JP2010125418A - Sheet-like separation membrane and separation membrane element - Google Patents

Sheet-like separation membrane and separation membrane element Download PDF

Info

Publication number
JP2010125418A
JP2010125418A JP2008304749A JP2008304749A JP2010125418A JP 2010125418 A JP2010125418 A JP 2010125418A JP 2008304749 A JP2008304749 A JP 2008304749A JP 2008304749 A JP2008304749 A JP 2008304749A JP 2010125418 A JP2010125418 A JP 2010125418A
Authority
JP
Japan
Prior art keywords
separation membrane
sheet
convex portions
membrane
supply side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008304749A
Other languages
Japanese (ja)
Inventor
Noriaki Harada
憲章 原田
Atsushi Ko
敦 廣
Katsumi Ishii
勝視 石井
Osamu Hayashi
修 林
Atsuko Mizuike
敦子 水池
Yoshihide Kawaguchi
佳秀 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2008304749A priority Critical patent/JP2010125418A/en
Publication of JP2010125418A publication Critical patent/JP2010125418A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheet-like separation membrane which can assure a sufficient flow passage on its surface, can attain a sufficient turbulent effect on its surface, and suffers little from flow unevenness and to provide a separation membrane element using the same. <P>SOLUTION: The present invention provides the sheet-like separation membrane having a plurality of protrusions 1 as islands separated from each other on the permeation side or the feed side, wherein in each of the protrusions 1, the shortest length D2 passing the gravitational center of its upper surface is larger than the shortest distance D3 between the adjoining protrusions 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液体等の成分を分離するシート状分離膜、及びこれを用いた分離膜エレメントに関する。   The present invention relates to a sheet-like separation membrane for separating components such as a liquid, and a separation membrane element using the same.

液体等を分離する分離膜には、その孔径サイズや分離機能の違いにより、種々のタイプが存在するが、分離膜の一方の面に原液を供給し、他方の面から透過液を取り出す点では共通している。例えば、逆浸透ろ過、限外ろ過などに用いられる流体分離エレメントとしては、供給側流体(原水)を分離膜表面へ導く供給側流路材、供給側流体を分離する分離膜、および分離膜を透過し供給側流体から分離された透過側流体(透過水)を中心管(集水管)へと導く透過側流路材からなるユニットを有孔の中心管の周りに巻き付けたスパイラル型膜エレメントが知られている(例えば、特許文献1参照)。   There are various types of separation membranes that separate liquids, etc., depending on the pore size and separation function. However, in terms of supplying undiluted solution to one side of the separation membrane and taking out permeate from the other side. It is common. For example, as a fluid separation element used for reverse osmosis filtration, ultrafiltration, etc., a supply side flow path material that guides the supply side fluid (raw water) to the surface of the separation membrane, a separation membrane that separates the supply side fluid, and a separation membrane A spiral-type membrane element in which a unit comprising a permeate-side channel material that guides a permeate-side fluid (permeate) that has permeated and separated from a supply-side fluid to a central tube (collection tube) is wound around a perforated central tube It is known (see, for example, Patent Document 1).

このような、スパイラル型膜エレメントの流路材としては、樹脂製のネット等が主に使用されているが、下記の特許文献2に記載のように、樹脂製のシート状物の表面に凹凸が形成されたものも知られている。何れの流路材も、スパイラル状に巻回された分離膜に沿って、分離膜同士の隙間に、原水又は透過水を流動させる流路を形成する役割を有している。   As a flow path material of such a spiral membrane element, a resin net or the like is mainly used. However, as described in Patent Document 2 below, the surface of the resin sheet is uneven. It is also known that is formed. Any flow path material has a role of forming a flow path for flowing raw water or permeated water in the gap between the separation membranes along the separation membrane wound in a spiral shape.

しかしながら、近年、スパイラル型膜エレメント等の膜分離装置には、低コスト化のニーズが高まり、上記のような流路材を使用した膜分離装置では、低コスト化のニーズへの対応に限界が有ることが判明した。つまり、例えばスパイラル型膜エレメントの場合、その製造工程において、流路材を使用することが、コストアップや製造工程の複雑化をもたらしており、流路材の使用自体が低コスト化の妨げとなっていた。一方、近年、消費材の環境への負荷の問題が注目されており、一定期間の寿命で廃棄されるスパイラル型膜エレメントについても、その環境負荷が問題となっている。   However, in recent years, there has been a growing need for cost reduction in membrane separation devices such as spiral membrane elements, and there is a limit to the need for cost reduction in membrane separation devices using the above-mentioned flow path materials. It turned out to be. In other words, for example, in the case of a spiral membrane element, the use of a flow path material in its manufacturing process has led to an increase in cost and complexity of the manufacturing process, and the use of the flow path material itself hinders cost reduction. It was. On the other hand, in recent years, attention has been paid to the problem of the environmental load of the consumer material, and the environmental load of the spiral membrane element that is discarded with a certain period of life is also a problem.

このような背景から、特許文献3には、複合半透膜の分離活性層側にあたる供給側面に、凹凸を有し、膜内に膜表面と平行な方向に延びる複数の中空通路を有する複合半透膜が、提案されている。これを用いスパイラル型分離膜エレメントでは、供給側面の凹凸により供給側流路が形成されると共に、複数の中空通路により透過側流路が確保される。   From such a background, Patent Document 3 discloses a composite semi-permeable membrane having a plurality of hollow passages that have irregularities on the supply side corresponding to the separation active layer side of the composite semipermeable membrane and extend in a direction parallel to the membrane surface in the membrane. A permeable membrane has been proposed. In the spiral separation membrane element using this, a supply-side flow path is formed by irregularities on the supply side surface, and a permeation-side flow path is secured by a plurality of hollow passages.

特開平10−341号公報Japanese Patent Laid-Open No. 10-341 特開2006−247453号公報JP 2006-247453 A 特開平11−114381号公報JP-A-11-114381

しかし、上記の複合半透膜では、膜表面に設けられた凹凸が溝状であり、溝に沿って流動が生じるため、膜面での乱流効果(攪拌効果)が小さくなり、濃度分極等による分離性能の低下が生じ易くなる。また、対向して配置する膜の溝の方向が平行な場合には、凹凸同士が嵌まり込んで溝の断面積が僅かになり、流量が確保できないという問題もある。更に、溝を斜め方向にして、交差するように膜を対向させる方法もあるが、溝の終端部付近(膜の端辺付近)で流動が妨げられ易くなるため、流動が不均一になり易い点も懸念される。   However, in the above-described composite semipermeable membrane, the unevenness provided on the membrane surface is groove-like, and flow occurs along the groove, so the turbulent effect (stirring effect) on the membrane surface is reduced, concentration polarization, etc. The separation performance is likely to deteriorate due to. Moreover, when the direction of the groove | channel of the film | membrane arrange | positioned facing is parallel, an unevenness | corrugation fits in, the cross-sectional area of a groove | channel becomes small, and there also exists a problem that flow volume cannot be ensured. In addition, there is a method in which the grooves face each other in an oblique direction, but the flow tends to be disturbed near the end of the groove (near the edge of the film), so the flow tends to be uneven. This is also a concern.

そこで、本発明の目的は、膜表面に十分な流路が確保できると共に、膜面での乱流効果も十分得られ、局所的な流動の不均一も生じにくいシート状分離膜、及びこれを用いた分離膜エレメントを提供することにある。   Therefore, an object of the present invention is to provide a sheet-like separation membrane that can secure a sufficient flow path on the membrane surface, can sufficiently obtain a turbulent flow effect on the membrane surface, and is less likely to cause uneven local flow, and It is to provide a separation membrane element used.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明のシート状分離膜は、相互に島状に離間した複数の凸部を透過側面又は供給側面に有し、前記凸部は上面の重心を通過する最短長さが、隣接する前記凸部同士の最短距離より大きいことを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the sheet-like separation membrane of the present invention has a plurality of convex portions spaced from each other in an island shape on the transmission side surface or the supply side surface, and the convex portions have the shortest length that passes through the center of gravity of the upper surface and are adjacent to each other. It is larger than the shortest distance between convex parts.

