JP2010117039A - Operating method of air-conditioning heat source system for building - Google Patents

Operating method of air-conditioning heat source system for building Download PDF

Info

Publication number
JP2010117039A
JP2010117039A JP2008288550A JP2008288550A JP2010117039A JP 2010117039 A JP2010117039 A JP 2010117039A JP 2008288550 A JP2008288550 A JP 2008288550A JP 2008288550 A JP2008288550 A JP 2008288550A JP 2010117039 A JP2010117039 A JP 2010117039A
Authority
JP
Japan
Prior art keywords
heat source
air
outside air
building
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008288550A
Other languages
Japanese (ja)
Inventor
Hironori Takahashi
宏徳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E & E Planning Kk
Original Assignee
E & E Planning Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E & E Planning Kk filed Critical E & E Planning Kk
Priority to JP2008288550A priority Critical patent/JP2010117039A/en
Publication of JP2010117039A publication Critical patent/JP2010117039A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operating method of an air-conditioning heat source system for a building capable of being controlled without generating time lag in control response, and accordingly, capable of preventing air-conditioning energy from being wasted for energy saving. <P>SOLUTION: In the operating method of the air-conditioning heat source system for a building having a plurality of heat source apparatuses and a plurality of pumps, outside air enthalpy or an outside air temperature value is associated with an amount of air-conditioning demand of the building in advance. Operating policies of the heat source apparatuses and the pumps for supplying the associated air-conditioning demand amount are set in advance. An operating policy of the heat source apparatuses and the pumps during operation is selected based on the outside air enthalpy or the outside air temperature value during operation of the air-conditioning heat source system. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、建物(ビル、工場、住宅等)の空調(冷房、暖房等)を行う空調熱源システムの運転方法に関し、さらに詳述すると、フィードフォワード制御を行って省エネルギーを図る建物用空調熱源システムの運転方法に関する。   The present invention relates to a method of operating an air conditioning heat source system that performs air conditioning (cooling, heating, etc.) of a building (building, factory, house, etc.), and more specifically, an air conditioning heat source system for buildings that performs feedforward control to save energy. Relates to the driving method.

従来、複数の空調機を備えた建物用空調システムの制御方法では、各空調機において室内設定温度と実際の室内温度との偏差量に基づいて必要な空調用冷水量または温水量を制御し、各空調機の合計空調用冷水量または温水量から建物全体の空調需要量を決定している。これは、制御目標である室内温度の変化量に対応して空調用冷温水量を制御するフィードバック制御である(例えば、非特許文献1参照)。   Conventionally, in a control method of a building air conditioning system equipped with a plurality of air conditioners, the amount of cold water or hot water required for air conditioning is controlled based on the amount of deviation between the indoor set temperature and the actual indoor temperature in each air conditioner. The amount of air conditioning demand for the entire building is determined from the total amount of cold water or hot water for air conditioning. This is feedback control in which the amount of cold / hot water for air conditioning is controlled in accordance with the amount of change in room temperature, which is a control target (see, for example, Non-Patent Document 1).

上記フィードバック制御においては、制御量(空調用冷温水量)を変更してから実際の室内温度が変化するまでにタイムラグが生じるため、その時点で必要な空調需要量が供給されず、無駄な空調エネルギーが消費されてしまう。   In the above feedback control, there is a time lag between the change of the control amount (cooling / warm water amount for air conditioning) and the actual indoor temperature changing, so the necessary air conditioning demand is not supplied at that time, and wasteful air conditioning energy Will be consumed.

