって加熱コイル3に流れる電流と同じ向きに流れる。そのため、加熱コイル3に流れる電流によって発生する磁界は第2コイル72と第3コイル73の上部で打ち消され、第1コイル71の上部で強められることになる。このとき、調理器具1の底の加熱分布は図5(b)に示すように底の外周部の加熱が強く、底の中心部の加熱が弱い加熱分布となる。なお、2次電流は第1のモードと同様小さくなる。   In FIG. 5A, the sum of the energy of the secondary current that tends to flow in the direction opposite to the current flowing through the heating coil 3 of the second coil 72 and the third coil 73 is the heating coil 3 of the first coil 71. The secondary current flowing in the first coil 71 is opposite to the current flowing in the heating coil 3 of the second coil 72 and the third coil 73 because the energy of the secondary current that tends to flow in the opposite direction to the current flowing in It flows in the same direction as the current flowing in the heating coil 3 by the energy that flows in the direction. Therefore, the magnetic field generated by the current flowing through the heating coil 3 is canceled out at the top of the second coil 72 and the third coil 73 and is strengthened at the top of the first coil 71. At this time, as shown in FIG. 5B, the heating distribution at the bottom of the cooking utensil 1 is a heating distribution in which the heating at the outer periphery of the bottom is strong and the heating at the center of the bottom is weak. Note that the secondary current becomes smaller as in the first mode.

ところで、上記のように第1コイル71〜第3コイル73に流れる2次電流をスイッチ(第1のスイッチ81〜第4のスイッチ84)で切り換える場合、大きな電流が流れているときに切り替えようとすると、電流容量の大きい大型で高コストのスイッチが必要となる。しかし、この実施の形態1では、複数のリング状コイルの一部に2次電流が他とは逆方向に流れるようにしているので、2次電流が全て同じ向きに流れる場合よりも小さい。このため、スイッチは小型のものでも差し支えない。加えて、切替手段8による切り替えのタイミングは、ゼロクロス検出手段9によって検出された商用電圧のゼロクロス点、またはその近傍で行うように制御されている。以下、その動作について具体的に説明する。   By the way, when the secondary current flowing through the first coil 71 to the third coil 73 is switched by the switch (the first switch 81 to the fourth switch 84) as described above, the switching is performed when a large current is flowing. Then, a large-sized and high-cost switch with a large current capacity is required. However, in the first embodiment, since the secondary current flows through a part of the plurality of ring-shaped coils in the direction opposite to the other, it is smaller than when all the secondary currents flow in the same direction. For this reason, the switch may be small. In addition, the switching timing by the switching unit 8 is controlled to be performed at or near the zero cross point of the commercial voltage detected by the zero cross detection unit 9. The operation will be specifically described below.

図6及び図7は、(a)商用電圧と、(b)整流手段6によって整流された整流電圧と、(c)加熱コイル3に流れる高周波電流、の時間変化を対応させて示す波形図であり、図6は加熱量が小さい時、図7は加熱量が大きい時を示している。一般的に、加熱コイル3に流れる高周波電流は高周波変換回路4に供給される整流電圧に比例して大きくなる。   FIG. 6 and FIG. 7 are waveform diagrams showing the change with time of (a) commercial voltage, (b) rectified voltage rectified by the rectifying means 6, and (c) high-frequency current flowing through the heating coil 3. FIG. 6 shows when the heating amount is small, and FIG. 7 shows when the heating amount is large. In general, the high-frequency current flowing through the heating coil 3 increases in proportion to the rectified voltage supplied to the high-frequency conversion circuit 4.

