JP2010126733A - Co-BASED HEUSLER ALLOY, AND MAGNETIC ELEMENT USING THE SAME - Google Patents

Co-BASED HEUSLER ALLOY, AND MAGNETIC ELEMENT USING THE SAME Download PDF

Info

Publication number
JP2010126733A
JP2010126733A JP2008299551A JP2008299551A JP2010126733A JP 2010126733 A JP2010126733 A JP 2010126733A JP 2008299551 A JP2008299551 A JP 2008299551A JP 2008299551 A JP2008299551 A JP 2008299551A JP 2010126733 A JP2010126733 A JP 2010126733A
Authority
JP
Japan
Prior art keywords
layer
heusler alloy
ferromagnetic
mnsi
based heusler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008299551A
Other languages
Japanese (ja)
Inventor
Ammanabrolu Rajanikanth
ラジャニカンス アマナブロル
Yukiko Takahashi
有紀子 高橋
Kazuhiro Takano
和博 宝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008299551A priority Critical patent/JP2010126733A/en
Publication of JP2010126733A publication Critical patent/JP2010126733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Co-based Heusler alloy which can obtain a TMR (Tunnel Magneto-Resistance) ratio higher than heretofore at room temperature. <P>SOLUTION: The Co-based Heusler alloy is obtained by adding rare earth elements as shown in inequality 1: Co<SB>2-x</SB>Y<SB>x</SB>AB (wherein 0<x<0.2; Y is Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm Yb or Lu; A is Fe or Mn; and B is Al, Si, Ga, Ge or Sn). The ferromagnetic tunnel junction element, the magneto-resistance effect element and the magnetic detection element using the Co-based Heusler alloy have unprecedented high-performance, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、スピントロニクスデバイスに用いられるCo基ホイスラー合金に関する。   The present invention relates to a Co-based Heusler alloy used in a spintronic device.

磁気ランダムアクセスメモリやハードディスクの再生ヘッドなどで用いられるトンネル型磁気抵抗(TMR)素子や巨大磁気抵抗(GMR)素子に代表されるスピントロニクスデバイスでは高いスピン偏極率を持つ材料が必要とされている。
またいずれのデバイスも実用化のためには室温動作する必要があり、そのためにキュリー温度が室温よりも高く、かつ高スピン偏極率を持つ材料が必要である。
そのような材料としてCo基ホイスラー合金が挙げられ、中でもCoMnSiはCoMnSi/Al−O/CoMnSiの膜構成を持つ強磁性トンネル接合において2Kで500%を超えるTMR比が実験的に報告され[非特許文献1]、ジュリエの式[非特許文献2]から低温におけるハーフメタル性が示されている唯一の材料である。
しかし、室温では約60%のTMR比であり、低温と比較すると非常に低い値にとどまっている。
Y. Sakuraba et al., APL 88, 192508 (2006) M. Julliere, Phys. Lett. 54A, 225 (1975).
Spintronic devices typified by tunneling magnetoresistive (TMR) elements and giant magnetoresistive (GMR) elements used in magnetic random access memories, read heads of hard disks, and the like require materials having high spin polarization. .
Each device needs to operate at room temperature for practical use, and therefore, a material having a Curie temperature higher than room temperature and a high spin polarization is required.
Examples of such materials include Co-based Heusler alloys. Among them, Co 2 MnSi has an experimental TMR ratio exceeding 500% at 2K in a ferromagnetic tunnel junction having a film configuration of Co 2 MnSi / Al—O / Co 2 MnSi. [Non-Patent Document 1], and the only material that shows half-metal properties at low temperatures from Julie's formula [Non-Patent Document 2].
However, the TMR ratio is about 60% at room temperature, which is very low compared to the low temperature.
Y. Sakuraba et al., APL 88, 192508 (2006) M. Julliere, Phys. Lett. 54A, 225 (1975).

本発明は、このような実情に鑑み、従来に比べ高いTMR比が室温で得られるCo基ホイスラー合金を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a Co-based Heusler alloy that can obtain a higher TMR ratio at room temperature.