本発明のシート状分離膜によると、何れかの膜表面に相互に島状に離間した複数の凸部を有するため、流路の形状が直線でなく分岐した流路が生成される(例えば網目状等)ため、膜面での乱流効果が十分得られると共に、局所的な流動の不均一も生じにくくなる。また、凸部の上面の最短長さが、隣接する凸部同士の最短距離より大きいため、対向する膜面同士を接触させて使用する場合でも、膜面の凹凸同士が嵌まり込みにくく、流路の断面積が十分確保できる。その結果、膜表面に十分な流路が確保できると共に、膜面での乱流効果も十分得られ、局所的な流動の不均一も生じにくいシート状分離膜を提供することができる。   According to the sheet-like separation membrane of the present invention, since there are a plurality of convex portions that are spaced apart from each other in the form of islands on one of the membrane surfaces, a flow path in which the shape of the flow path is not straight but branched (for example, a mesh) Therefore, a sufficient turbulent flow effect on the film surface can be obtained, and local non-uniform flow is less likely to occur. In addition, since the shortest length of the upper surface of the convex portion is larger than the shortest distance between adjacent convex portions, even when the film surfaces facing each other are used in contact with each other, it is difficult for the irregularities on the film surface to fit into each other. Sufficient cross-sectional area of the road can be secured. As a result, a sufficient flow path can be ensured on the membrane surface, a turbulent flow effect on the membrane surface can be obtained sufficiently, and a sheet-like separation membrane can be provided that is less likely to cause uneven local flow.

上記において、前記複数の凸部は、シート状分離膜の何れかの端辺に対して20〜70°の角度で線状に連なって配列されていることが好ましい。シート状分離膜は、通常、その端辺に平行又は垂直の方向に、流路の方向が設計されるため、上記の角度は、流路の方向に対する角度に相当する。そして、上記構成によると、流路の方向に対して斜め方向に複数の凸部が連なって配列されるため、流路の方向に対して流路を斜め方向に変化させる力が働き、これが攪拌力となって、濃度分極等による分離性能の低下をより生じにくくすることが可能となる。また、線状に配列される部分の間の流路により、比較的大きな流路が確保でき、全体の圧力損失を低減できる。   In the above, it is preferable that the plurality of convex portions are arranged in a line at an angle of 20 to 70 ° with respect to any end side of the sheet-like separation membrane. In the sheet-like separation membrane, the direction of the flow path is usually designed in a direction parallel to or perpendicular to the edge of the sheet-like separation membrane, and the above angle corresponds to the angle with respect to the direction of the flow path. And according to the said structure, since the several convex part is arranged in a row in the diagonal direction with respect to the direction of a flow path, the force which changes a flow path in the diagonal direction acts with respect to the direction of a flow path, and this is stirring. As a result, it is possible to make it difficult to cause a decrease in separation performance due to concentration polarization or the like. In addition, a relatively large flow path can be secured by the flow path between the portions arranged in a line, and the overall pressure loss can be reduced.

また、前記凸部の上面は、対向する2つの頂点が鋭角の四角形であることが好ましい。この構成によると、鋭角の一方の頂点から他方の頂点の側へと流動を生じさせることにより、凸部の上流側の流動抵抗を小さくできると共に、凸部の下流側のデッドスペースを少なくすることができ、圧力損失を低減しながら効率良く攪拌効果を付与することができる。   Moreover, it is preferable that the upper surface of the said convex part is a square with two acute vertices. According to this configuration, by causing a flow from one apex of the acute angle to the other apex, the flow resistance on the upstream side of the convex portion can be reduced, and the dead space on the downstream side of the convex portion can be reduced. Thus, the stirring effect can be efficiently imparted while reducing the pressure loss.

更に、供給側面及び透過側面に、前記複数の凸部が設けられていることが好ましい。これにより、供給側面及び透過側面において、膜表面に十分な流路が確保できると共に、局所的な流動の不均一も生じにくくでき、特に供給側面で必要となる乱流効果も十分得られるものとなる。   Furthermore, it is preferable that the plurality of convex portions are provided on the supply side surface and the transmission side surface. Thereby, on the supply side surface and the transmission side surface, a sufficient flow path can be secured on the membrane surface, local flow non-uniformity can hardly occur, and the turbulent flow effect required particularly on the supply side surface can be sufficiently obtained. Become.

一方、本発明の分離膜エレメントは、上記いずれかに記載のシート状分離膜を備えることを特徴とする。本発明の分離膜エレメントによると、上記の如き作用効果を奏するシート状分離膜を備えるため、膜表面に十分な流路が確保できると共に、膜面での乱流効果も十分得られ、局所的な流動の不均一も生じにくい分離膜エレメントを提供することができる。   On the other hand, the separation membrane element of the present invention includes any one of the sheet-like separation membranes described above. According to the separation membrane element of the present invention, since the sheet-like separation membrane having the above-described effects is provided, a sufficient flow path can be secured on the membrane surface, and a sufficient turbulent flow effect on the membrane surface can be obtained. It is possible to provide a separation membrane element that is less likely to cause uneven flow.

上記において、前記シート状分離膜の透過側面同士又は供給側面同士を接触させた状態で、前記シート状分離膜を有孔の中心管の回りにスパイラル状に巻回してあることが好ましい。スパイラル型の分離膜エレメントは、単位体積あたりの有効膜面積が大きいため多用されているが、本発明のシート状分離膜を用いることにより、特に、製造工程の大幅な簡略化や原料コストの削減を図ることができる。   In the above, it is preferable that the sheet-like separation membrane is wound in a spiral shape around a perforated central tube in a state where the permeation side surfaces or the supply side surfaces of the sheet-like separation membrane are in contact with each other. Spiral-type separation membrane elements are widely used because of their large effective membrane area per unit volume, but by using the sheet-like separation membrane of the present invention, in particular, the manufacturing process is greatly simplified and raw material costs are reduced. Can be achieved.

その際、前記シート状分離膜は、前記複数の凸部が線状に連なって配列され、その配列方向が軸芯方向に対して20〜60°であることが好ましい。このような角度で線状配列部を配置することで、線状配列部の間の流路により、全体の圧力損失をより低減でき、しかも凸部の間の狭い間隔にも分岐した流路が生成され、これによる供給液の撹拌効果がより得られるため、濃度分極等を効果的に防止することができる。   In that case, as for the said sheet-like separation membrane, it is preferable that the said several convex part is arranged in a line, and the arrangement direction is 20-60 degrees with respect to an axial direction. By arranging the linear array part at such an angle, the flow path between the linear array parts can further reduce the overall pressure loss, and the flow path branched into a narrow interval between the convex parts. Since it is generated and the effect of stirring the supply liquid can be further obtained, concentration polarization and the like can be effectively prevented.

あるいは、前記シート状分離膜の透過側面同士又は供給側面同士が接触した筒状又は封筒状の分離膜ユニットを複数積層し、その分離膜ユニットの一端部又は両端部を透過側流路又は供給側流路の何れか一方が開口するように封止してあることが好ましい。このような構造の分離膜エレメントによると、スパイラル型のものに比べて、更なる原料コストの軽減や製造工程の簡略化、環境負荷の低減を図ることができる。   Alternatively, a plurality of cylindrical or envelope-shaped separation membrane units in which the permeation side surfaces or the supply side surfaces of the sheet-like separation membrane are in contact with each other are stacked, and one end portion or both end portions of the separation membrane unit are connected to the permeation side flow path or the supply side. It is preferable that either one of the flow paths is sealed so as to open. According to the separation membrane element having such a structure, the raw material cost can be further reduced, the manufacturing process can be simplified, and the environmental load can be reduced as compared with the spiral type.