加熱量が小さいときには図6に示すように整流電圧は平滑化されているため、加熱コイル3には振幅が小さくかつ振幅が略一定の例えば数十kHzの高周波電流が流れ、加熱量が大きい時には図7に示すように整流電圧は商用電圧の絶対値の波形に近い脈流状の波形となり、加熱コイル3には振幅が大きく商用電圧の絶対値に比例して変動する例えば数十kHzの高周波電流が流れ、また、その振幅絶対値変動の位相は商用電圧の位相と略合致したものとなっている。これは加熱量が大きい時は力率コンデンサ62から出力される高周波電流がダイオードブリッジ61とチョークコイル63を経由して商用電源から供給される電流よりも大きいためであり、加熱量が小さい時は力率コンデンサ62から出力される高周波電流がダイオードブリッジ61とチョークコイル63を経由して商用交流電源入力部5から供給される電流よりも小さいためである。   Since the rectified voltage is smoothed as shown in FIG. 6 when the heating amount is small, a high-frequency current with a small amplitude and a substantially constant amplitude, for example, several tens of kHz, flows through the heating coil 3, and when the heating amount is large. As shown in FIG. 7, the rectified voltage has a pulsating waveform close to the waveform of the absolute value of the commercial voltage, and the heating coil 3 has a large amplitude, for example, a high frequency of several tens of kHz that varies in proportion to the absolute value of the commercial voltage. A current flows, and the phase of the amplitude absolute value fluctuation is substantially matched with the phase of the commercial voltage. This is because when the heating amount is large, the high-frequency current output from the power factor capacitor 62 is larger than the current supplied from the commercial power supply via the diode bridge 61 and the choke coil 63, and when the heating amount is small. This is because the high-frequency current output from the power factor capacitor 62 is smaller than the current supplied from the commercial AC power input unit 5 via the diode bridge 61 and the choke coil 63.

一方、リング状コイル7に流れる電流は加熱コイル3に流れる高周波電流に比例し、その波形は加熱コイルと同様な波形となり、加熱量が大きいときにはリング状コイル7に流れる電流も大きくなる。そのリング状コイル7に流れる電流を制御する第1〜第4のスイッチ81〜84の開閉は、ゼロクロス検出手段9の出力に基づいて、制御手段10が切替手段8を介して行うように構成されている。制御手段10は、ゼロクロス検出手段9がゼロクロス近傍を検出した時に、切替手段8を駆動する。   On the other hand, the current flowing through the ring-shaped coil 7 is proportional to the high-frequency current flowing through the heating coil 3, and the waveform thereof is similar to that of the heating coil. When the heating amount is large, the current flowing through the ring-shaped coil 7 also increases. The first to fourth switches 81 to 84 that control the current flowing through the ring-shaped coil 7 are configured to be opened and closed by the control means 10 via the switching means 8 based on the output of the zero cross detection means 9. ing. The control means 10 drives the switching means 8 when the zero cross detection means 9 detects the vicinity of the zero cross.

かかる構成により、図7に示すように商用電圧の位相とリング状コイル7に流れる電流の振幅絶対値の位相は略合っているので、ゼロクロス検出手段9が商用電圧のゼロクロス点を検出したときに行われる第1〜第4のスイッチ81〜84の開閉動作は、必ずリング状コイル7に流れる電流が小さい時となり、加熱コイル3に対する加熱量に関わらず第1〜第4のスイッチ81〜84の切り替えは小電流時に行われるように動作する。   With this configuration, as shown in FIG. 7, the phase of the commercial voltage and the phase of the absolute value of the current flowing through the ring-shaped coil 7 are substantially matched. Therefore, when the zero-cross detection means 9 detects the zero-cross point of the commercial voltage. The opening / closing operation of the first to fourth switches 81 to 84 that is performed is always when the current flowing through the ring coil 7 is small, and the first to fourth switches 81 to 84 do not depend on the heating amount for the heating coil 3. The switching is performed so as to be performed at a small current.

上記説明したように、実施の形態1によれば、加熱コイル3の近傍に該加熱コイル3と略平行に同心状に配置された第1コイル71〜第3コイル73からなる3つのリング状コイル7を設け、切換手段8によって第1コイル71〜第3コイル73に誘起される2次電流の向きを、選択された所定のリング状コイルについては他のリング状コイルとは逆方向に流れるように、第1コイル71〜第3コイル73のコイル端相互の接続を切り換えるようにしたので、磁界を弱める部分と強める部分を同時に作ることができる。このとき、第1コイル71〜第3コイル73に流れる2次電流が小さくなるので、単一のリング状コイルを用いて磁界を弱める部分を作るだけの場合よりも、少ない2次電流で調理器具1に局部的な発熱集中をもった発熱分布を得ることができる。   As described above, according to the first embodiment, the three ring-shaped coils including the first coil 71 to the third coil 73 disposed concentrically in the vicinity of the heating coil 3 and substantially parallel to the heating coil 3. 7 so that the direction of the secondary current induced in the first coil 71 to the third coil 73 by the switching means 8 flows in the direction opposite to that of the other ring coils for the selected predetermined ring coil. In addition, since the connection between the coil ends of the first coil 71 to the third coil 73 is switched, a portion for weakening the magnetic field and a portion for strengthening the magnetic field can be formed simultaneously. At this time, since the secondary current flowing through the first coil 71 to the third coil 73 becomes small, the cooking utensil is less with the secondary current than the case where only a portion that weakens the magnetic field is made using a single ring coil. 1, a heat generation distribution having local heat generation concentration can be obtained.

