JP2010127335A - Right and left side drive force distribution device - Google Patents

Right and left side drive force distribution device Download PDF

Info

Publication number
JP2010127335A
JP2010127335A JP2008300743A JP2008300743A JP2010127335A JP 2010127335 A JP2010127335 A JP 2010127335A JP 2008300743 A JP2008300743 A JP 2008300743A JP 2008300743 A JP2008300743 A JP 2008300743A JP 2010127335 A JP2010127335 A JP 2010127335A
Authority
JP
Japan
Prior art keywords
front wheel
force distribution
vehicle
driving force
atts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008300743A
Other languages
Japanese (ja)
Inventor
Masakatsu Hori
昌克 堀
Kiyoshi Wakamatsu
清志 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008300743A priority Critical patent/JP2010127335A/en
Publication of JP2010127335A publication Critical patent/JP2010127335A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a right and left side driving force distribution device performed such as the suppression of a sense of incongruity during turning traveling. <P>SOLUTION: When determination at step S2 is Yes, an ATTS-ECU 16 sets a tack-in correction base value Wctb based on a longitudinal acceleration Gx at step S7, a lateral acceleration correction coefficient Kgy is set based on the absolute value ¾Gy¾ of a lateral acceleration Gy at step S8, and a vehicle speed correction coefficient Kv is set based on a vehicle speed v at step S9. Then, the ATTS-ECU 16 calculates a tack-in correction value Wct by multiplying the tack-in correction base value Wctb by the lateral acceleration correction coefficient Kgy and the vehicle speed correction coefficient Kv at step S10, corrects a front wheel load Wf using the tack-in correction value Wct at step S11, and after setting a front wheel tire lateral force estimation value Yf based on the front wheel load Wf and a front wheel tire slip angle αf at step S12, shifts to step S3, for setting the driving force distribution, and outputting a driving current to an ATTS 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、旋回走行時における違和感の抑制等を図った左右駆動力配分装置に関する。   The present invention relates to a left / right driving force distribution device that suppresses a sense of incongruity during turning.

本出願人は、4輪自動車(以下、単に自動車と記す)の走行安定性を向上させる装置として、左右駆動輪間での駆動力配分を行うATTS(Active Torque Transfer System:左右駆動力配分装置)を過去に提案した(特許文献1参照)。通常の自動車では左右駆動輪に常に50対50の固定割合で駆動力が配分されるが、ATTSを搭載した自動車では、旋回走行時に外輪側の駆動力配分を内輪側の駆動力配分に対して大きくすることで、旋回能力の大幅な向上を実現できる。ATTSでは、例えば、前輪操舵量や車速、タイヤ横力等に基づき、2輪の車両モデルを用いて規範ヨーレイトを設定した後、規範ヨーレイトに実ヨーレイトを一致させるように駆動力配分を決定する。
特許第3340038号
The present applicant is an ATTS (Active Torque Transfer System) that distributes driving force between left and right driving wheels as a device for improving the running stability of a four-wheeled vehicle (hereinafter simply referred to as an automobile). Has been proposed in the past (see Patent Document 1). In normal automobiles, the driving force is always distributed to the left and right driving wheels at a fixed ratio of 50:50, but in an automobile equipped with ATTS, the driving force distribution on the outer ring side is compared to the driving force distribution on the inner ring side when turning. By making it larger, it is possible to achieve a significant improvement in turning ability. In ATTS, for example, based on the front wheel steering amount, vehicle speed, tire lateral force, and the like, after setting the reference yaw rate using a two-wheel vehicle model, the driving force distribution is determined so that the actual yaw rate matches the reference yaw rate.
Patent No. 3340038

