JP2010123897A - Startup cleaning method for warm ultrapure water supply use-point piping - Google Patents

Startup cleaning method for warm ultrapure water supply use-point piping Download PDF

Info

Publication number
JP2010123897A
JP2010123897A JP2008298635A JP2008298635A JP2010123897A JP 2010123897 A JP2010123897 A JP 2010123897A JP 2008298635 A JP2008298635 A JP 2008298635A JP 2008298635 A JP2008298635 A JP 2008298635A JP 2010123897 A JP2010123897 A JP 2010123897A
Authority
JP
Japan
Prior art keywords
ultrapure water
cleaning
water
temperature
use point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008298635A
Other languages
Japanese (ja)
Other versions
JP5527502B2 (en
Inventor
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008298635A priority Critical patent/JP5527502B2/en
Publication of JP2010123897A publication Critical patent/JP2010123897A/en
Application granted granted Critical
Publication of JP5527502B2 publication Critical patent/JP5527502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a startup cleaning method for the use-point piping of a warm ultrapure water producing apparatus in which a startup period can be reduced. <P>SOLUTION: In the startup cleaning method for the use-point piping of the warm ultrapure water producing apparatus, primary purified water W1 supplied to a subsystem 3 is heated by an ultrapure water heating device 7 of the subsystem 3. At this step, startup cleaning is normally performed by cleaning water having the same temperature as that of warm ultrapure water W2 in operation, however in the embodiment, the ultrapure water heating device 7 supplies cleaning water having a temperature higher than that of the warm ultrapure water W2 supplied to a line L3 in operation, namely, a temperature higher by 5°C than that of the warm ultrapure water W2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体デバイス、液晶ディスプレイ、シリコンウェハ、プリント基板等の電子部品製造工場、原子力発電所又は医薬品製造工場等で広く利用される超純水を製造供給する超純水製造装置の立上洗浄方法に関し、特に超純水を加温して温超純水としてユースポイントへ供給する温超純水製造装置のユースポイント配管の立上洗浄方法に関する。   The present invention establishes an ultrapure water production apparatus for producing and supplying ultrapure water widely used in electronic component manufacturing factories such as semiconductor devices, liquid crystal displays, silicon wafers, printed circuit boards, nuclear power plants or pharmaceutical manufacturing factories. The present invention relates to a cleaning method, and more particularly to a method for standing-up cleaning of a point-of-use pipe of a warm ultrapure water production apparatus that heats ultrapure water and supplies it to a point of use as warm ultrapure water.

従来から、半導体デバイス等の半導体製造工程においては、物質、微粒子、有機物、溶存ガス及び生菌等の不純物含有量が極めて少ない超純水が使用されている。そして、半導体デバイスの集積度の向上にともなって、超純水の純度に対する要求は益々厳しくなってきている。   2. Description of the Related Art Conventionally, in a semiconductor manufacturing process such as a semiconductor device, ultrapure water having an extremely small content of impurities such as substances, fine particles, organic substances, dissolved gas and viable bacteria has been used. As the degree of integration of semiconductor devices increases, the demand for the purity of ultrapure water has become increasingly severe.

このような半導体製造における洗浄工程では、有機物汚染、パーティクル汚染、重金属汚染等の除去又は自然酸化膜の除去等を目的として、硫酸と過酸化水素水との混合液、アンモニア水と過酸化水素水との混合液、塩酸と過酸化水素水との混合液、又は希フッ酸水溶液等の洗浄薬液を用いて洗浄した後、これらの洗浄薬液を洗い流すために超純水で洗浄することが多い。このような洗浄薬液を用いた洗浄工程においては、超純水洗浄が不充分であれば、洗浄薬液に由来する硫酸基や硝酸基等がシリコンウェハの表面等に残り、半導体製品における不良発生の原因となってしまうことから、超純水洗浄による洗浄薬液の除去は完全になされなければならない。   In such a cleaning process in semiconductor manufacturing, a mixed solution of sulfuric acid and hydrogen peroxide solution, ammonia water and hydrogen peroxide solution for the purpose of removing organic matter contamination, particle contamination, heavy metal contamination, etc. or removing a natural oxide film, etc. After washing with a cleaning liquid such as a mixed liquid of hydrochloric acid and a hydrogen peroxide solution, or a dilute hydrofluoric acid aqueous solution, it is often washed with ultrapure water to wash away these cleaning liquids. In such a cleaning process using a cleaning chemical, if ultrapure water cleaning is insufficient, sulfuric acid groups and nitric acid groups derived from the cleaning chemical remain on the surface of the silicon wafer, etc. Therefore, the cleaning chemical solution must be completely removed by the ultrapure water cleaning.