さらに、加熱コイル3の発生する磁界エネルギーは加熱コイル3の上部にあるリング状コイルから別のリング状コイルに移動し、その別のリング状コイルの上部の調理器具1の底部に達することになり無駄なエネルギーがなくなるため、効率が向上し省エネルギーにもなる。このため、リング状コイル7の冷却構造を簡素化することができる。そのため、誘導加熱装置を小型化、軽量化することもできる。また、リング状コイル7に流れる2次電流を小さくすることができるため、導電性リングの接続を切り替える第1〜第4のスイッチ81〜84には許容開閉電流の小さい小型で低コストなものを用いることができ、耐久性を向上することもできる。   Furthermore, the magnetic field energy generated by the heating coil 3 moves from the ring-shaped coil at the top of the heating coil 3 to another ring-shaped coil, and reaches the bottom of the cooking utensil 1 above the other ring-shaped coil. Since there is no wasted energy, efficiency is improved and energy is saved. For this reason, the cooling structure of the ring-shaped coil 7 can be simplified. Therefore, the induction heating device can be reduced in size and weight. In addition, since the secondary current flowing through the ring-shaped coil 7 can be reduced, the first to fourth switches 81 to 84 for switching the connection of the conductive ring are small and low-cost switches having a small allowable switching current. It can be used and durability can also be improved.

なお、リング状コイル7に流れる電流が大きいときに第1〜第4のスイッチ81〜84を開閉すると、加熱コイル3に流れる電流が急激に変化するので、高周波変換回路8を構成する部品を劣化させる恐れがあるが、この実施の形態1においてはゼロクロス検出手段9を備え、該ゼロクロス検出手段9によって商用電圧のゼロクロス点、またはその近傍で第1〜第4のスイッチ81〜84の開閉を行うようにしているので、リング状コイル7に流れる電流が大きいときに切替手段8を動作させるような制御を行っても、高周波変換回路4を構成する部品を劣化させる恐れがない。このため、高周波変換回路4を構成する部品に小容量のものを用いることができる。なお、この場合にも第1〜第4のスイッチ81〜84も勿論小型のものを用い得るが、実施の形態1のリング状コイル7及び切替手段8の構成では、上記のようにリング状コイル7に流れる2次電流を小さくすることができるため、ゼロクロス検出手段9を省くことも差し支えない。   If the first to fourth switches 81 to 84 are opened and closed when the current flowing through the ring coil 7 is large, the current flowing through the heating coil 3 changes abruptly, so that the components constituting the high-frequency conversion circuit 8 are deteriorated. In the first embodiment, the zero cross detection means 9 is provided, and the first to fourth switches 81 to 84 are opened and closed at or near the zero cross point of the commercial voltage by the zero cross detection means 9. Therefore, even if control is performed such that the switching means 8 is operated when the current flowing through the ring-shaped coil 7 is large, there is no possibility that the components constituting the high-frequency conversion circuit 4 will be deteriorated. For this reason, a small-capacity component can be used for the components constituting the high-frequency conversion circuit 4. In this case as well, the first to fourth switches 81 to 84 can of course be small, but in the configuration of the ring coil 7 and the switching means 8 of the first embodiment, as described above, the ring coil Since the secondary current flowing through 7 can be reduced, the zero cross detection means 9 can be omitted.