その際、前記シート状分離膜は、前記複数の凸部が線状に連なって配列され、その配列方向が供給側流路の流れ方向に対して20〜60°であることが好ましい。このような角度で線状配列部を配置することで、線状配列部の間の流路により、全体の圧力損失をより低減でき、しかも凸部の間の狭い間隔にも分岐した流路が生成され、これによる供給液の撹拌効果がより得られるため、濃度分極等を効果的に防止することができる。   In that case, as for the said sheet-like separation membrane, it is preferable that the said several convex part is arranged in a line, and the arrangement direction is 20-60 degrees with respect to the flow direction of a supply side flow path. By arranging the linear array part at such an angle, the flow path between the linear array parts can further reduce the overall pressure loss, and the flow path branched into a narrow interval between the convex parts. Since it is generated and the effect of stirring the supply liquid can be further obtained, concentration polarization and the like can be effectively prevented.

以下、本発明の実施形態について、図面に基づいて説明する。図1は本発明のシート状分離膜の例を示す供給側から見た平面図である。図2は本発明のシート状分離膜の例を示す縦断面図である。図3は本発明のシート状分離膜の好ましい例を示す平面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a plan view seen from the supply side showing an example of a sheet-like separation membrane of the present invention. FIG. 2 is a longitudinal sectional view showing an example of the sheet-like separation membrane of the present invention. FIG. 3 is a plan view showing a preferred example of the sheet-like separation membrane of the present invention.

本発明のシート状分離膜は、図1〜図3に示すように、相互に島状に離間した複数の凸部1を透過側面Sa又は供給側面Sbに有している。このような凸部1により、膜面に沿った流路を形成する凹部2が確保される。図1に示す例では、複数の凸部1を供給側面Sbに有し、その凸部1同士の間の凹部2により、膜面に沿った流路が形成されている。   As shown in FIGS. 1 to 3, the sheet-like separation membrane of the present invention has a plurality of convex portions 1 spaced from each other in an island shape on the transmission side surface Sa or the supply side surface Sb. Such a convex portion 1 secures a concave portion 2 that forms a flow path along the film surface. In the example shown in FIG. 1, a plurality of convex portions 1 are provided on the supply side surface Sb, and a flow path along the film surface is formed by the concave portions 2 between the convex portions 1.

複数の凸部1は、透過側面Sa又は供給側面Sbの片面又は両面に設けられるが、本発明では、図2(c)に示すように、複数の凸部1が透過側面Sa及び供給側面Sbに設けられるのが好ましい。   The plurality of convex portions 1 are provided on one or both sides of the transmission side surface Sa or the supply side surface Sb. In the present invention, as shown in FIG. 2C, the plurality of convex portions 1 are formed on the transmission side surface Sa and the supply side surface Sb. Is preferably provided.

凸部1の形状は、膜面に沿った流路を形成できるものであれば何れでもよく、例えば上面の形状が菱形、平行四辺形、楕円形、長円形、円形、正方形、三角形、その他の多角形のもの等が挙げられる。なかでも対向する2つの頂点が鋭角の四角形である菱形、平行四辺形などが好ましい。     The shape of the convex portion 1 may be any as long as it can form a flow path along the membrane surface. For example, the shape of the top surface is rhombus, parallelogram, ellipse, oval, circle, square, triangle, Examples include polygonal ones. Among them, a rhombus, a parallelogram, etc., in which two vertices facing each other are squares with acute angles are preferable.

本発明のシート状分離膜は、凸部1の上面の重心を通過する最短長さが、隣接する前記凸部1同士の最短距離D3より大きいことを特徴とする。ここで、「重心を通過する最短長さ」とは、上面の形状に対する重心に基づいて、その点を通過する直線のうち、上面の輪郭と接する交点同士の距離が最も短い線分の長さを指し、楕円形や菱形の場合には、その短径D2に相当する。   The sheet-like separation membrane of the present invention is characterized in that the shortest length passing through the center of gravity of the upper surface of the convex portion 1 is larger than the shortest distance D3 between the adjacent convex portions 1. Here, "the shortest length that passes through the center of gravity" is the length of the line segment that has the shortest distance between the intersection points that touch the contour of the top surface among the straight lines that pass through that point based on the center of gravity with respect to the shape of the top surface. In the case of an ellipse or rhombus, it corresponds to the minor axis D2.

従って、本発明では、凸部1の上面の長径D1は0.3〜1.0mmが好ましく、0.5〜0.8mmがより好ましい。上面の短径D2は0.3〜1.0mmが好ましく、0.3〜0.5mmがより好ましい。   Therefore, in the present invention, the major axis D1 of the upper surface of the convex portion 1 is preferably 0.3 to 1.0 mm, and more preferably 0.5 to 0.8 mm. The minor axis D2 of the upper surface is preferably 0.3 to 1.0 mm, and more preferably 0.3 to 0.5 mm.

また、「隣接する凸部同士の最短距離」とは、二次元に配置された複数の凸部1のうち、その規則性に従って最も接近して隣接する凸部を対象として、その上面を基準にして測定される凸部同士の最短距離を指す。例えば、図1に示す例では、隣接する凸部1同士の最短距離がD3で示される。   In addition, “the shortest distance between adjacent convex portions” refers to a convex portion that is closest and adjoins according to the regularity among a plurality of convex portions 1 arranged two-dimensionally, and uses the upper surface as a reference. This indicates the shortest distance between the convex portions measured. For example, in the example shown in FIG. 1, the shortest distance between adjacent convex parts 1 is indicated by D3.

このような隣接する凸部1同士の最短距離D3は、0.1〜0.3mmが好ましく、0.2〜0.3mmがより好ましい。また、本発明では、凸部1最短長さ(短径D2)が最短距離D3より大きくなるが、両者の差(D2−D3)は、0.1〜0.3mmが好ましく、0.1〜0.15mmがより好ましい。   The shortest distance D3 between the adjacent convex portions 1 is preferably 0.1 to 0.3 mm, and more preferably 0.2 to 0.3 mm. Moreover, in this invention, although the convex part 1 shortest length (short axis D2) becomes larger than the shortest distance D3, 0.1-0.3 mm is preferable and both difference (D2-D3) is 0.1-0.1. 0.15 mm is more preferable.

凸部1の配置は、流路を妨げないものであれば何れでもよく、ランダムな配置、凸部1が縦横に配列されたマトリックス状の配置(図1(a)、(c)、(e)参照)、凸部1の縦の配列が1列毎に交互になっている千鳥状の配置(図1(b)、(d)、(f)参照)が挙げられる。   The arrangement of the protrusions 1 may be any arrangement as long as it does not interfere with the flow path, and is a random arrangement or a matrix arrangement in which the protrusions 1 are arranged vertically and horizontally (FIGS. 1A, 1C, and 1E). )), And a staggered arrangement (see FIGS. 1B, 1D, and 1F) in which the vertical arrangement of the convex portions 1 is alternated every row.

更に、図3に示すように、複数の凸部1は、シート状分離膜の何れかの端辺に対して20〜70°の角度で線状に連なって配列されていることが好ましい。特に、複数の凸部1は、狭い間隔で線状に配列された線状配列部Lを形成すると共に、その線状配列部Lがより広い間隔で複数配列されて線状配列部Lの間に複数の流路を形成していることがより好ましい。   Furthermore, as shown in FIG. 3, the plurality of convex portions 1 are preferably arranged in a line at an angle of 20 to 70 ° with respect to any end side of the sheet-like separation membrane. In particular, the plurality of convex portions 1 form a linear array portion L that is linearly arranged at a narrow interval, and a plurality of the linear array portions L are arrayed at a wider interval to form a space between the linear array portions L. It is more preferable that a plurality of flow paths are formed.

