JP2010126938A - Slope stabilizing construction method - Google Patents

Slope stabilizing construction method Download PDF

Info

Publication number
JP2010126938A
JP2010126938A JP2008300861A JP2008300861A JP2010126938A JP 2010126938 A JP2010126938 A JP 2010126938A JP 2008300861 A JP2008300861 A JP 2008300861A JP 2008300861 A JP2008300861 A JP 2008300861A JP 2010126938 A JP2010126938 A JP 2010126938A
Authority
JP
Japan
Prior art keywords
steel pipe
tunnel
slope
pipe tip
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008300861A
Other languages
Japanese (ja)
Inventor
Saburo Ishii
三郎 石井
Kazu Miyata
和 宮田
Masaaki Nagasawa
正明 長澤
Satoshi Ishiguro
聡 石黒
Taiji Mihara
泰司 三原
Tomohisa Mitsumasu
朝久 光増
Hiroki Kuriyagawa
弘樹 厨川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2008300861A priority Critical patent/JP2010126938A/en
Publication of JP2010126938A publication Critical patent/JP2010126938A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize a slope raising a concern about its collapse from the interior of a tunnel in tunnel excavation. <P>SOLUTION: From the interior of a tunnel T, a steel pipe pre-supporting system 10 is constructed on the upside ground in front of a working face to anchor the front end of the steel pipe pre-supporting system 10 into sliding soil S that is expected to collapse. The collapse of the sliding soil S is thus prevented with the steel pipe pre-supporting system 10. The steel pipe pre-supporting system 10 is constructed before a loosening area A arising in the ground in front of the working face reaches the soil S. The front end of the steel pipe pre-supporting system 10 is anchored to a compressed area of the sliding soil S. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はトンネル工法に関わり、特にトンネル掘削方向前方の上方に崩落の可能性がある斜面が存在する場合の斜面安定化工法に関する。   The present invention relates to a tunnel construction method, and more particularly, to a slope stabilization method when there is a slope that may collapse in front of the tunnel excavation direction.

トンネルを貫通させるに際して坑口周辺の斜面が地滑りを生じて崩落することが想定される場合には、その防止対策として坑口周辺の斜面に対して予めグラウンドアンカーや垂直縫地の施工を行うことが従来一般的である。
たとえば図5〜図6に示すようなトンネルTの施工に際して坑口1の周辺の斜面が矢印のように地滑りを生じることが想定される場合には、想定される滑り土塊Sに対して坑外の地表部から予めグラウンドアンカー2を打ち込んで滑り抵抗力を改善し、しかる後に図6に示すようにトンネルTを貫通させて坑口1を施工することが一般的である。
When it is assumed that the slope around the wellhead will collapse due to landslide when penetrating the tunnel, it is conventional to construct ground anchors and vertical sewing fabric in advance on the slope around the wellhead. It is common.
For example, when the slope around the wellhead 1 is assumed to cause a landslide as shown by an arrow in the construction of the tunnel T as shown in FIGS. In general, the ground anchor 2 is driven in advance from the ground surface portion to improve the slip resistance, and then the tunnel 1 is constructed through the tunnel T as shown in FIG.

このような場合におけるグラウンドアンカー2の施工手法としては、たとえば特許文献1に示される地盤の補強構造および補強方法が採用可能であると考えられる。
なお、図6に示しているように坑口1付近のトンネル天端を安定させる目的でいわゆるAGF工法(注入式長尺先受工法)による鋼管先受工3を施工することも一般的である。
特開2007−40028号公報
As a construction method of the ground anchor 2 in such a case, it is considered that the ground reinforcement structure and the reinforcement method disclosed in Patent Document 1, for example, can be adopted.
In addition, as shown in FIG. 6, it is also common to construct a steel pipe tip receiver 3 by a so-called AGF method (injection type long tip receiver method) for the purpose of stabilizing the tunnel top near the wellhead 1.
Japanese Patent Laid-Open No. 2007-40028

