JP2010126533A - Highly-functionalized anticancer agent - Google Patents

Highly-functionalized anticancer agent Download PDF

Info

Publication number
JP2010126533A
JP2010126533A JP2008328706A JP2008328706A JP2010126533A JP 2010126533 A JP2010126533 A JP 2010126533A JP 2008328706 A JP2008328706 A JP 2008328706A JP 2008328706 A JP2008328706 A JP 2008328706A JP 2010126533 A JP2010126533 A JP 2010126533A
Authority
JP
Japan
Prior art keywords
taxol
anticancer agent
folic acid
water
anticancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008328706A
Other languages
Japanese (ja)
Inventor
Junichi Nakamura
淳一 中村
Naoki Nakajima
直喜 中島
Kazuaki Matsumura
和明 松村
Suong-Hyu Hyon
丞烋 玄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO VERDE KK
Original Assignee
BIO VERDE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO VERDE KK filed Critical BIO VERDE KK
Priority to JP2008328706A priority Critical patent/JP2010126533A/en
Publication of JP2010126533A publication Critical patent/JP2010126533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anticancer agent immobilizing a cancer targeting compound. <P>SOLUTION: This anticancer agent is produced by aminating dextran as a water-soluble polymer carrier, immobilizing taxol through the covalent bond therewith, and further immobilizing through the ionic adsorption of a remaining amino group and a carboxy group of folic acid. Thus, the anticancer agent has a high anticancer effect about twice that of the conventional taxol or about three times that of a water-soluble taxol. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

