JP2010117203A - Method of forming calibration curve for quantitation assay in infrared spectroscopy and quantity determination method - Google Patents

Method of forming calibration curve for quantitation assay in infrared spectroscopy and quantity determination method Download PDF

Info

Publication number
JP2010117203A
JP2010117203A JP2008289563A JP2008289563A JP2010117203A JP 2010117203 A JP2010117203 A JP 2010117203A JP 2008289563 A JP2008289563 A JP 2008289563A JP 2008289563 A JP2008289563 A JP 2008289563A JP 2010117203 A JP2010117203 A JP 2010117203A
Authority
JP
Japan
Prior art keywords
solution
solute
preliminary
sample
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008289563A
Other languages
Japanese (ja)
Other versions
JP5083179B2 (en
Inventor
Kenichiro Miyatake
健一郎 宮武
Keiji Hirao
圭司 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008289563A priority Critical patent/JP5083179B2/en
Publication of JP2010117203A publication Critical patent/JP2010117203A/en
Application granted granted Critical
Publication of JP5083179B2 publication Critical patent/JP5083179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a highly reliable calibration curve for a quantitation assay in infrared spectroscopy. <P>SOLUTION: The method comprises a preliminary solution preparation step of preparing two or more preliminary solutions 10 with different known contents of a solute dissolved in a solvent, a preliminary sample preparation step of supplying each preliminary solution 10 to a sample stage 20 and then removing the solvent to remain the solute on the stage 20, a preliminary spectroscopy step of irradiating the solute 11 remaining on the stage with infrared light through a bottom surface of the sample stage and taking an infrared absorption spectrum of the reflected light from the solute 11, and a calibration curve formation step of obtaining a reciprocal functionality between the known content of the solute in each preliminary solution and specific information of the solute in the infrared absorption spectrum. The sample stage 20 has a sample space 22 to receive the preliminary solution, and the bottom surface 23 of the sample space 22 irradiated with the infrared light is constructed from an infrared light-transmissive material. Each preliminary solution 10 is supplied to the sample space 22 so as to extend over the entire bottom surface of the sample space 22. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、赤外分光法で定量分析するための検量線の作成方法と、赤外分光法による定量方法に関するものである。   The present invention relates to a method for preparing a calibration curve for quantitative analysis by infrared spectroscopy, and a quantitative method by infrared spectroscopy.

赤外分光法を用いて、溶液中の微量成分を定性分析することが知られている。例えば、特許文献1には、分析対象が溶媒に溶解された溶液を試料とし、その試料を赤外分光測定するためにサンプリングする方法が開示されている。より具体的には、図4に示す通りである。まず、溶媒中に分析対象の溶質が溶解された分析溶液15を準備する(図4(A))。次に、この溶液15をシリンジ30に採り、受け皿状の試料ステージ20上に滴下する(図4(B))。例えば、この試料ステージ20の底面は、その中心部に設けられたダイヤモンド製の窓部25と、窓部25の周囲を取り囲むステンレス製の基部26とを備える。溶液15は、試料ステージの窓部25に滴下する。そして、滴下した溶液の溶媒を揮発させ、底面上に溶質11の被膜を形成する(図4(C))。定性分析は、例えば、試料ステージ20の底面の裏側から、窓部25上の被膜に赤外光40を照射して(図4(D))、その反射光の赤外吸収スペクトルから溶質の成分を同定することにより行う。   It is known to qualitatively analyze trace components in a solution using infrared spectroscopy. For example, Patent Document 1 discloses a method in which a solution in which an analysis target is dissolved in a solvent is used as a sample, and the sample is sampled for infrared spectroscopic measurement. More specifically, as shown in FIG. First, an analysis solution 15 in which a solute to be analyzed is dissolved in a solvent is prepared (FIG. 4A). Next, the solution 15 is taken into a syringe 30 and dropped onto the saucer-shaped sample stage 20 (FIG. 4B). For example, the bottom surface of the sample stage 20 includes a diamond window 25 provided at the center thereof, and a stainless base 26 surrounding the window 25. The solution 15 is dropped on the window portion 25 of the sample stage. Then, the solvent of the dropped solution is volatilized to form a film of the solute 11 on the bottom surface (FIG. 4C). The qualitative analysis is performed by, for example, irradiating the film on the window 25 with the infrared light 40 from the back side of the bottom surface of the sample stage 20 (FIG. 4D), and analyzing the solute component from the infrared absorption spectrum of the reflected light. This is done by identifying

特開平7-198567号公報 段落番号0003Japanese Unexamined Patent Publication No. Hei 7-198567 Paragraph 0003

上記の試料のサンプリング技術は、定性分析をする場合には有効に利用できる。しかし、このサンプリング技術を利用して赤外分光法で定量分析を行おうとした場合、精度よく分析ができないという問題があった。   The sample sampling technique described above can be effectively used for qualitative analysis. However, there has been a problem that analysis cannot be performed with high accuracy when quantitative analysis is performed by infrared spectroscopy using this sampling technique.

定量分析を行うには、予め分析対象の含有量が既知の溶液を用いて、分析対象の含有量と赤外線吸収スペクトルの吸光度(透過率)との関係を示す検量線を作成しておく必要がある。この検量線を作成するには、上記既知の含有量が異なる複数の溶液を用い、各溶液の分析対象が含有量に応じて均質に基板上に被膜として形成される必要がある。   In order to perform quantitative analysis, it is necessary to prepare a calibration curve that shows the relationship between the content of the analysis target and the absorbance (transmittance) of the infrared absorption spectrum in advance using a solution whose content of the analysis target is known. is there. In order to create this calibration curve, it is necessary to use a plurality of solutions having different known contents, and to form an analysis target of each solution uniformly on the substrate according to the contents.

ところが、上記の従来技術では、溶液の滴下される試料ステージの底面が平面状であるため、基板上に滴下された溶液がどのように広がるかは全く画一性がない。そのため、溶媒を揮発させて基板上に形成された分析対象の被膜は、その厚みや広がり面積が溶液ごとに大きくばらつくことになる。このような被膜から赤外吸収スペクトルを求めても、分析対象の含有量と赤外線吸収スペクトルの吸光度(透過率)との間に相関関係が得られないことが多く、適正な検量線を得ることができない。その結果、赤外分光法により定量分析を行うことができないことになる。   However, in the above-described prior art, since the bottom surface of the sample stage onto which the solution is dropped is flat, there is no uniformity in how the solution dropped on the substrate spreads. Therefore, the film to be analyzed formed on the substrate by volatilizing the solvent greatly varies in thickness and spread area for each solution. Even when an infrared absorption spectrum is obtained from such a film, there is often no correlation between the content of the analysis target and the absorbance (transmittance) of the infrared absorption spectrum, and an appropriate calibration curve is obtained. I can't. As a result, quantitative analysis cannot be performed by infrared spectroscopy.

