JP2010118517A - Optical semiconductor device - Google Patents

Optical semiconductor device Download PDF

Info

Publication number
JP2010118517A
JP2010118517A JP2008291025A JP2008291025A JP2010118517A JP 2010118517 A JP2010118517 A JP 2010118517A JP 2008291025 A JP2008291025 A JP 2008291025A JP 2008291025 A JP2008291025 A JP 2008291025A JP 2010118517 A JP2010118517 A JP 2010118517A
Authority
JP
Japan
Prior art keywords
optical semiconductor
electrode
semiconductor element
optical
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008291025A
Other languages
Japanese (ja)
Inventor
Kazuhisa Takagi
和久 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008291025A priority Critical patent/JP2010118517A/en
Publication of JP2010118517A publication Critical patent/JP2010118517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical semiconductor device that can stably operate by reducing the reflection of light rays on an isolation groove. <P>SOLUTION: The optical semiconductor device includes: an optical semiconductor element 10 including an optical waveguide core layer 14; and first and second anode electrodes 20 and 22 lined up on an upper surface of the optical semiconductor element 10 along an extending direction of the optical waveguide core layer 14. On the upper surface of the optical semiconductor element 10, the isolation groove 26 for enhancing isolation resistance between the first anode electrode 20 and second anode electrode 22 is provided between the first anode electrode 20 and second anode electrode 22. The isolation groove 26 has a first wall surface 32 on the side of the first anode electrode 20 and a second wall surface 34 on the side of the second anode electrode 22. The angle between the normal line N of the first and second wall surfaces 32 and 34 and the extending direction of the optical waveguide core layer 14 is ≥6° and <90°. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光通信システムや光ディスクシステムなどに用いられる光半導体装置に関するものである。   The present invention relates to an optical semiconductor device used in an optical communication system, an optical disc system, and the like.

光半導体素子の上面において光導波路の延在方向に沿って2つの電極が並べて設けられた光半導体装置がある。この2つの電極のアイソレーション抵抗を高くするために、光半導体素子の上面に、両電極の間において、分離溝を設けたものが提案されている(例えば、特許文献1参照)。   There is an optical semiconductor device in which two electrodes are arranged side by side along the extending direction of the optical waveguide on the upper surface of the optical semiconductor element. In order to increase the isolation resistance between the two electrodes, a structure in which a separation groove is provided between the electrodes on the upper surface of the optical semiconductor element has been proposed (for example, see Patent Document 1).

特開平7−58310号公報JP-A-7-58310

従来の光半導体装置は、分離溝の側壁が光導波路の延在方向に対して垂直であった。このため、光導波路を伝搬する光の一部が分離溝を通過する際に反射されて逆方向に伝搬する場合があった。この場合、光半導体素子内で異常発振などが発生し、動作が不安定になるという問題があった。   In the conventional optical semiconductor device, the side wall of the separation groove is perpendicular to the extending direction of the optical waveguide. For this reason, a part of the light propagating through the optical waveguide may be reflected and propagate in the reverse direction when passing through the separation groove. In this case, there has been a problem that abnormal oscillation or the like occurs in the optical semiconductor element and the operation becomes unstable.

本発明は、上述のような課題を解決するためになされたもので、その目的は、分離溝での光の反射を低減して、安定に動作することができる光半導体装置を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an optical semiconductor device that can stably operate by reducing the reflection of light at the separation groove. .

第1の発明は、光導波路を含む光半導体素子と、前記光半導体素子の上面において前記光導波路の延在方向に沿って並べて設けられた第1及び第2の電極とを備え、前記光半導体素子の上面には、前記第1の電極と前記第2の電極の間において、前記第1の電極と前記第2の電極のアイソレーション抵抗を高くするために分離溝が設けられ、前記分離溝は、前記第1の電極側にある第1の壁面と、前記第2の電極側にある第2の壁面とを有し、前記第1及び第2の壁面の法線と前記光導波路の延在方向との角度は6度以上90度未満であることを特徴とする光半導体装置である。   A first invention includes an optical semiconductor element including an optical waveguide, and first and second electrodes provided side by side along the extending direction of the optical waveguide on an upper surface of the optical semiconductor element, and the optical semiconductor A separation groove is provided on the upper surface of the element between the first electrode and the second electrode in order to increase the isolation resistance of the first electrode and the second electrode, and the separation groove Has a first wall surface on the first electrode side and a second wall surface on the second electrode side, the normal line of the first and second wall surfaces and the extension of the optical waveguide. The optical semiconductor device is characterized in that an angle with a current direction is 6 degrees or more and less than 90 degrees.