自動車の走行安定性は上述したATTSを搭載することで顕著に向上するが、通常の自動車とは車体挙動が少なからず異なってしまうことから、運転者が違和感を覚える虞があった。例えば、旋回走行中に運転者がアクセルペダルの踏み込みを緩めると、通常の自動車の場合には、緩減速による重心の前輪側への移動に伴って車体が旋回内側に回り込むタックインが生じる。ところが、ATTSを搭載した自動車では、左右駆動輪に対する駆動力配分が適切になされることから、このタックインは殆ど生じなくなる。そのため、アクセルワークを併用した操縦を日常的に行っている運転者は、一時的にATTSを搭載した自動車を運転する場合において、そのような操縦ができなくなって違和感を覚えるとともに、ステアリングホイールの切り増し等を余儀なくされるのである。   Although the running stability of an automobile is remarkably improved by installing the above-described ATTS, there is a possibility that the driver may feel uncomfortable because the behavior of the vehicle body is not a little different from that of a normal automobile. For example, when the driver loosens the accelerator pedal during turning, a tuck-in occurs in the case of a normal automobile, in which the vehicle body turns inwardly as the center of gravity moves toward the front wheels due to slow deceleration. However, in an automobile equipped with ATTS, since the driving force is appropriately distributed to the left and right driving wheels, this tuck-in hardly occurs. For this reason, a driver who routinely controls using accelerator work, when temporarily driving an ATTS-equipped vehicle, feels uncomfortable because such operation is not possible and turns the steering wheel off. It will be forced to increase.

本発明は上記状況に鑑みなされたもので、旋回走行時における違和感の抑制等を図った左右駆動力配分装置を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a left / right driving force distribution device that suppresses a sense of incongruity during turning.

第1の発明に係る左右駆動力配分装置は、4輪車両に搭載され、車両モデルから出力される規範車両状態量に実車両状態量を近づけるべく、左右駆動輪への駆動力配分を可変制御する左右駆動力配分装置であって、前輪荷重を推定する前輪荷重推定手段と、前輪荷重の増加時にタックインを生じさせるべく、前記前輪荷重推定手段の推定に基づいて前記車両モデルを補正するタックイン補正手段とを備えたことを特徴とする。   The left and right driving force distribution device according to the first invention is mounted on a four-wheel vehicle and variably controls the driving force distribution to the left and right driving wheels so as to bring the actual vehicle state quantity close to the reference vehicle state quantity output from the vehicle model. A right-and-left driving force distribution device that corrects the vehicle model based on the estimation of the front wheel load estimation unit and a front wheel load estimation unit that estimates a front wheel load and a tuck-in when the front wheel load increases Means.

また、第2の発明は、第1の発明に係る左右駆動力配分装置において、車体の横加速度を検出する横加速度検出手段を更に備え、前記タックイン補正手段は、車体の横加速度が大きい場合には、車体の横加速度が小さい場合に較べて前記タックインを強めることを特徴とする。   According to a second aspect of the present invention, in the left / right driving force distribution device according to the first aspect of the present invention, the lateral driving force distribution device further includes a lateral acceleration detecting means for detecting a lateral acceleration of the vehicle body, and the tack-in correcting means is provided when the lateral acceleration of the vehicle body is large. Is characterized in that the tack-in is strengthened as compared with the case where the lateral acceleration of the vehicle body is small.

また、第3の発明は、第1または第2の発明に係る左右駆動力配分装置において、車速を検出する車速検出手段を更に備え、前記タックイン補正手段は、車速が高い場合には、車速が低い場合に較べて前記タックインを弱めることを特徴とする。   According to a third aspect of the present invention, in the left / right driving force distribution device according to the first or second aspect of the present invention, the right and left driving force distribution device further includes vehicle speed detection means for detecting the vehicle speed, and the tuck-in correction means has a vehicle speed when the vehicle speed is high. It is characterized in that the tack-in is weakened as compared with the case where it is low.