上記のように斜面崩落防止を目的として坑外の地表部からグラウンドアンカー2や垂直縫地を施工することでは、坑口周辺にそのための用地や作業ヤード、進入路を確保する必要があるから、そのためにかなりの工期や工費を必要とすることはもとより、立地条件によっては十分な作業環境を整備し得ない場合や、周辺の環境保全に充分な考慮を必要とする場合もあり、したがってトンネル工事全体の工期や工費に大きく影響する場合もある。
なお、以上のような斜面崩落はトンネル貫通時における坑口周辺において生じるのみならず、たとえば図7に示すようにトンネルが谷部の下方を通過するために土被りが小さくなるような場合においては谷部斜面が崩落する場合もあり、その対策として谷部斜面に対してグラウンドアンカーや垂直縫地を行う場合にも上記と同様の問題を生じる。
In order to prevent slope collapse as described above, it is necessary to secure a site, a work yard, and an approach path for the ground anchor 2 and vertical garment from the ground surface outside the mine. However, depending on the location, it may not be possible to maintain a sufficient working environment, or there may be cases where sufficient consideration is required for environmental protection in the surrounding area. The construction period and construction cost may be greatly affected.
The slope collapse as described above does not only occur in the vicinity of the wellhead when penetrating the tunnel. For example, in the case where the earth covering becomes small because the tunnel passes below the valley as shown in FIG. In some cases, the slope of the part collapses, and as a countermeasure, the same problem as described above occurs when a ground anchor or vertical sewing is performed on the valley slope.

そのため、トンネル掘削に際して崩落の懸念のある斜面をグラウンドアンカーや垂直縫地によることなくより容易にかつ確実に安定化させ得る有効適切な工法の開発が望まれていた。   Therefore, there has been a demand for the development of an effective and appropriate construction method that can more easily and surely stabilize slopes that may collapse during tunnel excavation without using ground anchors or vertical sewing fabrics.

上記事情に鑑み、本発明はトンネルを掘削するに当たり、トンネル掘削方向前方の上方に崩落の可能性がある斜面が存在する場合の斜面安定化工法であって、トンネル内より切羽の前方上部地盤に対して鋼管先受工を施工して該鋼管先受工の先端部を前記斜面の崩落が想定される滑り土塊中に定着することにより、該鋼管先受工によって前記滑り土塊の崩落を防止することを特徴とする。
本発明においては、切羽前方の地盤に生じる緩み領域が滑り土塊に達する以前に鋼管先受工を施工することが好ましい。
また、鋼管先受工の先端部を滑り土塊の圧縮領域に対して定着することが好ましい。
In view of the above circumstances, the present invention is a slope stabilization method when there is a slope that may collapse in front of the tunnel excavation direction when excavating a tunnel, and is provided in the upper ground in front of the face from inside the tunnel. On the other hand, the steel pipe tip receiver is constructed and the tip of the steel pipe tip receiver is fixed in the sliding soil block where the slope collapse is assumed, thereby preventing the sliding soil block from collapsing. It is characterized by that.
In the present invention, it is preferable to construct the steel pipe tip receiving work before the loosened area generated in the ground in front of the face reaches the sliding soil mass.
Moreover, it is preferable to fix the front-end | tip part of a steel pipe tip receiving work with respect to the compression area | region of a sliding soil lump.