第2の発明は、光導波路を含む光半導体素子と、前記光半導体素子の上面において前記光導波路の延在方向に沿って並べて設けられた第1及び第2の電極とを備え、前記光半導体素子の上面には、前記第1の電極と前記第2の電極の間において、前記第1の電極と前記第2の電極のアイソレーション抵抗を高くするために分離溝が設けられ、前記分離溝は、前記第1の電極側にある第1の壁面と、前記第2の電極側にある第2の壁面とを有し、前記第1の壁面と前記第2の壁面の距離dは、前記光半導体素子の動作波長をλとし、前記光導波路の等価屈折率をnとし、mを正の整数とすると、d=λm/2nで表されることを特徴とする光半導体装置である。   A second invention includes an optical semiconductor element including an optical waveguide, and first and second electrodes provided side by side along an extending direction of the optical waveguide on an upper surface of the optical semiconductor element, and the optical semiconductor A separation groove is provided on the upper surface of the element between the first electrode and the second electrode in order to increase the isolation resistance between the first electrode and the second electrode, and the separation groove Has a first wall surface on the first electrode side and a second wall surface on the second electrode side, and the distance d between the first wall surface and the second wall surface is The optical semiconductor device is represented by d = λm / 2n, where λ is the operating wavelength of the optical semiconductor element, n is the equivalent refractive index of the optical waveguide, and m is a positive integer.

本発明により、分離溝での光の反射を低減して、安定に動作することができる光半導体装置を得ることができる。   According to the present invention, it is possible to obtain an optical semiconductor device that can stably operate by reducing reflection of light at the separation groove.

実施の形態1.
図1は実施の形態1に係る光半導体装置を示す断面図であり、図2はその上面図である。
Embodiment 1 FIG.
FIG. 1 is a sectional view showing an optical semiconductor device according to the first embodiment, and FIG. 2 is a top view thereof.

光半導体素子10は、順番に積層されたn型半導体層12、光導波路コア層14(光導波路)及びp型半導体層16を含む。光半導体素子10の下面にはカソード電極18が設けられている。光半導体素子10の上面において、第1のアノード電極20(第1の電極)及び第2のアノード電極22(第2の電極)が、光導波路コア層14の延在方向に沿って並べて設けられている。光半導体素子10の上面には分離溝24,26,28が設けられている。この分離溝24,26,28は、絶縁膜30により覆われている。   The optical semiconductor element 10 includes an n-type semiconductor layer 12, an optical waveguide core layer 14 (optical waveguide), and a p-type semiconductor layer 16 that are sequentially stacked. A cathode electrode 18 is provided on the lower surface of the optical semiconductor element 10. On the upper surface of the optical semiconductor element 10, a first anode electrode 20 (first electrode) and a second anode electrode 22 (second electrode) are provided side by side along the extending direction of the optical waveguide core layer 14. ing. Separation grooves 24, 26, and 28 are provided on the upper surface of the optical semiconductor element 10. The separation grooves 24, 26 and 28 are covered with an insulating film 30.

分離溝26は、第1のアノード電極20と第2のアノード電極22のアイソレーション抵抗を高くするために、第1のアノード電極20と第2のアノード電極22の間に設けられている。この分離溝26は、第1のアノード電極20側にある第1の壁面32と、第2のアノード電極22側にある第2の壁面34とを有する。   The separation groove 26 is provided between the first anode electrode 20 and the second anode electrode 22 in order to increase the isolation resistance between the first anode electrode 20 and the second anode electrode 22. The separation groove 26 has a first wall surface 32 on the first anode electrode 20 side and a second wall surface 34 on the second anode electrode 22 side.