また、図6に示すように加熱量が小さいときには加熱コイル3、及びリング状コイル7に流れる電流は商用電圧のゼロクロス近傍に関係無く小さいため、例えば加熱量が小さい時にのみ切替手段8を動作させ、その後加熱量をアップさせるように制御する場合には、第1〜第4のスイッチ81〜84は許容開閉電流の小さい小型で低コストなものでも差支えない。さらに、この実施の形態1ではリング状コイル7の接続を変更するスイッチが複数必要となるが、2次電流を小さくすることができるため、小さなコストアップに抑えることができる。また、リング状コイル7は、導電性材料からなる平板を用いて形成したが、材料の種類、形状は例示したものに限定されるものではなく、例えば加熱コイル3と同様に渦巻き状の電線としても差し支えない。   In addition, as shown in FIG. 6, when the heating amount is small, the current flowing through the heating coil 3 and the ring coil 7 is small regardless of the vicinity of the zero cross of the commercial voltage, so that the switching means 8 is operated only when the heating amount is small, for example. When the control is performed so as to increase the heating amount thereafter, the first to fourth switches 81 to 84 may be small and low cost with a small allowable switching current. Further, in the first embodiment, a plurality of switches for changing the connection of the ring-shaped coil 7 are required. However, since the secondary current can be reduced, it is possible to suppress a small cost increase. Further, the ring-shaped coil 7 is formed using a flat plate made of a conductive material, but the type and shape of the material are not limited to those illustrated, for example, as a spiral wire as in the heating coil 3 There is no problem.

また、切替手段8は、第1のモード〜第3のモードの3つのモードが得られるようにしたが、第2のモードと第3のモードは何れか一方でもよい。また、4モード以上とすることもできる。さらに、複数のリング状コイル7として、それぞれ1ターンに卷回された第1コイル71、第2コイル72、及び第3コイル73の3つを用いたが、これに限定されるものでは無く、複数のリング状コイルのターン数(ループ数)は互いに異なっていても良いし、リング状コイルの設置数は2以上であればよい。要するに、複数のリング状コイルの接続により、少なくとも一つのリング状コイルの2次電流の方向が他のリング状コイルと逆向き(加熱コイル3に流れる1次電流と同方向)となるようなものであればよい。従って、切替手段8の接続も例示されたものに限定されないことは当然である。   In addition, the switching unit 8 is configured to obtain three modes of the first mode to the third mode, but either the second mode or the third mode may be used. Moreover, it can also be set to four or more modes. Furthermore, as the plurality of ring-shaped coils 7, three of the first coil 71, the second coil 72, and the third coil 73 wound in one turn are used, but the present invention is not limited to this. The number of turns (number of loops) of the plurality of ring-shaped coils may be different from each other, and the number of ring-shaped coils may be two or more. In short, by connecting a plurality of ring coils, the direction of the secondary current of at least one ring coil is opposite to that of the other ring coils (the same direction as the primary current flowing through the heating coil 3). If it is. Therefore, it is natural that the connection of the switching unit 8 is not limited to the illustrated one.

即ち、複数のリング状コイルには、それぞれ加熱コイル3に流れる電流と逆向きに流れようとするエネルギーが生じるが、そのエネルギーを複数のリング状コイルまたはそのセットの間で差をつけ、エネルギーの大きいリング状コイルまたはそのセットで目的とする他の所定のリング状コイルのエネルギーに打ち勝つように複数のリング状コイルのコイル端を接続すれば良い。なお、リング状コイルに発生する、加熱コイル3に流れる電流と逆向きに流れようとするエネルギーは、リング状コイルの径が大きいほど、また、リング状コイルのターン数(ループ数)が多い程大きくなる。   That is, energy is generated in each of the plurality of ring coils in the direction opposite to the current flowing in the heating coil 3, but the energy is differentiated between the plurality of ring coils or the set thereof. What is necessary is just to connect the coil end of a some ring-shaped coil so that the energy of the other predetermined ring-shaped coil intended as a large ring-shaped coil or its set may be overcome. The energy generated in the ring-shaped coil and going to flow in the direction opposite to the current flowing in the heating coil 3 is larger as the diameter of the ring-shaped coil is larger and the number of turns (number of loops) of the ring-shaped coil is larger. growing.