ところで、水は、全ての物質をたとえわずかといえども溶解させる能力を有しており、この水の溶解能力は一般に温度が高くなるほど大きくなる。そこで、半導体製造における洗浄工程でも温超純水を用いるのが一般的である。   By the way, water has the ability to dissolve all substances, even if only a little, and the solubility ability of water generally increases as the temperature increases. Therefore, it is common to use warm ultrapure water in the cleaning process in semiconductor manufacturing.

このような温超純水により洗浄を行う場合、超純水を加熱して温超純水を得るための装置、すなわち純水加熱装置を半導体製造ラインに設置しておく必要がある。このような純水加熱装置においては、前述したように高温の超純水が全ての物質に対して溶解能力を有していることから、その溶解能力によって純水製造装置の構成材料が純水に溶出してしまい、その純水加熱装置を経て供給される温純水が逆に汚染源となってしまうおれがある。   When cleaning with such warm ultrapure water, it is necessary to install an apparatus for heating the ultrapure water to obtain warm ultrapure water, that is, a pure water heating apparatus, in the semiconductor production line. In such a pure water heating device, as described above, high-temperature ultrapure water has the ability to dissolve all substances, so that the constituent material of the pure water production device is purified water by the dissolving capability. The hot pure water supplied through the pure water heating device may be a source of contamination.

そこで、純水加熱装置をユースポイントの直前に配置して加熱後の温超純水をユースポイント配管によりユースポイントまで供給している。このようなユースポイント配管としては、耐熱性を有することが必要である。そこで、金属材料を用いることが考えられるが、その金属材料が金属汚染源となるおそれがあることから、金属材料を使用することは適当でない。このため、合成樹脂製配管が用いられているが、耐溶出性、耐熱性、経済性等の観点から、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素系樹脂を内面に配したものが使用されている。   Therefore, a pure water heating device is arranged immediately before the use point, and heated ultra pure water is supplied to the use point through the use point piping. Such a use point pipe needs to have heat resistance. Therefore, it is conceivable to use a metal material, but it is not appropriate to use a metal material because the metal material may become a metal contamination source. For this reason, synthetic resin piping is used, but from the viewpoints of elution resistance, heat resistance, economy, etc., polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), A material in which a fluororesin such as tetrafluoroethylene-hexafluoropropylene copolymer (FEP) is arranged on the inner surface is used.

前述のような半導体製造ラインの温超純水製造装置の新規立ち上げ時、又は定期検査等による休止後の再立ち上げ時には、系内に混入・発生する不純物を除去してユースポイントにおける超純水が所望の水質に至るまで洗浄試運転を行う。この場合、工場の稼働効率の向上を目的として、装置の立ち上げ期間(すなわち、試運転・調整期間)の短縮、いわゆる装置の垂直立ち上げと称される短期立ち上げが強く求められている。   When a new warm-up ultrapure water production system for a semiconductor production line as described above is started up, or when it is restarted after an outage due to periodic inspections, etc., impurities mixed and generated in the system are removed, and ultrapure water at the point of use is removed. A cleaning trial run is performed until the desired water quality is achieved. In this case, for the purpose of improving the operation efficiency of the factory, there is a strong demand for shortening the start-up period of the apparatus (that is, the trial operation / adjustment period), that is, so-called vertical start-up of the apparatus.

しかしながら、近年の高水質の要求から、系内の不純物を除去するとともに溶出物を抑制し、要求水質を満たすまで長期間を要することがあり、特に温超純水の場合には1月以上を要することもあり、温超純水製造装置における立ち上げ期間の短縮は急務であった。   However, due to the recent demand for high water quality, it may take a long time to remove impurities in the system and suppress the effluent, and to satisfy the required water quality, especially in the case of warm ultrapure water, it may take more than a month. There was also an urgent need to shorten the start-up period of the hot ultrapure water production system.

本発明は、上記課題に鑑みてなされたものであり、立ち上げ期間の短縮の可能な温超純水製造装置のユースポイント配管の立上洗浄方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the standing cleaning method of the use point piping of the warm ultrapure water manufacturing apparatus which can shorten a starting period.

上記課題を解決するために、本発明は、超純水を加温して温超純水としてユースポイントへ供給する温超純水製造装置のユースポイント配管の立ち上げ時の洗浄方法であって、供給する温超純水の水温よりも高い水温で前記ユースポイント配管の洗浄を行うことを特徴とする温超純水供給ユースポイント配管の立上洗浄方法を提供する(請求項1)。   In order to solve the above problems, the present invention is a cleaning method at the time of start-up of a use point pipe of a warm ultrapure water production apparatus that warms ultrapure water and supplies the ultrapure water as warm ultrapure water to the usepoint. Provided is a method for standing-up cleaning of a hot ultrapure water supply use point pipe, characterized in that the use point pipe is cleaned at a water temperature higher than the water temperature.