実施の形態1では、分離溝26は、光半導体素子10の側面から見て矩形である。そして、第1及び第2の壁面32,34は、光半導体素子10の上面から見て平行である。また、第1及び第2の壁面32,34の法線Nと光導波路コア層14の延在方向(光が伝搬する方向)との角度θは6度以上90度未満である。   In the first embodiment, the separation groove 26 is rectangular when viewed from the side surface of the optical semiconductor element 10. The first and second wall surfaces 32 and 34 are parallel when viewed from the upper surface of the optical semiconductor element 10. Further, the angle θ between the normal line N of the first and second wall surfaces 32 and 34 and the extending direction of the optical waveguide core layer 14 (the direction in which light propagates) is 6 degrees or more and less than 90 degrees.

図3は、分離溝の壁面の法線と光導波路コア層の延在方向との角度に対する反射率の低減率を計算した結果である。シミュレーションでは、第1及び第2の壁面32、34の法線Nと光導波路コア層14の延在方向との角度θが3度の付近で一時的に反射率の低減率が小さくなる。角度θが6度から、反射率が急激に低下し始める。角度θが7度より大きくなると反射量は1/100(一20dB)以下となる。半導体光素子における一般的なアプリケーションでは、光の反射量を1/100(−20dB)に落とせるかどうかがレーザダイオードの異常発振を抑える上で鍵となる。このことから、角度θは6度以上がよく、さらに7度より大きい方がより好ましい。また、この角度θは、90度で製造上の限界となるので上限は90度未満である。   FIG. 3 shows the result of calculating the reflectance reduction ratio with respect to the angle between the normal of the wall surface of the separation groove and the extending direction of the optical waveguide core layer. In the simulation, when the angle θ between the normal line N of the first and second wall surfaces 32 and 34 and the extending direction of the optical waveguide core layer 14 is around 3 degrees, the reflectance reduction rate is temporarily reduced. When the angle θ is 6 degrees, the reflectivity starts to decrease rapidly. When the angle θ is greater than 7 degrees, the amount of reflection is 1/100 (one 20 dB) or less. In general applications in semiconductor optical devices, whether or not the amount of reflected light can be reduced to 1/100 (−20 dB) is the key to suppressing abnormal oscillation of the laser diode. Therefore, the angle θ is preferably 6 degrees or more, and more preferably larger than 7 degrees. The angle θ is 90 degrees, which is a manufacturing limit, so the upper limit is less than 90 degrees.

従来のように分離溝の側壁が光導波路の延在方向に対して垂直である場合(θが0度)に比べて、本実施の形態のように角度θを6度以上にした場合は、光の反射率を従来より低くすることができ、さらに7度より大きくした場合には、光の反射率をおよそ1/100以下にすることができる。よって、本実施の形態に係る光半導体装置は、分離溝での光の反射を低減して、安定に動作することができる。   When the angle θ is set to 6 degrees or more as in the present embodiment, compared to the case where the side wall of the separation groove is perpendicular to the extending direction of the optical waveguide as in the prior art (θ is 0 degree), The reflectance of light can be made lower than that of the prior art, and when it is made larger than 7 degrees, the reflectance of light can be reduced to about 1/100 or less. Therefore, the optical semiconductor device according to the present embodiment can operate stably by reducing the reflection of light at the separation groove.

なお、n型半導体層12、光導波路コア層14及びp型半導体層16は、InP,GaAs,InGaAsP,AlGaInAs,GaAlNなどの材料から構成されるか、又は、これらの薄膜層を積層した構造である。カソード電極18、第1のアノード電極20及び第2のアノード電極22は、Ti,Cr,Pt,Auなどの層を積層した構造である。分離溝24,26,28は、ウェットエッチング、ドライエッチング、又は、これらを併用した方法により形成される。絶縁膜30の材料は例えばSiOやSiNである。 The n-type semiconductor layer 12, the optical waveguide core layer 14, and the p-type semiconductor layer 16 are made of a material such as InP, GaAs, InGaAsP, AlGaInAs, and GaAlN, or have a structure in which these thin film layers are stacked. is there. The cathode electrode 18, the first anode electrode 20, and the second anode electrode 22 have a structure in which layers of Ti, Cr, Pt, Au, and the like are laminated. The separation grooves 24, 26, and 28 are formed by wet etching, dry etching, or a method using a combination thereof. The material of the insulating film 30 is, for example, SiO 2 or SiN.