1968年にアメリカのカルフォルニア州に設立したアルゼ(現在ジョンソンアンドジョンソン)が薬物を製剤から徐々に放出させることによって効果を長期間持続するように打ち立てたコンセプトがドラッグデリバリーシステム(DDS)である。それから、今日まで活発に研究され中でも抗癌剤への利用が増えてきている。
増えている理由としては、抗癌剤の強力な副作用の抑制や薬剤の利便性の拡大、薬効の増強など様々なメリットが存在しているからである。例えば、抗癌剤パクリタキセル(タキソール)は、非水溶性のためクレモホールELや無水エタノール等で溶解したものを使用している。このタキソールの水溶化(非特許文献1及び特許文献1)は、L−グルタミン酸に固定化させた方法の他にアルブミンやデキストリンなどの高分子を主としたものがよく研究されている。このような方法をプロドラッグ化といい薬剤の利便性を向上させる。具体的には、水溶性・脂溶性などの性質への変化や分子量の大きいものを使うことで薬剤粒子径を大きくしEPR効果(非特許文献2)やRES抑制効果が可能となる。EPR効果では、薬剤の粒子径数10〜200nmで腫瘍組織へ集積していき、RES抑制では肝臓のクッパー細胞や副腎のマクロファージ系の細胞によって粒子径400nm以上のものを異物として貪食作用により排除している。また、肝臓で薬物代謝により分解され、腎臓の糸球体でろ過により5nm以下のものが***される。このように最適な粒子径にすることで長期間体内の薬物濃度を維持できる。
さらに薬剤をミセル(非特許文献3)やリポソーム(非特許文献4)などの微粒子へ封入させる手法においても、通常状態では薬剤が流出せず、温度やpH(非特許文献5)の変化によってコントロールリリースが可能である。
DDSで重要な役割として標的化(ターゲッティング)技術である。プロドラッグ化においても薬剤集積させるための粒子径の最適化をしているがそれ以上に目的部位にのみ運搬されるものであれば、副作用の軽減効果や薬剤をさらに少なくすることが可能になる。例えば、水溶性ビタミンとして知られる葉酸は、体内に吸収されると最終的に補酵素としてはたらき、細胞増殖に関与している。特定の癌組織では葉酸レセプターが高発現しており、多い順に卵巣(90%)、脳(75%)、腎臓(43%)、肺(37%)、***(32%)と続く(非特許文献6)。卵巣癌患者に対して葉酸を利用したターゲッティングが可能であり、このような特異的なサインを持つ癌に関しては有効な方法である。また、ターゲッティング効果利用したものではミサイル療法として注目された抗体(非特許文献7)、酵素(非特許文献8)などが研究されている。ターゲッティング効果により正常細胞への影響が少なくなり副作用の軽減が可能、薬物量も多くできる。
プロドラッグ化やターゲッティング効果を持たせる薬剤設計では、合成などにより共有結合を主とした結合で固定化させた薬剤またはリガンドが一般的である(特許文献1及び特許文献2)。本発明ではこうした細かな薬剤設計や大掛かりな合成をせずに非常に簡易的な方法で高い抗癌効果をもつ抗癌剤を提供する。
特開 1996−523755 特開 2006−551370 Chun Li,et al.:Cancer Research,58,2404−2409(1998) Rath Duncan,et al.:Nature Reviews Drug Discovery,2(5),347−360(2003) Wei Yang Seow,et al.:Biomaterials,28,1730−1740(2007) Yuzuru Ikehara,et al.:Cancer Letters,260,137−145(2008) Younsoo Bae,et al.:Bioconjugate Chem,18,1131−1139(2007) Yingjuan Lu,et al.:Journal of Controlled Release,91,17−29(2003) Yumi Tsutsui,et al.:Journal of Controlled Release,122,159−164(2007) Yoshiyuki Yabe,et al.:The Journal of Pharmacology and Experimental Therapeutics,298,3,894−899(2001) W.Lorenz,et al.:Agents and Actions,3(1997) Eric K.Rowinsky.:Journal of Clinical Oncology,9,1704−1712(1991) Steven D.Weitman,et al.:Cancer Research,52,3396−3401(1992) Chika Nishi,et al.:Journal of Biomedical Materials Research,29,829−834(1995)
The drug delivery system (DDS) is a concept that Arze (now Johnson & Johnson), established in 1968 in California, USA, has established a long-lasting effect by gradually releasing the drug from the formulation. Since then, active research has been carried out to date, and the use of anticancer drugs is increasing.
The reason for the increase is that there are various merits such as suppression of powerful side effects of anticancer drugs, expansion of convenience of drugs, and enhancement of drug efficacy. For example, the anticancer drug paclitaxel (Taxol) is insoluble in water and is dissolved in Cremophor EL or anhydrous ethanol. As for the water-solubilization of taxol (Non-patent Document 1 and Patent Document 1), those mainly composed of polymers such as albumin and dextrin are well studied in addition to the method of immobilizing it in L-glutamic acid. Such a method is called prodrug formation and improves the convenience of the drug. Specifically, the drug particle size is increased by using a change in properties such as water-solubility and fat-solubility and a large molecular weight, thereby enabling the EPR effect (Non-patent Document 2) and the RES suppression effect. In the EPR effect, the drug particle diameter is 10 to 200 nm and accumulates in the tumor tissue. In the RES suppression, the Kupffer cells of the liver and the macrophage cells of the adrenal glands are removed as alien substances by phagocytosis. ing. In addition, it is decomposed by drug metabolism in the liver, and kidney glomeruli are excreted by filtration at 5 nm or less. In this way, the drug concentration in the body can be maintained for a long time by setting the optimal particle size.
Furthermore, even in the method of encapsulating drugs in fine particles such as micelles (Non-patent Document 3) and liposomes (Non-patent Document 4), the drugs do not flow out under normal conditions, and are controlled by changes in temperature and pH (Non-patent Document 5) Release is possible.
Targeting technology is an important role in DDS. Even in prodrug formation, the particle size for drug accumulation is optimized, but if it is transported only to the target site more than that, it will be possible to reduce side effects and further reduce the drug . For example, folic acid, known as a water-soluble vitamin, eventually acts as a coenzyme when absorbed into the body and is involved in cell growth. Folic acid receptors are highly expressed in specific cancer tissues, followed by ovary (90%), brain (75%), kidney (43%), lung (37%), breast (32%) in descending order (non-patented) Reference 6). Targeting using folic acid is possible for ovarian cancer patients, and it is an effective method for cancer with such a specific signature. In addition, antibodies (Non-Patent Document 7) and enzymes (Non-Patent Document 8) that have been attracting attention as missile therapy have been studied for those utilizing the targeting effect. The targeting effect reduces the effect on normal cells, reduces side effects, and increases the amount of drug.
In drug design for providing a prodrug or targeting effect, a drug or ligand immobilized by a bond mainly composed of a covalent bond by synthesis or the like is generally used (Patent Documents 1 and 2). In the present invention, an anticancer agent having a high anticancer effect is provided by a very simple method without performing such fine drug design and large-scale synthesis.
JP 1996-523755 JP 2006-551370 A Chun Li, et al. : Cancer Research, 58, 2404-2409 (1998) Rath Duncan, et al. : Nature Reviews Drug Discovery, 2 (5), 347-360 (2003) Wei Yang Seow, et al. : Biomaterials, 28, 1730-1740 (2007) Yuzuru Ikehara, et al. : Cancer Letters, 260, 137-145 (2008) Younso Bae, et al. : Bioconjugate Chem, 18, 1131-1139 (2007) Yingjuan Lu, et al. : Journal of Controlled Release, 91, 17-29 (2003) Yumi Tsutsui, et al. : Journal of Controlled Release, 122, 159-164 (2007) Yoshiyuki Ybe, et al. : The Journal of Pharmacology and Experimental Therapeutics, 298, 3, 894-899 (2001) W. Lorenz, et al. : Agents and Actions, 3 (1997) Eric K. Rowinsky. : Journal of Clinical Oncology, 9, 1704-1712 (1991). Steven D. Weitman, et al. : Cancer Research, 52, 3396-3401 (1992) Chika Nishi, et al. : Journal of Biomedical Materials Research, 29, 829-834 (1995).