一方で、基板上に形成された分析対象の被膜の厚みや広がり状態をある程度一定にしようとすれば、溶液を窓部に滴下する際に、1滴ずつ滴下するなど極めて煩雑な作業を伴う上、その作業に熟練も要し、簡易に適正な検量線を得ることができない。特に、ATR法(Attenuated total reflection:全反射測定法)を行う場合、赤外光の反射回数に応じて、試料ステージの底面上に一定間隔で複数の被膜を並列させる必要があり、溶液の滴下から被膜の形成に要する作業は、さらに煩雑なものとなる。   On the other hand, if the thickness or spread state of the coating film to be analyzed formed on the substrate is to be kept constant to some extent, when the solution is dropped onto the window portion, it involves extremely complicated work such as dropping one by one. The work requires skill, and an appropriate calibration curve cannot be easily obtained. In particular, when performing the ATR method (Attenuated total reflection), it is necessary to place multiple coatings in parallel at regular intervals on the bottom of the sample stage, depending on the number of reflections of infrared light. Therefore, the work required for forming the coating is further complicated.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、赤外分光法で定量分析するための検量線の作成方法において、信頼性の高い検量線を得ることができる検量線の作成方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to obtain a highly reliable calibration curve in a method for creating a calibration curve for quantitative analysis by infrared spectroscopy. It is to provide a method for creating a calibration curve.

本発明の他の目的は、溶液中の微量成分を高精度に定量できる赤外分光法による定量方法を提供することにある。   Another object of the present invention is to provide a quantification method by infrared spectroscopy that can quantitate trace components in a solution with high accuracy.

本発明者らは、反射法による赤外分光法で試料ステージ上の溶液から溶媒を除去して溶質を残存させる際に、溶質の分布を均等にすることを検討した結果、試料ステージで溶液の広がる範囲を規制することが効果的であるとの知見を得て本発明を完成するに至った。   The inventors of the present invention have studied to make the distribution of the solute uniform when removing the solvent from the solution on the sample stage by the infrared spectroscopy by reflection method and leaving the solute to remain. The present invention has been completed with the knowledge that it is effective to regulate the expanding range.

本発明の赤外分光法で定量分析するための検量線の作成方法は、次の工程を備える。
予備溶液準備工程:溶媒に溶解された溶質の既知量が異なる複数の予備溶液を用意する。
予備試料作製工程:各予備溶液を試料ステージに供給した後、溶媒を除去し、溶質をステージ上に残存させる。
予備分光工程:前記ステージ上に残存する溶質に、試料ステージの底面を介して赤外光を照射し、その溶質からの反射光より赤外吸収スペクトルを取得する。
検量線作成工程:各予備溶液中の溶質の既知量と、前記赤外吸収スペクトルにおける溶質の固有情報との相関関係を求める。
ここで、前記試料ステージは、予備溶液を受ける試料空間を有し、赤外光が照射される試料空間の底面は、赤外光を透過する材料で構成される。そして、前記各予備溶液の試料ステージへの供給は、予備溶液が試料空間の底面全面に広がるように行う。
The method for preparing a calibration curve for quantitative analysis by infrared spectroscopy of the present invention comprises the following steps.
Preliminary solution preparation step: A plurality of preliminary solutions having different known amounts of solute dissolved in a solvent are prepared.
Preliminary sample preparation step: After each preliminary solution is supplied to the sample stage, the solvent is removed, and the solute remains on the stage.
Preliminary spectroscopic step: The solute remaining on the stage is irradiated with infrared light through the bottom surface of the sample stage, and an infrared absorption spectrum is obtained from the reflected light from the solute.
Calibration curve creation step: The correlation between the known amount of solute in each preliminary solution and the specific information of the solute in the infrared absorption spectrum is determined.
Here, the sample stage has a sample space for receiving the preliminary solution, and the bottom surface of the sample space irradiated with infrared light is made of a material that transmits infrared light. Then, the preliminary solutions are supplied to the sample stage so that the preliminary solutions spread over the entire bottom surface of the sample space.

この構成によれば、予備溶液を試料ステージの底面の全面に広がるように供給することで、試料空間内の予備溶液をほぼ均等に分散配置することができる。そのため、この試料空間内の予備溶液から溶媒を除去すれば、試料空間の底面にほぼ均等に溶質を付着させることができる。その結果、この底面に付着した溶質量を、予備溶液中の溶質量に応じた量に調整することができ、予備溶液中の溶質の既知量と、赤外吸収スペクトルにおける溶質の固有情報とが高い相関関係を有する検量線を得ることができる。   According to this configuration, by supplying the preliminary solution so as to spread over the entire bottom surface of the sample stage, the preliminary solution in the sample space can be distributed and distributed almost evenly. Therefore, if the solvent is removed from the preliminary solution in the sample space, the solute can be attached to the bottom surface of the sample space almost evenly. As a result, the solute mass adhering to the bottom surface can be adjusted to an amount corresponding to the solute mass in the preliminary solution, and the known amount of the solute in the preliminary solution and the specific information of the solute in the infrared absorption spectrum are obtained. A calibration curve having a high correlation can be obtained.

本発明の赤外分光法で定量分析するための検量線の作成方法において、前記試料空間の底面がZnSeからなることが好ましい。   In the method for preparing a calibration curve for quantitative analysis by infrared spectroscopy of the present invention, it is preferable that the bottom surface of the sample space is made of ZnSe.

この構成によれば、赤外光に対して高い透過性を有する材料で試料空間の底面を構成することで、適切な赤外吸収スペクトルを得ることができる。   According to this configuration, an appropriate infrared absorption spectrum can be obtained by configuring the bottom surface of the sample space with a material having high transparency to infrared light.

また、本発明の赤外分光法で定量分析するための検量線の作成方法において、前記予備分光工程をATR法により行うことが好ましい。   In the method for preparing a calibration curve for quantitative analysis by infrared spectroscopy of the present invention, it is preferable that the preliminary spectroscopic step is performed by the ATR method.