実施の形態2.
図4は実施の形態2に係る光半導体装置を示す上面図である。第1及び第2の壁面32,34は、光半導体素子10の上面から見て、光導波路コア層14の延在方向に対して垂直な線Pを挟んで対称である。その他の構成は実施の形態1と同様である。本実施の形態でも、第1及び第2の壁面32,34の法線Nと光導波路コア層14の延在方向との角度θは6度以上90度未満であり、実施の形態1と同様の効果を得ることができる。
Embodiment 2. FIG.
FIG. 4 is a top view showing the optical semiconductor device according to the second embodiment. The first and second wall surfaces 32 and 34 are symmetrical with respect to a line P perpendicular to the extending direction of the optical waveguide core layer 14 when viewed from the upper surface of the optical semiconductor element 10. Other configurations are the same as those of the first embodiment. Also in the present embodiment, the angle θ between the normal line N of the first and second wall surfaces 32 and 34 and the extending direction of the optical waveguide core layer 14 is 6 degrees or more and less than 90 degrees, which is the same as in the first embodiment. The effect of can be obtained.

実施の形態3.
図5は実施の形態3に係る光半導体装置を示す断面図である。分離溝26は、光半導体素子10の側面から見て逆メサ形状である。その他の構成は実施の形態1と同様である。本実施の形態でも、第1及び第2の壁面32,34の法線Nと光導波路コア層14の延在方向との角度θは6度以上90度未満であり、実施の形態1と同様の効果を得ることができる。
Embodiment 3 FIG.
FIG. 5 is a sectional view showing an optical semiconductor device according to the third embodiment. The separation groove 26 has an inverted mesa shape when viewed from the side surface of the optical semiconductor element 10. Other configurations are the same as those of the first embodiment. Also in the present embodiment, the angle θ between the normal line N of the first and second wall surfaces 32 and 34 and the extending direction of the optical waveguide core layer 14 is 6 degrees or more and less than 90 degrees, which is the same as in the first embodiment. The effect of can be obtained.

実施の形態4.
図6は実施の形態4に係る光半導体装置を示す断面図であり、図7はその上面図である。分離溝26は、光半導体素子10の側面から見て矩形である。そして、第1及び第2の壁面32,34は、光半導体素子10の上面から見て平行である。また、従来と同様に分離溝26の第1及び第2の壁面32,34が光導波路コア層14の延在方向に対して垂直である。
Embodiment 4 FIG.
FIG. 6 is a sectional view showing an optical semiconductor device according to the fourth embodiment, and FIG. 7 is a top view thereof. The separation groove 26 is rectangular when viewed from the side surface of the optical semiconductor element 10. The first and second wall surfaces 32 and 34 are parallel when viewed from the upper surface of the optical semiconductor element 10. Further, the first and second wall surfaces 32 and 34 of the separation groove 26 are perpendicular to the extending direction of the optical waveguide core layer 14 as in the conventional case.

実施の形態4では、第1の壁面32と第2の壁面34の距離dは、光半導体素子10の動作波長をλとし、光導波路コア層14の等価屈折率をnとし、mを正の整数とすると、d=λm/2nで表される。   In the fourth embodiment, the distance d between the first wall surface 32 and the second wall surface 34 is such that the operating wavelength of the optical semiconductor element 10 is λ, the equivalent refractive index of the optical waveguide core layer 14 is n, and m is positive. If it is an integer, it is expressed by d = λm / 2n.

これにより、分離溝26の第1の壁面32と第2の壁面34で反射された光の位相が逆位相となり打ち消しあう。よって、本実施の形態に係る光半導体装置は、分離溝での光の反射を低減して、安定に動作することができる。   Thereby, the phases of the light reflected by the first wall surface 32 and the second wall surface 34 of the separation groove 26 become opposite phases and cancel each other. Therefore, the optical semiconductor device according to the present embodiment can operate stably by reducing the reflection of light at the separation groove.