本発明によれば、崩落の懸念のある斜面に対する安定化を坑外の地表部からではなくトンネル内から鋼管先受工を施工することで行うので、従来のようにそのための用地や作業ヤード、進入路を坑外に確保する必要はなく、したがってそのために必要であった工期や工費を軽減することができるし、周辺の環境保全の上でも有利である。
特に、トンネル天端を安定させる目的でAGF工法による鋼管先受工を施工する場合には、その鋼管先受工を斜面安定化を目的として施工してその鋼管先受工を滑り土塊に達するように設けて先端部を滑り土塊に対して定着すれば良く、それにより本来はトンネル天端を安定させるために設けられる鋼管先受工が自ずと斜面安定化手段としても機能し、したがって格別の工程や施工機械を必要とせずに斜面の安定化を実現でき、極めて合理的であって全体工期の短縮や工費削減に寄与できる。
According to the present invention, because the stabilization of the slope with the fear of collapse is performed by constructing the steel pipe tip receiving work from the inside of the tunnel instead of from the surface part outside the mine, the site and work yard for that purpose, There is no need to secure the approach path outside the mine, so the construction period and cost required for that purpose can be reduced, and it is advantageous for environmental protection of the surroundings.
In particular, when the steel pipe tip receiving work by the AGF method is performed for the purpose of stabilizing the tunnel top end, the steel pipe tip receiving work is constructed for the purpose of stabilizing the slope so that the steel pipe tip receiving work reaches the sliding mass. It is only necessary to fix the tip part to the sliding clod, so that the steel pipe tip construction originally provided to stabilize the tunnel top end also functions as a slope stabilization means, and therefore, special processes and Slope stabilization can be realized without the need for construction machines, which is extremely rational and can contribute to shortening the overall construction period and reducing construction costs.

本発明の実施形態を図1〜図3を参照して説明する。
図1に示すように坑口1の施工予定位置の周辺斜面に地滑りが想定される場合、本発明では上述した従来工法のように地表からグラウンドアンカー2を設けることに代えて、トンネルT内からの作業により滑り土塊Sに向けて鋼管先受工10を施工し、その鋼管先受工10の先端部を滑り土塊S中に定着することによって斜面崩落を防止することを主眼とする。
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, when a landslide is assumed on the slope around the planned construction position of the wellhead 1, in the present invention, instead of providing the ground anchor 2 from the ground surface as in the conventional construction method described above, The main purpose is to prevent the slope from collapsing by constructing the steel pipe tip receiver 10 toward the sliding soil block S by work and fixing the tip of the steel pipe tip receiver 10 in the sliding soil block S.

具体的には、トンネル貫通に近づいた時点でトンネルT内から切羽の前方上部地盤に対して鋼管先受工10を施工し、その鋼管先受工10の先端部を滑り土塊S中に定着することにより、鋼管先受工10を従来のグラウンドアンカー2のように機能させて滑り土塊Sの滑り抵抗を増大せしめ、以てその崩落を防止するようにしている。
鋼管先受工10の構造やその施工法としては滑り土塊Sの崩落を有効に防止できるものであれば特に限定されないが、従来よりトンネル天端を安定させるための工法として広く採用されているAGF工法(注入式長尺先受工法)が好適に採用可能であり、それによる鋼管先受工10をたとえば図示例のように3段ないしそれ以上の範囲にわたって設ければ良い。
Specifically, when approaching the tunnel penetration, the steel pipe tip receiver 10 is constructed from the inside of the tunnel T to the front upper ground of the face, and the tip of the steel pipe tip receiver 10 is fixed in the sliding clot S. Thus, the steel pipe tip receiving work 10 is made to function like the conventional ground anchor 2 to increase the sliding resistance of the sliding soil mass S, thereby preventing the collapse.
The structure of the steel pipe tip receiver 10 and its construction method are not particularly limited as long as it can effectively prevent the collapse of the sliding soil block S, but AGF, which has been widely adopted as a construction method for stabilizing the tunnel top end conventionally. A construction method (injection-type long tip receiving method) can be suitably employed, and the steel pipe tip receiving device 10 may be provided over a range of, for example, three stages or more as shown in the drawing.