この構成によれば、試料空間の底面全面に溶質が均等に配置されているため、赤外光の反射回数に応じて試料空間の底面に溶質を点在させる必要がなく、作業性よく検量線の作成を行うことができる。   According to this configuration, since the solute is evenly arranged on the entire bottom surface of the sample space, it is not necessary to interpose the solute on the bottom surface of the sample space according to the number of reflections of infrared light, and the calibration curve has good workability. Can be made.

一方、本発明の赤外分光法による定量方法は、次の工程を備えることを特徴とする。
分析溶液準備工程:溶媒に溶解された溶質量が未知の分析溶液を用意する。
分析試料作製工程:この分析溶液を試料ステージに供給した後、溶媒を除去し、溶質をステージ上に残存させる。
本分光工程:このステージ上に残存する溶質に、試料ステージの底面を介して赤外光を照射し、その溶質からの反射光より赤外吸収スペクトルを取得する。
定量工程:この赤外吸収スペクトルにおける溶質の固有情報と、上記本発明の検量線の作成方法により得られた検量線とから分析溶液中の溶質量を求める。
ここで、前記試料ステージは、分析溶液を受ける試料空間を有し、赤外光が照射される試料空間の底面は、赤外光を透過する材料で構成される。そして、前記分析溶液の試料ステージへの供給は、分析溶液が試料空間の底面全面に広がるように行う。
On the other hand, the quantitative method by infrared spectroscopy of the present invention is characterized by comprising the following steps.
Analysis solution preparation step: An analysis solution having an unknown dissolved mass dissolved in a solvent is prepared.
Analysis sample preparation step: After supplying this analysis solution to the sample stage, the solvent is removed, and the solute remains on the stage.
Main spectroscopic step: Irradiates the solute remaining on the stage with infrared light through the bottom surface of the sample stage, and obtains an infrared absorption spectrum from the reflected light from the solute.
Determination step: The solute mass in the analytical solution is determined from the specific information of the solute in this infrared absorption spectrum and the calibration curve obtained by the calibration curve preparation method of the present invention.
Here, the sample stage has a sample space for receiving the analysis solution, and the bottom surface of the sample space irradiated with infrared light is made of a material that transmits infrared light. Then, the analysis solution is supplied to the sample stage so that the analysis solution spreads over the entire bottom surface of the sample space.

この構成によれば、試料空間の底面全面に分析溶液を広げてから溶媒を除去することで、この底面全面にほぼ均等に溶質を付着させることができ、その状態の分析試料から適正な赤外吸収スペクトルを得ることができる。そして、本発明の検量線の作成方法により得られた正確な検量線を利用することで、分析溶液中の溶質量を高精度に定量することができる。   According to this configuration, by spreading the analysis solution over the entire bottom surface of the sample space and then removing the solvent, the solute can be deposited almost evenly over the entire bottom surface, and an appropriate infrared can be obtained from the analysis sample in that state. An absorption spectrum can be obtained. Then, by using an accurate calibration curve obtained by the method for creating a calibration curve of the present invention, the dissolved mass in the analytical solution can be quantified with high accuracy.

本発明の赤外分光法で定量分析するための検量線の作成方法は、予備溶液中の溶質の既知量と、赤外吸収スペクトルにおける溶質の固有情報とが高い相関関係を有する検量線を得ることができる。   The method for preparing a calibration curve for quantitative analysis by infrared spectroscopy of the present invention obtains a calibration curve having a high correlation between the known amount of solute in the preliminary solution and the specific information of the solute in the infrared absorption spectrum. be able to.

本発明の赤外分光法による定量方法は、分析溶液中の溶質量を高精度に定量することができる。   The quantification method by infrared spectroscopy of the present invention can quantitate the dissolved mass in the analysis solution with high accuracy.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(検量線の作成)
まず、赤外分光法で定量分析するための検量線の作成方法について説明する。この方法は、予備溶液準備工程、予備試料作製工程、予備分光工程、検量線作成工程を備える。
(Create a calibration curve)
First, a method for creating a calibration curve for quantitative analysis by infrared spectroscopy will be described. This method includes a preliminary solution preparation step, a preliminary sample preparation step, a preliminary spectroscopic step, and a calibration curve creation step.

<予備溶液準備工程>
この工程では、溶媒に溶解された溶質の既知量が異なる複数の予備溶液を用意する。溶質の既知量が異なる複数の予備溶液は、濃度が一定で溶液量が異なる複数の予備溶液や、溶液量が一定で濃度が異なる複数の予備溶液が挙げられる。このような予備溶液は、例えば、予め秤量した溶質を所定量の溶媒に溶解して作成すればよい。一般に、分析対象となる溶液中の溶質の量は微量であるため、予備溶液は、試料ステージへの供給前に、適宜濃縮しておくことが好ましい。この濃縮は、予備溶液を乾燥させ、溶媒量を低減することなどが利用できる。
<Preliminary solution preparation process>
In this step, a plurality of preliminary solutions having different known amounts of solute dissolved in a solvent are prepared. Examples of the plurality of preliminary solutions having different known amounts of solutes include a plurality of preliminary solutions having a constant concentration and different solution amounts, and a plurality of preliminary solutions having a constant solution amount and different concentrations. Such a preliminary solution may be prepared, for example, by dissolving a solute weighed in advance in a predetermined amount of solvent. In general, since the amount of solute in the solution to be analyzed is very small, it is preferable that the preliminary solution is appropriately concentrated before being supplied to the sample stage. This concentration can be performed by drying the preliminary solution and reducing the amount of solvent.