本発明のCo基ホイスラー合金は、下記式1に示すように希土類元素が添加されてなることを特徴とする。
<式1>
Co2−xAB
(0<x<0.2、
Y:Ce,Pr,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb又はLu。
A:Fe又はMn。
B:Al,Si、Ga,Ge又はSn)
発明2は、絶縁体バリア層の両側を強磁性層が挟みこむ構造を有する強磁性トンネル接合素子であって、前記強磁性層として、発明1のCo基ホイスラー合金を用いたことを特徴とする。
発明3は、強磁性層の間にトンネルバリア層を挟んだ強磁性トンネル接合の構造を有する磁気抵抗効果素子であって、前記強磁性層が発明1のCo基ホイスラー合金からなる層を含むことを特徴とする。
発明4は、磁化方向が一方向に固定される固定磁性層と、前記固定磁性層に非磁性材料層を介して形成されたフリー磁性層を有する多層膜を有し、前記フリー磁性層と前記固定磁性層のいずれか一方または両方が、ホイスラー合金層を有している磁気検出素子であって、前記ホイスラー合金層が発明1のCo基ホイスラー合金からなることを特徴とする。
The Co-based Heusler alloy of the present invention is characterized in that a rare earth element is added as shown in the following formula 1.
<Formula 1>
Co 2-x Y x AB
(0 <x <0.2,
Y: Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
A: Fe or Mn.
B: Al, Si, Ga, Ge or Sn)
Invention 2 is a ferromagnetic tunnel junction device having a structure in which a ferromagnetic layer is sandwiched between both sides of an insulator barrier layer, wherein the Co-based Heusler alloy of Invention 1 is used as the ferromagnetic layer. .
Invention 3 is a magnetoresistive effect element having a structure of a ferromagnetic tunnel junction in which a tunnel barrier layer is sandwiched between ferromagnetic layers, wherein the ferromagnetic layer includes a layer made of the Co-based Heusler alloy of Invention 1. It is characterized by.
Invention 4 includes a multilayer film having a fixed magnetic layer in which the magnetization direction is fixed in one direction, and a free magnetic layer formed on the fixed magnetic layer via a nonmagnetic material layer, and the free magnetic layer and the One or both of the pinned magnetic layers is a magnetic sensing element having a Heusler alloy layer, and the Heusler alloy layer is made of the Co-based Heusler alloy of the first aspect.

TMR比の大きな温度依存性はマグノン励起によるものと解釈されていることから、このマグノン励起を低下する因子として、希土類元素を用いたものである。
これによって、室温においても、従来にはない高いTMR比が得られるようになった。
Since the large temperature dependence of the TMR ratio is interpreted to be due to magnon excitation, rare earth elements are used as a factor to reduce the magnon excitation.
As a result, even at room temperature, a high TMR ratio that has never been obtained can be obtained.

前記式1で示すYは、実施例ではNdをもって代表しているが、以下のような希土類元素であれば、Co基ホイスラー合金を構成する元素に比較して非常に重いことから、Ndと同様にマグノン励起を低下する効果を発揮することができる。具体的には前記式1のYはCe、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luでもマグノン励起を低下する効果を発揮する。
また、式1中のxは、0<x<0.2であるが、より好ましくは、(0<x≦0.15)、さらに好ましくは(0<x≦0.05)とするのが、より高いTMR比が得られる傾向にある。
Y represented by the above formula 1 is represented by Nd in the examples, but if it is a rare earth element such as the following, it is much heavier than the elements constituting the Co-based Heusler alloy, so it is the same as Nd The effect of reducing the magnon excitation can be exhibited. Specifically, Y in the formula 1 also exhibits an effect of reducing magnon excitation even with Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
Further, x in Formula 1 is 0 <x <0.2, more preferably (0 <x ≦ 0.15), and still more preferably (0 <x ≦ 0.05). , Higher TMR ratio tends to be obtained.