本発明の目的は、癌標的物質を新規固定化法によって抗癌剤に固定することにより抗癌効果を高めるものである。  An object of the present invention is to enhance the anticancer effect by immobilizing a cancer target substance on an anticancer agent by a novel immobilization method.

課題解決のための手段Means for solving problems

本発明の固定化法は、水溶性高分子キャリアとしてデキストランをアミノ化し、タキソールを共有結合で固定化させ、残りのアミノ基と葉酸のカルボキシル基のイオン吸着固定化させた抗癌剤。  The immobilization method of the present invention is an anticancer agent in which dextran is aminated as a water-soluble polymer carrier, taxol is immobilized by a covalent bond, and the remaining amino group and carboxyl group of folic acid are immobilized by ion adsorption.

発明の効果The invention's effect

本発明によれば標的分子の固定化をしないものと比べて約3倍の高い抗癌効果を提供している。  According to the present invention, an anticancer effect about three times higher than that without immobilization of a target molecule is provided.

水溶性タキソールと葉酸をリン酸バッファに溶解し、最適な濃度での混合により従来の合成による共有結合の固定化よりも簡易的であり、かつ高い抗癌効果を提供する。
イチイ科の植物から分離、合成される抗癌剤パクリタキセル(タキソール)は、卵巣癌、肺癌、乳癌に対して臨床で使用されている。使用する際にタキソールの溶媒として用いているクレモホールEL(ポリオキシエチレンヒマシ油)が強力な副作用を持っている(非特許文献9及び非特許文献10)。主に重篤な過敏症状を引き起こしてしまう、タキソールの副作用と同様にクレモホールELの副作用もあることから現在、投薬前にステロイド系の薬剤を投与することで副作用を抑制している。本発明および実施例で使用した葉酸吸着水溶性タキソールは、これらの問題の解決が可能であることを示す。
両親媒性多糖類であるデキストランとエチレンジアミンをコンジュゲートし、得られたアミノ化デキストランにタキソールを固定化させることで水溶性タキソールを合成した。さらに、ターゲッティング効果として水溶性ビタミンの一種である葉酸をこれに固定化させた。先にも記載した共有結合での固定化が一般的ではあるが、本発明では水溶性タキソールと葉酸をリン酸バッファ中で混合し固定化させた。この場合、タキソールの固定化に使用したアミノ化デキストランのアミノ基と葉酸の側鎖に存在するカルボキシル基がリン酸バッファ溶液内で互いに正負のイオンを持つことによりイオン吸着によって固定化されている(上記の図を参照)。
葉酸レセプターを多く持つ特定の癌細胞に対して本発明では、混ぜるのみという簡単な方法で高い抗癌効果を提供している。
By dissolving water-soluble taxol and folic acid in a phosphate buffer and mixing them at an optimal concentration, it is simpler than the conventional immobilization of covalent bonds and provides a high anticancer effect.
Paclitaxel (Taxol), an anticancer drug isolated and synthesized from yew plants, is used clinically for ovarian cancer, lung cancer, and breast cancer. Cremophor EL (polyoxyethylene castor oil) used as a solvent for taxol when used has a strong side effect (Non-patent document 9 and Non-patent document 10). Since there are side effects of Cremophor EL as well as the side effects of Taxol, which mainly cause severe hypersensitivity symptoms, side effects are currently suppressed by administering steroidal drugs before medication. The folic acid-adsorbing water-soluble taxol used in the present invention and examples shows that these problems can be solved.
Water-soluble taxol was synthesized by conjugating dextran, which is an amphiphilic polysaccharide, and ethylenediamine, and immobilizing taxol on the resulting aminated dextran. Furthermore, folic acid, a kind of water-soluble vitamin, was immobilized on this as a targeting effect. Although the covalent immobilization described above is general, in the present invention, water-soluble taxol and folic acid were mixed and immobilized in a phosphate buffer. In this case, the amino group of the aminated dextran used for immobilization of taxol and the carboxyl group present in the side chain of folic acid are immobilized by ion adsorption by having positive and negative ions in the phosphate buffer solution ( (See figure above).
In the present invention, a specific cancer cell having many folate receptors provides a high anticancer effect by a simple method of mixing.

