JP2010114221A - Electronic apparatus, and method of manufacturing the same - Google Patents

Electronic apparatus, and method of manufacturing the same Download PDF

Info

Publication number
JP2010114221A
JP2010114221A JP2008284751A JP2008284751A JP2010114221A JP 2010114221 A JP2010114221 A JP 2010114221A JP 2008284751 A JP2008284751 A JP 2008284751A JP 2008284751 A JP2008284751 A JP 2008284751A JP 2010114221 A JP2010114221 A JP 2010114221A
Authority
JP
Japan
Prior art keywords
wiring film
metal wiring
electrode pad
pad
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008284751A
Other languages
Japanese (ja)
Inventor
Masaru Yajima
勝 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008284751A priority Critical patent/JP2010114221A/en
Publication of JP2010114221A publication Critical patent/JP2010114221A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24105Connecting bonding areas at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2499Auxiliary members for HDI interconnects, e.g. spacers, alignment aids
    • H01L2224/24996Auxiliary members for HDI interconnects, e.g. spacers, alignment aids being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/24998Reinforcing structures, e.g. ramp-like support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • H01L2224/251Disposition
    • H01L2224/2512Layout
    • H01L2224/25175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI] involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting a build-up interconnect during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic apparatus having improved reliability in joining metal wires and terminals, and to provide a method of manufacturing the electronic apparatus. <P>SOLUTION: A sealing layer 21 is provided to cover a metal wiring film 19 connecting a first electrode pad 13 formed on a mounting substrate 11 and a second electrode pad 15 formed on a semiconductor chip 12. Accordingly, rigid joint can be achieved between the metal wiring film 19 and each terminal regardless of a force applied to peel the metal wiring film 19 to each joint part among the first electrode pad 13, second electrode pad 15, and metal wiring film 19 by pressing down the metal wiring film 19 with the sealing layer 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体チップなどの電子部品を実装基板上に実装した電子装置、及び電子装置の製造方法に関する。   The present invention relates to an electronic device in which an electronic component such as a semiconductor chip is mounted on a mounting substrate, and a method for manufacturing the electronic device.

電子部品が実装基板に実装されてなる電子装置においては、実装基板の電極パッドと電子部品の電極パッドとを結ぶ配線の形成方法として、導電性の微粒子を分散させた導電性インクを微小な液滴にして吐出して乾燥する、所謂液滴吐出法が用いられている。液滴吐出法は、配線の形状を液滴の単位で変更できるために、従来のワイヤボンディング法に比べて、配線構造の自由度を大幅に拡張させることができる。そのうえ、ワイヤボンディング法のような空中配線を必要としないために、配線の占有空間を小さくすることもでき、その結果、電子装置そのものの小型化を図ることもできる。   In an electronic device in which an electronic component is mounted on a mounting board, a conductive ink in which conductive fine particles are dispersed is used as a micro liquid as a method for forming a wiring connecting the electrode pad of the mounting board and the electrode pad of the electronic part. A so-called droplet discharge method in which droplets are discharged and dried is used. Since the droplet discharge method can change the shape of the wiring in units of droplets, the degree of freedom of the wiring structure can be greatly expanded compared to the conventional wire bonding method. In addition, since the aerial wiring as in the wire bonding method is not required, the space occupied by the wiring can be reduced, and as a result, the electronic device itself can be downsized.

ところで、上述する実装基板の実装面と電子部品のパッド形成面との間には、電子部品の厚みに相当する段差が形成されている。液滴吐出法であれば、このような段差に沿っても配線を形成することができる。ただし、こうした段差に沿って形成される配線では、屈曲する箇所が段差の分だけ多くなってしまい、配線そのものの機械的な信頼性を損なうおそれがある。そのため、接続対象である電極パッド間に段差がある場合、液滴吐出法では、配線への機械的なストレスを抑えるべく、上記段差を緩和するための前処理が施されている。   By the way, a step corresponding to the thickness of the electronic component is formed between the mounting surface of the mounting substrate and the pad forming surface of the electronic component. With the droplet discharge method, wiring can be formed along such a step. However, in the wiring formed along such a step, the number of bent portions increases by the amount of the step, which may impair the mechanical reliability of the wiring itself. For this reason, when there is a step between electrode pads to be connected, in the droplet discharge method, pre-processing for reducing the step is performed in order to suppress mechanical stress on the wiring.

具体的には、まず電子部品のパッド形成面と実装基板の実装面とをつなぐように絶縁性の樹脂材料を吐出して、前記段差を緩和するかたちの絶縁性の樹脂スロープを両電極パッド間に形成する。そして、絶縁性の樹脂スロープ上を介するかたちで両電極パッド間に導電性インクの液滴を吐出し、この導電性インクを乾燥及び焼成させることにより金属配線を形成している。   Specifically, first, an insulating resin material is discharged so as to connect the pad forming surface of the electronic component and the mounting surface of the mounting substrate, and the insulating resin slope is formed between the electrode pads to reduce the step. To form. Then, conductive ink droplets are ejected between both electrode pads via an insulating resin slope, and this conductive ink is dried and baked to form a metal wiring.

しかも、このような絶縁性の樹脂スロープにおいては、端子と金属配線との間の密着性を向上させるために、例えば特許文献1に開示されるような提案がなされている。特許文献1に記載の技術では、樹脂スロープの構成材料として、金属配線との密着性が高いエポキシ樹脂膜やウレタン樹脂膜等の有機絶縁材料を用いている。そして、これらの有機絶縁材料からなるスロープ上に金属配線を形成することにより、金属配線と下地との密着性を向上させている。これによれば、金属配線が下地からの剥離することを抑制することができ、各端子との接続信頼性の向上を図ることができる。
特開2006−147650号公報
Moreover, in such an insulating resin slope, a proposal as disclosed in, for example, Patent Document 1 has been made in order to improve the adhesion between the terminal and the metal wiring. In the technique described in Patent Document 1, an organic insulating material such as an epoxy resin film or a urethane resin film having high adhesion to a metal wiring is used as a constituent material of the resin slope. Then, by forming a metal wiring on a slope made of these organic insulating materials, the adhesion between the metal wiring and the base is improved. According to this, it can suppress that metal wiring peels from a base | substrate, and can aim at the improvement of connection reliability with each terminal.
JP 2006-147650 A

さて、上述する電子装置に搭載される電子部品は、その高速化や微細化が進むにつれて、各部における発熱量を増大させる傾向にある。そして、電子装置に利用される上記金属配線や絶縁性のスロープにおいても、こうした熱量の増大に伴って、その変形量や変形頻度を増加させる傾向にある。つまり、金属配線と各端子との接合箇所においても、各端子から金属配線を剥離させるような力が増大する傾向にあり、またその作用頻度も増加する傾向にある。   Now, the electronic components mounted on the above-described electronic device tend to increase the amount of heat generated in each part as the speed and miniaturization thereof progress. And also in the said metal wiring and insulating slope utilized for an electronic device, it exists in the tendency which increases the deformation amount and deformation frequency with such increase in the amount of heat. That is, also in the joint part of a metal wiring and each terminal, the force which peels a metal wiring from each terminal tends to increase, and the action frequency also tends to increase.