前記式1で示すAは、実施例ではMnをもって代表しているが、Feであっても、第一原理計算によりハーフメタル性が示されている(S. Ishida et al., Mater. Trans., 47, 31 (2007))。しかし、Mnと同様に室温ではマグノン励起によりハーフメタル性が失われる。これにNdに代表される前記式1のYを添加することにより、室温でのマグノン励起が抑制され、室温でハーフメタルを示す。 A represented by the above formula 1 is represented by Mn in the examples, but even in the case of Fe, the first-principles calculation shows half-metal properties (S. Ishida et al., Mater. Trans. , 47, 31 (2007)). However, as with Mn, half-metal properties are lost due to magnon excitation at room temperature. By adding Y of the formula 1 represented by Nd to this, magnon excitation at room temperature is suppressed, and a half metal is exhibited at room temperature.

前記式1で示すBは、実施例ではSiをもって代表しているが、Al,Sn、Ga,Geであっても第一原理計算によりハーフメタル性が示されている(I. Galanakis et al. Phys. Rev. B., 66, 174429 (2002))。しかし、Siと同様に室温ではマグノン励起によりハーフメタル性が失われる。これにNdに代表されるYを添加することにより、室温でのマグノン励起が抑制され、室温でハーフメタルを示す。   B represented by the above formula 1 is represented by Si in the examples, but even in the case of Al, Sn, Ga, and Ge, half metal properties are shown by the first principle calculation (I. Galanakis et al. Phys. Rev. B., 66, 174429 (2002)). However, half-metal properties are lost due to magnon excitation at room temperature as in Si. By adding Y typified by Nd to this, magnon excitation at room temperature is suppressed, and a half metal is exhibited at room temperature.

以下では、前記Yの代表としてNd、Aの代表としてMn、Bの代表としてSiを用いたものをもって説明する。
CoMnSi およびCo2−xNdMnSi(0<x<0.2)バルクサンプルは、Co、Mn、Si、Nd純金属を用い表1に示す比率でこれらを天秤で秤量して、下表に示す条件で、Ar雰囲気中、高周波溶解炉で溶解して作製した。構造解析はX線回折法(XRD)、磁気測定は量子干渉磁束計(SQUID)、比抵抗測定はPPMS、スピン偏極率測定は点接触アンドレーエフ反射(PCAR)法で行った。PCAR法で測定したコンダクタンス曲線は拡張BTKモデルによりフィッティングを行い、スピン偏極率を求めている。
In the following description, Nd is used as a representative of Y, Mn is used as a representative of A, and Si is used as a representative of B.
Co 2 MnSi and Co 2-x Nd x MnSi (0 <x <0.2) bulk samples were measured using a Co, Mn, Si, and Nd pure metal at a ratio shown in Table 1 and weighed with a balance. It was prepared by melting in an Ar atmosphere in a high frequency melting furnace under the conditions shown in the table. The structural analysis was performed by X-ray diffraction (XRD), the magnetic measurement was performed by a quantum interference magnetometer (SQUID), the specific resistance measurement was performed by PPMS, and the spin polarization measurement was performed by the point contact Andreev reflection (PCAR) method. The conductance curve measured by the PCAR method is fitted with an extended BTK model to obtain the spin polarization rate.

図1にCo2−xNdMnSi(x=0, 0.05, 0.2)のX線回折パターンを示す。x=0と0.05ではL2の規則反射である(111)が明瞭に観測されている。またx=0のL2規則度は0.04、B2規則度は0.8であり、x=0.05のL2規則度は0.08でB2規則度は0.67である。Ndを添加しても析出物に関するピークは観測されなかったことから、単相のL2構造が形成されていることがわかる。一方、x=0.2では他の析出物の回折線が観測され単相ではないことがわかる。 FIG. 1 shows an X-ray diffraction pattern of Co 2−x Nd x MnSi (x = 0, 0.05, 0.2). x = 0 to be the rule reflection of 0.05 in L2 1 (111) is clearly observed. The L2 1 degree of order of the x = 0 Further 0.04, B2 ordering parameter is 0.8, the L2 1 degree of order of x = 0.05 is B2 rule of 0.08 0.67. Since no peak related to the precipitate was observed even when Nd was added, it can be seen that a single-phase L2 1 structure was formed. On the other hand, when x = 0.2, diffraction lines of other precipitates are observed and it is understood that the precipitate is not single phase.