第1の発明によれば、例えばアクセルペダルの踏み込みを緩めると車両モデルが補正されてタックインが生じるため、運転者はアクセルワークを併用した操縦が可能となる。また、第2の発明によれば、急旋回走行時等にタックインが強くなるため、アクセルワークを併用した操縦が容易となる。また、第3の発明によれば、高車速領域での旋回時にタックインが弱くなるため、操縦安定性が向上する。   According to the first aspect of the invention, for example, when the accelerator pedal is depressed, the vehicle model is corrected and tuck-in occurs, so that the driver can control the vehicle together with the accelerator work. In addition, according to the second invention, since the tuck-in becomes strong during a sudden turn and the like, the steering using the accelerator work is facilitated. Further, according to the third aspect, since the tuck-in becomes weak when turning in the high vehicle speed region, the steering stability is improved.

以下、本発明に係る左右駆動力配分装置をFF(フロントエンジン・フロントドライブ)式4輪自動車(以下、単に自動車と記す)に適用した一実施形態について、図面を参照して詳細に説明する。
図1は実施形態に係る自動車の装置構成を示す平面図であり、図2は実施形態に係るSTG−ECUの概略構成を示すブロック図であり、図3は実施形態に係るATTS−ECUの概略構成を示すブロック図である。
Hereinafter, an embodiment in which a left / right driving force distribution device according to the present invention is applied to an FF (front engine / front drive) type four-wheeled vehicle (hereinafter simply referred to as a vehicle) will be described in detail with reference to the drawings.
FIG. 1 is a plan view showing an apparatus configuration of an automobile according to the embodiment, FIG. 2 is a block diagram showing a schematic configuration of the STG-ECU according to the embodiment, and FIG. 3 is an outline of the ATTS-ECU according to the embodiment. It is a block diagram which shows a structure.

<車両の装置構成>
先ず、図1を参照して、自動車の装置構成について説明する。説明にあたり、4本の車輪やそれらに対応して配置された部材については、それぞれ数字の符号に前後左右を示す添字を付して例えば車輪4fl(左前)、車輪4fr(右前)、車輪4rl(左後)、車輪4rr(右後)と記すとともに、総称する場合には例えば車輪4と記す。
<Vehicle device configuration>
First, an apparatus configuration of an automobile will be described with reference to FIG. In the description, for the four wheels and the members arranged corresponding thereto, subscripts indicating the front, rear, left and right are attached to the numerals of the numerals, for example, wheel 4fl (front left), wheel 4fr (front right), wheel 4rl ( Left rear) and wheels 4rr (right rear), and collectively referred to as wheels 4, for example.

図1に示すように、自動車1は、車体2の前後左右に、タイヤ3が装着された4つの車輪4を備えている。また、自動車1には、操舵アシストを行うEPS(Electric Power Steering:電動パワーステアリング)11と、ステアリングギヤレシオを連続的に変化させるVGS(Variable Gear ratio Steering system)12と、左右前輪4fl,frに対する駆動力を連続的に可変配分するATTS(左右駆動力配分装置)13と、EPS11およびVGS12を駆動制御するSTG−ECU15と、ATTS13を駆動制御するATTS−ECU16とが設置されている。   As shown in FIG. 1, the automobile 1 includes four wheels 4 on which tires 3 are mounted on the front, rear, left and right of the vehicle body 2. In addition, the automobile 1 includes an EPS (Electric Power Steering) 11 that performs steering assist, a VGS (Variable Gear ratio Steering system) 12 that continuously changes the steering gear ratio, and driving for the left and right front wheels 4fl and fr. An ATTS (left / right driving force distribution device) 13 that continuously and variably distributes the force, an STG-ECU 15 that drives and controls the EPS 11 and the VGS 12, and an ATTS-ECU 16 that drives and controls the ATTS 13 are installed.