いずれにしても鋼管先受工10により滑り土塊Sの崩落を確実に防止するためには、事前の地盤調査と解析により滑り土塊Sの範囲やその地質を予め充分に把握したうえで、施工するべき鋼管先受工10の配置設計(設置範囲や設置段数、トンネル軸線に対する傾斜角、鋼管長、グラウトの注入圧や注入範囲等)および施工管理を3次元CADを活用して実施することが好ましい。   In any case, in order to surely prevent the collapse of the sliding soil block S by the steel pipe tip receiver 10, the construction and the geology of the sliding soil block S and the geology thereof are sufficiently grasped in advance by ground investigation and analysis. It is preferable that the layout design (installation range, number of installation stages, inclination angle with respect to the tunnel axis, steel pipe length, grout injection pressure, injection range, etc.) and construction management of the steel pipe tip receiver 10 are carried out using 3D CAD. .

特に、鋼管先受工10の先端部は滑り土塊Sに対して確実に定着する必要があり、そのためには鋼管先受工10の先端が可及的に地表面の近傍に達するように設けることが好ましいが、鋼管が地表面にまで貫通してしまうと鋼管内に注入されるグラウトが地表にリークしてしまうから通常はそうならない程度に鋼管先受工10の先端と地表面との間にある程度の距離(たとえば1.5m程度)を土被りとして確保するような設計、施工とすると良く、そのためには地形情報も考慮した3次元CADによる設計および施工管理が不可欠である。
なお、グラウト注入の際に鋼管先端部にパッカーを装着する等してグラウトのリークを防止できる場合には鋼管先受工10を表面の直下に達するように設けることでも良い。但し、地表部での作業が必要となることは好ましくないのでそれは避けるべきである。
In particular, the tip of the steel pipe tip receiver 10 needs to be firmly fixed to the sliding mass S, and for that purpose, the tip of the steel pipe tip receiver 10 is provided as close to the ground surface as possible. However, if the steel pipe penetrates to the ground surface, the grout injected into the steel pipe leaks to the ground surface, so that it usually does not occur between the tip of the steel pipe tip receiver 10 and the ground surface. The design and construction should ensure a certain distance (for example, about 1.5 m) as a covering, and for that purpose, design and construction management by three-dimensional CAD in consideration of topographic information is indispensable.
If the grout can be prevented from leaking by attaching a packer to the tip of the steel pipe at the time of grout injection, the steel pipe tip receiver 10 may be provided so as to reach directly below the surface. However, it is not preferable that work on the surface is necessary, so it should be avoided.

また、鋼管先受工10は可及的に滑り土塊Sの全体に対して広範囲に設けることが好ましいが、少なくとも滑り土塊Sの圧縮領域(一般には滑り土塊全体のうちの下半部分で、滑り土塊S全体を支えている領域)に対して設けることが有効であり、そのためには事前調査により圧縮歪みが発生している領域や発生することが想定される領域を把握してその領域に対して鋼管先受工10を重点配置することが有効である。   The steel pipe tip receiver 10 is preferably provided over a wide range of the entire sliding soil block S as much as possible, but at least in the compression region of the sliding soil block S (generally, the sliding half of the entire sliding soil block is slipped. It is effective to be provided for the area that supports the entire mass of soil S). For this purpose, it is possible to grasp the area where compression distortion is generated or the area that is supposed to be generated by preliminary investigation and It is effective to place priority on the steel pipe tip receiving work 10.

なお、図6に示したようにトンネル天端安定のために設けられる通常の鋼管先受工3はトンネル軸線に対する傾斜角が5〜10°程度とされることが通常であるが、本実施形態において斜面安定化のために設ける鋼管先受工10は斜面安定化のために最も有利となるようにトンネル軸線に対する傾斜角を最適に設定すれば良く、必要であれば図示例のように20°程度の急角度としても良い。
但し、AGF工法において傾斜角をあまり大きくした場合には鋼管の基端部からその最先端部にまでグラウトを確実に注入することは必ずしも容易ではないので、たとえばパッカーにより先端側から0.5〜3.0m程度ずつ区間を区切って段階的に注入していくステップ注入を行うことが好ましい。
In addition, as shown in FIG. 6, although the normal steel pipe tip receiving work 3 provided for tunnel top end stability is normal, it is usual that the inclination | tilt angle with respect to a tunnel axis is set to about 5-10 degrees, this embodiment In the steel pipe tip receiver 10 provided for stabilizing the slope, the inclination angle with respect to the tunnel axis may be optimally set so as to be most advantageous for stabilizing the slope, and if necessary, 20 ° as shown in the figure. It may be a steep angle.
However, if the inclination angle is too large in the AGF method, it is not always easy to reliably inject the grout from the base end of the steel pipe to the most advanced part. It is preferable to perform step injection in which the sections are divided in stages and injected in stages.