上記発明(請求項1)によれば、短期間で比抵抗等の水質を改善することができ、温超純水製造装置の立ち上げ期間の短縮を図ることができる。これは、以下のような理由による。すなわち、温超純水の立上洗浄時における送り温超純水と戻り温超純水における金属、カチオン、アニオン及びシリカの分析を行った結果、戻り温超純水のフッ素の濃度が非常に高く、かつ送り温超純水よりも増加していることがわかった。このことから、フッ素を原材料として含むユースポイント配管であるPVDF配管からフッ素が溶出することによる影響であると考えられる。そうすると、このフッ素の溶出は、材料に起因するものであることから薬品等による洗浄は効果がなく、溶出が収まるまで温超純水を流通させる。このとき、通常、立上洗浄は、ユースポイントに供給する温超純水と同じ温度の超純水を流通させるが、PVDF配管からのフッ素の溶出は、洗浄水としての温超純水の温度が高い方が促進されることから、これよりも高い温度の水を流通することにより、フッ素の溶出を促進し、短期間でこの溶出を低減して所望の水質とすることができると考えられる。   According to the above invention (invention 1), water quality such as specific resistance can be improved in a short period of time, and the startup period of the warm ultrapure water production apparatus can be shortened. This is due to the following reasons. That is, as a result of analysis of metals, cations, anions and silica in the feed temperature ultrapure water and the return temperature ultrapure water during the on-site cleaning of the warm ultrapure water, the concentration of fluorine in the return temperature ultrapure water is very high and higher than It turns out that it is increasing. From this, it is thought that it is the influence by fluorine eluting from PVDF piping which is a use point piping containing fluorine as a raw material. Then, since the elution of fluorine is caused by the material, cleaning with chemicals or the like is not effective, and warm ultrapure water is circulated until the elution is stopped. At this time, normally, in the start-up cleaning, ultrapure water having the same temperature as the warm ultrapure water supplied to the use point is circulated. However, elution of fluorine from the PVDF pipe is performed when the temperature of the warm ultrapure water as the wash water is higher. Since it is promoted, it is considered that by flowing water at a temperature higher than this, elution of fluorine can be promoted, and this elution can be reduced in a short period of time to obtain a desired water quality.

上記発明(請求項1)においては、前記ユースポイント配管が、PVDFからなるのが好ましい(請求項2)。   In the said invention (invention 1), it is preferable that the said use point piping consists of PVDF (invention 2).

上記発明(請求項2)によれば、PVDFからフッ素の溶出量を短期間で低減して所望の水質とすることができ、立上期間を短縮することができる。   According to the said invention (invention 2), the elution amount of fluorine from PVDF can be reduced in a short period to obtain a desired water quality, and the start-up period can be shortened.

上記発明(請求項1,2)においては、前記立上洗浄の水温が、ユースポイントへ供給する温超純水の温度よりも5℃以上高いのが好ましい(請求項3)。具体的には、前記ユースポイントへ供給する温超純水の温度が75℃以下であり、前記立上洗浄の水温が80℃以上であればよい(請求項4)。   In the said invention (invention 1,2), it is preferable that the temperature of the said start-up washing is 5 degreeC or more higher than the temperature of the warm ultrapure water supplied to a use point (invention 3). Specifically, the temperature of the ultra-pure water supplied to the use point may be 75 ° C. or lower, and the temperature of the rising cleaning water may be 80 ° C. or higher.

上記発明(請求項3,4)によれば、立上洗浄の水温をユースポイントへ供給する温超純水の温度よりも5℃以上高くすることにより、フッ素の溶出を促進して短期間でフッ素溶出量を低減して所望の水質とすることができる。   According to the above inventions (Inventions 3 and 4), the elution of fluorine is promoted in a short period of time by increasing the temperature of the on-site cleaning by 5 ° C. or more than the temperature of the ultra-pure water supplied to the use point. The amount can be reduced to the desired water quality.

さらに、上記発明(請求項1〜4)においては、前記立上洗浄を2週間以上行うのが好ましい(請求項5)。通常、フッ素溶出量の低減には1月以上を要するが、上述したような方法を採用することにより2週間程度でフッ素の溶出量を低減することができる。   Furthermore, in the said invention (invention 1-4), it is preferable to perform the said starting washing | cleaning for 2 weeks or more (invention 5). Usually, it takes one month or more to reduce the fluorine elution amount, but by adopting the method as described above, the elution amount of fluorine can be reduced in about two weeks.