例えば、空調需要が増加する場合(事例として冷房)は、室内温度が上昇し空調需要が増加したときに、室内温度を設定値に戻すために制御量である空調用冷水量が増加するが、室内温度が変化するまでにはタイムラグがあるため、空調需要が実質上満たされても室内温度は設定値にはならず、まだ偏差量が存在するために必要量以上の空調用冷水が供給されてしまう。したがって、無駄な空調用エネルギーが消費されることになる。特に、室内の空調需要が増大して偏差量が急峻に増加した場合(空調開始時など)には、偏差量が大きく、そのため制御量も大きいことから、フィードバック制御にともなうタイムラグによる無駄な空調用エネルギーの消費が大きくなる。   For example, when the air conditioning demand increases (cooling as an example), when the room temperature rises and the air conditioning demand increases, the amount of chilled water for air conditioning that is the control amount increases to return the room temperature to the set value. Since there is a time lag before the room temperature changes, the room temperature does not reach the set value even if the air conditioning demand is substantially met, and there is still a deviation amount. End up. Therefore, useless energy for air conditioning is consumed. In particular, when the demand for air conditioning in a room increases and the amount of deviation increases sharply (such as when air conditioning starts), the amount of deviation is large, and therefore the amount of control is large. Therefore, for useless air conditioning due to the time lag associated with feedback control Energy consumption increases.

また、室内温度が低下して空調需要が減少した場合においては、室内温度を設定値に戻すために制御量である空調用冷水量は減少するが、室内温度が変化するまでにはタイムラグがあるためその間は室内温度が設定値にならず、まだ偏差量が存在するために必要以上に空調用冷水が消費されてしまう。   In addition, when the room temperature decreases and the air conditioning demand decreases, the amount of chilled water for air conditioning, which is a controlled variable, decreases to return the room temperature to the set value, but there is a time lag until the room temperature changes Therefore, during that period, the room temperature does not become the set value, and since there is still a deviation amount, the air-conditioning cold water is consumed more than necessary.

空気調和・衛生工学便覧Air Conditioning / Hygiene Engineering Handbook

前述したように、建物用空調熱源システムを従来のフィードバック制御によって制御した場合、制御応答にタイムラグが生じることにより、無駄な空調エネルギーが消費される。   As described above, when the building air conditioning heat source system is controlled by conventional feedback control, useless air conditioning energy is consumed due to a time lag in the control response.

本発明は、上記事情に鑑みてなされたもので、制御応答にタイムラグを生じさせることなく建物用空調熱源システムを制御することができ、したがって無駄な空調エネルギーが消費されることを防止して省エネルギーを図ることが可能な建物用空調熱源システムの運転方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can control a building air-conditioning heat source system without causing a time lag in the control response, thus preventing wasteful air-conditioning energy from being consumed and saving energy. An object of the present invention is to provide a method of operating a building air conditioning heat source system capable of achieving the above.

本発明は、前記目的を達成するため、複数の熱源機器および複数のポンプを有する建物用空調熱源システムの運転方法であって、外気エンタルピまたは外気温度の値と建物の空調需要量とを予め関連付けておくとともに、前記関連付けられた空調需要量を供給するための熱源機器およびポンプの運転方策を予め設定しておき、空調熱源システムの運転時の外気エンタルピまたは外気温度の値に基づいて、前記運転時における熱源機器およびポンプの運転方策を選択することを特徴とする建物用空調熱源システムの運転方法を提供する。   In order to achieve the above-mentioned object, the present invention is a method for operating a building air-conditioning heat source system having a plurality of heat source devices and a plurality of pumps, and associates the value of the outside air enthalpy or outside air temperature with the air conditioning demand amount of the building in advance. In addition, the operation method of the heat source device and the pump for supplying the associated air conditioning demand is set in advance, and the operation is performed based on the value of the outside air enthalpy or the outside air temperature during the operation of the air conditioning heat source system. Provided is a method of operating a building air conditioning heat source system, characterized by selecting a heat source device and a pump operation policy at the time.

本発明において、前記熱源機器およびポンプの運転方策(以下、単に「熱源運転方策」という)の構成は必ずしも限定されないが、熱源機器の運転機種および/または運転台数と、ポンプの運転台数および/または運転周波数との組み合わせによって構成することが好ましい。   In the present invention, the configuration of the heat source device and the operation strategy of the pump (hereinafter simply referred to as “heat source operation policy”) is not necessarily limited, but the operation model and / or the number of operation of the heat source device, the operation number of the pump and / or It is preferable to configure by a combination with the operating frequency.