<予備試料作製工程>
この工程では、各予備溶液を試料ステージに供給した後、溶媒を除去し、溶質をステージ上に残存させる。試料ステージへの予備溶液の供給は、通常、滴下が好適に利用できる。予備溶液の除去は、溶媒を揮発させることが好適である。そのため、溶媒は常温で揮発し易い液体が好適に利用でき、溶質は溶媒に対して不揮発残分となる成分が好適に選択される。試料ステージに供給する予備溶液の容量が試料空間の容積よりも大きい場合、予備溶液を複数回に分割して試料ステージに供給しても良い。例えば、後述する試料空間内に入る程度の微量の予備溶液の滴下と、滴下した予備溶液からの溶媒の揮発とを繰り返すことで、所定量の予備溶液を試料ステージに供給する。
<Preliminary sample preparation process>
In this step, after supplying each preliminary solution to the sample stage, the solvent is removed and the solute remains on the stage. In general, dripping can be suitably used for supplying the preliminary solution to the sample stage. The removal of the preliminary solution is preferably performed by volatilizing the solvent. Therefore, a liquid that easily evaporates at room temperature can be suitably used as the solvent, and a component that becomes a nonvolatile residue with respect to the solvent is preferably selected. When the volume of the preliminary solution supplied to the sample stage is larger than the volume of the sample space, the preliminary solution may be divided into a plurality of times and supplied to the sample stage. For example, a predetermined amount of the preliminary solution is supplied to the sample stage by repeating the dropping of a small amount of the preliminary solution to enter the sample space described later and the volatilization of the solvent from the dropped preliminary solution.

予備溶液が供給される試料ステージは、予備溶液を受ける試料空間を有する。試料空間は、試料ステージのベースに適宜な形状の凹部を形成してもよいし、平面状のベースの上に側壁を突設して枠状に囲み、この側壁内を試料空間としてもよい。いずれにおいても、溶液の水密性が確保できれば良い。   The sample stage to which the preliminary solution is supplied has a sample space for receiving the preliminary solution. The sample space may be formed with a concave portion having an appropriate shape on the base of the sample stage, or may be provided with a side wall projecting on a flat base and surrounded in a frame shape, and the inside of the side wall may be used as the sample space. In any case, it is sufficient that the water tightness of the solution can be ensured.

試料空間のうち、少なくとも底面は赤外光を透過する材料で構成する。具体的には、KBr、NaCl、ZnSe、ZnS、MgF2、MgAl2O3、Al2O3、SiO2、Ge、Si、ダイヤモンド、フッ素樹脂、ポリエチレン、セルロースなどが挙げられる。試料空間の他の部分、例えば側壁は、その構成材料を問わない。 Of the sample space, at least the bottom surface is made of a material that transmits infrared light. Specific examples include KBr, NaCl, ZnSe, ZnS, MgF 2 , MgAl 2 O 3 , Al 2 O 3 , SiO 2 , Ge, Si, diamond, fluororesin, polyethylene, and cellulose. The other part of the sample space, for example, the side wall, does not matter the constituent material.

試料空間の底面積は、供給された予備溶液が底面の全面に広がる程度とする。複数回に分けて予備溶液を試料空間に供給して各回毎に溶媒を除去する場合、1回で供給される予備溶液量は、試料空間の底面積に広がる程度とする。このようなサイズの試料空間としておくことで、供給された予備溶液は、その広がる面積が試料空間の底面積に依存するため、溶液の広がる面積を各回で一定に規定することができる。その状態で溶媒を除去すれば、試料空間の底面に沿ってほぼ均一に溶質が分散された状態とできる。特に、試料空間の底面積が照射される赤外光のビームの断面積以下であれば、底面に付着される溶質のほぼ全てに赤外光を照射することができ、溶質量に対応した赤外吸収スペクトルを得ることができる。   The bottom area of the sample space is such that the supplied preliminary solution spreads over the entire bottom surface. When the preliminary solution is supplied to the sample space in a plurality of times and the solvent is removed each time, the amount of the preliminary solution supplied at one time is such that it spreads over the bottom area of the sample space. By setting the sample space in such a size, since the area of the supplied preliminary solution depends on the bottom area of the sample space, the area in which the solution spreads can be defined constant each time. If the solvent is removed in this state, the solute can be dispersed almost uniformly along the bottom surface of the sample space. In particular, if the bottom area of the sample space is less than the cross-sectional area of the irradiated infrared light beam, almost all of the solute adhering to the bottom surface can be irradiated with infrared light. An external absorption spectrum can be obtained.

<予備分光工程>
この工程では、ステージ上に残存する溶質、つまり試料空間の底面上に付着する溶質に赤外光を照射し、その溶質からの反射光より赤外吸収スペクトルを取得する。より具体的には、試料ステージの底面の裏側から赤外光を入射させ、底面を介して溶質に赤外光を照射して、再度底面を介して反射光を出射させる反射法が好適に利用できる。特に、ATR法が好適に利用できる。ATR法は、赤外光に透過性の高屈折率媒質に試料を密着させ、試料と高屈折率媒質間で全反射が起きるように試料をセットする。全反射が生じる際、赤外光は高屈折率媒質から試料内部にわずかにもぐり込んで反射される。試料に吸収のある領域では、吸収の強さに応じて反射光のエネルギーが減少する。そのため、この全反射光を測定すると、試料表層部の赤外吸収スペクトルを得ることができる。得られた赤外吸収スペクトルは、溶質の成分に応じて固有のパターンとなる。とりわけ、多重反射ATR法であれば、より高感度に赤外吸収スペクトルを得ることができる。
<Preliminary spectroscopic process>
In this step, the solute remaining on the stage, that is, the solute adhering to the bottom surface of the sample space is irradiated with infrared light, and an infrared absorption spectrum is acquired from the reflected light from the solute. More specifically, a reflection method in which infrared light is incident from the back side of the bottom surface of the sample stage, the solute is irradiated with infrared light through the bottom surface, and the reflected light is emitted again through the bottom surface is preferably used. it can. In particular, the ATR method can be suitably used. In the ATR method, a sample is brought into close contact with a high refractive index medium that is transparent to infrared light, and the sample is set so that total reflection occurs between the sample and the high refractive index medium. When total reflection occurs, infrared light is slightly reflected from the high refractive index medium into the sample. In the region where the sample has absorption, the energy of the reflected light decreases according to the intensity of absorption. Therefore, when this total reflected light is measured, an infrared absorption spectrum of the sample surface layer can be obtained. The obtained infrared absorption spectrum has a unique pattern depending on the solute components. In particular, the multiple reflection ATR method can obtain an infrared absorption spectrum with higher sensitivity.