金属配線の剥離を抑える構成としては、上記特許文献1に記載の技術のように、絶縁スロープの構成材料を金属配線に合わせてより適切に選択し、金属配線とその下地との間の
密着性をさらに向上させる構成が考えられる。だが、このような構成を採用するにしろ、金属配線に対しては、下地からしか密着力が作用せず、こうした密着力を除けば、金属配線が端子から剥がれることに対して何ら抑制できなくなってしまう。そのため、増大する発熱量によっては密着力が不十分となり、上述したような力が接合部に作用すると、金属配線が端子から剥離してしまい、その結果、各端子間における電気的な接続が失われてしまう虞がある。
As a configuration for suppressing the peeling of the metal wiring, as in the technique described in Patent Document 1 above, the constituent material of the insulating slope is more appropriately selected according to the metal wiring, and the adhesion between the metal wiring and its base The structure which improves further can be considered. However, even if such a configuration is adopted, the adhesion force only acts on the metal wiring from the ground, and if this adhesion force is removed, the metal wiring cannot be prevented from peeling off from the terminal. End up. For this reason, the adhesion force becomes insufficient depending on the amount of generated heat, and when the above-described force acts on the joint, the metal wiring is peeled off from the terminals, and as a result, the electrical connection between the terminals is lost. There is a risk of being broken.

本発明は、上記課題に解決するためになされたものであり、その目的は、金属配線と端子との接合の信頼性を向上させた電子装置及び電子装置の製造方法を提供することにある。   SUMMARY An advantage of some aspects of the invention is that it provides an electronic device and a method for manufacturing the electronic device in which the reliability of bonding between a metal wiring and a terminal is improved.

この発明の電子装置は、第1電極パッドが形成された実装面を有する実装基板と、第2電極パッドが形成されたパッド形成面を有する電子部品とを備え、前記電子部品がそのパッド形成面の反対側面を前記実装面に向ける態様で前記実装基板に実装されて前記実装面と前記パッド形成面との間に段差を有して構成される電子装置であって、前記実装面と前記パッド形成面とをつなぐ連続面を有して該連続面が前記段差を緩和するかたちをなす絶縁性の傾斜部と、前記連続面に積層されて前記第1電極パッドと前記第2電極パッドとに接続された金属配線膜と、前記連続面から前記金属配線膜を覆うかたちで前記金属配線膜に積層された絶縁性の配線被膜とを備えた。   An electronic device of the present invention includes a mounting substrate having a mounting surface on which a first electrode pad is formed, and an electronic component having a pad forming surface on which a second electrode pad is formed, and the electronic component is the pad forming surface. An electronic device that is mounted on the mounting substrate in a mode in which the opposite side surface is directed to the mounting surface and has a step between the mounting surface and the pad forming surface, the mounting surface and the pad An insulating inclined portion having a continuous surface connecting to the formation surface, the continuous surface forming a shape that relaxes the step, and the first electrode pad and the second electrode pad stacked on the continuous surface A connected metal wiring film and an insulating wiring film laminated on the metal wiring film so as to cover the metal wiring film from the continuous surface were provided.

この電子装置によれば、絶縁性の配線被膜が金属配線膜を覆うため、金属配線膜と傾斜部との間の接合や金属配線膜そのものの機械的な強度を、金属配線膜の周囲で補うことができる。このような電子装置が作動する場合、一般に電子部品の温度が上昇して金属配線膜の下地である傾斜部等が膨張するようになる。そして、金属配線膜に対しては、金属配線膜を各端子から剥離させる力や金属配線膜を連続面から剥離させる力、さらには金属配線膜そのものを機械的に変形させる力が作用するようになる。だが、上述する構成によれば、こうした力が作用する場合であれ、絶縁性の配線被膜によって、傾斜部や各端子に向けて金属配線膜を押さえ込むことができ、金属配線膜の下地からの剥離や金属配線膜そのものの変形を抑制することができる。したがって、この電子装置によれば、端子間の配線に関わる信頼性を向上させることができる。そのうえ、このような剥離を抑制する部材が金属配線膜上の配線被膜により構成されることから、電子装置そのものの厚みを大きく変更することもない。よって、電子装置の薄型化を阻害することもなく、配線に関わる信頼性を向上させることができる。   According to this electronic device, since the insulating wiring film covers the metal wiring film, the bonding between the metal wiring film and the inclined portion and the mechanical strength of the metal wiring film itself are compensated around the metal wiring film. be able to. When such an electronic device is operated, the temperature of the electronic component generally rises, and the inclined portion that is the base of the metal wiring film expands. For the metal wiring film, a force for peeling the metal wiring film from each terminal, a force for peeling the metal wiring film from the continuous surface, and a force for mechanically deforming the metal wiring film itself are applied. Become. However, according to the above-described configuration, even when such a force is applied, the metal wiring film can be pressed toward the inclined portion or each terminal by the insulating wiring film, and the metal wiring film is peeled off from the base. And deformation of the metal wiring film itself can be suppressed. Therefore, according to this electronic device, the reliability regarding the wiring between terminals can be improved. In addition, since the member that suppresses such peeling is constituted by the wiring film on the metal wiring film, the thickness of the electronic device itself is not greatly changed. Therefore, the reliability related to the wiring can be improved without hindering the thinning of the electronic device.