本発明の原理は以下のとおりである。建物の空調需要には、大きく分けて、内部負荷(機器発熱、人体発熱等)による需要と、外部負荷(外気取り入れによる負荷、壁からの熱伝達負荷、日射負荷等)による需要がある。しかし、内部負荷を一定とみなした場合は、空調需要の変動は外部負荷による変動のみとなる。特に、コンピュータルームやクリーンルームなどは使用機器や在室人員の変動が小さいため、内部負荷は一定とみなすことができる。   The principle of the present invention is as follows. The air conditioning demand for buildings can be broadly divided into demand due to internal loads (equipment heat generation, human body heat generation, etc.) and external loads (load due to outside air intake, heat transfer load from walls, solar radiation load, etc.). However, if the internal load is considered to be constant, the change in the air conditioning demand is only the change due to the external load. In particular, in a computer room, a clean room, and the like, since the fluctuations in the equipment used and the number of people in the room are small, the internal load can be regarded as constant.

一方、上述した外部負荷の中で壁からの熱伝達負荷や日射負荷は、外壁の断熱性の向上や熱反射窓ガラスの採用などから負荷自体が小さくなってきている。したがって、空調需要の変動は外気取り入れによる負荷の影響が大きく、また外気の状態は外気エンタルピまたは外気温度で表すことができるため、結局、空調需要の変動は外気エンタルピまたは外気温度の変動として表現することができる。   On the other hand, among the external loads described above, the heat transfer load from the wall and the solar radiation load are becoming smaller due to the improvement of the heat insulation of the outer wall and the use of the heat reflecting window glass. Therefore, fluctuations in air-conditioning demand are greatly influenced by the load due to the intake of outside air, and the state of outside air can be expressed by outside air enthalpy or outside air temperature. Therefore, after all, fluctuation in air-conditioning demand is expressed as outside air enthalpy or outside air temperature fluctuation. be able to.

したがって、本発明では、外気エンタルピまたは外気温度の値と建物の空調需要量とを事前に関連付けておくとともに、関連付けられた空調需要量を供給するための熱源運転方策も事前に決定しておき、空調熱源システムの制御は運転時における外気エンタルピまたは外気温度の値に基づいて一義的に決定すること、すなわちフィードフォワード制御を行うことにより、制御応答にタイムラグを生じさせることなく、運転時の外気エンタルピまたは外気温度に応じた空調エネルギーを供給できるので、空調エネルギーの供給に無駄が生じず、省エネルギーを図ることができるものである。   Therefore, in the present invention, the value of the outside air enthalpy or the outside air temperature and the air conditioning demand amount of the building are associated in advance, and the heat source operation policy for supplying the associated air conditioning demand amount is also determined in advance. Control of the air-conditioning heat source system is uniquely determined based on the value of the outside air enthalpy or the outside air temperature during operation, that is, by performing feedforward control, the outside air enthalpy during operation is not caused without causing a time lag in the control response. Alternatively, since air-conditioning energy corresponding to the outside air temperature can be supplied, waste of air-conditioning energy supply does not occur and energy saving can be achieved.

本発明によれば、外気エンタルピまたは外気温度の値と熱源運転方策とを予め関連づけておくことにより、運転時の外気エンタルピまたは外気温度を取得するだけで、制御応答にタイムラグのない最適な空調制御が実施可能であり、これにより無駄な空調エネルギーが消費されることを防止して省エネルギーを図ることができる。   According to the present invention, it is possible to obtain the optimum air conditioning control without time lag in the control response only by acquiring the outside air enthalpy or the outside air temperature during operation by associating the value of the outside air enthalpy or the outside air temperature with the heat source operation policy in advance. Therefore, it is possible to prevent wasteful air-conditioning energy from being consumed and to save energy.