実地例Practical example

以下、本発明を実施例によりさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。
<実施例1>
葉酸吸着させた水溶性タキソール抗癌剤の作成法の一例を次に示す。
▲1▼ アミノ化デキストラン(アミノ化Dex)の合成
デキストラン(MW70000、名糖産業)10gをジメチルスルホキシド(DMSO、和光純薬工業)70mlに溶解し、カルボニルジイミダゾール(CDI、MW162.15、和光純薬工業)2gをDMSO10mlに溶解して両者を50℃で15分間反応させた。次いで、エチレンジアミン(MW60.1、和光純薬工業)5mlを加えて50℃で18時間反応させた。反応終了後、分画分子量MW14000の透析膜を用いて水道水で一晩透析し、更に蒸留水で1.5時間×2回脱塩処理した。40℃で18時間乾燥後、50℃で18時間の真空乾燥に供することによりアミノ化デキストランを回収した。トリニトロベンゼンスルホン酸ナトリウム(TNBS、和光純薬工業)を用いてアミノ化度を評価したところ、デキストランの糖残基数に対するアミノ基導入率は、約7〜10モル%であった。
▲2▼ 水溶性タキソール(Dex−TXL)の合成
(アミノ基導入率7モル%のアミノ化Dexを使用)
▲1▼で合成したアミノDex5gをDMSO75mlに溶解した。タキソール(MW853.9、Samyang Genex Corporation)0.7gをDMSO20mlに溶かし、CDI0.6gをDMSO5mlに溶解した溶液とを混合し、50℃で15分間反応させた。次いで、アミノ化Dex溶液を添加し、50℃で18時間反応させた。分離精製は、▲1▼と同様の方法で行い、分光光度計を用いてタキソールの260nmにおける吸光度を測定することによりタキソール導入率を求めた。その結果、アミノ化Dexのアミノ基に対してタキソール導入率は、約15〜17%であった。従ってデキストランの糖残基に対するタキソール導入率は1〜1.2%となった。
▲3▼ デキストラン−タキソール−葉酸(Dex−TXL−FA)の調製
(タキソール導入率17%のDex−TXLを使用)
▲2▼で得られたDex−TXLには、未反応のアミノ基が83〜85%残っており、これに対して葉酸(MW441.40、和光純薬工業)を吸着させた。Dex−TXLは、2.5、葉酸は0.15/v%の濃度になるようにリン酸緩衝液(PBS、pH7.4)に溶解し、体積比1:1で混合して25℃で18時間静置した。毒性試験で使用する場合は、この混合溶液を培地で希釈して使用した。
<実地例2>
ヒト咽頭癌細胞KB(DSファーマバイオメディカルより購入)、ヒト大腸癌細胞Caco−2、正常細胞L929(ATCCより購入)を用いて増殖抑制試験を行った。KB細胞は、葉酸を利用したターゲッティング効果を検討する試料としてよく用いられており正常細胞の約1000倍以上の葉酸レセプターを細胞表面に持っている(非特許文献11)。Caco−2もKBほどではないがL929よりは多い葉酸レセプターを持っている。水溶性タキソールに葉酸を吸着固定化した薬剤は、10%ウシ胎児血清(和光純薬工業)を含有したRPMI1640(葉酸不含、Gibco)に懸濁させた。それぞれの細胞を、96wellマイクロプレートに1.0×10cell/well播種し、24時間培養後、Dex−TXLおよびDex−TXL−FAおよび対照Taxolのみを最終濃度0−1ppmとなるように添加し、96時間後、未添加系に対して細胞の増殖が50%阻害される濃度をIC50とし、Neutral Red法(非特許文献12)で求めた。その結果を表1に示す。
表1よりKB細胞では、葉酸無添加系のタキソールの約2倍、水溶性タキソール約3倍の抗癌効果を示した。また、細胞種で葉酸レセプターの少ないL929はタキソールのみが一番高い毒性を示しており、逆に葉酸を固定化させた水溶性タキソールは、その約3倍以上低い毒性を示したことから正常細胞への影響が軽減されていた。 Caco−2では、KBほどの葉酸ターゲッティング効果はないもののタキソール、水溶性タキソールと比べて約2倍の抗癌効果を示した。
<実施例3>
葉酸の吸着処理時間による毒性の影響について検討した。直前混合したものと一晩静置したものとで毒性に変化があるか調べた。実施例2と同様の方法でKB細胞のみ行った。その結果を表2に示す。
表2の結果より、直前混合した場合でも高い抗癌効果を示していることから吸着処理時間による影響もなく混ぜればすぐ使用できるという利点が示された。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following Example.
<Example 1>
An example of a method for producing a water-soluble taxol anticancer agent adsorbed with folic acid is shown below.
(1) Synthesis of aminated dextran (aminated Dex) 10 g of dextran (MW 70000, Meisei Sangyo) was dissolved in 70 ml of dimethyl sulfoxide (DMSO, Wako Pure Chemical Industries), and carbonyldiimidazole (CDI, MW 162.15, Wako Jun) 2g was dissolved in 10 ml of DMSO and both were reacted at 50 ° C. for 15 minutes. Then, 5 ml of ethylenediamine (MW 60.1, Wako Pure Chemical Industries) was added and reacted at 50 ° C. for 18 hours. After completion of the reaction, the mixture was dialyzed overnight against tap water using a dialysis membrane having a molecular weight cut off of MW 14000, and further desalted twice with distilled water for 1.5 hours. After drying at 40 ° C. for 18 hours, the aminated dextran was recovered by subjecting it to vacuum drying at 50 ° C. for 18 hours. When the degree of amination was evaluated using sodium trinitrobenzenesulfonate (TNBS, Wako Pure Chemical Industries), the amino group introduction rate relative to the number of sugar residues in dextran was about 7 to 10 mol%.
(2) Synthesis of water-soluble taxol (Dex-TXL)
(Uses aminated Dex with an amino group introduction rate of 7 mol%)