実施の形態1に係る光半導体装置を示す断面図である。1 is a cross-sectional view showing an optical semiconductor device according to a first embodiment. で実施の形態1に係る光半導体装置を示す上面図である。2 is a top view showing the optical semiconductor device according to the first embodiment. FIG. 分離溝の壁面の法線と光導波路コア層の延在方向との角度に対する反射率の低減率を計算した結果である。It is the result of having calculated the reduction rate of the reflectance with respect to the angle of the normal line of the wall surface of a separation groove, and the extending direction of an optical waveguide core layer. 実施の形態2に係る光半導体装置を示す上面図である。FIG. 6 is a top view showing an optical semiconductor device according to a second embodiment. 実施の形態3に係る光半導体装置を示す断面図である。FIG. 6 is a cross-sectional view showing an optical semiconductor device according to a third embodiment. 実施の形態4に係る光半導体装置を示す断面図である。FIG. 6 is a cross-sectional view showing an optical semiconductor device according to a fourth embodiment. 実施の形態4に係る光半導体装置を示す上面図である。FIG. 6 is a top view showing an optical semiconductor device according to a fourth embodiment.

符号の説明Explanation of symbols

10 光半導体素子
14 光導波路コア層(光導波路)
20 第1のアノード電極(第1の電極)
22 第2のアノード電極(第2の電極)
26 分離溝
32 第1の壁面
34 第2の壁面
N 法線
P 垂直な線
10 Optical Semiconductor Element 14 Optical Waveguide Core Layer (Optical Waveguide)
20 First anode electrode (first electrode)
22 Second anode electrode (second electrode)
26 Separation Groove 32 First Wall 34 Second Wall N Normal P Vertical Line

Claims (5)

光導波路を含む光半導体素子と、
前記光半導体素子の上面において前記光導波路の延在方向に沿って並べて設けられた第1及び第2の電極とを備え、
前記光半導体素子の上面には、前記第1の電極と前記第2の電極の間において、前記第1の電極と前記第2の電極のアイソレーション抵抗を高くするために分離溝が設けられ、
前記分離溝は、前記第1の電極側にある第1の壁面と、前記第2の電極側にある第2の壁面とを有し、
前記第1及び第2の壁面の法線と前記光導波路の延在方向との角度は6度以上90度未満であることを特徴とする光半導体装置。
An optical semiconductor element including an optical waveguide;
A first electrode and a second electrode provided side by side along the extending direction of the optical waveguide on the upper surface of the optical semiconductor element;
On the upper surface of the optical semiconductor element, a separation groove is provided between the first electrode and the second electrode to increase the isolation resistance between the first electrode and the second electrode,
The separation groove has a first wall surface on the first electrode side and a second wall surface on the second electrode side,
An optical semiconductor device, wherein an angle between a normal line of the first and second wall surfaces and an extending direction of the optical waveguide is 6 degrees or more and less than 90 degrees.
前記第1及び第2の壁面は、前記光半導体素子の上面から見て平行であることを特徴とする請求項1に記載の光半導体装置。   2. The optical semiconductor device according to claim 1, wherein the first and second wall surfaces are parallel when viewed from an upper surface of the optical semiconductor element. 前記第1及び第2の壁面は、前記光半導体素子の上面から見て、前記光導波路の延在方向に対して垂直な線を挟んで対称であることを特徴とする請求項1に記載の光半導体装置。   The first and second wall surfaces are symmetrical with respect to a line perpendicular to the extending direction of the optical waveguide when viewed from the upper surface of the optical semiconductor element. Optical semiconductor device. 前記分離溝は、前記光半導体素子の側面から見て逆メサ形状であることを特徴とする請求項1に記載の光半導体装置。   The optical semiconductor device according to claim 1, wherein the separation groove has an inverted mesa shape when viewed from a side surface of the optical semiconductor element. 光導波路を含む光半導体素子と、
前記光半導体素子の上面において前記光導波路の延在方向に沿って並べて設けられた第1及び第2の電極とを備え、
前記光半導体素子の上面には、前記第1の電極と前記第2の電極の間において、前記第1の電極と前記第2の電極のアイソレーション抵抗を高くするために分離溝が設けられ、
前記分離溝は、前記第1の電極側にある第1の壁面と、前記第2の電極側にある第2の壁面とを有し、
前記第1の壁面と前記第2の壁面の距離dは、前記光半導体素子の動作波長をλとし、前記光導波路の等価屈折率をnとし、mを正の整数とすると、d=λm/2nで表されることを特徴とする光半導体装置。
An optical semiconductor element including an optical waveguide;
A first electrode and a second electrode provided side by side along the extending direction of the optical waveguide on the upper surface of the optical semiconductor element;
On the upper surface of the optical semiconductor element, a separation groove is provided between the first electrode and the second electrode to increase the isolation resistance between the first electrode and the second electrode,
The separation groove has a first wall surface on the first electrode side and a second wall surface on the second electrode side,
The distance d between the first wall surface and the second wall surface is defined as follows: d = λm /, where λ is the operating wavelength of the optical semiconductor element, n is the equivalent refractive index of the optical waveguide, and m is a positive integer. An optical semiconductor device represented by 2n.
JP2008291025A 2008-11-13 2008-11-13 Optical semiconductor device Pending JP2010118517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291025A JP2010118517A (en) 2008-11-13 2008-11-13 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291025A JP2010118517A (en) 2008-11-13 2008-11-13 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2010118517A true JP2010118517A (en) 2010-05-27