以下、本発明をさらに詳しく説明する。本発明における建物用空調熱源システムは、複数の熱源機器および複数のポンプを有するものである。熱源機器としては、例えば、冷温水発生機、ターボ冷凍機、ヒートポンプチラー、ボイラ、蓄熱槽等を挙げることができるが、これらに限定されるものではない。ポンプとしては、例えば、1次ポンプ、2次ポンプ、3次ポンプ等が挙げられ、また、2次ポンプとしては、複数の空調機にそれぞれ接続された冷温水ポンプ等を挙げることができるが、これらに限定されるものではない。また、建物用空調熱源システムの機器構成は適宜設定することができる。   Hereinafter, the present invention will be described in more detail. The building air conditioning heat source system in the present invention has a plurality of heat source devices and a plurality of pumps. Examples of the heat source device include, but are not limited to, a cold / hot water generator, a turbo refrigerator, a heat pump chiller, a boiler, a heat storage tank, and the like. Examples of the pump include a primary pump, a secondary pump, a tertiary pump, and the like, and examples of the secondary pump include a cold / hot water pump connected to each of a plurality of air conditioners, It is not limited to these. Moreover, the equipment configuration of the building air conditioning heat source system can be set as appropriate.

本発明において、外気エンタルピは、下記式(a)により算出することができる。1年間の外気エンタルピの推移の一例として、2006年1月1日から2006年12月31日までの外気エンタルピ(8時から18時の時間帯における平均値)の推移を図1に示す。
h=cpat+x(r+cpwt) …(a)
t :外気温度(℃)
x :外気の絶対湿度(kg/kg(DA))
h :外気エンタルピ(比エンタルピ)(kJ/kg(DA))
pa:乾き空気の定圧比熱(1.006kJ/kg(DA)K)
pw:水蒸気の定圧比熱(1.805kJ/kg(DA)K)
:0℃における水の蒸発潜熱(2501.6kJ/kg)
In the present invention, the outside air enthalpy can be calculated by the following formula (a). As an example of the transition of the outside air enthalpy for one year, the transition of the outside air enthalpy (average value in the time zone from 8:00 to 18:00) from January 1, 2006 to December 31, 2006 is shown in FIG.
h = c pat + x (r 0 + c pw t) (a)
t: outside air temperature (° C.)
x: Absolute humidity of outside air (kg / kg (DA))
h: Open air enthalpy (specific enthalpy) (kJ / kg (DA))
c pa : constant pressure specific heat of dry air (1.006 kJ / kg (DA) K)
c pw : constant pressure specific heat of water vapor (1.805 kJ / kg (DA) K)
r 0 : latent heat of vaporization of water at 0 ° C. (2501.6 kJ / kg)

図2に示すように、外気エンタルピと外気温度との間にはほぼ直線的な相関関係があるので、本発明では、空調熱源システムの運転日における外気温度の値を用いて熱源運転方策を選択することができる。   As shown in FIG. 2, since there is a substantially linear correlation between the outside air enthalpy and the outside air temperature, in the present invention, the heat source operation policy is selected using the outside air temperature value on the operation day of the air conditioning heat source system. can do.

本発明では、外気エンタルピまたは外気温度の値と建物の空調需要量とを予め関連付けておく。その方法としては、例えば、所定の外気エンタルピまたは外気温度の値に対応する建物の空調需要量を予め設定しておく方法が挙げられる。所定の外気エンタルピまたは外気温度の値に対応する建物の空調需要量は、建物の特性を考慮して設定する。   In the present invention, the value of the outside air enthalpy or the outside air temperature is associated with the air conditioning demand amount of the building in advance. As the method, for example, a method of presetting an air conditioning demand amount of a building corresponding to a predetermined value of the outside air enthalpy or the outside air temperature can be mentioned. The air conditioning demand for a building corresponding to a predetermined outside air enthalpy or outside air temperature value is set in consideration of the characteristics of the building.