更に、自動車1には、車速を検出する車速センサ(車速検出手段)21、ステアリングホイール7の操舵角を検出する操舵角センサ22、運転者の操舵トルクを検出する操舵トルクセンサ23、車体2のヨーレイトを検出するヨーレイトセンサ24と、車体2の前後加速度を検出する前後Gセンサ25と、車体2の横加速度を検出する横Gセンサ(横加速度検出手段)26等が適所に配置されている。   Further, the vehicle 1 includes a vehicle speed sensor (vehicle speed detection means) 21 that detects the vehicle speed, a steering angle sensor 22 that detects the steering angle of the steering wheel 7, a steering torque sensor 23 that detects the steering torque of the driver, A yaw rate sensor 24 for detecting the yaw rate, a longitudinal G sensor 25 for detecting the longitudinal acceleration of the vehicle body 2, a lateral G sensor (lateral acceleration detecting means) 26 for detecting the lateral acceleration of the vehicle body 2, and the like are arranged at appropriate positions.

STG−ECU15およびATTS−ECU16は、それぞれ、マイクロコンピュータやROM、RAM、周辺回路、入出力インタフェース、各種ドライバ等から構成されており、通信回線(本実施形態では、CAN(Controller Area Network))を介して接続されている。   Each of the STG-ECU 15 and the ATTS-ECU 16 includes a microcomputer, a ROM, a RAM, a peripheral circuit, an input / output interface, various drivers, and the like, and has a communication line (CAN (Controller Area Network) in this embodiment). Connected through.

<STG−ECU>
図2に示すように、STG−ECU15は、入力インタフェース31と、アシストトルク設定部32と、前輪操舵角設定部33と、ギヤレシオ設定部34と、出力インタフェース35とを備えている。入力インタフェース31には、車速センサ21、操舵角センサ22、操舵トルクセンサ23およびヨーレイトセンサ24からの検出信号が入力する。また、アシストトルク設定部32は、各センサ21〜24の検出信号に基づき、EPS11の目標アシストトルクTatgtを設定する。また、前輪操舵角設定部33は、車速vおよび操舵角δsに基づき、規範前輪操舵角δfrefを設定する。また、ギヤレシオ設定部34は、前輪操舵角設定部33が設定した規範前輪操舵角δfrefに基づき、ATTS13の目標ギヤレシオRgtgtを設定する。また、出力インタフェース35は、目標アシストトルクTatgtをEPS11に出力し、目標ギヤレシオRgtgtをVGS12に出力し、規範前輪操舵角δfrefをATTS−ECU16に出力する。
<STG-ECU>
As shown in FIG. 2, the STG-ECU 15 includes an input interface 31, an assist torque setting unit 32, a front wheel steering angle setting unit 33, a gear ratio setting unit 34, and an output interface 35. Detection signals from the vehicle speed sensor 21, the steering angle sensor 22, the steering torque sensor 23, and the yaw rate sensor 24 are input to the input interface 31. The assist torque setting unit 32 sets the target assist torque Tatgt of the EPS 11 based on the detection signals of the sensors 21 to 24. The front wheel steering angle setting unit 33 sets a reference front wheel steering angle δfref based on the vehicle speed v and the steering angle δs. The gear ratio setting unit 34 sets the target gear ratio Rgtgt of the ATTS 13 based on the reference front wheel steering angle δfref set by the front wheel steering angle setting unit 33. The output interface 35 outputs the target assist torque Tatgt to the EPS 11, outputs the target gear ratio Rgtgt to the VGS 12, and outputs the reference front wheel steering angle δfref to the ATTS-ECU 16.