<検量線作成工程>
この工程では、各予備溶液中の溶質の既知量と、前記赤外吸収スペクトルにおける溶質の固有情報との相関関係を求める。赤外吸収スペクトルにおける溶質の固有情報は、例えば特定波数(または波長)における吸光度(または透過率)とすることが挙げられる。本発明の検量線の作成方法によれば、試料空間に配された溶質の既知量に応じた固有情報を有する赤外吸収スペクトルを得られるため、この既知量と固有情報との対応関係を複数取得すれば、既知量と固有情報の相関関係である検量線を得ることができる。通常、既知量と固有情報とは比例関係となり直線の検量線が得られる。
<Calibration curve creation process>
In this step, the correlation between the known amount of solute in each preliminary solution and the specific information of the solute in the infrared absorption spectrum is obtained. Specific information of the solute in the infrared absorption spectrum includes, for example, absorbance (or transmittance) at a specific wave number (or wavelength). According to the method for creating a calibration curve of the present invention, an infrared absorption spectrum having specific information corresponding to a known amount of a solute arranged in a sample space can be obtained. Therefore, a plurality of correspondence relationships between the known amount and the specific information are obtained. If acquired, a calibration curve that is a correlation between the known amount and the specific information can be obtained. Usually, the known amount and the unique information are in a proportional relationship, and a linear calibration curve is obtained.

(定量方法)
次に、得られた検量線を用いた本発明の赤外分光法による定量方法を説明する。この定量方法は、上記検量線の作成方法で得られた検量線を利用する方法で、分析溶液準備工程、分析試料作製工程、本分光工程、および定量工程を備える。但し、分析溶液準備工程、分析試料作製工程、本分光工程は、各工程で取り扱う溶液が予備溶液から分析溶液となる点が上記検量線の作成方法における予備溶液準備工程、予備試料作製工程、予備分光工程との主たる相違点である。分析溶液は、溶媒に溶解された溶質量が未知の溶液である。この分析溶液も、予備溶液と同様に、試料ステージへの供給前に適宜濃縮しておくことが好ましい。その他は、基本的に検量線の作成方法の予備溶液準備工程から予備分光工程と共通である。もちろん、検量線の作成方法と同様に、分析溶液を試料ステージの全面に広がるように供給する。このように、予備溶液から検量線を得るために行う溶液の取り扱い方法と、分析溶液中の溶質量を定量するために行う溶液の取り扱い方法とに共通性を持たせることで、検量線を利用して得られた定量結果の信頼性を高めることができる。
(Quantitative method)
Next, the quantitative method by the infrared spectroscopy of the present invention using the obtained calibration curve will be described. This quantification method is a method that uses the calibration curve obtained by the calibration curve creation method, and includes an analysis solution preparation step, an analysis sample preparation step, a main spectroscopic step, and a quantification step. However, the analysis solution preparation step, the analysis sample preparation step, and the main spectroscopic step are the preliminary solution preparation step, the preliminary sample preparation step, and the preliminary step in the method for preparing the calibration curve in that the solution handled in each step is changed from the preliminary solution to the analysis solution. This is the main difference from the spectroscopic process. The analysis solution is a solution having an unknown dissolved mass dissolved in a solvent. This analysis solution is preferably concentrated as appropriate before being supplied to the sample stage, like the preliminary solution. Others are basically the same as the preliminary solution preparation step from the preliminary solution preparation step of the calibration curve creation method. Of course, the analysis solution is supplied so as to spread over the entire surface of the sample stage in the same manner as in the method of creating the calibration curve. In this way, the calibration curve can be used by providing commonality between the solution handling method used to obtain the calibration curve from the preliminary solution and the solution handling method used to quantify the dissolved mass in the analytical solution. Thus, the reliability of the quantitative results obtained can be increased.

この定量方法が、上記検量線の作成方法と最も異なる点は、定量工程である。定量工程では、上述の方法により得られた検量線を用いて分析溶液中の溶質量を特定する。具体的には、本分光工程で得た赤外吸収スペクトルのパターンより、その溶質の成分を同定する。また、この赤外吸収スペクトルにおける溶質の固有情報、例えば特定波数における吸光度を得る。検量線は、赤外吸収スペクトルの固有情報と溶質の含有量との相関関係を示す関数であるため、分析溶液における前記固有情報がわかれば、検量線を参照することで、その分析溶液中の溶質量を特定することができる。   The most different point of this quantification method from the calibration curve creation method is the quantification step. In the determination step, the dissolved mass in the analysis solution is specified using the calibration curve obtained by the above method. Specifically, the solute component is identified from the pattern of the infrared absorption spectrum obtained in this spectroscopic step. In addition, specific information of the solute in the infrared absorption spectrum, for example, absorbance at a specific wave number is obtained. Since the calibration curve is a function indicating the correlation between the specific information of the infrared absorption spectrum and the content of the solute, if the specific information in the analysis solution is known, the calibration curve can be referred to by referring to the calibration curve. The melting mass can be specified.

(適用分野)
本発明の検量線の作成方法や定量方法は、溶液中の微量の溶質成分を定量する種々の分野に利用できる。より具体的には、電子部品、その付属品やケース、精密機器及びその付属品など、微量の異物の付着が問題となる分野において、これら製品の洗浄溶液から微量異物の成分と量を特定することで、その異物の発生要因を究明することが期待される。
(Application field)
The calibration curve preparation method and quantification method of the present invention can be used in various fields for quantifying a small amount of solute components in a solution. More specifically, in the field where adhesion of trace amounts of foreign matter is a problem, such as electronic parts, their accessories and cases, precision equipment and their accessories, the components and amount of these foreign matters are identified from the cleaning solution of these products. Therefore, it is expected to investigate the cause of the foreign matter.

ATR法による赤外分光法で検量線を得る方法を説明する。ここでは、フレキシブルプリント配線板(FPC)に付着した微量成分(シリコーン樹脂)の定量するために検量線を作成する場合を模擬した試験例を、図1から図3に基づいて説明する。   A method for obtaining a calibration curve by infrared spectroscopy using the ATR method will be described. Here, a test example simulating a case where a calibration curve is created in order to quantify a trace component (silicone resin) adhering to a flexible printed wiring board (FPC) will be described with reference to FIGS.

まず、予備溶液を取り扱うための容器類を洗浄し、容器類に付着した異物を除去する。この容器を用いて予備溶液を用意する(予備溶液準備工程)。溶質としてポリジメチルシロキサンを、溶媒としてノルマルヘキサンを用い、0.1%標準溶液を予備溶液10として調整した(図1(A))。   First, containers for handling the preliminary solution are washed to remove foreign substances adhering to the containers. A preliminary solution is prepared using this container (preliminary solution preparation step). Polydimethylsiloxane was used as a solute, normal hexane was used as a solvent, and a 0.1% standard solution was prepared as a preliminary solution 10 (FIG. 1A).