この発明の電子装置は、前記配線被膜が前記第2電極パッドを覆うかたちで前記パッド形成面に積層されてなる。
この電子装置によれば、絶縁性の配線被膜の領域がパッド形成面上にまで広がるため、絶縁性の配線被膜とその下地との接合領域をパッド形成面において拡張させることができる。そして、絶縁性の配線被膜と第2電極パッドとの密着性を高めることができる。そのため、傾斜部や第2電極パッドに向けて金属配線膜を押さえ込む力が、絶縁性の配線被膜とその下地との密着力によって、増大することになる。ゆえに、端子間の配線に関わる信頼性をさらに向上させることができる。
In the electronic device of the present invention, the wiring film is laminated on the pad forming surface so as to cover the second electrode pad.
According to this electronic device, since the region of the insulating wiring film extends to the pad forming surface, the bonding region between the insulating wiring film and the underlying layer can be expanded on the pad forming surface. And the adhesiveness of an insulating wiring film and a 2nd electrode pad can be improved. Therefore, the force for pressing the metal wiring film toward the inclined portion or the second electrode pad is increased by the adhesion between the insulating wiring film and the base. Therefore, the reliability related to the wiring between the terminals can be further improved.

この発明の電子装置は、前記配線被膜が前記第1電極パッドを覆うかたちで前記実装面に積層されてなる。
この電子装置によれば、絶縁性の配線被膜の領域が実装面上にまで広がるため、絶縁性の配線被膜とその下地との接合領域を実装面において拡張させることができる。そして、絶縁性の配線被膜と第1電極パッドとの密着性を高めることができる。そのため、傾斜部や第1電極パッドに向けて金属配線膜を押さえ込む力が、絶縁性の配線被膜とその下地と
の密着力によって、増大することになる。ゆえに、端子間の配線に関わる信頼性をさらに向上させることができる。
In the electronic device according to the present invention, the wiring film is laminated on the mounting surface so as to cover the first electrode pad.
According to this electronic device, since the region of the insulating wiring film extends to the mounting surface, the bonding region between the insulating wiring film and its base can be expanded on the mounting surface. And the adhesiveness of an insulating wiring film and a 1st electrode pad can be improved. For this reason, the force for pressing the metal wiring film toward the inclined portion or the first electrode pad is increased by the adhesion between the insulating wiring film and its base. Therefore, the reliability related to the wiring between the terminals can be further improved.

この発明の電子装置は、前記配線被膜と前記傾斜部とが同じ樹脂材料からなる。
異なる部材を積層する場合、各部材の材料を同種の材料で構成すると、各部材の熱膨張率や弾性率が等しくなり、一般に部材間の接合箇所でその密着性が高くなる。この電子装置によれば、絶縁性の配線被膜と傾斜部とが同じ樹脂材料で構成されることから、これらを異なる材料で構成する場合に比べて、絶縁性の配線被膜と傾斜部との密着性を高くすることができる。そのため、傾斜部に向けて金属配線膜を押さえ込む力が、絶縁性の配線被膜と傾斜部との密着力によって、増大することになる。ゆえに、端子間の配線に関わる信頼性をさらに向上させることができる。
In the electronic device according to the present invention, the wiring coating and the inclined portion are made of the same resin material.
In the case of stacking different members, if the material of each member is made of the same kind of material, the thermal expansion coefficient and elastic modulus of each member become equal, and generally the adhesion is increased at the joint location between the members. According to this electronic device, since the insulating wiring coating and the inclined portion are made of the same resin material, the insulating wiring coating and the inclined portion are more closely bonded than when they are made of different materials. Sexuality can be increased. Therefore, the force for pressing the metal wiring film toward the inclined portion is increased by the adhesion force between the insulating wiring film and the inclined portion. Therefore, the reliability related to the wiring between the terminals can be further improved.

この発明の電子装置の製造方法は、第1電極パッドが形成された実装面を有する実装基板に対して、第2電極パッドが形成されたパッド形成面を有する電子部品が、そのパッド形成面の反対側面を前記実装面に向けて実装されることにより、前記実装面と前記パッド形成面との間に段差を有して構成される電子装置の製造方法であって、前記実装面に接合された前記電子部品の外周に向けて絶縁材料を含む液状体を吐出し、該液状体を硬化することによって、前記段差を緩和するかたちをなして前記実装面と前記パッド形成面とをつなぐ絶縁性の連続面を形成する工程と、前記連続面を介して前記第1電極パッドと前記第2電極パッドとを結ぶように導電性微粒子を含む液状体を吐出し、該液状体を硬化することによって、前記第1電極パッドと前記第2電極パッドとを接続する金属配線膜を前記連続面に積層する工程と、前記金属配線膜に向けて絶縁材料を含む液状体を吐出し、該液状体を硬化することによって、前記連続面から前記金属配線膜を覆うかたちで絶縁性の配線被膜を前記金属配線膜に積層する工程とを備えた。   According to the electronic device manufacturing method of the present invention, an electronic component having a pad forming surface on which a second electrode pad is formed is mounted on a mounting substrate having a mounting surface on which a first electrode pad is formed. A method of manufacturing an electronic device having a step between the mounting surface and the pad forming surface by mounting the opposite side surface toward the mounting surface, wherein the electronic device is bonded to the mounting surface. Further, by discharging a liquid material including an insulating material toward the outer periphery of the electronic component and curing the liquid material, the insulating property that forms the step is reduced and connects the mounting surface and the pad forming surface. Forming a continuous surface, and discharging a liquid containing conductive fine particles so as to connect the first electrode pad and the second electrode pad through the continuous surface, and curing the liquid , The first electrode pack. A step of laminating a metal wiring film connecting the second electrode pad and the second electrode pad on the continuous surface, discharging a liquid material containing an insulating material toward the metal wiring film, and curing the liquid material, And a step of laminating an insulating wiring film on the metal wiring film so as to cover the metal wiring film from a continuous surface.