<ATTS−ECU>
図3に示すように、ATTS−ECU16は、入力インタフェース41と、車両モデル42と、駆動力配分設定部43と、前輪荷重推定部(前輪荷重推定手段)44と、タイヤ横力推定部(タックイン補正手段)45と、出力インタフェース46とを備えている。入力インタフェース31には、ヨーレイトセンサ24、車速センサ21、前後Gセンサ25および横Gセンサ26からの検出信号の他、STG−ECU15からの規範前輪操舵角δfrefが入力する。車両モデル42は、規範前輪操舵角δfref、車速vと前輪タイヤ横力推定値Yfとに基づき、規範ヨーレイトγrefと前輪タイヤスリップ角αfとを設定する。駆動力配分設定部43は、規範ヨーレイトγrefに基づき、左右前輪3fl,3frの駆動力配分を設定する。前輪荷重推定部44は、車速vと前後加速度Gxと横加速度Gyとに基づき、前輪荷重Wfを推定する。タイヤ横力推定部は、前輪荷重Wfと前輪タイヤスリップ角αfとに基づき、前輪タイヤ横力推定値Yfを推定して車両モデル42に入力する。
<ATTS-ECU>
As shown in FIG. 3, the ATTS-ECU 16 includes an input interface 41, a vehicle model 42, a driving force distribution setting unit 43, a front wheel load estimating unit (front wheel load estimating means) 44, and a tire lateral force estimating unit (tuck-in). Correction means) 45 and an output interface 46. In addition to the detection signals from the yaw rate sensor 24, the vehicle speed sensor 21, the front / rear G sensor 25, and the lateral G sensor 26, a reference front wheel steering angle δfref from the STG-ECU 15 is input to the input interface 31. The vehicle model 42 sets a reference yaw rate γref and a front wheel tire slip angle αf based on the reference front wheel steering angle δfref, the vehicle speed v, and the front wheel tire lateral force estimated value Yf. The driving force distribution setting unit 43 sets the driving force distribution of the left and right front wheels 3fl and 3fr based on the standard yaw rate γref. The front wheel load estimation unit 44 estimates the front wheel load Wf based on the vehicle speed v, the longitudinal acceleration Gx, and the lateral acceleration Gy. The tire lateral force estimating unit estimates a front wheel tire lateral force estimated value Yf based on the front wheel load Wf and the front wheel tire slip angle αf and inputs the estimated value to the vehicle model 42.

≪実施形態の作用≫
自動車1が走行を開始すると、STG−ECU15は、各センサ21〜24の検出信号に基づいて目標アシストトルクを設定してEPS11を駆動制御するとともに、車速および操舵角に基づいて目標前輪操舵角を設定してVGS12を駆動制御する。一方、ATTS−ECU16は、図4のフローチャートにその手順を示す駆動力配分制御を所定の制御インターバル(例えば、10ms)で繰り返し実行する。
<< Operation of Embodiment >>
When the automobile 1 starts traveling, the STG-ECU 15 sets the target assist torque based on the detection signals of the sensors 21 to 24 to drive and control the EPS 11, and sets the target front wheel steering angle based on the vehicle speed and the steering angle. The VGS 12 is driven and controlled by setting. On the other hand, the ATTS-ECU 16 repeatedly executes the driving force distribution control whose procedure is shown in the flowchart of FIG.

<駆動力配分制御>
駆動力配分制御を開始すると、ATTS−ECU16は、図4のステップS1で自動車1が旋回走行中であるか否かを判定し、この判定がNoであれば何ら処理を行わずにスタートに戻る。なお、ステップS1の判定は、操舵角センサ22やヨーレイトセンサ24、横Gセンサ26等の検出信号に基づいて行うことができる。
<Driving force distribution control>
When the driving force distribution control is started, the ATTS-ECU 16 determines whether or not the vehicle 1 is turning in step S1 of FIG. 4. If this determination is No, the ATTS-ECU 16 returns to the start without performing any processing. . Note that the determination in step S1 can be made based on detection signals from the steering angle sensor 22, the yaw rate sensor 24, the lateral G sensor 26, and the like.