凹部2の面積率は、凸部1の上面を基準とした場合に30〜90%であることが好ましく、50〜70%であることがより好ましい。ここで、凹部2の面積率は、凸部1の上面の面積が占める割合(百分率)を100%から引いた値である。   The area ratio of the concave portion 2 is preferably 30 to 90% and more preferably 50 to 70% when the upper surface of the convex portion 1 is used as a reference. Here, the area ratio of the concave portion 2 is a value obtained by subtracting the ratio (percentage) occupied by the area of the upper surface of the convex portion 1 from 100%.

線状配列部Lを設ける場合、流路の圧力損失を十分低減する観点から、線状配列部L同士の間隔(広い間隔)は、0.1〜1.0mmが好ましく、0.1〜0.3mmがより好ましく、0.1〜0.2mmが更に好ましい。また、流れの直進を妨げて撹拌効果を高める観点から、線状配列部Lにおける凸部1同士の間隔(狭い間隔D3)は、0.1〜0.3mmが好ましく、0.1〜0.2mmがより好ましい。   When providing the linear arrangement | sequence part L, from a viewpoint of fully reducing the pressure loss of a flow path, 0.1-1.0 mm is preferable and, as for the space | interval (wide space | interval) between the linear arrangement | sequence parts L, 0.1-0 .3 mm is more preferable, and 0.1 to 0.2 mm is still more preferable. Further, from the viewpoint of preventing the straight flow of the flow and enhancing the stirring effect, the interval between the convex portions 1 in the linear array portion L (narrow interval D3) is preferably 0.1 to 0.3 mm, preferably 0.1 to 0. 2 mm is more preferable.

また、線状配列部Lの配列方向は、線状配列部の間の流路により、全体の圧力損失をより低減でき、しかも凸部の間の狭い間隔にも分岐した流路が生成され、これによる供給液の撹拌効果が得られ易くなる観点から、供給側流路の流れ方向に対して20〜60°であることが好ましく、20〜40°であることがより好ましい。   Further, the arrangement direction of the linear arrangement portion L can reduce the overall pressure loss by the flow passage between the linear arrangement portions, and a flow passage branched into a narrow interval between the convex portions is generated, From the viewpoint of easily obtaining the agitation effect of the supply liquid, the angle is preferably 20 to 60 ° and more preferably 20 to 40 ° with respect to the flow direction of the supply side flow path.

図4には、線状配列部Lの間に形成される凹部2を模式的に示している。この図4に示すように、中心線A−A’で供給側面Sbが対向するように2つ折りにすると、各々の供給側面Sbの供給側流路(凹部2)同士が交差することになり、凹凸の嵌まり込みをより確実に防止できると共に、交差する部分において、供給側流体の撹拌効果を高めることができる。   In FIG. 4, the recessed part 2 formed between the linear arrangement | sequence parts L is shown typically. As shown in FIG. 4, when the supply side surface Sb is folded in two so as to face each other at the center line AA ′, the supply side flow paths (recesses 2) of the respective supply side surfaces Sb intersect each other. It is possible to prevent the unevenness from being more reliably prevented and to enhance the stirring effect of the supply-side fluid at the intersecting portion.

本発明では、図2(a)に示すように、供給側面Sbのみに凸部1を設けてもよく、あるいは透過側面Saと供給側面Sbとに凸部1を設けてもよい。更に、図2(b)に示すように、供給側面Sbに凸部1を設ける際に、透過側面Saから凸型を型押しして、透過側面Saに凹部2aが形成されるようにしてもよい。更に、図2(c)に示すように、供給側面Sbから凸型を型押しして透過側面Saに凸部1aを形成すると同時に、透過側面Saから凸型を型押しして供給側面Sbに凸部1を形成するようにしてもよい。   In the present invention, as shown in FIG. 2A, the convex portion 1 may be provided only on the supply side surface Sb, or the convex portion 1 may be provided on the transmission side surface Sa and the supply side surface Sb. Furthermore, as shown in FIG. 2B, when the convex portion 1 is provided on the supply side surface Sb, the convex shape is pressed from the transmission side surface Sa so that the concave portion 2a is formed on the transmission side surface Sa. Good. Further, as shown in FIG. 2 (c), the convex shape is embossed from the supply side surface Sb to form the convex portion 1a on the transmission side surface Sa, and at the same time, the convex shape is embossed from the transmission side surface Sa to the supply side surface Sb. The convex portion 1 may be formed.

図6は、図2(c)に示す形態を複合半透膜に使用した場合の例を示す図であり、(a)は供給側から見た平面図、(b)はそのI−I断面図、(c)はその積層状態を示す断面図である。このシート状複合半透膜は、凹凸を有する多孔性支持体5と、その表面に形成された分離活性層6とを備えている。
図6(a)に示すように、凸部1bが斜め方向に一定のピッチで配列される場合、矢印A1で示すように、その配列の間の広い隙間(凸部1aの形成部分を含む)には大きな供給側流路が形成される。また、配列される凸部1b同士の狭い隙間には小さな供給側流路が形成される。一方、透過側流路については、矢印A2で示すように、凸部1aの配列の間の広い隙間(凸部1bの形成部分を含む)には大きな透過側流路が形成される。また、配列される凸部1a同士の狭い隙間には小さな透過側流路が形成される。
6A and 6B are diagrams showing an example in which the form shown in FIG. 2C is used for a composite semipermeable membrane, wherein FIG. 6A is a plan view seen from the supply side, and FIG. FIG. 2C is a cross-sectional view showing the stacked state. This sheet-like composite semipermeable membrane includes a porous support 5 having irregularities and a separation active layer 6 formed on the surface thereof.
As shown in FIG. 6A, when the convex portions 1b are arranged at a constant pitch in an oblique direction, a wide gap between the arrangements (including a portion where the convex portions 1a are formed) as shown by an arrow A1. A large supply-side flow path is formed at. A small supply-side flow path is formed in a narrow gap between the convex portions 1b arranged. On the other hand, with respect to the permeation side flow path, as shown by the arrow A2, a large permeation side flow path is formed in a wide gap between the arrangement of the convex portions 1a (including a portion where the convex portions 1b are formed). Moreover, a small permeation | transmission side flow path is formed in the narrow clearance gap between the convex parts 1a arranged.

このシート状複合半透膜は、例えば図6(c)に示すような状態で使用される。この例では、透過側面Saの凸部1aと凸部1aとが対向して接触し、供給側面Sbの凸部1bと凸部1bとが対向して接触している。その結果、凹部2bと凹部2aの部分に、それぞれ供給側流路7bと透過側流路7aとが形成される。   This sheet-like composite semipermeable membrane is used in a state as shown in FIG. 6C, for example. In this example, the convex portion 1a and the convex portion 1a of the transmission side surface Sa are opposed to and in contact with each other, and the convex portion 1b and the convex portion 1b of the supply side surface Sb are opposed to and in contact with each other. As a result, the supply-side flow path 7b and the permeation-side flow path 7a are formed in the recess 2b and the recess 2a, respectively.

図6(a)に示すように、凸部1a,1bが斜め方向に一定のピッチで配列される場合、上下の膜を積層する際に、斜め方向の配列が交差するように積層することで、凸部1aによって形成された凹部2aに、対向する膜の凸部1aがはまり込んで、透過側流路7aが狭くなることを防止することができる。供給側流路7bについても同様である。   As shown in FIG. 6A, when the convex portions 1a and 1b are arranged at a constant pitch in the oblique direction, when the upper and lower films are laminated, they are laminated so that the arrangement in the oblique direction intersects. Further, it is possible to prevent the permeation-side flow path 7a from becoming narrow due to the convex portion 1a of the opposing film getting caught in the concave portion 2a formed by the convex portion 1a. The same applies to the supply-side flow path 7b.