この電子装置の製造方法によれば、絶縁性の配線被膜が金属配線膜を覆うため、金属配線膜と連続面との間の接合や金属配線膜そのものの機械的な強度を、金属配線膜の周囲で補うことができる。このような電子装置が作動する場合、一般に電子部品の温度が上昇して金属配線膜の下地である連続面等が膨張するようになる。そして、金属配線膜に対しては、金属配線膜を各端子から剥離させる力や金属配線膜を傾斜部から剥離させる力、さらには金属配線膜そのものを機械的に変形させる力が作用するようになる。だが、上述する方法からなる電子装置によれば、こうした力が作用する場合であれ、絶縁性の配線被膜によって、連続面や各端子に向けて金属配線膜を押さえ込むことができ、金属配線膜の下地からの剥離や金属配線膜そのものの変形を抑制することができる。したがって、この電子装置によれば、端子間の配線に関わる信頼性を向上させることができる。さらに、このような剥離を抑制する部材が金属配線膜上の配線被膜により構成されることから、電子装置そのものの厚みを大きく変更することもない。よって、電子装置の薄型化を阻害することもなく、配線に関わる信頼性を向上させることができる。   According to this method of manufacturing an electronic device, since the insulating wiring film covers the metal wiring film, the bonding between the metal wiring film and the continuous surface and the mechanical strength of the metal wiring film itself are reduced. Can be supplemented around. When such an electronic device operates, the temperature of the electronic component generally rises and the continuous surface that is the base of the metal wiring film expands. The metal wiring film is subjected to a force for peeling the metal wiring film from each terminal, a force for peeling the metal wiring film from the inclined portion, and a force for mechanically deforming the metal wiring film itself. Become. However, according to the electronic device having the above-described method, even when such a force is applied, the metal wiring film can be pressed toward the continuous surface and each terminal by the insulating wiring film. It is possible to suppress peeling from the base and deformation of the metal wiring film itself. Therefore, according to this electronic device, the reliability regarding the wiring between terminals can be improved. Furthermore, since the member that suppresses such peeling is constituted by the wiring film on the metal wiring film, the thickness of the electronic device itself is not greatly changed. Therefore, the reliability related to the wiring can be improved without hindering the thinning of the electronic device.

しかも、連続面、金属配線膜、そして配線被膜を液状体から形成するため、液状体を吐出する1つの工程により、対象となる構成要素をパターニングすることができる。ゆえに、これらの各構成要素をフォトリソグラフィ技術でパターニングする場合に比べて、上述する電子装置の生産性を向上することもできる。   In addition, since the continuous surface, the metal wiring film, and the wiring film are formed from the liquid material, the target constituent element can be patterned by one step of discharging the liquid material. Therefore, the productivity of the electronic device described above can be improved as compared with the case where these components are patterned by photolithography.

以下、本発明の電子装置を具体化した一実施形態について図1及び図2を参照して説明する。図1(a)は本実施形態の電子装置10を上側から見た構造を示す平面図であり、図1(b)は図1(a)に示す1b−1b線に沿った断面構造を示す部分断面図である。   Hereinafter, an embodiment of an electronic device according to the present invention will be described with reference to FIGS. 1 and 2. FIG. 1A is a plan view showing a structure of the electronic device 10 of this embodiment as viewed from above, and FIG. 1B shows a cross-sectional structure taken along line 1b-1b shown in FIG. It is a fragmentary sectional view.

図1(a),(b)に示されるように、電子装置10に具備された実装基板11は、そ
の厚さ方向である上下方向から見て矩形状をなす多層基板である。この実装基板11の最上層には絶縁層が形成されており、この絶縁層の上面である実装面11aには、上方から見て矩形状をなす第1電極パッド13が実装面11aの四辺に沿って配列されている。
As shown in FIGS. 1A and 1B, the mounting substrate 11 provided in the electronic device 10 is a multilayer substrate having a rectangular shape when viewed from the vertical direction that is the thickness direction. An insulating layer is formed on the uppermost layer of the mounting substrate 11. On the mounting surface 11a which is the upper surface of the insulating layer, first electrode pads 13 having a rectangular shape as viewed from above are formed on the four sides of the mounting surface 11a. Are arranged along.

実装基板11の最上層である絶縁層の構成材料としては、可撓性あるいは非可撓性の各種絶縁材料を用いることができる。可撓性を有する具体的な材料としては、ポリイミド系樹脂、エポキシ系樹脂、ポリエステル系樹脂、フェノール系樹脂、フッ素系樹脂などの合成樹脂を用いることが可能である。また非不可撓性を有する具体的な材料としては、低温焼結基材であるガラスセラミックの他、高温焼結基材や誘電体材料などを用いることが可能である。   As a constituent material of the insulating layer that is the uppermost layer of the mounting substrate 11, various insulating materials that are flexible or inflexible can be used. As a specific material having flexibility, a synthetic resin such as a polyimide resin, an epoxy resin, a polyester resin, a phenol resin, or a fluorine resin can be used. Further, as a specific material having non-flexibility, it is possible to use a high-temperature sintered base material, a dielectric material, or the like, in addition to a glass ceramic that is a low-temperature sintered base material.

なお、上述する実装基板11は、上記第1電極パッド13の他、実装基板11の実装面11aに各種配線を有する構成であってもよい。さらに、上述する実装基板11は、各種配線がプリントされた複数の回路基板を下層に有する多層基板であってもよく、上記実装面11aに第1電極パッド13が形成されているものであればよい。さらにまた、実装基板11の第1電極パッド13は、実装面11aの四辺に沿って配列されているが、例えば実装面11aの1辺にだけ形成される構成でもよい。   Note that the mounting substrate 11 described above may have various wirings on the mounting surface 11 a of the mounting substrate 11 in addition to the first electrode pad 13. Further, the mounting board 11 described above may be a multilayer board having a plurality of circuit boards on which various wirings are printed as a lower layer, as long as the first electrode pad 13 is formed on the mounting surface 11a. Good. Furthermore, the first electrode pads 13 of the mounting substrate 11 are arranged along the four sides of the mounting surface 11a, but may be formed only on one side of the mounting surface 11a, for example.

実装面11aには、上記複数の第1電極パッド13に取り囲まれるように、電子部品としての半導体チップ12が図示しない接着層を介して接合されている。この半導体チップ12は、上方から見て矩形状をなす板状に形成されている。半導体チップ12の上面であるパッド形成面12aには、上方から見て矩形状をなす複数の第2電極パッド15が、実装基板11の各第1電極パッド13に対応するかたちで、半導体チップ12の四辺に沿って配列されている。さらにパッド形成面12aには、第2電極パッド15を囲うかたちで絶縁層が形成されている。絶縁層は、無機絶縁材料や有機絶縁材料からなる薄膜であって、無機絶縁材料としては、SiOやSiNなどを用いることが可能であり、有機絶縁材料としては、ポリイミド樹脂などを用いることが可能である。 A semiconductor chip 12 as an electronic component is bonded to the mounting surface 11a via an adhesive layer (not shown) so as to be surrounded by the plurality of first electrode pads 13. The semiconductor chip 12 is formed in a rectangular plate shape as viewed from above. A plurality of second electrode pads 15, which are rectangular when viewed from above, are formed on the pad forming surface 12 a, which is the upper surface of the semiconductor chip 12, so as to correspond to the first electrode pads 13 of the mounting substrate 11. Are arranged along the four sides. Further, an insulating layer is formed on the pad forming surface 12 a so as to surround the second electrode pad 15. The insulating layer is a thin film made of an inorganic insulating material or an organic insulating material. As the inorganic insulating material, SiO 2 or SiN can be used, and as the organic insulating material, polyimide resin or the like can be used. Is possible.