自動車1が旋回走行を行ってステップS1の判定がYesになると、ATTS−ECU16は、ステップS2で前後Gセンサ25によって検出された前後加速度Gxが所定の減速判定閾値Gdth(負の値)を下回ったか否かを判定する。そして、この判定がNoであれば、ATTS−ECU16は、ステップS3で、図5に示す車両モデルを用いて規範ヨーレイトγrefと前輪タイヤスリップ角αfとを設定する。しかる後、ATTS−ECU16は、ステップS4で規範ヨーレイトγrefとヨーレイトセンサ24から入力した実ヨーレイトγrealとの差に基づき左右前輪3fl,3frの駆動力配分を設定し、ステップS6でATTS13に駆動電流を出力する。ステップS2で前後加速度Gxが減速判定閾値Gdthを下回ったか否かを判定する理由は、後述するステップS7〜S12の処理を常時行った場合、ATTS−ECU16の演算処理量が増大する(ATTS−ECU16の負担が不要に増大する)ためである。   When the vehicle 1 turns and the determination in step S1 is Yes, the ATTS-ECU 16 causes the longitudinal acceleration Gx detected by the longitudinal G sensor 25 in step S2 to fall below a predetermined deceleration determination threshold Gdth (negative value). It is determined whether or not. If this determination is No, the ATTS-ECU 16 sets the reference yaw rate γref and the front tire slip angle αf using the vehicle model shown in FIG. 5 in step S3. Thereafter, the ATTS-ECU 16 sets the driving force distribution of the left and right front wheels 3fl and 3fr based on the difference between the standard yaw rate γref and the actual yaw rate γreal input from the yaw rate sensor 24 in step S4, and supplies the drive current to the ATTS 13 in step S6. Output. The reason why it is determined whether or not the longitudinal acceleration Gx is lower than the deceleration determination threshold Gdth in step S2 is that the processing amount of the ATTS-ECU 16 increases when the processes of steps S7 to S12 described later are always performed (ATTS-ECU16). This will unnecessarily increase the burden of

一方、例えば運転者がアクセルペダルの踏み込みを緩めることで自動車1が減速し、ステップS2の判定がYesになると、ATTS−ECU16は、ステップS7で前後加速度Gxに基づき図6のグラフからタックイン補正ベース値Wctbを検索・設定する。次に、ATTS−ECU16は、ステップS8で横加速度Gyの絶対値|Gy|に基づき図7のグラフから横加速度補正係数Kgyを検索・設定し、ステップS9で車速vに基づき図8のグラフから車速補正係数Kvを検索・設定する。しかる後、ATTS−ECU16は、ステップS10でタックイン補正ベース値Wctbに横加速度補正係数Kgyおよび車速補正係数Kvを乗じることにより、タックイン補正値Wctを算出する。   On the other hand, for example, when the driver decelerates the accelerator pedal, the vehicle 1 decelerates, and when the determination in step S2 becomes Yes, the ATTS-ECU 16 determines that the tuck-in correction base from the graph of FIG. 6 based on the longitudinal acceleration Gx in step S7. Search and set the value Wctb. Next, the ATTS-ECU 16 searches and sets the lateral acceleration correction coefficient Kgy from the graph of FIG. 7 based on the absolute value | Gy | of the lateral acceleration Gy in step S8, and from the graph of FIG. 8 based on the vehicle speed v in step S9. Search and set the vehicle speed correction coefficient Kv. Thereafter, the ATTS-ECU 16 calculates the tack-in correction value Wct by multiplying the tack-in correction base value Wctb by the lateral acceleration correction coefficient Kgy and the vehicle speed correction coefficient Kv in step S10.

次に、ATTS−ECU16は、ステップS11で車両モデル42で設定されている前輪荷重Wfをタックイン補正値Wctを用いて補正する(前輪荷重Wfにタックイン補正値Wctを加える)。次に、ATTS−ECU16は、ステップS12で前輪荷重Wfと前輪タイヤスリップ角αfとに基づき図9の規範タイヤモデルから前輪タイヤ横力推定値Yfを検索・設定した後、ステップS3に移行して駆動力配分の設定やATTS13への駆動電流の出力を行う。   Next, the ATTS-ECU 16 corrects the front wheel load Wf set in the vehicle model 42 in step S11 using the tack-in correction value Wct (adds the tack-in correction value Wct to the front wheel load Wf). Next, the ATTS-ECU 16 searches and sets the estimated front wheel tire lateral force value Yf from the reference tire model of FIG. 9 based on the front wheel load Wf and the front tire slip angle αf in step S12, and then proceeds to step S3. Setting of driving force distribution and output of driving current to the ATTS 13 are performed.