上記のいずれの場合においても、供給側面Sbの凸部1の高さH2は0.2〜0.3mmであることが好ましい。高さH2がこの範囲であると、供給側流路の圧力損失を十分低減しながら、加圧による凹凸のつぶれを回避することができる。また、透過側面Saの凸部1aの高さH1は、0.3〜0.5mmであることが好ましい。   In any of the above cases, the height H2 of the convex portion 1 of the supply side surface Sb is preferably 0.2 to 0.3 mm. When the height H2 is within this range, it is possible to avoid collapse of unevenness due to pressurization while sufficiently reducing the pressure loss of the supply-side flow path. Moreover, it is preferable that the height H1 of the convex part 1a of the transmission side surface Sa is 0.3 to 0.5 mm.

本発明における分離膜は、限外ろ過膜、ナノろ過膜、逆浸透膜、透析膜など何れでも良いが、供給側の圧力と透過液の流量などの関係から、逆浸透膜、限外ろ過膜である場合に有効である。   The separation membrane in the present invention may be any of an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, a dialysis membrane, etc., but from the relationship between the pressure on the supply side and the flow rate of the permeate, the reverse osmosis membrane, the ultrafiltration membrane It is effective when

分離膜の材質としては、熱硬化性樹脂、熱可塑性樹脂、耐熱性樹脂などが挙げられる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、フッ素樹脂、ポリエステル、ポリアミドなどが挙げられる。また、耐熱性樹脂としては、ポリスルホン、ポリエーテルサルホン、芳香族系のポリイミド、ポリアミド、ポリエステルなどが挙げられる。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、アミノ樹脂、ポリウレタン樹脂、シリコーン樹脂、または熱硬化性ポリイミド樹脂等が挙げられる。なかでも、原料コストを低減でき、凹凸加工のし易さの観点から、エポキシ樹脂が好ましい。   Examples of the material of the separation membrane include a thermosetting resin, a thermoplastic resin, and a heat resistant resin. Examples of the thermoplastic resin include polyethylene, polypropylene, polystyrene, acrylic resin, fluororesin, polyester, and polyamide. Examples of the heat resistant resin include polysulfone, polyethersulfone, aromatic polyimide, polyamide, and polyester. Examples of the thermosetting resin include epoxy resins, unsaturated polyester resins, phenol resins, amino resins, polyurethane resins, silicone resins, and thermosetting polyimide resins. Among these, an epoxy resin is preferable from the viewpoint of reducing raw material costs and ease of uneven processing.

分離膜の厚みとしては、凹凸を形成して形状保持させる観点から、0.1〜0.2mmが好ましく、0.1〜0.15mmがより好ましい。なお、分離膜は不織布等の支持体上に形成されているものでもよく、分離活性層が表面に形成されている複合膜でもよい。   The thickness of the separation membrane is preferably 0.1 to 0.2 mm, more preferably 0.1 to 0.15 mm, from the viewpoint of forming irregularities and maintaining the shape. The separation membrane may be formed on a support such as a nonwoven fabric, or may be a composite membrane having a separation active layer formed on the surface.

本発明において、分離膜に凹凸を形成する方法としては、製膜時に凹凸を形成する方法、製膜後に凹凸を形成する方法、複合膜の場合(例えば複合半透膜等)には支持体を製膜後に凹凸を形成した後、分離活性層を形成する方法、などが挙げられる。   In the present invention, as a method for forming irregularities on the separation membrane, a method for forming irregularities during film formation, a method for forming irregularities after film formation, and in the case of a composite membrane (for example, a composite semipermeable membrane), a support is used. Examples of the method include forming a separation active layer after forming irregularities after film formation.

製膜時に凹凸を形成する方法では、例えば製膜溶液をキャストする基材に凹凸を設ける方法や、両面から基材で挟み込む場合には両面の基材に凹凸を設ける方法が挙げられる。   Examples of the method for forming irregularities during film formation include a method of providing irregularities on a substrate on which a film-forming solution is cast, and a method of providing irregularities on both sides of a substrate when sandwiching the substrates from both sides.

製膜後に凹凸を形成する方法では、例えば加熱プレス、加圧プレス、連続ラミネート、ロールエンボス加工などが挙げられるが、分離膜の多孔質構造を維持し易くする観点から、ロールエンボス加工を行うのが好ましい。なお、複合膜の場合の場合には、平坦な表面を有する支持体を用いる場合と同様にして、凹凸形成後に分離活性層を形成することができる。   Examples of the method for forming irregularities after film formation include heat press, pressure press, continuous lamination, roll embossing, etc., but roll embossing is performed from the viewpoint of easily maintaining the porous structure of the separation membrane. Is preferred. In the case of the composite film, the separation active layer can be formed after the formation of the irregularities in the same manner as in the case of using a support having a flat surface.

ロールエンボス加工の条件は、分離膜の融点や熱変形温度に応じて適宜決定することができるが、例えばエポキシ樹脂の分離膜を用いる場合、送り速度1〜20m/分、ロール加熱温度80〜140℃が好ましい。また、ポリスルホン等の耐熱性樹脂を用いる場合、送り速度1〜20m/分、ロール加熱温度100〜150℃が好ましい。   The conditions for roll embossing can be appropriately determined according to the melting point and heat distortion temperature of the separation membrane. For example, when using an epoxy resin separation membrane, the feed rate is 1 to 20 m / min, and the roll heating temperature is 80 to 140. ° C is preferred. Moreover, when using heat resistant resins, such as polysulfone, the feed rate of 1-20 m / min and the roll heating temperature of 100-150 degreeC are preferable.

一方、本発明の分離膜エレメントは、以上のようなシート状分離膜を備えることを特徴とする。本発明の分離膜エレメントとしては、シート状分離膜を用いることができるものであれば何れでもよく、例えばスパイラル型、ディスク型、平膜型、など何れでもよい。   On the other hand, the separation membrane element of the present invention is characterized by including the sheet-like separation membrane as described above. The separation membrane element of the present invention may be any as long as it can use a sheet-like separation membrane, and may be any of a spiral type, a disk type, a flat membrane type, and the like.

スパイラル型の分離膜エレメントでは、シート状分離膜の少なくとも供給側面同士を接触させた状態で、シート状分離膜を有孔の中心管の回りにスパイラル状に巻回してあることが好ましい。   In the spiral type separation membrane element, it is preferable that the sheet-like separation membrane is wound around the perforated central tube in a spiral shape with at least the supply side surfaces of the sheet-like separation membrane in contact with each other.

その際、図3に示すように、前記シート状分離膜は、複数の凸部1が狭い間隔で線状に配列された線状配列部Lを形成すると共に、その線状配列部Lがより広い間隔で複数配列されて線状配列部Lの間に複数の流路を形成してあることが好ましい。また、その線状配列部Lの配列方向がスパイラル型の分離膜エレメントの軸芯方向に対して20〜60°であることが好ましく、20〜40°であることがより好ましい。   At that time, as shown in FIG. 3, the sheet-like separation membrane forms a linear array portion L in which a plurality of convex portions 1 are linearly arranged at narrow intervals, and the linear array portion L is more It is preferable that a plurality of flow paths are formed between the linear arrangement portions L with a plurality of arrangements at wide intervals. Further, the arrangement direction of the linear arrangement portions L is preferably 20 to 60 °, and more preferably 20 to 40 ° with respect to the axial direction of the spiral separation membrane element.