なお、上述する電子部品は、半導体チップ12等の能動部品に限らず、抵抗器やコンデンサなどに代表されるような受動部品であってもよく、パッド形成面12aに第2電極パッド15が形成されて、そのパッド形成面12aの反対側面を実装面11aに向けた実装、所謂フェイスアップ方式の実装が可能なものであればよい。さらに、半導体チップ12の第2電極パッド15は、パッド形成面12aの四辺に沿って配列されているが、実装基板11の第1電極パッド13と同様に、例えばパッド形成面12aの1辺にだけ第2電極パッド15が形成される構成や第2電極パッド15が1つだけ形成される構成であってもよい。   The electronic component described above is not limited to an active component such as the semiconductor chip 12, but may be a passive component such as a resistor or a capacitor. The second electrode pad 15 is formed on the pad forming surface 12a. In addition, it is only necessary that the side surface opposite to the pad forming surface 12a can be mounted on the mounting surface 11a, that is, so-called face-up mounting. Furthermore, the second electrode pads 15 of the semiconductor chip 12 are arranged along the four sides of the pad forming surface 12a. However, like the first electrode pads 13 of the mounting substrate 11, for example, on the one side of the pad forming surface 12a. Only the second electrode pad 15 may be formed, or only one second electrode pad 15 may be formed.

さて、上述する実装面11aとパッド形成面12aとの間には、半導体チップ12の厚さに相当する段差が形成されている。半導体チップ12の外周には、実装面11aとパッド形成面12aとをつなぐ連続面を有して該連続面が前記段差を緩和するかたちをなす傾斜部であるスロープ17が形成されている。さらに、スロープ17は、各第1電極パッド13の一部と第2電極パッド15の一部とを覆うように形成されている。このスロープ17は絶縁材料から形成されており、絶縁材料としては、エポキシ系の熱硬化性樹脂やアクリル系の光硬化性樹脂、あるいはこれらを混合させたものを用いることができる。このスロープ17の表面には、第1電極パッド13と第2電極パッド15とを電気的に接続する金属配線膜19が形成されている。   A step corresponding to the thickness of the semiconductor chip 12 is formed between the mounting surface 11a and the pad forming surface 12a. On the outer periphery of the semiconductor chip 12, a slope 17 is formed which has a continuous surface that connects the mounting surface 11a and the pad forming surface 12a, and the continuous surface forms a shape that relaxes the step. Further, the slope 17 is formed so as to cover a part of each first electrode pad 13 and a part of the second electrode pad 15. The slope 17 is made of an insulating material. As the insulating material, an epoxy thermosetting resin, an acrylic photocurable resin, or a mixture thereof can be used. A metal wiring film 19 that electrically connects the first electrode pad 13 and the second electrode pad 15 is formed on the surface of the slope 17.

金属配線膜19の上側には、上記スロープ17の全体、第2電極パッド15の全体、第1電極パッド13の一部、そして絶縁層の一部を覆うように、絶縁性の配線被膜である封止層21が形成されている。すなわち、上記スロープ17との協働によって金属配線膜1
9の全体を封止するように、封止層21が形成されている。この封止層21は絶縁材料から形成されており、絶縁材料としては、スロープ17と同じく、エポキシ系の熱硬化性樹脂やアクリル系の光硬化性樹脂、あるいはこれらを混合させたものを用いることができ、本実施形態ではスロープ17と同じ材料で形成されている。
On the upper side of the metal wiring film 19 is an insulating wiring film so as to cover the entire slope 17, the entire second electrode pad 15, a part of the first electrode pad 13, and a part of the insulating layer. A sealing layer 21 is formed. In other words, the metal wiring film 1 is cooperated with the slope 17.
A sealing layer 21 is formed so as to seal the entirety of 9. This sealing layer 21 is formed of an insulating material, and as the insulating material, an epoxy-based thermosetting resin, an acrylic-based photocurable resin, or a mixture of these is used as in the case of the slope 17. In this embodiment, it is made of the same material as the slope 17.

こうした構成の電子装置10が動作する場合、電子装置10の各構成要素、特に半導体チップ12は、その動作状態に応じて発熱して、電子装置10の全体を昇温させる。この結果、電子装置10の各構成要素は、その昇温に従って熱的に変形することになる。一般に、熱膨張率が異なる部材間の接合箇所においては、部材ごとの変形量が温度に応じて異なるため、それらの間の接合箇所に機械的な歪を発生させやすい。金属配線膜19と下地との接合箇所においても同じであり、仮に下地の種類が多くなると、その下地の種類の分だけ、金属配線膜19と各下地との間の接合箇所や金属配線膜19そのものに機械的な歪みを発生させやすくなる。そして、金属配線膜19の下地からの剥がれや金属配線そのものの断線等を招きやすくなる。   When the electronic device 10 having such a configuration operates, each component of the electronic device 10, particularly the semiconductor chip 12, generates heat according to its operating state, and raises the temperature of the entire electronic device 10. As a result, each component of the electronic device 10 is thermally deformed as its temperature rises. In general, at a joint portion between members having different coefficients of thermal expansion, the deformation amount of each member varies depending on the temperature, and therefore mechanical strain is likely to be generated at the joint portion between them. The same applies to the junctions between the metal wiring film 19 and the base. If the number of types of bases increases, the junctions between the metal wiring film 19 and the bases and the metal wiring films 19 corresponding to the types of bases. It becomes easy to generate mechanical distortion in itself. Then, peeling off of the metal wiring film 19 from the base or disconnection of the metal wiring itself is likely to occur.