これにより、運転者がアクセルペダルの踏み込みを緩めて自動車1が減速すると、規範ヨーレイトγrefが増大し、適切なタックインが生じてアクセルワークを併用した操縦が行いやすくなる。   As a result, when the driver depresses the accelerator pedal and the vehicle 1 decelerates, the standard yaw rate γref increases, and an appropriate tuck-in occurs, making it easier to perform the operation using the accelerator work together.

以上で具体的実施形態の説明を終えるが、本発明の態様は上記実施形態に限られるものではない。例えば、上記実施形態では、減速時に車両モデルの前輪荷重(前輪タイヤ横力推定値)のみを補正するようにしたが、後輪荷重(後輪タイヤ横力推定値)も補正するようにしてもよい。その他、車両の具体的構成や制御の具体的手順等についても、本発明の主旨を逸脱しない範囲で適宜変更可能である。   Although description of specific embodiment is finished above, the aspect of the present invention is not limited to the above embodiment. For example, in the above embodiment, only the front wheel load (front wheel tire lateral force estimated value) of the vehicle model is corrected during deceleration, but the rear wheel load (rear wheel tire lateral force estimated value) is also corrected. Good. In addition, the specific configuration of the vehicle, the specific procedure of the control, and the like can be appropriately changed without departing from the gist of the present invention.

実施形態に係る車両の装置構成を示す平面図である。It is a top view which shows the apparatus structure of the vehicle which concerns on embodiment. 実施形態に係るSTG−ECUの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of STG-ECU which concerns on embodiment. 実施形態に係るATTS−ECUの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of ATTS-ECU which concerns on embodiment. 実施形態に係る駆動力配分制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the driving force distribution control which concerns on embodiment. 実施形態に係る車両モデルである。It is a vehicle model concerning an embodiment. 実施形態に係る前後加速度−タックイン補正ベース値グラフである。It is a longitudinal acceleration-tuck-in correction base value graph according to the embodiment. 実施形態に係る横加速度−横加速度補正係数グラフである。It is a lateral acceleration-lateral acceleration correction coefficient graph which concerns on embodiment. 実施形態に係る車速−車速補正係数グラフである。It is a vehicle speed-vehicle speed correction coefficient graph concerning an embodiment. 実施形態に係る規範タイヤモデルである。1 is a reference tire model according to an embodiment.

符号の説明Explanation of symbols

1 自動車
2 車体
4 車輪
13 ATTS(左右駆動力配分装置)
16 ATTS−ECU
21 車速センサ(車速検出手段)
24 ヨーレイトセンサ
25 前後Gセンサ
26 横Gセンサ(横加速度検出手段)
42 車両モデル
43 駆動力配分設定部
44 前輪荷重推定部(前輪荷重推定手段)
45 タイヤ横力推定部(タックイン補正手段)
1 Car 2 Car Body 4 Wheel 13 ATTS (Left / Right Driving Force Distribution Device)
16 ATTS-ECU
21 Vehicle speed sensor (vehicle speed detection means)
24 Yaw rate sensor 25 Front / rear G sensor 26 Lateral G sensor (lateral acceleration detection means)
42 Vehicle model 43 Driving force distribution setting unit 44 Front wheel load estimation unit (front wheel load estimation means)
45 Tire lateral force estimation unit (tuck-in correction means)

Claims (3)