平膜型の分離膜エレメントとしては、図5に示すように、シート状分離膜の透過側面Sa同士又は供給側面Sb同士が接触した筒状の分離膜ユニットUを複数積層し、その分離膜ユニットUの一端部又は両端部を透過側流路又は供給側流路の何れか一方が開口するように封止してあることが好ましい。図示した例では、樹脂封止部材3により分離膜ユニットUの両端部を透過側流路が開口するように封止してある。   As a flat membrane type separation membrane element, as shown in FIG. 5, a plurality of cylindrical separation membrane units U in which the permeation side surfaces Sa or the supply side surfaces Sb of the sheet-like separation membrane are in contact with each other are laminated. It is preferable that one end portion or both end portions of U are sealed so that either one of the permeation side flow path or the supply side flow path is opened. In the illustrated example, both ends of the separation membrane unit U are sealed by the resin sealing member 3 so that the permeate-side flow path is opened.

筒状の分離膜ユニットUは、1枚のシート状分離膜を2つ折りにして、又は2枚のシート状分離膜を重ねて、1つ又は両側の端辺を接着剤を用いた接着や熱融着で封止することで作製できる。   The cylindrical separation membrane unit U is formed by folding one sheet-like separation membrane in two, or by stacking two sheet-like separation membranes and bonding or heat-bonding one or both sides using an adhesive. It can be manufactured by sealing by fusion bonding.

分離膜ユニットUの一端部又は両端部を封止する方法としては、樹脂による封止が好ましい。封止樹脂としては、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂が好ましく用いられる。   As a method for sealing one end or both ends of the separation membrane unit U, sealing with a resin is preferable. As the sealing resin, a thermosetting resin such as an epoxy resin or a urethane resin is preferably used.

透過側流路又は供給側流路の何れか一方を開口させる方法としては、樹脂による封止を行う際に、予め個々の分離膜ユニットUの一端部又は両端部を封止又は接着等により塞いだものを使用し、全体の封止を行った後に、分離膜ユニットUの端部を切断して、開口させる方法が好ましい。   As a method of opening one of the permeation side flow path or the supply side flow path, one end part or both end parts of each separation membrane unit U are sealed in advance by sealing or bonding when sealing with resin. A method is preferred in which the end of the separation membrane unit U is cut and opened after sealing the whole and sealing the whole.

この分離膜エレメントにおけるシート状分離膜は、図3に示すように、複数の凸部1が狭い間隔で線状に配列された線状配列部Lを形成すると共に、その線状配列部Lがより広い間隔で複数配列されて線状配列部Lの間に複数の流路を形成してあることが好ましい。また、その線状配列部Lの配列方向が供給側流路の流れ方向に対して20〜60°であることが好ましく、20〜40°であることがより好ましい。   As shown in FIG. 3, the sheet-like separation membrane in this separation membrane element forms a linear arrangement portion L in which a plurality of convex portions 1 are arranged in a line at narrow intervals, and the linear arrangement portion L It is preferable that a plurality of flow paths are formed between the linear arrangement portions L by arranging a plurality at wider intervals. Moreover, it is preferable that the arrangement direction of the linear arrangement | sequence part L is 20-60 degrees with respect to the flow direction of a supply side flow path, and it is more preferable that it is 20-40 degrees.

このような平膜型の分離膜エレメントでは、積層した分離膜ユニットUに平行な方向で一方から原液を供給して、分離膜で分離された透過液を分離膜ユニットUの端部の開口3aから取り出しながら、濃縮液を他方から排出することにより、クロスフローによるろ過が可能となる。なお、供給側面Sb同士が接触した筒状の分離膜ユニットUを複数積層した平膜型の分離膜エレメントでは、一方の開口3aから原液を供給して、分離膜で分離された透過液を分離膜ユニットUの外部に取り出しながら、濃縮液を他方の開口3aから排出することでクロスフローによるろ過が可能となる。   In such a flat membrane type separation membrane element, an undiluted solution is supplied from one side in a direction parallel to the laminated separation membrane unit U, and the permeate separated by the separation membrane is passed through the opening 3a at the end of the separation membrane unit U. By discharging the concentrated liquid from the other while taking out from the liquid, filtration by cross flow becomes possible. In addition, in a flat membrane type separation membrane element in which a plurality of cylindrical separation membrane units U with which the supply side surfaces Sb are in contact with each other, the raw solution is supplied from one opening 3a to separate the permeate separated by the separation membrane. By taking out the concentrate from the other opening 3a while taking it out of the membrane unit U, filtration by cross flow becomes possible.

また、分離膜ユニットUの一端部のみを透過側流路又は供給側流路の何れか一方が開口するように封止してある場合、分離膜ユニットUの他端部は、開口せずに閉塞させて封筒状にするのが好ましい。これにより、全ろ過型の分離膜エレメントを作製することができる。例えば、供給側面Sb同士が接触した封筒状の分離膜ユニットUを複数積層した平膜型の分離膜エレメントでは、一方の開口3aから原液を供給して、分離膜で分離された透過液を分離膜ユニットUの外部に取り出しながら、全ろ過による分離が可能となる。   Further, when only one end portion of the separation membrane unit U is sealed so that either the permeation side flow channel or the supply side flow channel is opened, the other end portion of the separation membrane unit U is not opened. It is preferably closed to form an envelope. Thereby, an all-filtration type separation membrane element can be produced. For example, in a flat membrane type separation membrane element in which a plurality of envelope-like separation membrane units U in contact with the supply side surfaces Sb are stacked, the stock solution is supplied from one opening 3a to separate the permeate separated by the separation membrane. Separation by total filtration is possible while taking out the membrane unit U.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。   Examples and the like specifically showing the configuration and effects of the present invention will be described below.

実施例1
ポリスルホン(Solvay社製、P−3500)18重量%をN,N−ジメチルホルムアミド(DMF)に溶解した製膜ドープを不織布基材上にウエット厚み200μmで均一に塗布した。その後、すぐに40〜50℃の水中に浸漬させることにより凝固させ、かつ溶媒であるDMFを完全に抽出洗浄することによって、不織布基材上にポリスルホン微多孔層を有する多孔性支持体を作製した。この支持体を用いて、100℃にて5m/分の速度でエンボスロール加工を行って、図3に示すような凸部(菱形、D1=3mm、D2=1mm、H1=0.28mm、凹部の面積率65%、供給側流路の方向に対する角度25°)を、供給側面に形成した。
Example 1
A film-forming dope in which 18% by weight of polysulfone (manufactured by Solvay, P-3500) was dissolved in N, N-dimethylformamide (DMF) was uniformly applied to a nonwoven fabric substrate with a wet thickness of 200 μm. Then, the porous support body which has a polysulfone microporous layer on a nonwoven fabric base material was produced by solidifying by immediately immersing in 40-50 degreeC water, and completely extracting and wash | cleaning DMF which is a solvent. . Using this support, embossing roll processing was performed at a rate of 5 m / min at 100 ° C., and convex portions (diamonds, D1 = 3 mm, D2 = 1 mm, H1 = 0.28 mm, concave portions as shown in FIG. And an area ratio of 65% and an angle of 25 ° with respect to the direction of the supply side flow path) was formed on the supply side surface.

この多孔性支持体を用いて、m−フェニレンジアミン3重量部、ラウリル硫酸ナトリウム0.2重量部、カンファースルホン酸8重量部、トリエチルアミン4重量部、イソプロピルアルコール10重量部、及び水74.85重量部を含有するアミン水溶液を、前記多孔性支持体上にスプレー塗布して水溶液被覆層を形成した。スプレー塗布は全面を覆うように塗布し、その後、乾燥空気を吹きつけて、余分なアミン水溶液を除去した。   Using this porous support, 3 parts by weight of m-phenylenediamine, 0.2 parts by weight of sodium lauryl sulfate, 8 parts by weight of camphorsulfonic acid, 4 parts by weight of triethylamine, 10 parts by weight of isopropyl alcohol, and 74.85 parts by weight of water Aqueous amine solution containing parts was spray-coated on the porous support to form an aqueous solution coating layer. Spray coating was performed so as to cover the entire surface, and then dry air was blown to remove excess aqueous amine solution.