これに対して、上述するスロープ17は、各第1電極パッド13の一部と第2電極パッド15の全体とを覆うかたちで構成されており、上述する金属配線膜19は、第1電極パッド13と第2電極パッド15との間において、このスロープ17のみを下地としている。つまり、金属配線膜19は、その接続対象である各端子を除くと、スロープ17の表面のみを下地としており、1種類の下地の上に積層されている。したがって、温度上昇にともなって金属配線膜19の下地が変形したとしても、その下地がスロープ17のみの1種類で構成されていることから、複数の異なる下地、例えば実装面11aやパッド形成面12aの上に金属配線膜19を形成した場合よりも、金属配線膜19の剥がれや断線を抑制することができる。   On the other hand, the slope 17 described above is configured to cover a part of each first electrode pad 13 and the entire second electrode pad 15, and the metal wiring film 19 described above is formed of the first electrode pad. Only the slope 17 is used as a base between the electrode 13 and the second electrode pad 15. That is, the metal wiring film 19 is laminated on one type of base, with the surface of the slope 17 being the base except for each terminal that is the connection target. Therefore, even if the base of the metal wiring film 19 is deformed as the temperature rises, since the base is composed of only one type of slope 17, a plurality of different bases, for example, the mounting surface 11a and the pad forming surface 12a. As compared with the case where the metal wiring film 19 is formed thereon, peeling and disconnection of the metal wiring film 19 can be suppressed.

そのうえ、スロープ17と封止層21との協働によって金属配線膜19の全体を封止することから、金属配線膜19とスロープ17との接合を、下地であるスロープ17の表面のみならず、金属配線膜19の上方や側方など、金属配線膜19の外側全体から支持することができる。言い換えれば、金属配線膜19をスロープ17から剥離するためには、封止層21をもスロープ17から剥離させなければならず、その分だけ、金属配線膜19とスロープ17との接合を強固なものとすることができる。   In addition, since the entire metal wiring film 19 is sealed by the cooperation of the slope 17 and the sealing layer 21, the bonding of the metal wiring film 19 and the slope 17 is performed not only on the surface of the slope 17 as a base, It can be supported from the entire outside of the metal wiring film 19, such as above and on the side of the metal wiring film 19. In other words, in order to peel the metal wiring film 19 from the slope 17, the sealing layer 21 must also be peeled from the slope 17, and the bonding between the metal wiring film 19 and the slope 17 is strengthened accordingly. Can be.

また、第1電極パッド13と金属配線膜19とを封止層21によって封止することから、第1電極パッド13と金属配線膜19との接合を、これもまた、金属配線膜19の外側全体から支持することができる。言い換えれば、金属配線膜19を第1電極パッド13から剥離するためには、封止層21をも第1電極パッド13から剥離させなければならず、その分だけ、金属配線膜19と第1電極パッド13との接合を強固なものとすることができる。   Further, since the first electrode pad 13 and the metal wiring film 19 are sealed by the sealing layer 21, the bonding between the first electrode pad 13 and the metal wiring film 19 is also performed outside the metal wiring film 19. It can be supported from the whole. In other words, in order to peel the metal wiring film 19 from the first electrode pad 13, the sealing layer 21 must also be peeled from the first electrode pad 13, and the metal wiring film 19 and the first electrode are correspondingly removed. Bonding with the electrode pad 13 can be strengthened.

さらにまた、第2電極パッド15と金属配線膜19とを封止層21によって封止することから、第2電極パッド15と金属配線膜19との接合を、これもまた、金属配線膜19の外側全体から支持することができる。言い換えれば、金属配線膜19を第2電極パッド15から剥離するためには、封止層21をも第2電極パッド15から剥離させなければならず、その分だけ、金属配線膜19と第2電極パッド15との接合を強固なものとすることができる。   Furthermore, since the second electrode pad 15 and the metal wiring film 19 are sealed by the sealing layer 21, the bonding between the second electrode pad 15 and the metal wiring film 19 is also performed on the metal wiring film 19. It can be supported from the entire outside. In other words, in order to peel off the metal wiring film 19 from the second electrode pad 15, the sealing layer 21 must also be peeled off from the second electrode pad 15. Bonding with the electrode pad 15 can be made strong.

しかも、この封止層21がスロープ17と同種の材料で構成されることから、これらの間における熱膨張率や弾性率の差異をなくすことができ、封止層21とスロープ17との密着性を向上することもできる。さらにまた、こうした封止層21が第2電極パッド15の全体を覆い、そして絶縁層に広がるかたちで構成されるため、封止層21の構成材料が
絶縁層と同種の材料からなることにより、封止層21と絶縁層との密着性、ひいては金属配線膜19と第2電極パッド15との密着性をより高めることができる。すなわち、金属配線膜19と各端子との接合部の信頼性をより向上させることができる。
And since this sealing layer 21 is comprised with the material of the same kind as the slope 17, the difference in a thermal expansion coefficient and an elasticity modulus between these can be eliminated, and the adhesiveness of the sealing layer 21 and the slope 17 can be eliminated. Can also be improved. Furthermore, since the sealing layer 21 covers the entire second electrode pad 15 and is configured to spread over the insulating layer, the constituent material of the sealing layer 21 is made of the same material as the insulating layer. Adhesion between the sealing layer 21 and the insulating layer, and in turn, adhesion between the metal wiring film 19 and the second electrode pad 15 can be further enhanced. That is, the reliability of the joint portion between the metal wiring film 19 and each terminal can be further improved.

次に、上述した電子装置10の製造方法について図2を参照しながら説明する。図2(a),(b),(c),(d)は、電子装置10の各製造工程を示す工程図であり、図1(b)に対応する図である。   Next, a method for manufacturing the electronic device 10 described above will be described with reference to FIG. 2A, 2B, 2C, and 2D are process diagrams showing manufacturing steps of the electronic device 10, and correspond to FIG. 1B.

電子装置10の製造方法は、4つの工程からなる。具体的には、まず実装基板11と半導体チップ12とを接合する工程、次いでスロープ17を形成する工程、続いて金属配線膜19を形成する工程、そして封止層21を形成する工程である。   The manufacturing method of the electronic device 10 includes four steps. Specifically, there are a step of first bonding the mounting substrate 11 and the semiconductor chip 12, a step of forming the slope 17, a step of forming the metal wiring film 19, and a step of forming the sealing layer 21.