更にまた、上記実施の形態1では、高周波変換回路4として電流共振ハーフブリッジ型インバータを用いているが、勿論これに限られるものでは無く、例えば電流共振フルブリッジ型インバータや電圧共振型インバータ等でも良い。また、力率コンデンサ62は9μF、チョークコイル63は100μHとしたが、これに限定されるものでは無く、商用電圧の位相と整流電圧の位相が揃うように、また、加熱量が大きい時に整流出力の電圧瞬時値の最低値がゼロ付近まで低下するように設定すれば良い。さらに、整流手段6の構成も例示したものに限定されるものでは無く、商用電圧の位相と整流電圧の位相が揃うように、また、加熱量が大きい時に整流電圧がゼロ付近まで低下するような構成であれば良い。また、商用電圧のゼロクロス近傍で加熱コイル3に流れる高周波電流が小さくなるような構成であれば良い。   Furthermore, in the first embodiment, a current resonance half-bridge type inverter is used as the high-frequency conversion circuit 4. However, the present invention is not limited to this. For example, a current resonance full-bridge inverter, a voltage resonance inverter, or the like can be used. good. Further, although the power factor capacitor 62 is 9 μF and the choke coil 63 is 100 μH, it is not limited to this, and the rectified output is set so that the phase of the commercial voltage and the phase of the rectified voltage are aligned and when the heating amount is large. What is necessary is just to set so that the minimum value of the voltage instantaneous value of this may fall to near zero. Further, the configuration of the rectifying means 6 is not limited to the exemplified one, and the phase of the commercial voltage and the phase of the rectified voltage are aligned, and the rectified voltage is reduced to near zero when the heating amount is large. Any configuration is acceptable. Further, the configuration may be such that the high-frequency current flowing through the heating coil 3 near the zero cross of the commercial voltage is small.

また、第1〜第4のスイッチ81〜84の種類等は特に限定されるものではなく、例えば公知の各種電子的スイッチ、機械的スイッチ等から小型で低コストなものを適宜選択して用いることができる。因みに上記実施の形態1では、構成が簡素であり、汎用的かつ小型で安価な例えば電磁リレーなども用いることができる。このため、装置を小型化、軽量化することが可能であり、それに伴って耐久性を向上することも容易である。また、誘導加熱調理器として、IHクッキングヒータのようなトッププレート2を有するものについて例示したが、例えばIH炊飯器等、他の誘導加熱調理器でも良く、さらに誘導加熱を利用した例えば誘導加熱式アイロンなど、他の誘導加熱装置にも同様に利用できることは言うまでもない。   The types of the first to fourth switches 81 to 84 are not particularly limited. For example, small and low-cost ones selected from various known electronic switches and mechanical switches are used as appropriate. Can do. In the first embodiment, for example, a general-purpose, small, and inexpensive electromagnetic relay can be used. For this reason, it is possible to reduce the size and weight of the apparatus, and it is easy to improve the durability accordingly. In addition, although the induction heating cooker has been illustrated as having an upper plate 2 such as an IH cooking heater, other induction heating cookers such as an IH rice cooker may be used. For example, an induction heating iron using induction heating may be used. Needless to say, the present invention can be applied to other induction heating devices as well.

この発明の実施の形態1に係る誘導加熱装置としての誘導加熱調理器の要部構成を示す回路図。The circuit diagram which shows the principal part structure of the induction heating cooking appliance as the induction heating apparatus which concerns on Embodiment 1 of this invention. 図1に示された複数のリング状コイルの構成と、そのリング状コイルに流れる2次電流の向きが一部のリング状コイルでは逆方向になるように切り換える切換手段を概念的に示す回路図。1 is a circuit diagram conceptually showing the configuration of a plurality of ring-shaped coils shown in FIG. 1 and switching means for switching so that the direction of secondary current flowing in the ring-shaped coils is reversed in some ring-shaped coils. . 図2に示されたリング状コイルに、第1のモードにおいて流れる電流経路(a)と、調理器具の底部の加熱分布(b)を説明する図。The figure explaining the current distribution (a) which flows into the ring-shaped coil shown by FIG. 2 in a 1st mode, and the heating distribution (b) of the bottom part of a cooking appliance. 図2に示されたリング状コイルに、第2のモードにおいて流れる電流経路(a)と、調理器具の底部の加熱分布(b)を説明する図。The figure explaining the current distribution (a) which flows into the ring-shaped coil shown by FIG. 2 in a 2nd mode, and the heating distribution (b) of the bottom part of a cooking appliance. 図2に示されたリング状コイルに、第3のモードにおいて流れる電流経路(a)と、調理器具の底部の加熱分布(b)を説明する図。The figure explaining the current distribution (a) which flows into the ring-shaped coil shown by FIG. 2 in a 3rd mode, and the heating distribution (b) of the bottom part of a cooking appliance. 図1の回路において、加熱出力が小さいときの、商用電圧と、整流電圧と、加熱コイルに流れる高周波電流、の時間変化を対応させて示す波形図。In the circuit of FIG. 1, the waveform diagram which shows the time change of the commercial voltage, the rectified voltage, and the high-frequency current flowing through the heating coil when the heating output is small. 図1において、加熱出力が大きいときの、商用電圧と、整流電圧と、加熱コイルに流れる高周波電流、の時間変化を対応させて示す波形図。In FIG. 1, the wave form diagram which shows the time change of a commercial voltage, a rectification voltage, and the high frequency current which flows into a heating coil when a heating output is large correspondingly. 図1に示されたゼロクロス検出回路の一例を示す回路図。FIG. 2 is a circuit diagram showing an example of a zero cross detection circuit shown in FIG. 1. 図8に示されたゼロクロス検出回路の動作を説明する図。The figure explaining operation | movement of the zero cross detection circuit shown by FIG. 図1に示されたゼロクロス検出回路の他の例を示す回路図。FIG. 4 is a circuit diagram showing another example of the zero-cross detection circuit shown in FIG. 1. 図10に示されたゼロクロス検出回路の動作を説明する図。The figure explaining operation | movement of the zero crossing detection circuit shown by FIG.