温超純水の立上洗浄時における洗浄水の水温をユースポイントに供給する温超純水よりも高温とすることで、ユースポイント配管からの不純物の溶出を促進して、短期間で低減し、これにより短期間で所望の水質とすることができる。これにより立ち上げまでの期間を短縮することができる。   The temperature of cleaning water at the time of on-site cleaning of hot ultrapure water is set to a temperature higher than that of hot ultrapure water that supplies the use point, thereby facilitating the elution of impurities from the use point piping and reducing it in a short period of time. The desired water quality can be achieved. Thereby, the period until the start-up can be shortened.

以下、本発明の温超純水供給ユースポイント配管の立上洗浄方法の実施形態について図面に基づいて詳細に説明する。   DETAILED DESCRIPTION OF THE INVENTION Embodiments of a method for rising and cleaning a hot ultrapure water supply use point pipe according to the present invention will be described in detail with reference to the drawings.

図1は、本実施形態の温超純水供給ユースポイント配管の立上洗浄方法を適用可能な、温超純水製造装置を示すフロー図である。   FIG. 1 is a flow diagram showing a hot ultrapure water production apparatus to which the hot cleaning method for hot ultrapure water supply use point piping according to this embodiment can be applied.

図1において、温超純水製造装置は、原水槽Tと、前処理装置1と、一次純水製造システム2と、サブシステム3とから構成されている。さらに、サブシステム3は、一次純水製造システム2の一次純水が貯留されるサブタンク4と、デミナ(非再生型イオン交換樹脂塔)5と、紫外線処理装置(UV)6と、超純水加熱装置7と、フィルタ装置(UF)8とからなる。   In FIG. 1, the warm ultrapure water production apparatus includes a raw water tank T, a pretreatment device 1, a primary pure water production system 2, and a subsystem 3. Further, the sub-system 3 includes a sub-tank 4 that stores primary pure water of the primary pure water production system 2, a demina (non-regenerative ion exchange resin tower) 5, an ultraviolet treatment device (UV) 6, and ultrapure water. It consists of a heating device 7 and a filter device (UF) 8.

このようなシステム構成において、一次純水はラインL1を通って、サブシステム3に送られ、サブタンク4からラインL2を通って超純水加熱装置7に送られる。そして、超純水加熱装置7で加熱された温超純水W2がフィルタ装置(UF)8を経てユースポイント配管であるラインL3からユースポント9に供給され、さらに、ラインL4からサブタンク4に還流される。なお、10は還流ラインL4に設けられた熱交換器である。   In such a system configuration, the primary pure water is sent to the subsystem 3 through the line L1, and is sent from the sub tank 4 to the ultrapure water heater 7 through the line L2. Then, the warm ultrapure water W2 heated by the ultrapure water heating device 7 is supplied to the use point 9 from the line L3, which is the use point piping, through the filter device (UF) 8, and is further returned to the sub tank 4 from the line L4. Reference numeral 10 denotes a heat exchanger provided in the reflux line L4.

この温超純水製造装置において、超純水加熱装置7より下流側に位置するラインL3及びラインL4としては、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素系樹脂を内面に配した配管、特にポリフッ化ビニリデン(PVDF)製の配管を用いることができる。また、超純水加熱装置7より上流側のラインL1,L2としては、上述したフッ素系樹脂の配管の他、塩ビ配管等を用いることができる。   In this warm ultrapure water production apparatus, the lines L3 and L4 located on the downstream side of the ultrapure water heating apparatus 7 include polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetra A pipe having a fluorine resin such as fluoroethylene-hexafluoropropylene copolymer (FEP) arranged on the inner surface, particularly a pipe made of polyvinylidene fluoride (PVDF) can be used. Moreover, as the lines L1 and L2 on the upstream side of the ultrapure water heating device 7, a polyvinyl chloride pipe or the like can be used in addition to the above-described fluororesin pipe.

このような温超純水製造装置において、原水槽Tから供給された原水W0は、前処理装置1及び一次純水製造システム2で処理されて一次純水W1としてサブシステム3に供給され、サブシステム3の超純水加熱装置7で65〜75℃程度に加熱された後、温超純水W2としてラインL3からユースポント9に供給され、未使用分はラインL4からサブタンク4に還流される。   In such a warm ultrapure water production apparatus, the raw water W0 supplied from the raw water tank T is processed by the pretreatment apparatus 1 and the primary pure water production system 2 and supplied to the subsystem 3 as the primary pure water W1. The ultrapure water heating apparatus 7 is heated to about 65 to 75 ° C. and then supplied as hot ultrapure water W2 from the line L3 to the use point 9, and the unused portion is returned to the sub tank 4 from the line L4.