実装基板11と半導体チップ12とを接合する工程では、まず第1電極パッド13を具備する実装基板11の実装面11aに、第1電極パッド13を具備する半導体チップ12が、樹脂製の接着剤などを介して、各第1電極パッド13に囲まれるかたちで載置される。そして同接着材の接着機能を発現させることにより、図2(a)に示されるように、実装基板11と半導体チップ12とが接合される。なお、半導体チップ12のパッド形成面12aには、各第2電極パッド15を露出するかたちで絶縁層が形成されている。   In the step of bonding the mounting substrate 11 and the semiconductor chip 12, first, the semiconductor chip 12 having the first electrode pad 13 is attached to the mounting surface 11 a of the mounting substrate 11 having the first electrode pad 13 by a resin adhesive. Etc., and is placed in a form surrounded by each first electrode pad 13. Then, by developing the bonding function of the adhesive, the mounting substrate 11 and the semiconductor chip 12 are joined as shown in FIG. Note that an insulating layer is formed on the pad forming surface 12 a of the semiconductor chip 12 so as to expose the second electrode pads 15.

半導体チップ12が実装基板11に接合されると、図2(b)に示されるように、半導体チップ12の周縁部にスロープ17が形成される。このスロープ17は、絶縁材料を含む液状体を用いた液滴吐出法によって形成される。このスロープ17を形成するに際しては、例えば絶縁材料として熱硬化性樹脂が用いられ、まず半導体チップ12の周縁部に緩やかな斜面である連続面が形成されるように、そして半導体チップ12の第2電極パッド15及び実装基板11の第1電極パッド13の一部が覆われるように、熱硬化性樹脂を含む液状体が吐出される。次いで、熱硬化性樹脂を含む液状体に対して加熱処理を施して、該液状体を乾燥させつつ熱硬化性樹脂を硬化させることにより、スロープ17が形成される。   When the semiconductor chip 12 is bonded to the mounting substrate 11, a slope 17 is formed on the peripheral edge of the semiconductor chip 12 as shown in FIG. The slope 17 is formed by a droplet discharge method using a liquid containing an insulating material. When forming the slope 17, for example, a thermosetting resin is used as an insulating material. First, a continuous surface that is a gentle slope is formed at the peripheral edge of the semiconductor chip 12, and the second of the semiconductor chip 12 is formed. A liquid containing a thermosetting resin is discharged so that the electrode pad 15 and a part of the first electrode pad 13 of the mounting substrate 11 are covered. Next, the slope 17 is formed by applying heat treatment to the liquid material containing the thermosetting resin and curing the thermosetting resin while drying the liquid material.

この他、スロープ17は、液状体の吐出と硬化とを複数回にわたって繰り返すことにより形成することもできる。例えば、絶縁材料に光硬化性樹脂と熱硬化性樹脂とが用いられ、まず半導体チップ12の周縁部に光硬化性樹脂及び熱硬化性樹脂を含む液状体が吐出される。次いで、光硬化性樹脂及び熱硬化性樹脂を含む液状体に紫外線などの光が照射されて、これにより液状体が半硬化し、スロープ17の底部に相当する半硬化層が形成される。続いて、実装面11aとパッド形成面12aとを結ぶ緩やかな斜面が形成されるように複数の半硬化層が積層される。最後に、第1電極パッド13の一部と第2電極パッド15の一部とを覆うかたちの半硬化層が最上層として積層された後、これら半硬化層の積層体に対して加熱処理を施して、同半硬化層を乾燥させつつ硬化させて、スロープ17を形成することもできる。   In addition, the slope 17 can also be formed by repeating discharge and hardening of the liquid material a plurality of times. For example, a photocurable resin and a thermosetting resin are used as the insulating material, and first, a liquid containing the photocurable resin and the thermosetting resin is discharged to the peripheral portion of the semiconductor chip 12. Next, the liquid material containing the photocurable resin and the thermosetting resin is irradiated with light such as ultraviolet rays, whereby the liquid material is semi-cured, and a semi-cured layer corresponding to the bottom of the slope 17 is formed. Subsequently, a plurality of semi-cured layers are laminated so that a gentle slope connecting the mounting surface 11a and the pad forming surface 12a is formed. Finally, after a semi-cured layer covering a part of the first electrode pad 13 and a part of the second electrode pad 15 is laminated as the uppermost layer, the laminated body of these semi-cured layers is subjected to a heat treatment. The slope 17 can be formed by applying and curing the semi-cured layer while drying.

スロープ17が形成されると、図2(c)に示すように第1電極パッド13と第2電極パッド15とを電気的に接続する金属配線膜19が形成される。金属配線膜19は、導電性微粒子の分散系からなる導電性インクを用いた液滴吐出法によって形成される。本実施形態では、第2電極パッド15の上面からスロープ17上を通り実装基板11の第1電極パッド13に上面までの各位置に導電性インクからなる液滴が吐出される。次いで、導電性インクに対して加熱処理が施されることにより分散媒の蒸発(乾燥)と導電性微粒子の焼成とが進行して導電性インクが硬化し、金属配線膜19が形成される。なお、導電性インクの導電性微粒子は、数nm〜数十nmの粒径を有する微粒子であり、例えば銀、金、銅、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム等の金属、ある
いはこれらの合金を用いることができる。一方、分散媒は、上記導電性微粒子を均一に分散させるものであればよく、例えば水や水を主成分とする水溶液系、あるいはテトラデカン等の有機溶剤を主成分とする有機系を用いることができる。
When the slope 17 is formed, a metal wiring film 19 that electrically connects the first electrode pad 13 and the second electrode pad 15 is formed as shown in FIG. The metal wiring film 19 is formed by a droplet discharge method using conductive ink composed of a dispersion system of conductive fine particles. In the present embodiment, droplets made of conductive ink are ejected from the upper surface of the second electrode pad 15 to the first electrode pad 13 of the mounting substrate 11 through the slope 17 to the upper surface. Next, when the conductive ink is subjected to a heat treatment, the evaporation (drying) of the dispersion medium and the firing of the conductive fine particles proceed, the conductive ink is cured, and the metal wiring film 19 is formed. The conductive fine particles of the conductive ink are fine particles having a particle diameter of several nanometers to several tens of nanometers, for example, silver, gold, copper, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, cobalt. Further, metals such as nickel, chromium, titanium, tantalum, tungsten, and indium, or alloys thereof can be used. On the other hand, any dispersion medium may be used as long as it uniformly disperses the conductive fine particles. For example, water or an aqueous solution mainly containing water or an organic solvent mainly containing an organic solvent such as tetradecane may be used. it can.