本発明では、上記関連付けられた空調需要量を供給するための熱源運転方策(例えば、熱源機器の運転機種および/または運転台数と、ポンプの運転台数および/または運転周波数との組み合わせ)を予め設定しておく。その方法としては、例えば、最適運転解析手法などを用いて省エネルギーや排出COの点で最適となる運転方策を事前に解析により求めておく方法を挙げることができる。 In the present invention, a heat source operation policy (for example, a combination of an operation model and / or operation number of a heat source device and an operation number and / or operation frequency of a pump) for supplying the associated air-conditioning demand is preset. Keep it. As the method, for example, an optimal driving analysis method or the like can be used to obtain a driving strategy that is optimal in terms of energy saving and emission CO 2 by analysis in advance.

本発明では、クラスタ分析法などの類型化手法を用いて1年間の各日を空調需要量の類似性が強い日同士をまとめた複数のグループに類型化し、上記各グループ毎に熱源運転方策を予め設定することができる。すなわち、外気エンタルピは外気温度と外気湿度から求められるが、外気温度と外気湿度は時刻毎に変動するため、外気エンタルピの値も様々な値となる。そのため、空調需要も外気エンタルピや外気温度に従って非定常に変動する。しかし、空調需要を供給する場合には、運転すべき熱源機器やポンプの組み合わせ(運転方策)は限られており、空調需要が多少変動しても同じ運転方策で供給することができる。そこで、空調需要量をクラスタ分析手法などを用いて類型化しておき、この類型化した空調需要量と空調負荷とを関連付けることが好ましい。   In the present invention, each day of the year is categorized into a plurality of groups in which days with strong similarity in air conditioning demand are grouped using a categorization method such as a cluster analysis method, and a heat source operation policy is set for each group. It can be set in advance. That is, the outside air enthalpy is obtained from the outside air temperature and the outside air humidity. However, since the outside air temperature and the outside air humidity fluctuate with time, the outside air enthalpy value also varies. For this reason, the air conditioning demand fluctuates unsteadily according to the outside air enthalpy and the outside air temperature. However, when supplying air-conditioning demand, the combination of heat source devices and pumps to be operated (operating strategy) is limited, and even if the air-conditioning demand fluctuates somewhat, it can be supplied with the same operating strategy. Therefore, it is preferable to classify the air-conditioning demand using a cluster analysis method and associate the classified air-conditioning demand with the air-conditioning load.

この場合、上記クラスタ分析法としては、一般に使用されている方法を用いることができる。また、グループに類型化するに当たって使用する外気エンタルピまたは外気温度の値としては、各日の特定の時刻における外気エンタルピまたは外気温度の値、各日の特定の時間帯(例えば8時から18時)における外気エンタルピまたは外気温度の平均値、あるいは各日の1日の外気エンタルピまたは外気温度の平均値などを使用することができる。上記グループの数に限定はないが、9〜15個とすることが適当である。   In this case, a generally used method can be used as the cluster analysis method. In addition, the value of the outside air enthalpy or the outside air temperature used for categorizing the group includes the outside air enthalpy or the outside air temperature value at a specific time of each day, and a specific time zone of each day (for example, from 8:00 to 18:00). The average value of the outside air enthalpy or the outside air temperature, or the average value of the outside air enthalpy or the outside air temperature on the 1st of each day can be used. The number of the groups is not limited, but it is appropriate that the number is 9-15.

また、上述のように類型化したグループ毎に熱源運転方策を設定する場合、1年間の各日における任意時刻の外気エンタルピまたは外気温度と各グループの熱源運転方策とが関連付けられたデータベースを用い、空調熱源システムの運転日の任意時刻における外気エンタルピまたは外気温度の値を用いてグループの熱源運転方策を選択することができる。これにより、空調熱源システムの運転日の実際の気候特性に応じて熱源運転方策を容易に選択することができる。   In addition, when setting a heat source operation policy for each group categorized as described above, using a database in which the outdoor air enthalpy at any time on each day of the year or the outdoor air temperature and the heat source operation policy of each group are associated, The heat source operation policy of the group can be selected using the value of the outside air enthalpy or the outside air temperature at an arbitrary time on the operation day of the air conditioning heat source system. Thereby, the heat source operation policy can be easily selected according to the actual climate characteristics of the operation day of the air conditioning heat source system.