次に上述したような温超純水製造装置のユースポイント配管の立上洗浄方法について説明する。まず、サブシシテム3に供給された一次純水W1をサブシステム3の超純水加熱装置7で加熱する。   Next, a method for cleaning up the use point piping of the above-described warm ultrapure water production apparatus will be described. First, the primary pure water W <b> 1 supplied to the subsystem 3 is heated by the ultrapure water heating device 7 of the subsystem 3.

このとき、通常は、運転時の温超純水W2と同じ温度の洗浄水により立上洗浄を行うが、本実施形態においては、超純水加熱装置7で運転時にラインL3に供給される温超純水W2の温度よりも高い温度にまで加熱する。   At this time, normally, the on-site cleaning is performed with the cleaning water having the same temperature as the warm ultrapure water W2 at the time of operation, but in this embodiment, the warm ultrapure water W2 supplied to the line L3 at the time of operation by the ultrapure water heating device 7. Heat to a temperature higher than

これは、以下のような理由による。すなわち、ユースポイント配管であるラインL3はPVDF配管であり、このラインL3を、加温されることによりさらに溶解性が高められた温超純水W2が流通することで、PVDF配管から微量のフッ素が溶出する。そこで、温超純水W2よりも高温の洗浄水で立上洗浄を行うことにより、PVDF配管製のラインL3からのフッ素の溶出が促進される結果、短期間でフッ素の溶出量を低減して、所望の水質とすることができ、これにより、立上期間の短縮を図ることができる。   This is due to the following reasons. That is, the line L3, which is a point-of-use pipe, is a PVDF pipe, and a very small amount of fluorine is eluted from the PVDF pipe by circulating warm ultrapure water W2 whose solubility is further improved by heating the line L3. To do. Therefore, by performing on-site cleaning with cleaning water having a temperature higher than that of the ultra-pure water W2, the elution of fluorine from the PVDF piping line L3 is promoted, so that the elution amount of fluorine can be reduced in a short period of time. Therefore, the start-up period can be shortened.

この場合においては、特に、温超純水W2の温度よりも5℃以上高い温度の洗浄水を供給するのが好ましい。洗浄水の温度が温超純水W2の温度よりも高ければ、ある程度の立上期間の短縮効果が得られるが、5℃未満では顕著な効果が得られないため好ましくない。具体的には、温超純水W2の温度が65〜75℃程度であることから、洗浄水の温度を80℃以上に設定すればよい。   In this case, it is particularly preferable to supply cleaning water having a temperature 5 ° C. or more higher than the temperature of the warm ultrapure water W2. If the temperature of the washing water is higher than the temperature of the ultra-high purity water W2, a certain shortening effect of the start-up period can be obtained, but if it is less than 5 ° C., a remarkable effect cannot be obtained, which is not preferable. Specifically, since the temperature of the ultra-pure water W2 is about 65 to 75 ° C, the temperature of the cleaning water may be set to 80 ° C or higher.

上述したように80℃以上の洗浄水を用いることにより、2週間以上の洗浄で温超純水製造装置の立上洗浄を完了することができ、温超純水W2と同じ温度の洗浄水を用いた場合と比べて立上期間を約半分とすることができる。   As described above, by using cleaning water at 80 ° C. or higher, it is possible to complete the start-up cleaning of the warm ultrapure water production apparatus by cleaning for two weeks or more, and using the cleaning water having the same temperature as the warm ultrapure water W2. In comparison, the startup period can be halved.

以上、本発明の実施形態について添付図面を参照して説明してきたが、本発明は前記実施形態に限定されず、種々の変更が可能である。例えば、前処理装置1、一次純水製造システム2の構成は特に制限されず、種々の構成とすることができる。また、サブシステム3についても超純水加熱装置7を備えていれば、その構成は特に制限されない。さらに、洗浄水としては、温度が相違する以外は温超純水W2と同じ水質のものを用いることができる。   As mentioned above, although embodiment of this invention has been described with reference to an accompanying drawing, this invention is not limited to the said embodiment, A various change is possible. For example, the configurations of the pretreatment device 1 and the primary pure water production system 2 are not particularly limited, and various configurations can be adopted. Further, the configuration of the subsystem 3 is not particularly limited as long as the ultrapure water heating device 7 is provided. Further, as the cleaning water, water having the same water quality as the warm ultrapure water W2 can be used except that the temperature is different.