さらに、一般にトンネル掘削に際しては掘進に伴って切羽前方に多少なりとも地盤の緩み領域A(図1参照。通常は坑径Dに対して切羽前方の1D程度までの範囲と、その上方の範囲)が生じることが不可避であるが、本実施形態ではそのような地盤の緩み領域Aが滑り土塊Sに達する以前の段階で鋼管先受工10を施工すべきである。
すなわち、鋼管先受工10を施工する以前に緩み領域Aが滑り土塊Sに達してしまうと滑り土塊Sがより滑り易くなる懸念が増大するが、図1に示すように緩み領域Aが滑り土塊Sに達する以前に鋼管先受工10を施工してしまえばそのような懸念なく鋼管先受工10を支障なく施工できるし、鋼管先受工10を施工してしまえばそれ以降に緩み領域Aが滑り土塊Sに達しても滑り土塊Sを安定に支持し得てその崩落を確実に防止できるものとなる。
そして、そのためには図1に示しているように切羽から滑り土塊Sまでの距離(滑り土塊Sに対する鋼管の打設位置までの距離)が少なくとも1D以上である段階で鋼管先受工10を施工すれば良い。具体的には、坑径D=10mの場合には上記の距離が10m以上である時点で鋼管先受工10を施工すれば良い。勿論、通常のAGF工法では15〜30m程度の鋼管先受工の施工が可能であるので、本実施形態においてそのような長尺の鋼管先受工10を施工することは何ら困難ではない。
Furthermore, in general, when tunnel excavating, the ground loosening area A is somewhat more forward in front of the face as it is being dug (see FIG. 1. However, in this embodiment, the steel pipe tip receiver 10 should be constructed before the ground loosening area A reaches the sliding soil mass S.
That is, if the loosened area A reaches the sliding soil block S before the steel pipe tip receiving work 10 is constructed, there is an increased concern that the sliding soil block S becomes more slippery. However, as shown in FIG. If the steel pipe tip receiver 10 is constructed before reaching S, the steel pipe tip receiver 10 can be constructed without any problems, and if the steel pipe tip receiver 10 is constructed, the loosening area A will be applied thereafter. Even if it reaches the sliding soil block S, the sliding soil block S can be stably supported and the collapse thereof can be reliably prevented.
For this purpose, as shown in FIG. 1, the steel pipe tip receiver 10 is constructed at a stage where the distance from the face to the sliding soil block S (the distance from the sliding soil block S to the steel pipe placement position) is at least 1D or more. Just do it. Specifically, when the diameter D = 10 m, the steel pipe tip receiver 10 may be constructed when the distance is 10 m or more. Needless to say, in the present embodiment, it is not difficult to construct such a long steel pipe tip receiver 10 in the present embodiment since it is possible to construct a steel pipe tip receiver of about 15 to 30 m in the normal AGF method.

以上のようにして鋼管先受工10を施工して滑り土塊Sの崩落を防止した後、図3に示すようにさらに掘進してトンネルTを貫通させて坑口1を施工すれば良い。その際、トンネル天端の安定性を確保する必要があれば従来と同様にトンネル天端に対しても鋼管先受工3を施工すれば良い。   After the steel pipe tip receiver 10 is constructed as described above to prevent the sliding soil block S from collapsing, the tunnel 1 may be constructed by further digging and penetrating the tunnel T as shown in FIG. At that time, if it is necessary to ensure the stability of the tunnel top end, the steel pipe tip receiving work 3 may be applied to the tunnel top end as in the conventional case.