本発明では、前述のようにクラスタ分析法などの類型化手法を用いて1年間の各日を空調需要量の類似性が強い日同士をまとめた複数のグループに類型化し、各グループに分類番号を付与して、外気エンタルピの分類データベースを構築することができる。また、上記各グループ毎の外気エンタルピの値と建物の空調需要量とを予め関連付けておくとともに、関連付けられた空調需要量を供給するための熱源運転方策を予め設定しておくことにより、外気エンタルピ分類番号と熱源運転方策のデータベースを構築することができる。   In the present invention, as described above, using a categorization method such as a cluster analysis method, each day of the year is categorized into a plurality of groups in which days with high similarity in air-conditioning demand are grouped, and a classification number is assigned to each group. To create a classification database for outdoor enthalpy. In addition, the value of the outdoor air enthalpy for each group and the air conditioning demand amount of the building are associated in advance, and a heat source operation policy for supplying the associated air conditioning demand amount is set in advance. A database of classification numbers and heat source operation policies can be constructed.

ここで、外気エンタルピの値と建物の空調需要量と熱源運転方策との関連付けの一例を図3に示す。図3において、Aは外気エンタルピの値を示すグラフであり、図2に示したグラフを斜めに配置したものである。また、Bは外気エンタルピの値Aに関連付けられた建物の空調需要量、Cは建物の空調需要量Bに関連付けられた熱源運転方策を示しており、外気エンタルピの値Aに対応する空調需要量Bと熱源運転方策Cが外気エンタルピの値Aの水平横方向に示されている。   Here, FIG. 3 shows an example of the association between the value of the outside air enthalpy, the air conditioning demand of the building, and the heat source operation policy. In FIG. 3, A is a graph showing the value of the outside air enthalpy, and the graph shown in FIG. 2 is arranged obliquely. B represents the air conditioning demand of the building associated with the outdoor air enthalpy value A, C represents the heat source operation policy associated with the air conditioning demand B of the building, and the air conditioning demand corresponding to the outdoor air enthalpy value A B and heat source operation policy C are shown in the horizontal transverse direction of the value A of the outside air enthalpy.

本発明に係る建物用空調熱源システムの運転方法の一例を図4に示す。本例では、下記工程(1)〜(4)により建物用空調熱源システムを運転する。
(1)空調熱源システムの運転時における外気温度および外気湿度から前記式(a)を用いて外気エンタルピを計算する(S1)。
(2)前記外気エンタルピの分類データベースD1を用い、S1で計算した外気エンタルピの分類番号を選択する(S2)。
(3)前記外気エンタルピ分類番号と熱源運転方策のデータベースD2を用い、S2で選択した外気エンタルピの分類番号に対応する熱源運転方策を選択し、その熱源運転方策によって空調熱源システムを所定時間運転する(S3)。
(4)空調熱源システムの設定運転時間が経過したらS1に戻り、S1〜S4を繰り返す(S4)。
An example of the operation method of the air conditioning heat source system for buildings according to the present invention is shown in FIG. In this example, the building air conditioning heat source system is operated by the following steps (1) to (4).
(1) The outside air enthalpy is calculated from the outside air temperature and the outside air humidity during operation of the air conditioning heat source system using the equation (a) (S1).
(2) Using the outside air enthalpy classification database D1, the outside air enthalpy classification number calculated in S1 is selected (S2).
(3) Using the outside air enthalpy classification number and the heat source operation policy database D2, select a heat source operation policy corresponding to the outside air enthalpy classification number selected in S2, and operate the air conditioning heat source system for a predetermined time by the heat source operation policy. (S3).
(4) When the set operation time of the air conditioning heat source system has elapsed, the process returns to S1, and S1 to S4 are repeated (S4).