以下、実施例によって本発明を具体的に説明するが、本発明は、下記の各実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to each following Example at all.

〔実機による金属、カチオン、アニオン、シリカの分析〕
図1に示すようなシステム構成の温超純水製造装置を用いて、フィルタ装置(UF)8の出口温度約75℃の温超純水を製造し、戻り超純水(ラインL4)及び送り温超純水(フィルタ装置(UF)8の出口)の各種金属、カチオン、アニオン及びシリカの濃度を測定した。
結果を表1に示す。
[Analysis of metals, cations, anions, and silica using actual equipment]
1 is used to produce warm ultrapure water having an outlet temperature of about 75 ° C. of the filter device (UF) 8 and return ultrapure water (line L4) and feed ultrapure water (filter). The concentrations of various metals, cations, anions and silica in the apparatus (UF) 8 outlet) were measured.
The results are shown in Table 1.

Figure 2010123897
Figure 2010123897

表1から、戻り温超純水において、Fの濃度が100ng/L(ppt)と非常に高くなっていることがわかる。しかも、送り温超純水よりもFの濃度が増加していることから、ランイL3及びラインL4のPVDF配管からのフッ素の溶出の影響であると推測できる。   From Table 1, it can be seen that in the return temperature ultrapure water, the concentration of F is as high as 100 ng / L (ppt). And since the density | concentration of F is increasing rather than feed temperature ultrapure water, it can be estimated that it is the influence of the elution of the fluorine from the PVDF piping of run L3 and line L4.

〔PVDF配管の温度の違いによる溶出特性測定試験〕
長さ100cmのPVDF配管(内径25mmΦ、外径31mmΦ)を0.3mの20℃及び80℃の超純水にそれぞれ浸漬して、1日、2〜7日間、8〜30日間のPVD配管からの各種イオン等の溶出濃度を測定するとともに溶出速度を算出した。
結果を表2に示す。
[Elution characteristics measurement test by PVDF piping temperature difference]
Length 100cm of PVDF tubing (inner diameter 25 mm, outer diameter 31Mmfai) by respectively immersing in 20 ° C. and 80 ° C. ultrapure water 0.3 m 3, 1 days, 2-7 days, PVD piping 8 to 30 days The elution concentration of various ions and the like was measured and the elution rate was calculated.
The results are shown in Table 2.

Figure 2010123897
Figure 2010123897

表2から、PVDF配管からの溶出物としてはフッ素(F)が最も多く、しかも20℃と80℃との間のフッ素の溶出濃度は2〜7日間で2桁、8〜30日でも1桁高くなっており、温度による影響も大きいことがわかる。   From Table 2, fluorine (F) is the most eluent from PVDF piping, and the elution concentration of fluorine between 20 ° C and 80 ° C is 2 digits in 2-7 days, and 1 digit in 8-30 days. It is high and it can be seen that the influence of temperature is large.

〔実施例1及び比較例1〕
図1に示すようなシステム構成の温超純水製造装置において、超純水加熱装置7による温超純水の温度を80℃として立上洗浄を7日及び14日行った際の戻り温超純水におけるフッ素濃度及び比抵抗値を測定した(実施例1)。
結果を表3に示す。
[Example 1 and Comparative Example 1]
In the hot ultrapure water production apparatus having the system configuration shown in FIG. 1, the fluorine concentration in the return ultrapure water when the temperature of the ultrapure water by the ultrapure water heater 7 is 80 ° C. The specific resistance value was measured (Example 1).
The results are shown in Table 3.

また、比較のために通常の立上洗浄条件として、温超純水の温度を70℃として同様に立上洗浄を7日及び14日行った際の戻り温超純水におけるフッ素濃度及び比抵抗値を測定した(比較例1)。
結果を表3にあわせて示す。
In addition, for comparison, as a normal start-up cleaning condition, the temperature of the ultra-pure water was set to 70 ° C. and the start-up cleaning was performed on the 7th and 14th in the same manner, and the fluorine concentration and the specific resistance value in the return-temperature ultrapure water were measured. (Comparative Example 1).
The results are shown in Table 3.