以上の工法によれば、貫通に先立つ坑口周辺斜面に対する安定化を坑外の地表部からではなくトンネルT内から鋼管先受工10を施工することで行うので、従来のようにグラウンドアンカー2や垂直縫地を施工するための用地や作業ヤード、進入路を坑外に確保する必要はなく、したがってそのために必要であった工期や工費を軽減することができるし、坑口周辺の環境保全の上でも有利である。   According to the above construction method, stabilization of the slope around the wellhead prior to penetration is performed by constructing the steel pipe tip receiving work 10 from the inside of the tunnel T, not from the surface part outside the well, so that the ground anchor 2 or It is not necessary to secure a site, work yard, and approach path for constructing vertical sewing fabric outside the mine. Therefore, it is possible to reduce the construction period and cost required for this purpose, and to protect the environment around the wellhead. But it is advantageous.

特に、トンネル天端を安定させるためにAGF工法による鋼管先受工3を施工する場合には、貫通の前段階でそのAGF工法により滑り土塊Sに達するような鋼管先受工10を設けることのみで、格別の工程や施工機械を必要とせずに坑口斜面を安定化できることになる。
勿論、トンネル天端安定のためのAGF工法を実施しない場合においても、斜面安定化のための工法としてAGF工法やそれと同等ないし類似の工法により鋼管先受工10を実施すれば良く、いずれにしてもトンネル天端の安定化手法として多くの実績のある鋼管先受工10をほぼそのまま斜面安定化に利用することで坑口斜面を確実かつ容易に安定化することができる。
In particular, when the steel pipe tip receiver 3 is constructed by the AGF method in order to stabilize the tunnel top, it is only necessary to provide the steel pipe tip receiver 10 that reaches the sliding clot S by the AGF method before the penetration. Thus, the wellhead slope can be stabilized without the need for special processes or construction machines.
Of course, even when the AGF method for stabilizing the tunnel top is not implemented, the steel pipe tip receiving work 10 may be carried out by the AGF method or the equivalent or similar method as the slope stabilization method. However, the wellhead slope can be reliably and easily stabilized by using the steel pipe tip receiver 10 with many achievements as a method for stabilizing the tunnel top end as it is for stabilizing the slope.

なお、上記の鋼管先受工10をトンネル貫通時の仮設的な施設として施工する場合には鋼管先受工10の耐久性や長期間にわたる信頼性は特に問題とならないが、トンネル完成後も斜面安定のための恒久施設としてそのまま利用する場合には充分な耐久性や信頼性が必要とされるので、その場合には防錆性能に優れるメッキ鋼管を採用する等の耐久性を考慮した仕様とすることが好ましい。   In addition, when constructing the steel pipe tip receiver 10 as a temporary facility at the time of tunnel penetration, the durability and long-term reliability of the steel pipe tip receiver 10 are not particularly problematic. When used as it is as a permanent facility for stability, sufficient durability and reliability are required.In that case, specifications that consider durability such as adopting plated steel pipes with excellent rust prevention performance It is preferable to do.

また、上記実施形態はトンネル貫通に先立つ坑口周辺斜面の崩落を防止する場合の適用例であるが、本発明はそのような場合に限らず、たとえば図4に示すようにトンネルが谷部を通過するような場合においてトンネル上部の谷部斜面の崩落が懸念される場合にはその対策として同様に適用可能である。   Moreover, although the said embodiment is an application example in the case of preventing collapse of the slope around a wellhead prior to tunnel penetration, the present invention is not limited to such a case, for example, the tunnel passes through a valley as shown in FIG. In such a case, if there is a concern about the collapse of the valley slope at the top of the tunnel, it can be similarly applied as a countermeasure.