図2にCo2−xNdMnSi(x=0, 0.05)の比抵抗の温度依存性を示す。Ndをわずか0.05添加することにより、比抵抗の温度変化が小さくなっていることがわかる。
比抵抗の温度に対する依存性はr(T)=r(0)+ATで表され、特に50−100Kの低温領域でのAはマグノン励起によるものであることがわかっている。Nd添加によりどの程度マグノン励起が抑えられたかを検討するために、規格化した比抵抗を温度の2乗に対して示す(図3)。
Co 2-x Nd x MnSi ( x = 0, 0.05) in FIG. 2 shows the temperature dependence of the specific resistance of. It can be seen that the temperature change of the specific resistance is reduced by adding only 0.05 Nd.
The dependence of the specific resistance on temperature is expressed by r (T) = r (0) + AT 2 , and it is known that A in a low temperature region of 50-100 K is due to magnon excitation. In order to examine how much magnon excitation is suppressed by adding Nd, the normalized specific resistance is shown with respect to the square of temperature (FIG. 3).

図4に50−100Kの温度領域での規格化された比抵抗を示す。傾きAはCoMnSi(x=0)で6.26×10−5であるのに対してCo1.95Nd0.05MnSi(x=0.05)では1.74×10−5と1/5にまで低減していることがわかる。 FIG. 4 shows the normalized specific resistance in the temperature range of 50-100K. The slope A is 6.26 × 10 −5 for Co 2 MnSi (x = 0), whereas it is 1.74 × 10 −5 for Co 1.95 Nd 0.05 MnSi (x = 0.05). It turns out that it has reduced to 1/5.

図5に飽和磁化の温度依存性を示す。CoMnSi(x=0)に対してCo1.95Nd0.05MnSi(x=0.05)の方が温度に対する減少が小さい。これもマグノン励起を低減させた効果によるものである。
図6に10Kでの磁化曲線を示す。CoMnSi(x=0)では5.01mであるが、Co1.95Nd0.05MnSi(x=0.05)では5.39mとなる。このNd添加による磁気モーメントの増加はNdの磁気モーメントが他元素よりも大きいためである。
図7にPCAR法で測定したCo1.95Nd0.05MnSi(x=0.05)バルクサンプルのコンダクタンス曲線とスピン偏極率の散乱因子(z)依存性を示す。すべてのコンダクタンス曲線において、フィッティング曲線がよく実験値を再現していることがわかる。スピン偏極率のz依存性より、Co1.95Nd0.05MnSi(x=0.05)のスピン偏極率は0.58となり、CoMnSi(x=0)にNdを添加してもスピン偏極率は変化しないことがわかる。
FIG. 5 shows the temperature dependence of saturation magnetization. Co 2 MnSi (x = 0) decreases towards Co 1.95 Nd 0.05 MnSi (x = 0.05) it is with respect to the temperature with respect to small. This is also due to the effect of reducing magnon excitation.
FIG. 6 shows a magnetization curve at 10K. In Co 2 MnSi (x = 0), it is 5.01 m B , but in Co 1.95 Nd 0.05 MnSi (x = 0.05), it is 5.39 m B. This increase in magnetic moment due to the addition of Nd is because the magnetic moment of Nd is larger than that of other elements.
FIG. 7 shows the scattering factor (z) dependence of the conductance curve and spin polarization of a Co 1.95 Nd 0.05 MnSi (x = 0.05) bulk sample measured by the PCAR method. It can be seen that the fitting curve reproduces the experimental value well in all conductance curves. From the z dependence of the spin polarization, the spin polarization of Co 1.95 Nd 0.05 MnSi (x = 0.05) is 0.58, and Nd is added to Co 2 MnSi (x = 0). However, it can be seen that the spin polarization does not change.