4輪車両に搭載され、車両モデルから出力される規範車両状態量に実車両状態量を近づけるべく、左右駆動輪への駆動力配分を可変制御する左右駆動力配分装置であって、
前輪荷重を推定する前輪荷重推定手段と、
前輪荷重の増加時にタックインを生じさせるべく、前記前輪荷重推定手段の推定に基づいて前記車両モデルを補正するタックイン補正手段と
を備えたことを特徴とする左右駆動力配分装置。
A left and right driving force distribution device that is mounted on a four-wheel vehicle and variably controls the driving force distribution to the left and right driving wheels in order to bring the actual vehicle state quantity closer to the reference vehicle state quantity output from the vehicle model,
Front wheel load estimating means for estimating the front wheel load;
A left-right driving force distribution device comprising: a tuck-in correction unit that corrects the vehicle model based on the estimation of the front wheel load estimation unit so as to cause a tuck-in when the front wheel load increases.
車体の横加速度を検出する横加速度検出手段を更に備え、
前記タックイン補正手段は、車体の横加速度が大きい場合には、車体の横加速度が小さい場合に較べて前記タックインを強めることを特徴とする、請求項1に記載された左右駆動力配分装置。
It further comprises a lateral acceleration detection means for detecting the lateral acceleration of the vehicle body,
2. The left / right driving force distribution device according to claim 1, wherein the tuck-in correction unit strengthens the tuck-in when the lateral acceleration of the vehicle body is large as compared to when the lateral acceleration of the vehicle body is small.
車速を検出する車速検出手段を更に備え、
前記タックイン補正手段は、車速が高い場合には、車速が低い場合に較べて前記タックインを弱めることを特徴とする、請求項1または請求項2に記載された左右駆動力配分装置。
It further comprises vehicle speed detection means for detecting the vehicle speed,
3. The left / right driving force distribution device according to claim 1, wherein the tack-in correction means weakens the tack-in when the vehicle speed is high compared to when the vehicle speed is low.
JP2008300743A 2008-11-26 2008-11-26 Right and left side drive force distribution device Pending JP2010127335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300743A JP2010127335A (en) 2008-11-26 2008-11-26 Right and left side drive force distribution device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300743A JP2010127335A (en) 2008-11-26 2008-11-26 Right and left side drive force distribution device

Publications (1)

Publication Number Publication Date
JP2010127335A true JP2010127335A (en) 2010-06-10

Family

ID=42327883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300743A Pending JP2010127335A (en) 2008-11-26 2008-11-26 Right and left side drive force distribution device

Country Status (1)

Country Link
JP (1) JP2010127335A (en)

Similar Documents

Publication Publication Date Title
JP5827059B2 (en) Road friction coefficient estimation device, driving force distribution control device, and four-wheel drive vehicle
JP5177286B2 (en) Vehicle weight-related physical quantity estimation device and control device
JP6844500B2 (en) Vehicle behavior control device
JP2009225537A (en) Driving force control device
US11161499B2 (en) Vehicle driving assistance device
JP6364675B2 (en) Vehicle control device
JP2008168779A (en) Breaking control device for vehicle
JP5396119B2 (en) Vehicle behavior control device
EP2239179B1 (en) Vehicle steering system
JP5436069B2 (en) Vehicle behavior control device
JP2010127335A (en) Right and left side drive force distribution device
JP2011161957A (en) Central controller
JP6056240B2 (en) Vehicle behavior control device
JP5232700B2 (en) Vehicle behavior control device
JP5271640B2 (en) Control device for electric power steering
JP5302062B2 (en) Friction state estimation device
JP5271120B2 (en) Vehicle behavior control device
JP2006280099A (en) Automobile and control method thereof
JP2010058688A (en) Vehicular steering device
JP2006306163A (en) Vehicle behavior controlling device
JP5396116B2 (en) Friction state estimation device
JP4333327B2 (en) Vehicle body speed estimation control device
JP5292150B2 (en) Vehicle behavior control device
JP2006175898A (en) Behavior control device of vehicle
JP5962176B2 (en) Vehicle driving support device