次に、試験ステージ20を用意する。この試験ステージ20は、試料空間22の側壁を構成するリング状のベース21と、ベース21の内側に嵌め込まれた底面23とからなる。ベース21はステンレスなどの金属からなり、底面23は赤外光の透過性を有するZnSeからなる。この底面23がATRプリズムとなる。試料空間22の底面サイズは5×45mm、深さは4mmである。   Next, the test stage 20 is prepared. The test stage 20 includes a ring-shaped base 21 that constitutes a side wall of the sample space 22, and a bottom surface 23 that is fitted inside the base 21. The base 21 is made of a metal such as stainless steel, and the bottom surface 23 is made of ZnSe having infrared light transmittance. This bottom surface 23 becomes an ATR prism. The sample space 22 has a bottom size of 5 × 45 mm and a depth of 4 mm.

上記予備溶液10をマイクロシリンジ30で1回当たり10μl(シリコーン樹脂1μgに相当)を取得し、試料ステージ20の試料空間22に滴下する(図1(B))。上記の試料空間22のサイズとシリンジ30内の予備溶液10の採取量であれば、滴下された予備溶液10は、試料空間22の底面全面に広がる。試料空間22の底面全面に広がった予備溶液10は、底面23に沿った方向にも試料空間22の深さ方向にもほぼ均等に分散され、溶媒の揮発が行われる。上記予備溶液10の滴下と溶媒の揮発が予備試料作製工程に相当する。   10 μl (corresponding to 1 μg of silicone resin) of the preliminary solution 10 is obtained with the microsyringe 30 and dropped into the sample space 22 of the sample stage 20 (FIG. 1B). If the size of the sample space 22 and the amount of the preliminary solution 10 collected in the syringe 30 are as described above, the dropped preliminary solution 10 spreads over the entire bottom surface of the sample space 22. The preliminary solution 10 spreading over the entire bottom surface of the sample space 22 is dispersed almost evenly in the direction along the bottom surface 23 and in the depth direction of the sample space 22, and the solvent is volatilized. The dropping of the preliminary solution 10 and the volatilization of the solvent correspond to the preliminary sample preparation step.

滴下された溶液10は、溶媒が揮発することで、試料空間22内に溶質11が不揮発残分として残存する(図1(C))。より具体的には、底面全面にポリジメチルシロキサンがほぼ均一に付着していると推測される。そのため、試料空間22の側面と底面23の接合箇所で構成される隅部にポリジメチルシロキサンが偏在することも抑制される。このシリンジ30からの溶液10の滴下と溶媒の揮発を所定回数繰り返すことで、試料空間22への溶液の総滴下量を調整することができる。ここでは、予備溶液10の総滴下量がシリコーン樹脂の重量相当で、1、2、3、4、及び5μgの合計5種類となるように溶液滴下と溶媒揮発を行う。つまり、総滴下量の異なる各段階で赤外分光分析を行えば、溶質量の異なる複数種の予備溶液10の各々について赤外分光分析を行うことになる。上述のように、ATRプリズムとなる底面23の上で溶液10から溶媒の除去を行うため、特にATRプリズムを試料となる溶質11に圧接する必要がない。   In the dropped solution 10, the solvent is volatilized, so that the solute 11 remains in the sample space 22 as a non-volatile residue (FIG. 1C). More specifically, it is presumed that polydimethylsiloxane adheres almost uniformly on the entire bottom surface. Therefore, uneven distribution of polydimethylsiloxane at the corner portion formed by the joining portion of the side surface and the bottom surface 23 of the sample space 22 is also suppressed. By repeating the dropping of the solution 10 from the syringe 30 and the volatilization of the solvent a predetermined number of times, the total dropping amount of the solution into the sample space 22 can be adjusted. Here, solution dripping and solvent volatilization are performed so that the total dripping amount of the preliminary solution 10 is equivalent to the weight of the silicone resin, and is a total of five types of 1, 2, 3, 4, and 5 μg. That is, if infrared spectroscopic analysis is performed at each stage where the total dropping amount is different, infrared spectroscopic analysis is performed for each of the plurality of types of preliminary solutions 10 having different melting masses. As described above, since the solvent is removed from the solution 10 on the bottom surface 23 serving as the ATR prism, it is not particularly necessary to press the ATR prism against the solute 11 serving as the sample.

続いて、予備溶液10の各総滴下量における試料ステージ20をフーリエ変換型赤外分光装置(Thermo Fisher社製FTIR)にセットして、この試料空間の底面23の裏側から仰角方向に赤外光40を照射し、その反射光から赤外吸収スペクトルを求める(予備分光工程:図1(D))。ここでは、赤外光の多重反射回数を12回とし、得られた赤外吸収スペクトルのうち、800カイザー(cm-1)における吸光度を赤外吸収スペクトルの固有情報として取得する。 Subsequently, the sample stage 20 at each total dropping amount of the preliminary solution 10 is set in a Fourier transform infrared spectrometer (FTIR manufactured by Thermo Fisher), and infrared light is emitted in the elevation direction from the back side of the bottom surface 23 of the sample space. 40 is irradiated, and an infrared absorption spectrum is obtained from the reflected light (preliminary spectroscopic process: FIG. 1D). Here, the number of multiple reflections of infrared light is set to 12, and the absorbance at 800 Kaiser (cm −1 ) of the obtained infrared absorption spectrum is acquired as specific information of the infrared absorption spectrum.

そして、各総滴下量(溶質量)と、それに対応する固有情報との相関関係を求める。得られた相関関係を図2のグラフに示す。このグラフから明らかなように、溶質量と赤外吸収スペクトルの固有情報とはほぼ比例関係にあることがわかり、十分信頼するに足る検量性が得られていることがわかる。   And the correlation of each total dripping amount (melting mass) and the specific information corresponding to it is calculated | required. The obtained correlation is shown in the graph of FIG. As is apparent from this graph, it can be seen that the dissolved mass and the inherent information of the infrared absorption spectrum are in a substantially proportional relationship, and it is understood that the calibration is sufficiently reliable.