図8(特開平11−135857から引用)にトンネル型磁気抵抗素子の構造図を示す。特開11−135857によると15に高スピン偏極率材料を使うことにより高感度でしかも安定に信号磁界を検出できる磁気抵抗効果素子が提供できるとされている。この15にCoMnSi(x=0)を使った強磁性トンネル接合のTMR比の温度依存性を図9(非特許文献1、APL, 88, 192508 (2006)から引用)に示す。室温で60%程度のTMR比が低温では540%へと増加している。この電極としてマグノン励起を押さえたCo1.95Nd0.05MnSi(x=0.05)を用いることで、強磁性トンネル接合では室温まで540%の高いTMR比が保たれる。 FIG. 8 (cited from JP-A-11-135857) shows a structural diagram of a tunnel type magnetoresistive element. According to Japanese Patent Laid-Open No. 11-135857, by using a high spin polarization material, a magnetoresistive effect element capable of detecting a signal magnetic field with high sensitivity and stability can be provided. FIG. 9 shows the temperature dependence of the TMR ratio of the ferromagnetic tunnel junction using Co 2 MnSi (x = 0) in FIG. 9 (cited from Non-Patent Document 1, APL, 88, 192508 (2006)). The TMR ratio of about 60% at room temperature increases to 540% at low temperatures. By using Co 1.95 Nd 0.05 MnSi (x = 0.05) that suppresses magnon excitation as this electrode, a high TMR ratio of 540% is maintained up to room temperature in the ferromagnetic tunnel junction.

図10(特開平11-97766から引用)に強磁性トンネル接合の構造図を示す。特開平11-97766によると、絶縁バリアを挟む上下の強磁性層に高スピン偏極率材料を使うことにより、大きな磁気抵抗比が実現できるとしている。同9に上下電極をCoMnSi(x=0)として作製した強磁性トンネル接合のTMR比が示されている。この場合の温度変化は非常に大きく2Kで540%となる。この上下電極として、マグノン励起を押さえたCo1.95Nd0.05MnSi(x=0.05)を用いた強磁性トンネル接合では室温まで高いTMR比(540%)が保たれる。 FIG. 10 (cited from JP-A-11-97766) shows a structural diagram of a ferromagnetic tunnel junction. According to Japanese Patent Laid-Open No. 11-97766, a large magnetoresistance ratio can be realized by using a high spin polarization material for the upper and lower ferromagnetic layers sandwiching the insulating barrier. FIG. 9 shows the TMR ratio of a ferromagnetic tunnel junction in which the upper and lower electrodes are made of Co 2 MnSi (x = 0). The temperature change in this case is very large and reaches 540% at 2K. In the ferromagnetic tunnel junction using Co 1.95 Nd 0.05 MnSi (x = 0.05) with suppressed magnon excitation as the upper and lower electrodes, a high TMR ratio (540%) is maintained up to room temperature.

図11(特開2007-173572から引用)にC P P ( C u r r e nt P e r p e n d i c u l a r t o P l a n e)型の巨大磁気抵抗効果素子の構造図を示す。特開2007-173572によると43cの部分にスピン偏極率の高い材料を使うことにより、磁気抵抗効果素子の感度を表す指標である磁気抵抗変化率(MR比)が大きくなるとしている。ここにCo1.95Nd0.05MnSi(x=0.05)を用いることで、室温までハーフメタルが保たれるので室温で大きなMR比が得られることとなる。
そのMR比は、日本磁気学会学術講演会 小玉らの発表(2008年概要集14aPS−29(B))によるとCoMnSi/Cu/CoMnSiの低温のCPP−GMR比が30%であることに基づけば、室温で30%以上と考えられる。
FIG. 11 (cited from Japanese Patent Application Laid-Open No. 2007-173572) shows a structural diagram of a giant magnetoresistive element of CPPP (Current Perpendicularto Plane) type. According to Japanese Patent Laid-Open No. 2007-173572, by using a material having a high spin polarization for the portion 43c, the magnetoresistance change rate (MR ratio), which is an index representing the sensitivity of the magnetoresistive element, is increased. By using Co 1.95 Nd 0.05 MnSi (x = 0.05) here, the half metal can be kept up to room temperature, so that a large MR ratio can be obtained at room temperature.
According to a presentation by the Kogama et al. (2008 Summary 14aPS-29 (B)), the MR ratio of the Co 2 MnSi / Cu / Co 2 MnSi is 30% at a low CPP-GMR ratio. Based on that, it is considered to be 30% or more at room temperature.