次に、前記水溶液被覆層の表面にトリメシン酸クロライド0.25重量%を含有するイソオクタン溶液をスプレー塗布し、100℃に加熱して界面重合反応させて分離活性層(厚み0.01μm)を形成して、複合半透膜を作製した。   Next, an isooctane solution containing 0.25% by weight of trimesic acid chloride is spray-coated on the surface of the aqueous solution coating layer and heated to 100 ° C. to cause an interfacial polymerization reaction to form a separation active layer (thickness 0.01 μm). Thus, a composite semipermeable membrane was produced.

(透過流束及び塩阻止率の測定)
作製した乾燥複合半透膜を所定の形状、サイズに切断し、平膜評価用のセルにセットするが、その際、供給側の流路材(スペーサ)を省略して測定を行った。1500mg/LのNaClを含みかつNaOHを用いてpH6.5に調整した水溶液(25℃)を膜の供給側と透過側に1.5MPaの差圧を与えて膜に接触させる。この操作によって得られた透過水の透過速度および電導度を測定し、透過流束(m/m・d)および塩阻止率(%)を算出した。塩阻止率は、NaCl濃度と水溶液電導度の相関(検量線)を事前に作成し、それらを用いて下式により算出した。
(Measurement of permeation flux and salt rejection)
The produced dry composite semipermeable membrane was cut into a predetermined shape and size and set in a cell for flat membrane evaluation. At that time, measurement was carried out by omitting the supply side channel material (spacer). An aqueous solution (25 ° C.) containing 1500 mg / L NaCl and adjusted to pH 6.5 with NaOH is brought into contact with the membrane by applying a differential pressure of 1.5 MPa between the supply side and the permeation side of the membrane. The permeation rate and conductivity of the permeated water obtained by this operation were measured, and the permeation flux (m 3 / m 2 · d) and the salt rejection (%) were calculated. The salt rejection was calculated in advance using a correlation (calibration curve) between NaCl concentration and aqueous solution conductivity in advance.

塩阻止率(%)={1−(透過液中のNaCl濃度[mg/L])/(供給液中のNaCl濃度[mg/L])}×100
その結果、阻止率は89.8%であり、透過流束は、1.03m/m・dであり、凹凸の形成によって、膜性能がほとんど劣化しないことが確認できた。
Salt rejection (%) = {1− (NaCl concentration in the permeate [mg / L]) / (NaCl concentration in the feed liquid [mg / L])} × 100
As a result, the rejection was 89.8%, the permeation flux was 1.03 m 3 / m 2 · d, and it was confirmed that the film performance was hardly deteriorated due to the formation of irregularities.

比較例1
実施例1において、凹凸を形成する前の支持体を用いたこと以外は、実施例1と全く同じ条件で複合半透膜を作製し、透過流束及び塩阻止率の測定を行った。その結果、阻止率は95%であり、透過流束は、1.2m/m・dであった。その際、供給側面及び透過側面に流路材(スペーサ)を配置して測定を行ったが、実施例1のように供給側面の流路材を省略すると、測定は不可能であった。
Comparative Example 1
In Example 1, a composite semipermeable membrane was produced under exactly the same conditions as in Example 1 except that the support before forming irregularities was used, and the permeation flux and the salt rejection were measured. As a result, the rejection was 95%, and the permeation flux was 1.2 m 3 / m 2 · d. At that time, the flow channel material (spacer) was disposed on the supply side surface and the transmission side surface, and measurement was performed. However, if the flow channel material on the supply side surface was omitted as in Example 1, measurement was impossible.

本発明のシート状分離膜の例を示す透過側から見た平面図The top view seen from the permeation | transmission side which shows the example of the sheet-like separation membrane of this invention 本発明のシート状分離膜の例を示す縦断面図The longitudinal cross-sectional view which shows the example of the sheet-like separation membrane of this invention 本発明のシート状分離膜の好ましい例を示す平面図The top view which shows the preferable example of the sheet-like separation membrane of this invention 本発明のシート状分離膜の使用例を模式的に示す説明図Explanatory drawing which shows the usage example of the sheet-like separation membrane of this invention typically 本発明の分離膜エレメントの一例を示す斜視図The perspective view which shows an example of the separation membrane element of this invention 本発明のシート状分離膜の他の例を示す図であり、(a)は供給側から見た平面図、(b)はそのI−I断面図、(c)はその積層状態を示す断面図It is a figure which shows the other example of the sheet-like separation membrane of this invention, (a) is the top view seen from the supply side, (b) is the II sectional drawing, (c) is the cross section which shows the lamination state Figure

符号の説明Explanation of symbols

1 凸部
1a 透過側面の凸部
1b 供給側面の凸部
2 凹部(流路)
3 樹脂封止部材
3a 開口
L 線状配列部
Sa 透過側面
Sb 供給側面
D1 凸部の長径
D2 凸部の短径(凸部上面の重心を通過する最短長さ)
D3 隣接する凸部同士の最短距離
H1 凸部の高さ(透過側面)
DESCRIPTION OF SYMBOLS 1 Projection 1a Projection on transmission side 1b Projection on supply side 2 Concave (flow path)
DESCRIPTION OF SYMBOLS 3 Resin sealing member 3a Opening L Linear arrangement | sequence part Sa Transmission side surface Sb Supply side surface D1 Long diameter D2 of a convex part Short diameter of a convex part (the shortest length which passes the gravity center of a convex part upper surface)
D3 Shortest distance H1 between adjacent convex portions Height of convex portion (transmission side surface)

Claims (9)

相互に島状に離間した複数の凸部を透過側面又は供給側面に有し、前記凸部は上面の重心を通過する最短長さが、隣接する前記凸部同士の最短距離より大きいシート状分離膜。   A plurality of convex portions that are separated from each other in an island shape are provided on the transmission side surface or the supply side surface, and the convex portion has a sheet-like separation in which the shortest length passing through the center of gravity of the upper surface is greater than the shortest distance between adjacent convex portions film. 前記複数の凸部は、シート状分離膜の何れかの端辺に対して20〜70°の角度で線状に連なって配列されている請求項1に記載のシート状分離膜。   2. The sheet-like separation membrane according to claim 1, wherein the plurality of convex portions are linearly arranged at an angle of 20 to 70 ° with respect to any end side of the sheet-like separation membrane. 前記凸部の上面は、対向する2つの頂点が鋭角の四角形である請求項1又は2に記載のシート状分離膜。   3. The sheet-like separation membrane according to claim 1, wherein an upper surface of the convex portion is a quadrangular shape having two acute apexes. 供給側面及び透過側面に、前記複数の凸部が設けられている請求項1〜3いずれかに記載のシート状分離膜。   The sheet-like separation membrane according to any one of claims 1 to 3, wherein the plurality of convex portions are provided on the supply side surface and the transmission side surface. 請求項1〜4いずれかに記載のシート状分離膜を備える分離膜エレメント。   A separation membrane element comprising the sheet-like separation membrane according to claim 1. 前記シート状分離膜の透過側面同士又は供給側面同士を接触させた状態で、前記シート状分離膜を有孔の中心管の回りにスパイラル状に巻回してある請求項5に記載の分離膜エレメント。   The separation membrane element according to claim 5, wherein the sheet-like separation membrane is wound in a spiral shape around a perforated central tube in a state where the permeation side surfaces or the supply side surfaces of the sheet-like separation membrane are in contact with each other. . 前記シート状分離膜は、前記複数の凸部が線状に連なって配列され、その配列方向が軸芯方向に対して20〜60°である請求項6に記載の分離膜エレメント。   The separation membrane element according to claim 6, wherein the plurality of convex portions are arranged in a line in the sheet-like separation membrane, and the arrangement direction is 20 to 60 ° with respect to the axial direction. 前記シート状分離膜の透過側面同士又は供給側面同士が接触した筒状又は封筒状の分離膜ユニットを複数積層し、その分離膜ユニットの一端部又は両端部を透過側流路又は供給側流路の何れか一方が開口するように封止してある請求項5に記載の分離膜エレメント。   A plurality of cylindrical or envelope-shaped separation membrane units in which the permeation side surfaces or the supply side surfaces of the sheet-like separation membrane are in contact with each other are stacked, and one or both ends of the separation membrane unit are connected to the permeation side flow channel or the supply side flow channel. The separation membrane element according to claim 5, which is sealed so as to open any one of the above. 前記シート状分離膜は、前記複数の凸部が線状に連なって配列され、その配列方向が供給側流路の流れ方向に対して20〜60°である請求項8に記載の分離膜エレメント。
9. The separation membrane element according to claim 8, wherein the plurality of convex portions are arranged in a line in the sheet-like separation membrane, and the arrangement direction is 20 to 60 ° with respect to the flow direction of the supply-side flow path. .
JP2008304749A 2008-11-28 2008-11-28 Sheet-like separation membrane and separation membrane element Pending JP2010125418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304749A JP2010125418A (en) 2008-11-28 2008-11-28 Sheet-like separation membrane and separation membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304749A JP2010125418A (en) 2008-11-28 2008-11-28 Sheet-like separation membrane and separation membrane element