検量線が得られれば、上記と同様の試料ステージを用いて、分析溶液に対して赤外分光分析を行い、得られた赤外吸収スペクトルを利用して溶質の定量を行う。分析溶液は、溶質の含有量が未知の溶液である。所定量の分析溶液を試料空間の底面全面に広がるように滴下し、溶媒を揮発させる。その試料空間に赤外光を照射して、透過光から赤外吸収スペクトルを得る。この赤外吸収スペクトルの800カイザー(cm-1)における吸光度を求め、検量線を参照すれば、分析溶液中の溶質量を検出することができる。 Once the calibration curve is obtained, infrared spectroscopic analysis is performed on the analysis solution using the same sample stage as described above, and the solute is quantified using the obtained infrared absorption spectrum. The analysis solution is a solution whose solute content is unknown. A predetermined amount of the analysis solution is dropped so as to spread over the entire bottom surface of the sample space, and the solvent is volatilized. The sample space is irradiated with infrared light, and an infrared absorption spectrum is obtained from the transmitted light. If the absorbance of this infrared absorption spectrum at 800 Kaiser (cm −1 ) is obtained and the calibration curve is referred to, the dissolved mass in the analytical solution can be detected.

<比較例1>
比較のため、図4に示した試料ステージ20を用い、同様の試験を行う。但し、ここでの予備溶液の滴下は、窓部25の周辺のみに予備溶液が広がる程度に行い、試料ステージ20の底面の全面に予備溶液が広がるようには行わない。その結果、図3に示すように、溶質量と吸光度との間には、高い相関関係があるとはいい難く、検量線としては利用できないことがわかる。
<Comparative Example 1>
For comparison, the same test is performed using the sample stage 20 shown in FIG. However, the dropping of the preliminary solution here is performed to such an extent that the preliminary solution spreads only around the window 25, and is not performed so that the preliminary solution spreads over the entire bottom surface of the sample stage 20. As a result, as shown in FIG. 3, it is difficult to say that there is a high correlation between the dissolved mass and the absorbance, and it can be seen that it cannot be used as a calibration curve.

本発明は、上記の実施例に限定されるものではなく、適宜変更することが可能である。   The present invention is not limited to the embodiments described above, and can be modified as appropriate.

本発明の赤外分光法で定量分析するための検量線の作成方法は、赤外分光法による定量分析に好適に利用できる。また、本発明の赤外分光法による定量方法は、分析溶液中の微量成分を精度よく定量することができ、製品の異物量を分析する分野などに好適に利用できる。   The method for preparing a calibration curve for quantitative analysis by infrared spectroscopy of the present invention can be suitably used for quantitative analysis by infrared spectroscopy. Further, the quantification method by infrared spectroscopy of the present invention can quantitate trace components in an analysis solution with high accuracy, and can be suitably used in the field of analyzing the amount of foreign matter in a product.

本発明の実施例1に係る検量線の作成方法を示す説明図である。It is explanatory drawing which shows the preparation method of the calibration curve which concerns on Example 1 of this invention. 実施例1により得られた検量線を示すグラフである。2 is a graph showing a calibration curve obtained in Example 1. FIG. 比較例1により得られた溶質量と吸光度との関係を示すグラフである。6 is a graph showing the relationship between the dissolved mass and the absorbance obtained in Comparative Example 1. 比較例1に係る検量線の作成方法を示す説明図である。It is explanatory drawing which shows the preparation method of the calibration curve which concerns on the comparative example 1. FIG.

符号の説明Explanation of symbols

10 予備溶液 11 溶質
15 分析溶液
20 試料ステージ 21 ベース 22 試料空間 23 底面
25 窓部 26 基部
30 マイクロシリンジ
40 赤外光
10 Preliminary solution 11 Solute
15 Analysis solution
20 Sample stage 21 Base 22 Sample space 23 Bottom
25 Window 26 Base
30 micro syringe
40 infrared light

Claims (4)

溶媒に溶解された溶質の既知量が異なる複数の予備溶液を用意する予備溶液準備工程と、
各予備溶液を試料ステージに供給した後、溶媒を除去し、溶質をステージ上に残存させる予備試料作製工程と、
このステージ上に残存する溶質に、試料ステージの底面を介して赤外光を照射し、その溶質からの反射光より赤外吸収スペクトルを取得する予備分光工程と、
各予備溶液中の溶質の既知量と、前記赤外吸収スペクトルにおける溶質の固有情報との相関関係を求める検量線作成工程とを備え、
前記試料ステージは、予備溶液を受ける試料空間を有し、赤外光が照射される試料空間の底面は、赤外光を透過する材料で構成され、
前記各予備溶液の試料ステージへの供給は、予備溶液が試料空間の底面全面に広がるように行うことを特徴とする赤外分光法で定量分析するための検量線の作成方法。
A preliminary solution preparation step of preparing a plurality of preliminary solutions having different known amounts of solute dissolved in a solvent;
After each preliminary solution is supplied to the sample stage, the solvent is removed, and a preliminary sample preparation step for leaving the solute on the stage;
Preliminary spectroscopic step of irradiating the solute remaining on the stage with infrared light through the bottom surface of the sample stage and acquiring an infrared absorption spectrum from the reflected light from the solute,
A calibration curve creating step for obtaining a correlation between the known amount of the solute in each preliminary solution and the specific information of the solute in the infrared absorption spectrum,
The sample stage has a sample space for receiving a preliminary solution, and the bottom surface of the sample space irradiated with infrared light is made of a material that transmits infrared light,
A method for preparing a calibration curve for quantitative analysis by infrared spectroscopy, wherein each of the preliminary solutions is supplied to the sample stage so that the preliminary solution spreads over the entire bottom surface of the sample space.
前記試料空間の底面がZnSeからなることを特徴とする請求項1に記載の赤外分光法で定量分析するための検量線の作成方法。   The method for creating a calibration curve for quantitative analysis by infrared spectroscopy according to claim 1, wherein the bottom surface of the sample space is made of ZnSe. 前記予備分光工程をATR法により行うことを特徴とする請求項1または2に記載の赤外分光法で定量分析するための検量線の作成方法。   The method for preparing a calibration curve for quantitative analysis by infrared spectroscopy according to claim 1 or 2, wherein the preliminary spectroscopic step is performed by an ATR method. 溶媒に溶解された溶質量が未知の分析溶液を用意する分析溶液準備工程と、
この分析溶液を試料ステージに供給した後、溶媒を除去し、溶質をステージ上に残存させる分析試料作製工程と、
このステージ上に残存する溶質に、試料ステージの底面を介して赤外光を照射し、その溶質からの反射光より赤外吸収スペクトルを取得する本分光工程と、
この赤外吸収スペクトルにおける溶質の固有情報と、請求項1〜3のいずれか1項に記載の方法により得られた検量線とから分析溶液中の溶質量を求める定量工程とを備え、
前記試料ステージは、分析溶液を受ける試料空間を有し、赤外光が照射される試料空間の底面は、赤外光を透過する材料で構成され、
前記分析溶液の試料ステージへの供給は、分析溶液が試料空間の底面全面に広がるように行うことを特徴とする赤外分光法による定量方法。
An analysis solution preparation step of preparing an analysis solution having an unknown dissolved mass dissolved in a solvent;
After supplying the analysis solution to the sample stage, the solvent is removed, and an analysis sample preparation step for leaving the solute on the stage;
This spectroscopic step of irradiating the solute remaining on the stage with infrared light through the bottom surface of the sample stage and acquiring an infrared absorption spectrum from the reflected light from the solute,
A quantification step of determining a solute mass in the analytical solution from the intrinsic information of the solute in this infrared absorption spectrum and the calibration curve obtained by the method according to any one of claims 1 to 3,
The sample stage has a sample space for receiving an analysis solution, and a bottom surface of the sample space irradiated with infrared light is made of a material that transmits infrared light,
The quantitative analysis method using infrared spectroscopy, wherein the analysis solution is supplied to the sample stage so that the analysis solution spreads over the entire bottom surface of the sample space.
JP2008289563A 2008-11-12 2008-11-12 Method for preparing calibration curve for quantitative analysis by infrared spectroscopy and quantitative method by infrared spectroscopy Active JP5083179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289563A JP5083179B2 (en) 2008-11-12 2008-11-12 Method for preparing calibration curve for quantitative analysis by infrared spectroscopy and quantitative method by infrared spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289563A JP5083179B2 (en) 2008-11-12 2008-11-12 Method for preparing calibration curve for quantitative analysis by infrared spectroscopy and quantitative method by infrared spectroscopy