図12(特開2005-116701から引用)にC P P型の巨大磁気抵抗効果素子の構造図を示す。特開2005-116701によると113と115に高スピン偏極率材料を使うことにより磁気抵抗変化量が大きな磁気検出素子が提供される。ここにCo1.95Nd0.05MnSi(x=0.05)を用いることで、室温までハーフメタルが保たれるので室温で大きなMR比が得られることとなる。
そのMR比は、日本磁気学会学術講演会 小玉らの発表(2008年概要集14aPS−29(B))によるとCoMnSi/Cu/CoMnSiの低温のCPP−GMR比が30%であることに基づけば、室温で30%以上と考えられる。
FIG. 12 (cited from JP-A-2005-116701) shows a structural diagram of a CPPP giant magnetoresistive element. According to Japanese Patent Laid-Open No. 2005-116701, the use of a high spin polarization material for 113 and 115 provides a magnetic sensing element having a large magnetoresistance change. By using Co 1.95 Nd 0.05 MnSi (x = 0.05) here, the half metal can be kept up to room temperature, so that a large MR ratio can be obtained at room temperature.
According to a presentation by the Kogama et al. (2008 Summary 14aPS-29 (B)), the MR ratio of the Co 2 MnSi / Cu / Co 2 MnSi is 30% at a low CPP-GMR ratio. Based on that, it is considered to be 30% or more at room temperature.

実験No.1から3の合金のX線回折パターンを示すグラフ。The graph which shows the X-ray-diffraction pattern of the alloy of experiment No. 1 to 3. 実験No.2の比抵抗の温度依存性を示すグラフ。The graph which shows the temperature dependence of the specific resistance of experiment No.2. 実験No.1と2の規格化した比抵抗を温度の2乗に対して示すグラフ。The graph which shows the specific resistance of experiment No. 1 and 2 with respect to the square of temperature. 実験No.1と2の50−100Kの温度領域での規格化された比抵抗を示すグラフ。The graph which shows the normalized specific resistance in the temperature range of 50-100K of experiment No. 1 and 2. FIG. 実験No.1と2の10Kで規格化した磁気モーメントの温度変化を示すグラフ。The graph which shows the temperature change of the magnetic moment normalized by 10K of experiment No. 1 and 2. 実験No.1と2の10Kで測定した磁化曲線を示すグラフ。The graph which shows the magnetization curve measured at 10K of experiment No. 1 and 2. 実験No.2のコンダクタンス曲線とスピン偏極率の散乱因子依存性を示すグラフ。The graph which shows the scattering factor dependence of the conductance curve of experiment No. 2, and a spin polarization rate. トンネル型磁気抵抗素子の構造図。FIG. 3 is a structural diagram of a tunneling magnetoresistive element. CoMnSiを電極として強磁性トンネル接合のTMR比の温度依存性。Temperature dependence of the TMR ratio of a ferromagnetic tunnel junction using Co 2 MnSi as an electrode. 強磁性トンネル接合の構造図。Structure diagram of a ferromagnetic tunnel junction. CPP型巨大磁気抵抗効果素子の構造図。The structure diagram of a CPP type giant magnetoresistive effect element. CPP型巨大磁気抵抗効果素子の構造図。The structure diagram of a CPP type giant magnetoresistive effect element.