Publications (1)

Publication Number Publication Date
JP2010125418A true JP2010125418A (en) 2010-06-10

Family

ID=42326168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304749A Pending JP2010125418A (en) 2008-11-28 2008-11-28 Sheet-like separation membrane and separation membrane element

Country Status (1)

Country Link
JP (1) JP2010125418A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033086A1 (en) 2010-09-07 2012-03-15 東レ株式会社 Separation membrane, separation membrane element, and method for producing separation membrane
JP2012066239A (en) * 2010-08-24 2012-04-05 Toray Ind Inc Separation membrane and separation membrane element
WO2012091027A1 (en) 2010-12-28 2012-07-05 東レ株式会社 Separation membrane element
JP2012518538A (en) * 2009-02-25 2012-08-16 プラット アンド ホイットニー ロケットダイン,インコーポレイテッド Fluid separation system with reduced fouling
WO2013125505A1 (en) * 2012-02-24 2013-08-29 東レ株式会社 Separation membrane and separation membrane element
CN105935560A (en) * 2016-06-03 2016-09-14 哈尔滨工业大学深圳研究生院 Method for controlling formation of concentration polarization layer, nanofiltration membrane and making method thereof
JP2017148805A (en) * 2011-09-29 2017-08-31 東レ株式会社 Separation membrane, separation membrane element, and method of manufacturing separation membrane
KR20180057630A (en) 2015-09-28 2018-05-30 도레이 카부시키가이샤 Composite semipermeable membrane
CN109715275A (en) * 2016-09-21 2019-05-03 东丽株式会社 Separating film element and its method of operation
KR20190070930A (en) 2016-10-31 2019-06-21 도레이 카부시키가이샤 Membrane element
JP2019535499A (en) * 2016-11-19 2019-12-12 アクア メンブレインズ エルエルシー Interference pattern for spiral wound elements
CN112135680A (en) * 2018-05-18 2020-12-25 日东电工株式会社 Flow path spacer and spiral membrane element

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518538A (en) * 2009-02-25 2012-08-16 プラット アンド ホイットニー ロケットダイン,インコーポレイテッド Fluid separation system with reduced fouling
US8883007B2 (en) 2009-02-25 2014-11-11 Aerojet Rocketdyne Of De, Inc. Fluid separation system with reduced fouling
JP2012066239A (en) * 2010-08-24 2012-04-05 Toray Ind Inc Separation membrane and separation membrane element
WO2012033086A1 (en) 2010-09-07 2012-03-15 東レ株式会社 Separation membrane, separation membrane element, and method for producing separation membrane
WO2012091027A1 (en) 2010-12-28 2012-07-05 東レ株式会社 Separation membrane element
JP2017148805A (en) * 2011-09-29 2017-08-31 東レ株式会社 Separation membrane, separation membrane element, and method of manufacturing separation membrane
WO2013125505A1 (en) * 2012-02-24 2013-08-29 東レ株式会社 Separation membrane and separation membrane element
CN104136101A (en) * 2012-02-24 2014-11-05 东丽株式会社 Separation membrane and separation membrane element
JPWO2013125505A1 (en) * 2012-02-24 2015-07-30 東レ株式会社 Separation membrane and separation membrane element
KR101938611B1 (en) * 2012-02-24 2019-01-15 도레이 카부시키가이샤 Separation membrane and separation membrane element
KR20180057630A (en) 2015-09-28 2018-05-30 도레이 카부시키가이샤 Composite semipermeable membrane
US10688443B2 (en) 2015-09-28 2020-06-23 Toray Industries, Inc. Composite semipermeable membrane
CN105935560A (en) * 2016-06-03 2016-09-14 哈尔滨工业大学深圳研究生院 Method for controlling formation of concentration polarization layer, nanofiltration membrane and making method thereof
CN109715275A (en) * 2016-09-21 2019-05-03 东丽株式会社 Separating film element and its method of operation
KR20190049744A (en) 2016-09-21 2019-05-09 도레이 카부시키가이샤 Membrane element and its operating method
CN109715275B (en) * 2016-09-21 2021-12-31 东丽株式会社 Separation membrane element and method for operating same
US11511233B2 (en) 2016-09-21 2022-11-29 Toray Industries, Inc. Separation membrane element and operation method therefor
KR20190070930A (en) 2016-10-31 2019-06-21 도레이 카부시키가이샤 Membrane element
US11065580B2 (en) 2016-10-31 2021-07-20 Toray Industries, Inc. Separation membrane element
JP2019535499A (en) * 2016-11-19 2019-12-12 アクア メンブレインズ エルエルシー Interference pattern for spiral wound elements
CN112135680A (en) * 2018-05-18 2020-12-25 日东电工株式会社 Flow path spacer and spiral membrane element
CN112135680B (en) * 2018-05-18 2022-10-28 日东电工株式会社 Flow path spacer and spiral membrane element

Similar Documents

Publication Publication Date Title
JP2010125418A (en) Sheet-like separation membrane and separation membrane element
US20190358594A1 (en) Membrane modules
AU2010289795B2 (en) Forward osmosis membranes
US9724646B2 (en) Separation membrane element
US10717050B2 (en) Spiral wound membrane module adapted for high recovery
US20120328844A1 (en) Spacer for Filtration Devices
KR102326947B1 (en) Separator element and its operation method
JP6609042B2 (en) Filter assembly including a spiral wound module, a salt seal, and an end cap
JP2018520869A (en) Filter assembly including a spiral membrane module and a brine seal
US10335737B2 (en) Filtration assembly including spiral wound bioreactors and membrane modules positioned in separate pressure vessels
US10286361B2 (en) Filtration assembly including spiral wound bioreactors and hyperfiltration membrane modules
WO2018079511A1 (en) Separation film element
JP2018015735A (en) Separation membrane element
JP2019510623A (en) Bioreactor assembly
JP2010099591A (en) Separation membrane element
JP2018086638A (en) Spiral type separation membrane element
JP2009050759A (en) Spiral separation membrane element
KR102437204B1 (en) Permeation side flow path material for spiral membrane element and method for manufacturing same
WO2017131146A1 (en) Separation membrane element
WO2018021387A1 (en) Separation membrane element
WO2023008251A1 (en) Separation membrane element and separation membrane system
WO2024095643A1 (en) Separation membrane element
JP2019025419A (en) Separation membrane element and vessel
JP2014124568A (en) Separation membrane element
JP5081217B2 (en) Separation membrane unit and separation membrane element provided with the same