Family

ID=42306002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291025A Pending JP2010118517A (en) 2008-11-13 2008-11-13 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2010118517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148246A1 (en) 2010-05-24 2011-12-01 Nissan Motor Co., Ltd. Vehicle warning sound emitting apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163407A (en) * 1986-12-26 1988-07-06 Hitachi Ltd Optical waveguide structure and its manufacture
JPH0720359A (en) * 1993-07-01 1995-01-24 Nippon Telegr & Teleph Corp <Ntt> Optical device
JP2002111129A (en) * 2000-10-02 2002-04-12 Oki Electric Ind Co Ltd Semiconductor optical device
WO2007080891A1 (en) * 2006-01-11 2007-07-19 Nec Corporation Semiconductor laser, module, and optical transmitter
JP2008218549A (en) * 2007-03-01 2008-09-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor waveguide element, semiconductor laser and its fabrication process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163407A (en) * 1986-12-26 1988-07-06 Hitachi Ltd Optical waveguide structure and its manufacture
JPH0720359A (en) * 1993-07-01 1995-01-24 Nippon Telegr & Teleph Corp <Ntt> Optical device
JP2002111129A (en) * 2000-10-02 2002-04-12 Oki Electric Ind Co Ltd Semiconductor optical device
WO2007080891A1 (en) * 2006-01-11 2007-07-19 Nec Corporation Semiconductor laser, module, and optical transmitter
JP2008218549A (en) * 2007-03-01 2008-09-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor waveguide element, semiconductor laser and its fabrication process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148246A1 (en) 2010-05-24 2011-12-01 Nissan Motor Co., Ltd. Vehicle warning sound emitting apparatus

Similar Documents

Publication Publication Date Title
JP4312239B2 (en) Optical element and manufacturing method thereof
JP5177285B2 (en) Optical element and manufacturing method thereof
JP5182362B2 (en) Optical element and manufacturing method thereof
US9547137B2 (en) Optical coupler integrated on a substrate and comprising three elements
JP6298604B2 (en) Vertical cavity surface emitting semiconductor laser
JP2012248812A (en) Manufacturing method of semiconductor optical integrated element
JP2008147531A (en) Surface light emitting semiconductor laser element
WO2007040108A1 (en) Semiconductor photo-element and external resonance laser having the semiconductor photo-element
JP2012028395A (en) Semiconductor laser element
JP2010239051A (en) Optical semiconductor device
JP2010219191A (en) Light emitting device
CN103138156A (en) Optical semiconductor device
US6765944B2 (en) Semiconductor laser device
JP5275634B2 (en) Optical integrated device and optical integrated device manufacturing method
JP2010016281A (en) Method for manufacturing semiconductor laser
JP2012079990A (en) Integrated optical semiconductor device
JP2010118517A (en) Optical semiconductor device
JP2008227169A (en) Semiconductor laser device
JP2014199897A (en) Vertical cavity surface emitting semiconductor laser
JP5906973B2 (en) Optical branching device and optical semiconductor integrated circuit device
JP2012234862A (en) Semiconductor laser device
JP2013016648A (en) Method for manufacturing semiconductor optical integrated element
JP2006073823A (en) Surface-emitting semiconductor laser element and its manufacturing method
TWM480192U (en) Ridge waveguide laser diode passivated by multi-layer film
JP6513412B2 (en) Semiconductor optical integrated device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910