Claims (4)

スピントロニクスデバイスに用いられるCo基ホイスラー合金であって、下記式1に示すように希土類元素が添加されてなることを特徴とするCo基ホイスラー合金。
<式1>
Co2−xAB
(0<x<0.2、
Y:Ce,Pr,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb又はLu。
A:Fe又はMn。
B:Al,Si、Ga,Ge又はSn)
A Co-based Heusler alloy used for a spintronic device, wherein a rare earth element is added as shown in the following formula 1.
<Formula 1>
Co 2-x Y x AB
(0 <x <0.2,
Y: Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
A: Fe or Mn.
B: Al, Si, Ga, Ge or Sn)
絶縁体バリア層の両側を強磁性層が挟みこむ構造を有する強磁性トンネル接合素子であって、前記強磁性層として、請求項1に記載のCo基ホイスラー合金を用いたことを特徴とする強磁性トンネル接合素子。   A ferromagnetic tunnel junction device having a structure in which a ferromagnetic layer is sandwiched between both sides of an insulator barrier layer, wherein the Co-based Heusler alloy according to claim 1 is used as the ferromagnetic layer. Magnetic tunnel junction element. 強磁性層の間にトンネルバリア層を挟んだ強磁性トンネル接合の構造を有する磁気抵抗効果素子であって、前記強磁性層が請求項1に記載のCo基ホイスラー合金からなる層を含むことを特徴とする磁気抵抗効果素子。   A magnetoresistive effect element having a ferromagnetic tunnel junction structure in which a tunnel barrier layer is sandwiched between ferromagnetic layers, wherein the ferromagnetic layer includes the layer made of the Co-based Heusler alloy according to claim 1. A magnetoresistive effect element. 磁化方向が一方向に固定される固定磁性層と、前記固定磁性層に非磁性材料層を介して形成されたフリー磁性層を有する多層膜を有し、前記フリー磁性層と前記固定磁性層のいずれか一方または両方が、ホイスラー合金層を有している磁気検出素子であって、前記ホイスラー合金層が請求項1に記載のCo基ホイスラー合金からなることを特徴とする磁気検出素子。   A fixed magnetic layer in which the magnetization direction is fixed in one direction, and a multilayer film having a free magnetic layer formed on the fixed magnetic layer via a nonmagnetic material layer, and the free magnetic layer and the fixed magnetic layer Either or both are magnetic sensing elements having a Heusler alloy layer, and the Heusler alloy layer is made of the Co-based Heusler alloy according to claim 1.
JP2008299551A 2008-11-25 2008-11-25 Co-BASED HEUSLER ALLOY, AND MAGNETIC ELEMENT USING THE SAME Pending JP2010126733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299551A JP2010126733A (en) 2008-11-25 2008-11-25 Co-BASED HEUSLER ALLOY, AND MAGNETIC ELEMENT USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299551A JP2010126733A (en) 2008-11-25 2008-11-25 Co-BASED HEUSLER ALLOY, AND MAGNETIC ELEMENT USING THE SAME

Publications (1)

Publication Number Publication Date
JP2010126733A true JP2010126733A (en) 2010-06-10

Family

ID=42327327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299551A Pending JP2010126733A (en) 2008-11-25 2008-11-25 Co-BASED HEUSLER ALLOY, AND MAGNETIC ELEMENT USING THE SAME

Country Status (1)

Country Link
JP (1) JP2010126733A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093587A1 (en) * 2011-01-07 2012-07-12 独立行政法人物質・材料研究機構 Co2fe-based heusler alloy and spintronic device using same
JP2013134995A (en) * 2011-12-22 2013-07-08 Saitama Univ Spin polarization measuring method and measuring meter, logical operation gate using the same and signal encryption decryption method
CN104630568A (en) * 2013-11-07 2015-05-20 中国科学院物理研究所 MnCoGe based ferromagnetic martensite phase-change material, preparation method and applications thereof
WO2016042854A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Magnetoresistive element and magnetic memory