本発明の実施形態を示すもので、トンネル貫通に先立ち坑口周辺斜面を安定化させるための鋼管先受工を施工した状態を示す図である。The embodiment of the present invention is shown, and is a view showing a state in which a steel pipe tip receiving work for stabilizing the slope around the wellhead prior to tunnel penetration is constructed. 同、平面図である。FIG. 同、トンネルを貫通させた状態を示す図である。It is a figure which shows the state which penetrated the tunnel same as the above. 同、谷部斜面を安定化させる場合の適用例である。This is an application example in the case where the valley slope is stabilized. 従来工法の一例を示すもので、トンネル貫通に先立ち坑口周辺斜面を安定化させるためのグラウンドアンカーを施工した状態を示す図である。It is a figure which shows an example of a conventional construction method and shows the state which constructed the ground anchor for stabilizing a slope around a wellhead prior to tunnel penetration. 同、トンネルを貫通させた状態を示す図である。It is a figure which shows the state which penetrated the tunnel same as the above. 同、谷部斜面を安定化させる場合の適用例である。This is an application example in the case where the valley slope is stabilized.

符号の説明Explanation of symbols

T トンネル
S 滑り土塊
A 緩み領域
1 坑口
3 鋼管先受工(トンネル天端安定化用)
10 鋼管先受工(斜面安定化用)
T Tunnel S Sliding block A Loosening area 1 Wellhead 3 Steel pipe tip construction (for tunnel top end stabilization)
10 Steel pipe tip construction (for slope stabilization)

Claims (3)

トンネルを掘削するに当たり、トンネル掘削方向前方の上方に崩落の可能性がある斜面が存在する場合の斜面安定化工法であって、
トンネル内より切羽の前方上部地盤に対して鋼管先受工を施工して該鋼管先受工の先端部を前記斜面の崩落が想定される滑り土塊中に定着することにより、該鋼管先受工によって前記滑り土塊の崩落を防止することを特徴とする斜面安定化工法。
When excavating a tunnel, there is a slope stabilization method when there is a slope that may collapse in front of the tunnel excavation direction,
By constructing a steel pipe tip receiver on the front upper ground of the face from inside the tunnel, and fixing the tip of the steel pipe tip receiver to the sliding soil block where the slope collapse is assumed, the steel pipe tip receiver The slope stabilization method is characterized in that the sliding soil mass is prevented from collapsing.
請求項1記載の斜面安定化工法であって、
切羽前方の地盤に生じる緩み領域が前記滑り土塊に達する以前に前記鋼管先受工を施工することを特徴とする斜面安定化工法。
The slope stabilization method according to claim 1,
The slope stabilization method characterized in that the steel pipe tip receiving work is constructed before the loosened area generated in the ground in front of the face reaches the sliding mass.
請求項1または2記載の斜面安定化工法であって、
前記鋼管先受工の先端部を前記滑り土塊の圧縮領域に対して定着することを特徴とする斜面安定化工法。
The slope stabilization method according to claim 1 or 2,
The slope stabilization method characterized by fixing the front-end | tip part of the said steel pipe tip receiver with respect to the compression area | region of the said sliding soil lump.
JP2008300861A 2008-11-26 2008-11-26 Slope stabilizing construction method Pending JP2010126938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300861A JP2010126938A (en) 2008-11-26 2008-11-26 Slope stabilizing construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300861A JP2010126938A (en) 2008-11-26 2008-11-26 Slope stabilizing construction method

Publications (1)

Publication Number Publication Date
JP2010126938A true JP2010126938A (en) 2010-06-10

Family

ID=42327517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300861A Pending JP2010126938A (en) 2008-11-26 2008-11-26 Slope stabilizing construction method

Country Status (1)