ここで、図5(a)に従来の運転方法(フィードバック制御)による建物用空調熱源システムの運転結果、図5(b)に本発明の運転方法(フィードフォワード制御)による建物用空調熱源システムの運転結果を示す。図5(a)のフィードバック制御では制御のタイムラグにおける空調エネルギーの無駄が生じているが、図5(b)のフィードフォワード制御では上記空調エネルギーの無駄が生じないことがわかる。   Here, FIG. 5 (a) shows the operation result of the building air conditioning heat source system by the conventional operation method (feedback control), and FIG. 5 (b) shows the building air conditioning heat source system by the operation method (feedforward control) of the present invention. The operation result is shown. It can be seen that the feedback control in FIG. 5A wastes air-conditioning energy in the control time lag, but the feed-forward control in FIG. 5B does not waste the air-conditioning energy.

1年間の外気エンタルピの推移の一例を示すグラフである。It is a graph which shows an example of transition of outside air enthalpy for one year. 外気エンタルピと外気温度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between outside air enthalpy and outside air temperature. 外気エンタルピの値と建物の空調需要量と熱源運転方策との関連付けの一例を示す図である。It is a figure which shows an example of correlation with the value of an external air enthalpy, the air-conditioning demand amount of a building, and a heat-source driving | operation policy. 本発明に係る建物用空調熱源システムの運転方法の一例を示すフロー図である。It is a flowchart which shows an example of the operating method of the air-conditioning heat-source system for buildings concerning this invention. (a)は従来の運転方法による建物用空調熱源システムの運転結果、(b)は本発明の運転方法による建物用空調熱源システムの運転結果を示すグラフである。(A) is a graph which shows the operation result of the air-conditioning heat-source system for buildings by the conventional operation method, (b) is a graph which shows the operation result of the air-conditioning heat-source system for buildings by the operation method of this invention.

Claims (3)

複数の熱源機器および複数のポンプを有する建物用空調熱源システムの運転方法であって、外気エンタルピまたは外気温度の値と建物の空調需要量とを予め関連付けておくとともに、前記関連付けられた空調需要量を供給するための熱源機器およびポンプの運転方策を予め設定しておき、空調熱源システムの運転時の外気エンタルピまたは外気温度の値に基づいて、前記運転時における熱源機器およびポンプの運転方策を選択することを特徴とする建物用空調熱源システムの運転方法。   A method for operating an air conditioning heat source system for a building having a plurality of heat source devices and a plurality of pumps, wherein the value of the outside air enthalpy or the outside air temperature is associated with the air conditioning demand amount of the building in advance, and the associated air conditioning demand amount Set the heat source equipment and pump operation policy to supply the heat, and select the heat source equipment and pump operation policy during the operation based on the value of the outside air enthalpy or the outside air temperature during the operation of the air conditioning heat source system A method of operating a building air conditioning heat source system. 前記熱源機器およびポンプの運転方策は、熱源機器の運転機種および/または運転台数と、ポンプの運転台数および/または運転周波数との組み合わせによって構成されていることを特徴とする請求項1に記載の建物用空調熱源システムの運転方法。   The operation method of the heat source device and the pump is configured by a combination of an operation model and / or the number of operation of the heat source device and an operation number and / or an operation frequency of the pump. Operation method of building air conditioning heat source system. 1年間の各日を空調需要量の類似性が強い日同士をまとめた複数のグループに類型化し、前記各グループ毎に熱源機器およびポンプの運転方策を予め設定することを特徴とする請求項1または2に記載の建物用空調熱源システムの運転方法。   2. Each day of the year is categorized into a plurality of groups in which days with strong similarity in air conditioning demand are combined, and heat source equipment and pump operation policies are set in advance for each group. Or the operating method of the air-conditioning heat-source system for buildings of 2.
JP2008288550A 2008-11-11 2008-11-11 Operating method of air-conditioning heat source system for building Pending JP2010117039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008288550A JP2010117039A (en) 2008-11-11 2008-11-11 Operating method of air-conditioning heat source system for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008288550A JP2010117039A (en) 2008-11-11 2008-11-11 Operating method of air-conditioning heat source system for building

Publications (1)