Figure 2010123897
Figure 2010123897

表3から、80℃で立上洗浄を行った実施例1では、戻り温超純水のフッ素濃度が14日後には7日後と比べて大幅に低減し、比抵抗値も18.2MΩ・cm以上であったのに対し、70℃で立上洗浄を行った比較例1では、戻り温超純水のフッ素濃度の低減が十分でなく、比抵抗値は17.8MΩ・cmであり、18.2MΩ・cm以上となるまでには50日間必要であった。   From Table 3, in Example 1 where the start-up cleaning was performed at 80 ° C., the fluorine concentration of the return temperature ultrapure water was significantly reduced after 14 days compared to 7 days later, and the specific resistance value was 18.2 MΩ · cm or more. On the other hand, in Comparative Example 1 in which the startup cleaning was performed at 70 ° C., the fluorine concentration of the return temperature ultrapure water was not sufficiently reduced, and the specific resistance value was 17.8 MΩ · cm, and 18.2 MΩ · cm. It took 50 days to reach this point.

本発明の一実施形態に係る温超純水製造装置を示すフロー図である。It is a flowchart which shows the warm ultrapure water manufacturing apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

7…超純水加熱装置
9…ユースポイント
L3…ライン(ユースポイント配管)
W2…温超純水
7 ... Ultrapure water heating device 9 ... Use point L3 ... Line (use point piping)
W2 ... Warm ultrapure water

Claims (5)

超純水を加温して温超純水としてユースポイントへ供給する温超純水製造装置のユースポイント配管の立ち上げ時の洗浄方法であって、
供給する温超純水の水温よりも高い水温で前記ユースポイント配管の洗浄を行うことを特徴とする温超純水供給ユースポイント配管の立上洗浄方法。
A cleaning method at the time of start-up of a use point pipe of a warm ultra pure water production apparatus that heats ultra pure water and supplies it to the use point as warm ultra pure water,
A method for standing and cleaning a hot ultrapure water supply use point pipe, wherein the use point pipe is cleaned at a temperature higher than the temperature of the supplied hot ultra pure water.
前記ユースポイント配管が、PVDFからなることを特徴とする請求項1に記載の温超純水供給ユースポイント配管の立上洗浄方法。   The method for cleaning up the hot ultrapure water supply use point pipe according to claim 1, wherein the use point pipe is made of PVDF. 前記立上洗浄の水温が、ユースポイントへ供給する温超純水の温度よりも5℃以上高いことを特徴とする請求項1又は2に記載の温超純水供給ユースポイント配管の立上洗浄方法。   The method of rising and cleaning a hot ultrapure water supply use point pipe according to claim 1 or 2, wherein the temperature of the vertical cleaning is 5 ° C or more higher than the temperature of the hot ultrapure water supplied to the use point. 前記ユースポイントへ供給する温超純水の温度が75℃以下であり、前記立上洗浄の水温が80℃以上であることを特徴とする請求項3に記載の温超純水供給ユースポイント配管の立上洗浄方法。   The hot ultrapure water supply use point pipe according to claim 3, wherein the temperature of the ultrapure water supplied to the use point is 75 ° C or lower, and the water temperature of the start cleaning is 80 ° C or higher. Method. 前記立上洗浄を2週間以上行うことを特徴とする請求項1〜4のいずれかに記載の温超純水供給ユースポイント配管の立上洗浄方法。   The method for cleaning up a hot ultrapure water supply use point pipe according to any one of claims 1 to 4, wherein the cleaning is performed for two weeks or more.
JP2008298635A 2008-11-21 2008-11-21 Hot ultrapure water supply use point piping startup cleaning method Active JP5527502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298635A JP5527502B2 (en) 2008-11-21 2008-11-21 Hot ultrapure water supply use point piping startup cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298635A JP5527502B2 (en) 2008-11-21 2008-11-21 Hot ultrapure water supply use point piping startup cleaning method

Publications (2)

Publication Number Publication Date
JP2010123897A true JP2010123897A (en) 2010-06-03
JP5527502B2 JP5527502B2 (en) 2014-06-18

Family

ID=42324948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298635A Active JP5527502B2 (en) 2008-11-21 2008-11-21 Hot ultrapure water supply use point piping startup cleaning method

Country Status (1)