Country Link
JP (1) JP2010126938A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444407A (en) * 2011-12-12 2012-05-09 中铁二局股份有限公司 Construction deformation control method for lower step of high crustal stress weak surrounding rock tunnel
CN103061806A (en) * 2012-12-28 2013-04-24 山东科技大学 Composite roof thin seam fully-mechanized coal mining face gob-side entry retaining method
CN104405403A (en) * 2014-10-20 2015-03-11 西南交通大学 Construction method capable of controlling deformation of surrounding rock of underground excavated large-span subway station
CN106223989A (en) * 2016-08-10 2016-12-14 兰州理工大学 Unsymmetrial loading tunnel hole excavation safeguard structure and construction method
CN106567723A (en) * 2015-10-13 2017-04-19 尹瑜 Slip mass section tunnel-reinforcing system and reinforcing method thereof
CN109706945A (en) * 2019-01-31 2019-05-03 中国建筑第七工程局有限公司 Come down fracture belt tunnel construction method
CN111441778A (en) * 2020-04-07 2020-07-24 中国水利水电第四工程局有限公司 Efficient and environment-friendly construction method for digging and entering cave of mountain

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444407A (en) * 2011-12-12 2012-05-09 中铁二局股份有限公司 Construction deformation control method for lower step of high crustal stress weak surrounding rock tunnel
CN103061806A (en) * 2012-12-28 2013-04-24 山东科技大学 Composite roof thin seam fully-mechanized coal mining face gob-side entry retaining method
CN104405403A (en) * 2014-10-20 2015-03-11 西南交通大学 Construction method capable of controlling deformation of surrounding rock of underground excavated large-span subway station
CN104405403B (en) * 2014-10-20 2016-08-24 西南交通大学 A kind of control tunneling greatly across the construction method of subway station surrouding rock deformation
CN106567723A (en) * 2015-10-13 2017-04-19 尹瑜 Slip mass section tunnel-reinforcing system and reinforcing method thereof
CN106223989A (en) * 2016-08-10 2016-12-14 兰州理工大学 Unsymmetrial loading tunnel hole excavation safeguard structure and construction method
CN109706945A (en) * 2019-01-31 2019-05-03 中国建筑第七工程局有限公司 Come down fracture belt tunnel construction method
CN111441778A (en) * 2020-04-07 2020-07-24 中国水利水电第四工程局有限公司 Efficient and environment-friendly construction method for digging and entering cave of mountain

Similar Documents

Publication Publication Date Title
JP2010126938A (en) Slope stabilizing construction method
CN107060803B (en) Tunnel construction method by utilizing pipe curtain grouting
CN104278993B (en) A kind of bias voltage Skew Tunnel enters the constructional method in hole
CN103016027B (en) Tunnel or roadway excavating method under weak and broken complicated geological conditions
CN104533467A (en) High confined water and fault broken roadway supporting method
JP4682944B2 (en) Composite grout water stop method around mine shaft
KR101191286B1 (en) The method of a dual helical pile for increasing upper skin friction
KR20120020570A (en) Tunnel reinforcing method by multi-forepoling
CN106968258B (en) Foundation pit supporting structure with tunnel on side wall of foundation pit
CN102733390A (en) Method for removing underground waste anchor cable/anchor rod
KR101191289B1 (en) The method of a dual helical pile according to the subsidence for decreasing negative friction
JP5382432B2 (en) Excavation method of adjacent twin tunnel
JP3834571B2 (en) Construction method for underground structures
JP6857097B2 (en) How to build a tunnel
JP2009167595A (en) Box jacking construction method using roof protecting construction
JPH11152986A (en) Protection method for shielding excavation in section covered with thin soil layer
KR102223086B1 (en) One-way tunnel excavation method using pipe roof and tunnel structure using pipe roof
CN208416550U (en) A kind of Loess Region unsymmetrial loading tunnel shield is encircleed into hole structure
JP2001193383A (en) Tunnel construction method and tunnel
JP2001032671A (en) Tunnel prelining construction method
JP2013238038A (en) Construction method of tunnel
JP2006176999A (en) Natural ground reinforcing method
JP2001182496A (en) Water leakage measure of tunnel
JP2010112128A (en) Reinforcement method of ground, reinforced ground
JP6975426B2 (en) Pipe roof construction method