5 g of amino Dex synthesized in (1) was dissolved in 75 ml of DMSO. A solution in which 0.7 g of taxol (MW 853.9, Samyang Genex Corporation) was dissolved in 20 ml of DMSO and 0.6 g of CDI dissolved in 5 ml of DMSO was mixed and reacted at 50 ° C. for 15 minutes. Then, the aminated Dex solution was added and reacted at 50 ° C. for 18 hours. Separation and purification were carried out in the same manner as in (1), and the taxol introduction rate was determined by measuring the absorbance of taxol at 260 nm using a spectrophotometer. As a result, the taxol introduction rate was about 15 to 17% with respect to the amino group of the aminated Dex. Therefore, the taxol introduction rate relative to the sugar residue of dextran was 1 to 1.2%.
(3) Preparation of dextran-taxol-folic acid (Dex-TXL-FA)
(Uses Dex-TXL with a taxol introduction rate of 17%)
In Dex-TXL obtained in (2), 83 to 85% of unreacted amino groups remained, and folic acid (MW 441.40, Wako Pure Chemical Industries) was adsorbed thereto. Dex-TXL was dissolved in phosphate buffer solution (PBS, pH 7.4) to a concentration of 2.5 and folic acid was 0.15 W / v%, and mixed at a volume ratio of 1: 1 to 25 ° C. And left to stand for 18 hours. When used in toxicity tests, this mixed solution was diluted with a medium.
<Practical example 2>
A growth inhibition test was performed using human pharyngeal cancer cells KB (purchased from DS Pharma Biomedical), human colon cancer cells Caco-2, and normal cells L929 (purchased from ATCC). KB cells are often used as samples for examining the targeting effect using folic acid, and have about 1000 times or more folate receptors on the cell surface of normal cells (Non-patent Document 11). Caco-2 also has more folate receptors than L929, but not as much as KB. The drug in which folic acid was adsorbed and immobilized on water-soluble taxol was suspended in RPMI 1640 (without folic acid, Gibco) containing 10% fetal bovine serum (Wako Pure Chemical Industries). Each cell was seeded on a 96-well microplate at 1.0 × 10 3 cells / well, and after culturing for 24 hours, only Dex-TXL, Dex-TXL-FA and control Taxol were added to a final concentration of 0-1 ppm. After 96 hours, the concentration at which cell growth was inhibited by 50% relative to the non-added system was defined as IC50, and the neutral red method (Non-patent Document 12) was used. The results are shown in Table 1.
Table 1 shows that the KB cells showed an anticancer effect that was about twice as much as that of folic acid-free taxol and about 3 times that of water-soluble taxol. In addition, L929, which has few folate receptors in the cell type, has the highest toxicity only with taxol. Conversely, water-soluble taxol to which folic acid is immobilized has a toxicity three times lower than that of normal cells. The impact on was reduced. Caco-2 did not have the folic acid targeting effect as much as KB, but showed an anticancer effect about twice that of taxol and water-soluble taxol.
<Example 3>
The effects of folic acid adsorption treatment time were investigated. It was examined whether there was a change in toxicity between the mixture just before and the one left overnight. Only KB cells were performed in the same manner as in Example 2. The results are shown in Table 2.
The results shown in Table 2 show the advantage that even if mixed immediately before, the anti-cancer effect is high, so that the mixture can be used immediately without being affected by the adsorption treatment time.