Publications (2)

Publication Number Publication Date
JP2010117203A true JP2010117203A (en) 2010-05-27
JP5083179B2 JP5083179B2 (en) 2012-11-28

Family

ID=42304970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289563A Active JP5083179B2 (en) 2008-11-12 2008-11-12 Method for preparing calibration curve for quantitative analysis by infrared spectroscopy and quantitative method by infrared spectroscopy

Country Status (1)

Country Link
JP (1) JP5083179B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088236A1 (en) * 2014-12-04 2016-06-09 オリンパス株式会社 Method for analyzing components in liquid sample
CN111562230A (en) * 2020-05-18 2020-08-21 南京邮电大学 Method for measuring dye content in dye/metal organic framework composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623644A (en) * 1985-06-29 1987-01-09 Yasuhiko Tomita Instrument for vacuum drying, press-sticking and measuring solution sample for atr spectroscopy
JPH10339709A (en) * 1997-06-09 1998-12-22 Rigaku Ind Co Sample holder for x-ray fluorescence analysis
JP2003215028A (en) * 2002-01-17 2003-07-30 Advantest Corp Method and apparatus for detecting chemical substance
JP2005091306A (en) * 2003-09-19 2005-04-07 Horiba Ltd Method and instrument for measuring concentration of oil component
JP2008164547A (en) * 2006-12-29 2008-07-17 Horiba Ltd Fluorescent x-ray analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623644A (en) * 1985-06-29 1987-01-09 Yasuhiko Tomita Instrument for vacuum drying, press-sticking and measuring solution sample for atr spectroscopy
JPH10339709A (en) * 1997-06-09 1998-12-22 Rigaku Ind Co Sample holder for x-ray fluorescence analysis
JP2003215028A (en) * 2002-01-17 2003-07-30 Advantest Corp Method and apparatus for detecting chemical substance
JP2005091306A (en) * 2003-09-19 2005-04-07 Horiba Ltd Method and instrument for measuring concentration of oil component
JP2008164547A (en) * 2006-12-29 2008-07-17 Horiba Ltd Fluorescent x-ray analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088236A1 (en) * 2014-12-04 2016-06-09 オリンパス株式会社 Method for analyzing components in liquid sample
JPWO2016088236A1 (en) * 2014-12-04 2017-09-21 オリンパス株式会社 Component analysis method for liquid samples
CN111562230A (en) * 2020-05-18 2020-08-21 南京邮电大学 Method for measuring dye content in dye/metal organic framework composite material

Also Published As

Publication number Publication date
JP5083179B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US5786226A (en) Quantitative transmission spectroscopy using sample carriers with nets
US5869001A (en) Apparatus for the quantitative analysis of sample liquid
US8143077B2 (en) Microchip and method of manufacturing microchip
US20090290151A1 (en) Analysis of arrays by laser induced breakdown spectroscopy
EP3008449B1 (en) Calibration method for photometry and associated analysis system
CN106932015B (en) Real-time characterization of coated drug tablets using raman spectroscopy
JP5083179B2 (en) Method for preparing calibration curve for quantitative analysis by infrared spectroscopy and quantitative method by infrared spectroscopy
JP2009524018A5 (en)
JP2010117202A (en) Method of forming calibration curve for quantitation assay in infrared spectroscopy and quantity determination method
JP2004354157A (en) Light measuring instrument and light measuring method
EP1853898A1 (en) Method and system for physicochemical analysis using a laser pulsed ablation
KR20180006912A (en) How Hazz evaluates
JP2020139880A (en) Analysis method, analyzer, printer, and printing system
JP2020071130A (en) Trace metal detection device
JP4116958B2 (en) Oil concentration measuring method and oil concentration measuring apparatus
Perston et al. Grazing-Angle Fiber-Optic Fourier Transform Infrared Reflection− Absorption Spectroscopy for the in Situ Detection and Quantification of Two Active Pharmaceutical Ingredients on Glass
WO2002103333A1 (en) Method of high throughput haze screening of material
JP2007248431A (en) Method for measuring hardening degree of hardening resin
JP2007057497A (en) System and method for inspecting phosphor film thickness
JP2008309805A (en) Light measuring instrument and light measuring method
EP3822622A1 (en) X-ray analysis system, x-ray analysis device, and vapor phase decomposition device
JP6490918B2 (en) Protein amount measuring apparatus and measuring method
JP2007322405A (en) Inspection apparatus
JP2008180618A (en) Surface defect detector
Wiedemann et al. NIR calibration in practice

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5083179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250