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093587A1 (en) * 2011-01-07 2012-07-12 独立行政法人物質・材料研究機構 Co2fe-based heusler alloy and spintronic device using same
JP2012156485A (en) * 2011-01-07 2012-08-16 National Institute For Materials Science Co2Fe-BASED HEUSLER ALLOY AND SPINTRONICS ELEMENT USING IT
US9336937B2 (en) 2011-01-07 2016-05-10 National Institute For Materials Science Co2Fe-based heusler alloy and spintronics devices using the same
JP2013134995A (en) * 2011-12-22 2013-07-08 Saitama Univ Spin polarization measuring method and measuring meter, logical operation gate using the same and signal encryption decryption method
CN104630568A (en) * 2013-11-07 2015-05-20 中国科学院物理研究所 MnCoGe based ferromagnetic martensite phase-change material, preparation method and applications thereof
CN104630568B (en) * 2013-11-07 2017-06-06 中国科学院物理研究所 A kind of ferromagnetic Martensitic Transformation Materials of MnCoGe bases and its production and use
WO2016042854A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Magnetoresistive element and magnetic memory
JP2016063150A (en) * 2014-09-19 2016-04-25 株式会社東芝 Magnetic resistance device and magnetic memory
US9991314B2 (en) 2014-09-19 2018-06-05 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory

Similar Documents

Publication Publication Date Title
Alzate et al. Temperature dependence of the voltage-controlled perpendicular anisotropy in nanoscale MgO| CoFeB| Ta magnetic tunnel junctions
Zhou et al. From fieldlike torque to antidamping torque in antiferromagnetic Mn 2 Au
US10832711B2 (en) Beta tungsten thin films with giant spin Hall effect for use in compositions and structures with perpendicular magnetic anisotropy
WO2017018391A1 (en) Memory element
US9336937B2 (en) Co2Fe-based heusler alloy and spintronics devices using the same
JPWO2007126071A1 (en) Magnetic thin film, magnetoresistive effect element and magnetic device using the same
Fowley et al. Perpendicular magnetic anisotropy in CoFeB/Pd bilayers
Zhao et al. Research progress in anisotropic magnetoresistance
Wisniowski et al. Magnetic tunnel junctions based on out-of-plane anisotropy free and in-plane pinned layer structures for magnetic field sensors
Svalov et al. Thermo-sensitive spin valve based on layered artificial ferrimagnet
Deka et al. Effect of Co substitution for Mn on spin polarization and magnetic properties of ferrimagnetic Mn2VAl
Goripati et al. Bi-quadratic interlayer exchange coupling in Co2MnSi/Ag/Co2MnSi pseudo spin-valve
Zhu Anomalous Hall effect in perpendicular CoFeB thin films
Feng et al. Spin-polarized quantum transport in Fe4N based current-perpendicular-to-plane spin valve
JP2010126733A (en) Co-BASED HEUSLER ALLOY, AND MAGNETIC ELEMENT USING THE SAME
De Teresa et al. Magnetotransport properties of Fe3O4 thin films for applications in spin electronics
Maat et al. Magnetotransport properties and spin-torque effects in current perpendicular to the plane spin valves with Co–Fe–Al magnetic layers
Lytvynenko et al. The effect of Co or Ag addition on magnetotransport and magnetic properties of Ni80Fe20 thin films
Li et al. Perpendicularizing magnetic anisotropy of full-Heusler Co2FeAl films by cosputtering with terbium
Delille et al. Thermal variation of current perpendicular-to-plane giant magnetoresistance in laminated and nonlaminated spin valves
Granberg et al. Anisotropic behaviour of the magnetoresistance in single crystalline iron films
Oguz et al. Low magnetisation alloys for in-plane spin transfer torque devices
Lv et al. Strong perpendicular magnetic anisotropy in annealed Co/native oxide/Pt multilayers
Ranjbar et al. High-Temperature Magnetic Tunnel Junction Magnetometers Based on L1 $ _0 $-PtMn Pinned Layer
Rajanikanth et al. Suppression of magnon excitations in Co2MnSi Heusler alloy by Nd doping