Claims (5)

癌標的化合物を固定化させた抗癌剤Anticancer drug with immobilized cancer target compound 癌標的化合物が葉酸であることを特徴とする請求項1に記載の抗癌剤。The anticancer agent according to claim 1, wherein the cancer target compound is folic acid. 癌標的化合物が吸着により抗癌剤に固定化されることを特徴とする請求項1、2に記載の抗癌剤。The anticancer agent according to claim 1 or 2, wherein the cancer target compound is immobilized on the anticancer agent by adsorption. 抗癌剤が、パクリタキセルなどの疎水性抗ガン剤を親水化処理したものであることを特徴とする請求項1から3に記載の抗癌剤。4. The anticancer agent according to claim 1, wherein the anticancer agent is a hydrophobized hydrophobic anticancer agent such as paclitaxel. 前記親水化処理が、パクリタキセルなどの疎水性抗癌剤とデキストラン、キトサン、ポリエチエレングリコールなどの親水性高分子とのコンジュゲートであることを特徴とする請求項1から4に記載の抗癌剤。5. The anticancer agent according to claim 1, wherein the hydrophilization treatment is a conjugate of a hydrophobic anticancer agent such as paclitaxel and a hydrophilic polymer such as dextran, chitosan, and polyethylene glycol.
JP2008328706A 2008-11-28 2008-11-28 Highly-functionalized anticancer agent Pending JP2010126533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328706A JP2010126533A (en) 2008-11-28 2008-11-28 Highly-functionalized anticancer agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328706A JP2010126533A (en) 2008-11-28 2008-11-28 Highly-functionalized anticancer agent

Publications (1)

Publication Number Publication Date
JP2010126533A true JP2010126533A (en) 2010-06-10

Family

ID=42327153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328706A Pending JP2010126533A (en) 2008-11-28 2008-11-28 Highly-functionalized anticancer agent

Country Status (1)