Country Link
JP (1) JP5527502B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020272A (en) * 2016-08-02 2018-02-08 オルガノ株式会社 Ultrapure water production device and ultrapure water production method
KR20210149654A (en) * 2020-06-02 2021-12-09 주식회사 케이씨 Apparatus and Method for cleaning a coupler of chemical supply device
JP7033691B1 (en) 2021-10-29 2022-03-10 野村マイクロ・サイエンス株式会社 How to start up the warm ultra-pure water production system, start-up program, and warm ultra-pure water production system
KR20240049192A (en) 2022-10-07 2024-04-16 노무라마이크로사이엔스가부시키가이샤 Sterilization method for pharmaceutical water production system and pharmaceutical water production system
KR20240049189A (en) 2022-10-07 2024-04-16 노무라마이크로사이엔스가부시키가이샤 Sterilization method for pharmaceutical water production system
KR20240049186A (en) 2022-10-07 2024-04-16 노무라마이크로사이엔스가부시키가이샤 Pharmaceutical water production system and Method of operating pharmaceutical water production system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195073A (en) * 1994-01-06 1995-08-01 Japan Organo Co Ltd Method for washing ultra-pure water producing apparatus
JP2000317413A (en) * 1999-05-14 2000-11-21 Kurita Water Ind Ltd Method for washing ultrapure water production system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195073A (en) * 1994-01-06 1995-08-01 Japan Organo Co Ltd Method for washing ultra-pure water producing apparatus
JP2000317413A (en) * 1999-05-14 2000-11-21 Kurita Water Ind Ltd Method for washing ultrapure water production system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020272A (en) * 2016-08-02 2018-02-08 オルガノ株式会社 Ultrapure water production device and ultrapure water production method
KR20210149654A (en) * 2020-06-02 2021-12-09 주식회사 케이씨 Apparatus and Method for cleaning a coupler of chemical supply device
KR102412782B1 (en) * 2020-06-02 2022-06-27 주식회사 케이씨 Apparatus and Method for cleaning a coupler of chemical supply device
JP7033691B1 (en) 2021-10-29 2022-03-10 野村マイクロ・サイエンス株式会社 How to start up the warm ultra-pure water production system, start-up program, and warm ultra-pure water production system
JP2023066522A (en) * 2021-10-29 2023-05-16 野村マイクロ・サイエンス株式会社 Hot ultrapure water production system startup method, startup program, and hot ultrapure water production system
US11926536B2 (en) 2021-10-29 2024-03-12 Nomura Micro Science Co., Ltd. Method for starting up hot ultrapure water production system, and hot ultrapure water production system
KR20240049192A (en) 2022-10-07 2024-04-16 노무라마이크로사이엔스가부시키가이샤 Sterilization method for pharmaceutical water production system and pharmaceutical water production system
KR20240049189A (en) 2022-10-07 2024-04-16 노무라마이크로사이엔스가부시키가이샤 Sterilization method for pharmaceutical water production system
KR20240049186A (en) 2022-10-07 2024-04-16 노무라마이크로사이엔스가부시키가이샤 Pharmaceutical water production system and Method of operating pharmaceutical water production system

Also Published As

Publication number Publication date
JP5527502B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5527502B2 (en) Hot ultrapure water supply use point piping startup cleaning method
TW418357B (en) Chemical generator with controlled mixing and concentration feedback and adjustment
JP4480061B2 (en) Ultrapure water production apparatus and cleaning method for ultrapure water production and supply system in the apparatus
TWI801568B (en) Manufacturing method of heated ozone water, heated ozone water and semiconductor wafer cleaning solution
TW201501195A (en) Processing system and method for providing a heated etching solution
TW201520175A (en) Ultrapure water production system, ultrapure water production supply system, and method for cleaning same
JP2009260020A (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gas
JP2006066727A (en) Semiconductor manufacturing device and chemical exchanging method
TW201902562A (en) Cleaning method of hollow fiber membrane device, ultrafiltration membrane device, ultrapure water manufacturing device and hollow fiber membrane device cleaning device
TW201836993A (en) DILUTED CHEMICAL LIQUID PRODUCTION APPARATUS CAPABLE OF CONTROLLING pH AND OXIDATION-REDUCTION POTENTIAL
JP6427378B2 (en) Ammonia dissolved water supply system, ammonia dissolved water supply method, and ion exchange apparatus
JP2011161418A (en) Washing method for ultrapure water production system
JP2009189905A (en) Heat recovery type cleaning equipment
JP2000290693A (en) Cleaning of electronic parts and members
JP2010135810A (en) METHOD OF CONTROLLING pH VALUE OF SOLUTION AND OXIDATION-REDUCTION POTENTIAL, AND APPARATUS
JP6107987B1 (en) Cleaning method of ultrapure water production system
JP2000317413A (en) Method for washing ultrapure water production system
JP6206173B2 (en) Semiconductor wafer cleaning method
JP6149421B2 (en) Solution supply method and supply device
US9875915B2 (en) Method for removing metal contamination and apparatus for removing metal contamination
JP7480594B2 (en) Electronic component cleaning water manufacturing equipment
TWI793049B (en) Method for starting up hot ultrapure water production system, starting up program, and hot ultrapure water production system
JP7099603B1 (en) Liquid supply equipment for semiconductor manufacturing
JP2022187148A (en) Method for starting up water treatment device and washing method
JP2007260211A (en) Method for antiseptically cleaning ultrapure water producing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5527502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250