符号の説明Explanation of symbols

1 調理器具(被加熱物)、 2 トッププレート、 3 加熱コイル、 31 (径小の)加熱コイル、 32 (径大の)加熱コイル、 4 高周波変換回路、 5 商用交流電源入力部、 6 整流手段、 7 リング状コイル、 71 第1コイル、 72 第2コイル、 73 第3コイル、 71a、71b、72a、72b、73a、73b コイル端、 8 切替手段、 81 第1のスイッチ、 82 第2のスイッチ、 83 第3のスイッチ、 84 第4のスイッチ、 85 リング電流制限抵抗、 9 ゼロクロス検出手段、 10 制御手段、 11 制御電圧生成手段、 A 空間部。   DESCRIPTION OF SYMBOLS 1 Cooking utensil (to-be-heated object), 2 Top plate, 3 Heating coil, 31 (Small diameter) Heating coil, 32 (Large diameter) Heating coil, 4 High frequency conversion circuit, 5 Commercial AC power supply input part, 6 Rectification means 7 ring-shaped coil, 71 first coil, 72 second coil, 73 third coil, 71a, 71b, 72a, 72b, 73a, 73b coil end, 8 switching means, 81 first switch, 82 second switch 83 Third switch, 84 Fourth switch, 85 Ring current limiting resistor, 9 Zero cross detection means, 10 Control means, 11 Control voltage generation means, A Space part.

Claims (5)

被加熱物を誘導加熱するための平面状に卷回された加熱コイルと、この加熱コイルの近傍に該加熱コイルの成す面と略平行に同心状に配置された複数のリング状コイルと、これら複数のリング状コイルに誘起される2次電流の向きを、所定のリング状コイルについては他のリング状コイルとは逆方向に流れるように、該複数のリング状コイルのコイル端相互の接続を選択的に切り換える切換手段を備えたことを特徴とする誘導加熱装置。   A heating coil wound in a planar shape for induction heating of an object to be heated, a plurality of ring coils arranged concentrically in the vicinity of the heating coil and substantially parallel to the surface formed by the heating coil, and these Connect the coil ends of the ring coils so that the direction of the secondary current induced in the ring coils flows in the direction opposite to the other ring coils for a given ring coil. An induction heating apparatus comprising switching means for selectively switching. 上記加熱コイルは、渦巻き状に卷回された径小の加熱コイルと、この径小の加熱コイルの外周側に空間部を介して同心に配置され、該径小の加熱コイルに直列に接続された渦巻き状に卷回された径大の加熱コイルからなることを特徴とする請求項1に記載の誘導加熱装置。   The heating coil is arranged concentrically on the outer peripheral side of the small-diameter heating coil via a space portion and is connected in series to the small-diameter heating coil. The induction heating apparatus according to claim 1, comprising a large-diameter heating coil wound in a spiral shape. 上記リング状コイルは、外周部に設けられた第1コイルと、この第1コイルの内周側に空間部を介して設けられ、上記2次電流のエネルギーが上記第1コイルと異なる第2コイルを備え、上記切替手段はこれら第1、及び第2コイルの各コイル端を何れも開放状態にする第1のモードと、上記2次電流の向きが、上記第1及び第2コイルの一方には上記加熱コイルに流れる電流と逆方向で、上記第1及び第2コイルの他方には上記加熱コイルに流れる電流と同方向に流れるように接続する第2のモードを有するものであることを特徴とする請求項1または請求項2に記載の誘導加熱装置。   The ring-shaped coil includes a first coil provided on the outer peripheral portion and a second coil provided on the inner peripheral side of the first coil via a space portion, and the energy of the secondary current is different from that of the first coil. The switching means includes a first mode in which both ends of the first and second coils are opened, and the direction of the secondary current is set to one of the first and second coils. Is in a direction opposite to the current flowing through the heating coil, and the other of the first and second coils has a second mode of connecting to flow in the same direction as the current flowing through the heating coil. The induction heating apparatus according to claim 1 or 2. 上記リング状コイルは、上記加熱コイルと上記被加熱物の間に配設されていることを特徴とする請求項1から請求項3の何れかに記載の誘導加熱装置。   The induction heating device according to any one of claims 1 to 3, wherein the ring-shaped coil is disposed between the heating coil and the object to be heated. 商用電圧のゼロクロス近傍を検出するゼロクロス検出手段を備え、このゼロクロス検出手段がゼロクロスを検出したときに上記切替手段の切り替えを行うようにしたことを特徴とする請求項1から請求項4の何れかに記載の誘導加熱装置。   5. The device according to claim 1, further comprising: a zero-cross detection unit that detects the vicinity of the zero-cross of the commercial voltage, wherein the switching unit is switched when the zero-cross detection unit detects the zero-cross. The induction heating device described in 1.
JP2008303310A 2008-11-28 2008-11-28 Induction heating device Active JP5063566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303310A JP5063566B2 (en) 2008-11-28 2008-11-28 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303310A JP5063566B2 (en) 2008-11-28 2008-11-28 Induction heating device