Country Link
JP (1) JP2010126533A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102552930A (en) * 2011-10-28 2012-07-11 苏州大学 Water-soluble paclitaxel derivative with cell targeting effect and preparation thereof
WO2017053920A1 (en) 2015-09-25 2017-03-30 Zy Therapeutics Inc. Drug formulation based on particulates comprising polysaccharide-vitamin conjugate
WO2018043567A1 (en) * 2016-08-31 2018-03-08 国立大学法人京都大学 Compound for removing human pluripotent stem cells
JP2019507190A (en) * 2016-03-04 2019-03-14 博瑞生物医薬(蘇州)股▲フン▼有限公司. Specifically targeted biodegradable amphiphilic polymers for ovarian cancer, polymer vesicles produced therefrom and uses thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102552930A (en) * 2011-10-28 2012-07-11 苏州大学 Water-soluble paclitaxel derivative with cell targeting effect and preparation thereof
WO2017053920A1 (en) 2015-09-25 2017-03-30 Zy Therapeutics Inc. Drug formulation based on particulates comprising polysaccharide-vitamin conjugate
JP2019507190A (en) * 2016-03-04 2019-03-14 博瑞生物医薬(蘇州)股▲フン▼有限公司. Specifically targeted biodegradable amphiphilic polymers for ovarian cancer, polymer vesicles produced therefrom and uses thereof
WO2018043567A1 (en) * 2016-08-31 2018-03-08 国立大学法人京都大学 Compound for removing human pluripotent stem cells

Similar Documents

Publication Publication Date Title
Vogus et al. A hyaluronic acid conjugate engineered to synergistically and sequentially deliver gemcitabine and doxorubicin to treat triple negative breast cancer
Yin et al. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer
Niu et al. Melatonin and doxorubicin co-delivered via a functionalized graphene-dendrimeric system enhances apoptosis of osteosarcoma cells
Xue et al. Glutathione responsive cubic gel particles cyclodextrin metal-organic frameworks for intracellular drug delivery
Catanzaro et al. Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma
Zhou et al. A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity
Liu et al. Synthesis, characterization and antitumor evaluation of CMCS–DTX conjugates as novel delivery platform for docetaxel
WO2005095494A1 (en) Novel water-soluble fullerene, process for producing the same and active oxygen generator containing the fullerene
Zhu et al. Nanodiamond mediated co-delivery of doxorubicin and malaridine to maximize synergistic anti-tumor effects on multi-drug resistant MCF-7/ADR cells
CN109288813B (en) Selenium-containing taxol dimer prodrug polymer nanoparticles and preparation method thereof
Yan et al. Recent progress of supramolecular chemotherapy based on host–guest interactions
Wan et al. pH and reduction-activated polymeric prodrug nanoparticles based on a 6-thioguanine-dialdehyde sodium alginate conjugate for enhanced intracellular drug release in leukemia
JP2010126533A (en) Highly-functionalized anticancer agent
Zhang et al. Efficient delivery of triptolide plus a miR-30-5p inhibitor through the use of near infrared laser responsive or CADY modified MSNs for efficacy in rheumatoid arthritis therapeutics
Chun et al. PCN-223 as a drug carrier for potential treatment of colorectal cancer
Moghadam et al. High cancer selectivity and improving drug release from mesoporous silica nanoparticles in the presence of human serum albumin in cisplatin, carboplatin, oxaliplatin, and oxalipalladium treatment
Zhu et al. Self-assembling, pH-responsive nanoflowers for inhibiting PAD4 and neutrophil extracellular trap formation and improving the tumor immune microenvironment
CN101160354B (en) Polymeric pharmaceutical agent for treatment of cancer and process for production of the same
Zuo et al. Self-assembly engineering nanodrugs composed of paclitaxel and curcumin for the combined treatment of triple negative breast cancer
Mai et al. Facile synthesis of biodegradable mesoporous functionalized-organosilica nanoparticles for enhancing the anti-cancer efficiency of cordycepin
KR101072389B1 (en) Sensitivity drug delivery system to thiol comprising amphiphilic polymer
Wang et al. Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma
Xu et al. The design and synthesis of redox-responsive oridonin polymeric prodrug micelle formulation for effective gastric cancer therapy
KR20130127232A (en) Glycol chitosan and fullerenes conjugate as photosensitizer for photodynamic therapy, method for preparing the same, and photodynamic therapy using the same
Jung et al. Self-deliverable and self-immolative prodrug nanoassemblies as tumor targeted nanomedicine with triple cooperative anticancer actions