Publication Number Publication Date
JP2010117039A true JP2010117039A (en) 2010-05-27

Family

ID=42304824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008288550A Pending JP2010117039A (en) 2008-11-11 2008-11-11 Operating method of air-conditioning heat source system for building

Country Status (1)

Country Link
JP (1) JP2010117039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092327A (en) * 2011-10-27 2013-05-16 E & E Planning:Kk Air conditioning heat source system for building
CN115978720A (en) * 2022-12-30 2023-04-18 北京创今智能科技有限公司 Non-equivalent grouping method for air source heat pump units
JP7445537B2 (en) 2020-06-19 2024-03-07 東京瓦斯株式会社 Heat source machine control device, heat source machine control system, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336805A (en) * 2000-05-26 2001-12-07 Minoru Tanaka Method of calculating demand for energy of heat source system of building and method of drawing up scheme of optimum operation of the system
JP2006085252A (en) * 2004-09-14 2006-03-30 E & E Planning:Kk Method for operating energy supply system
JP2006189180A (en) * 2005-01-04 2006-07-20 Shinryo Corp Heat supply system having a plurality of heat source machines and a group of pumps

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336805A (en) * 2000-05-26 2001-12-07 Minoru Tanaka Method of calculating demand for energy of heat source system of building and method of drawing up scheme of optimum operation of the system
JP2006085252A (en) * 2004-09-14 2006-03-30 E & E Planning:Kk Method for operating energy supply system
JP2006189180A (en) * 2005-01-04 2006-07-20 Shinryo Corp Heat supply system having a plurality of heat source machines and a group of pumps

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092327A (en) * 2011-10-27 2013-05-16 E & E Planning:Kk Air conditioning heat source system for building
JP7445537B2 (en) 2020-06-19 2024-03-07 東京瓦斯株式会社 Heat source machine control device, heat source machine control system, and program
CN115978720A (en) * 2022-12-30 2023-04-18 北京创今智能科技有限公司 Non-equivalent grouping method for air source heat pump units

Similar Documents

Publication Publication Date Title
US11644214B2 (en) Hydronic building systems control
US20040148950A1 (en) Air-conditioning system
Murphy High-performance VAV systems
Sane et al. Building HVAC control systems-role of controls and optimization
Porumb et al. Potential of indirect evaporative cooling to reduce the energy consumption in fresh air conditioning applications
Dongellini et al. A strategy for the optimal control logic of heat pump systems: impact on the energy consumptions of a residential building
Szabó et al. Investigation of energy and exergy performances of radiant cooling systems in buildings–A design approach
JP5903731B2 (en) Air conditioning heat source system for buildings
JP2010117039A (en) Operating method of air-conditioning heat source system for building
JP6314262B1 (en) Heat source system control device and control method thereof
KR101721370B1 (en) Hybrid system for air conditioning
Intini et al. A trigeneration system based on polymer electrolyte fuel cell and desiccant wheel–Part B: Overall system design and energy performance analysis
Hong et al. A new model to simulate energy performance of VRF systems
Alessio et al. All-air system and radiant floor for heating and cooling in residential buildings: A simulation-based analysis
Frik et al. Energy conversion modes depending on the outdoor temperature for an air handling unit with a heat pump
KR102049005B1 (en) Centralized HVAC System Using Genetic Algorithm and Method Using The Same
Yin et al. Application of exergy analysis to chilled water circuit and heat pump system
WO2014148165A1 (en) Energy network operation control method and device
Hoyne et al. Optimisation of Air Source Heat Pumps in Residential Retrofits
Bugaj et al. Seasonal evaluation of heat pump system for building heating and ventilation–a case study
Streckienė et al. Application of energy and exergy analysis to investigate the operation of an air handling unit with heat pump
Ito et al. Next generation HVAC system
Yildirim et al. Exergetic and sustainability evaluation of a building heating system in Izmir, Turkey
Romanska-Zapala et al. Multi-source cooling system control in the MLBE building–a pilot experimental study
Grondzik Energy-efficient HVAC systems and systems integration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528