Publications (2)

Publication Number Publication Date
JP2010129398A true JP2010129398A (en) 2010-06-10
JP5063566B2 JP5063566B2 (en) 2012-10-31

Family

ID=42329646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303310A Active JP5063566B2 (en) 2008-11-28 2008-11-28 Induction heating device

Country Status (1)

Country Link
JP (1) JP5063566B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678194U (en) * 1979-11-20 1981-06-25
JPH07122353A (en) * 1993-10-20 1995-05-12 Sanyo Electric Co Ltd Induction heating cooker
JP2006066258A (en) * 2004-08-27 2006-03-09 Toshiba Corp Heating cooker
JP2007200752A (en) * 2006-01-27 2007-08-09 Toshiba Corp Heating cooker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678194U (en) * 1979-11-20 1981-06-25
JPH07122353A (en) * 1993-10-20 1995-05-12 Sanyo Electric Co Ltd Induction heating cooker
JP2006066258A (en) * 2004-08-27 2006-03-09 Toshiba Corp Heating cooker
JP2007200752A (en) * 2006-01-27 2007-08-09 Toshiba Corp Heating cooker

Also Published As

Publication number Publication date
JP5063566B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4864850B2 (en) Induction heating cooker
JP4909968B2 (en) Electromagnetic induction heating device
JP5658692B2 (en) Induction heating device
KR101968553B1 (en) Induction heat cooking apparatus to implement wpt and pfc power converter
JP5844017B1 (en) Induction heating cooker and control method thereof
JP2011044422A (en) Induction heating cooker
US20170223780A1 (en) Induction cooking apparatus
JP6038343B2 (en) Induction heating cooker
WO2013137287A1 (en) Induction heat cooker
JP4384085B2 (en) Induction heating cooker
JP4193095B2 (en) Induction heating cooker
JP6038344B2 (en) Induction heating cooker
JP6211175B2 (en) Induction heating cooker
JP5063566B2 (en) Induction heating device
JP2016207544A (en) Induction heating cooker
JP5674896B2 (en) Induction heating cooker
JP5734390B2 (en) Induction heating cooker
JP5246100B2 (en) rice cooker
JP5289537B2 (en) Induction heating cooker
JP4193154B2 (en) Induction heating cooker
JP5404743B2 (en) Induction heating cooker
JP2010044984A (en) Induction heating device
US20240039387A1 (en) Power converting device and home appliance including the same
JP6916098B2 (en) Electromagnetic induction heating cooker
JP5391984B2 (en) Induction heating rice cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5063566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250