ちなみに、第1電極パッド13と第2電極パッド15とを例えばワイヤボンディングを用いて接続した場合には、実装基板11及び半導体チップ12が高温に加熱されたり、大きな機械的なストレスが局所的に加わったりする。そのため、ワイヤボンディングを用いた場合には、実装基板11や半導体チップ12に耐熱性や機械的なストレスへの耐久性が高い水準で要求される。しかし、本実施形態のように液滴吐出法を用いて金属配線膜19を形成すれば、上述したような実装基板11や半導体チップ12への要求を軽減することができ、これらの材質選定における自由度を拡大することもできる。   Incidentally, when the first electrode pad 13 and the second electrode pad 15 are connected using, for example, wire bonding, the mounting substrate 11 and the semiconductor chip 12 are heated to a high temperature, or a large mechanical stress is locally applied. Or join. Therefore, when wire bonding is used, the mounting substrate 11 and the semiconductor chip 12 are required to have a high level of heat resistance and durability against mechanical stress. However, if the metal wiring film 19 is formed by using the droplet discharge method as in the present embodiment, the requirements for the mounting substrate 11 and the semiconductor chip 12 as described above can be reduced. The degree of freedom can be expanded.

金属配線膜19が形成されると、図2(d)に示されるように、金属配線膜19を封止する封止層21が形成される。封止層21は、本実施形態ではスロープ17と同じ絶縁材料を含む液状体を用いた液滴吐出法によって形成される。この封止層21の形成に際しては、絶縁材料を含む液状体を第1電極パッド13の一部、第2電極パッド15、スロープ17、絶縁層の一部、そして金属配線膜19を覆うように吐出する。次いで、スロープ17の絶縁材料として熱硬化性樹脂を用いた場合には、吐出した液状体に対して加熱処理を施して該液状体を乾燥させつつ熱硬化性樹脂を硬化させることにより、封止層21が形成される。またこの他、スロープ17の絶縁材料として光硬化性樹脂及び熱硬化性樹脂を用いた場合には、まず吐出した液状体に対して紫外線などの光が照射されることにより液状体が半硬化し、続いてこの半硬化した液状体に加熱処理を施して半硬化している液状体を乾燥させつつ硬化させることにより、封止層21が形成される。なお、こうした加熱処理は、先行して形成された液状体のパターン、具体的には、スロープ17を構成するための各半硬化層、さらには金属配線膜19を構成するための導電性インクからなるパターンらとともに一括して実行することもできる。このような液滴吐出法を用いて封止層21を形成することにより、封止層21を膜状に形成することができ、電子装置10の厚みをさほど増大させることなく金属配線膜19を封止することができる。   When the metal wiring film 19 is formed, a sealing layer 21 for sealing the metal wiring film 19 is formed as shown in FIG. In this embodiment, the sealing layer 21 is formed by a droplet discharge method using a liquid containing the same insulating material as the slope 17. In forming the sealing layer 21, a liquid containing an insulating material is covered so as to cover a part of the first electrode pad 13, the second electrode pad 15, the slope 17, a part of the insulating layer, and the metal wiring film 19. Discharge. Next, when a thermosetting resin is used as the insulating material of the slope 17, a heat treatment is performed on the discharged liquid material, and the thermosetting resin is cured while drying the liquid material, thereby sealing. Layer 21 is formed. In addition, when a photo-curing resin and a thermosetting resin are used as the insulating material of the slope 17, the liquid material is semi-cured by irradiating the discharged liquid material with light such as ultraviolet rays. Subsequently, the sealing layer 21 is formed by applying heat treatment to the semi-cured liquid material and curing the semi-cured liquid material while drying. In addition, such heat treatment is performed from a liquid material pattern formed in advance, specifically, each semi-cured layer for constituting the slope 17, and further conductive ink for constituting the metal wiring film 19. It can also be executed together with other patterns. By forming the sealing layer 21 using such a droplet discharge method, the sealing layer 21 can be formed into a film shape, and the metal wiring film 19 can be formed without increasing the thickness of the electronic device 10 so much. It can be sealed.

以上説明したように、上記実施形態によれば以下のような効果を得ることができる。
(1)上記実施形態によれば、第1及び第2電極パッド13,15を覆うかたちで金属配線膜19を封止層21で封止することから、金属配線膜19と第1及び第2電極パッド13,15との接合を強固なものにすることができ、接合部の信頼性を向上させることができる。
As described above, according to the above embodiment, the following effects can be obtained.
(1) According to the above embodiment, since the metal wiring film 19 is sealed with the sealing layer 21 so as to cover the first and second electrode pads 13 and 15, the metal wiring film 19 and the first and second electrodes are covered. Bonding with the electrode pads 13 and 15 can be strengthened, and the reliability of the bonded portion can be improved.

(2)上記実施形態によれば、金属配線膜19は、各端子との接続部以外は、スロープ17の表面にのみ形成されていることから、金属配線膜19の下地からの剥がれやそのものの断線を抑制することもできる。   (2) According to the above embodiment, the metal wiring film 19 is formed only on the surface of the slope 17 except for the connection portion with each terminal. Disconnection can also be suppressed.

(3)上記実施形態によれば、封止層21をスロープ17と同じ材料で形成することから、これらの間における密着性を向上させることができ、ひいては、これらの間に挟まれる金属配線膜19の剥がれや断線を一層に抑制することができる。   (3) According to the above embodiment, since the sealing layer 21 is formed of the same material as the slope 17, adhesion between them can be improved, and consequently the metal wiring film sandwiched between them. 19 peeling and disconnection can be further suppressed.

(4)上記実施形態によれば、液滴吐出法を用いて金属配線膜19を形成することから、実装基板11や半導体チップ12の材質選定における自由度を拡大させることができる。そのうえ、液滴の吐出位置を変更するだけで配線形状を変更できるため、金属配線膜19に関わる設計の自由度を拡大させることもできる。   (4) According to the above embodiment, since the metal wiring film 19 is formed using the droplet discharge method, the degree of freedom in selecting the material for the mounting substrate 11 and the semiconductor chip 12 can be increased. In addition, since the wiring shape can be changed simply by changing the droplet discharge position, the degree of freedom in designing the metal wiring film 19 can be increased.

(5)上記実施形態によれば、液滴吐出法を用いて封止層21を形成することから、電子装置10の厚みを増大させることなく金属配線膜19を封止することができる。
なお、上記実施形態は以下のように変更して実施することもできる。
(5) According to the above embodiment, since the sealing layer 21 is formed using the droplet discharge method, the metal wiring film 19 can be sealed without increasing the thickness of the electronic device 10.
In addition, the said embodiment can also be changed and implemented as follows.

・上記実施形態では、スロープ17と封止層21とを同じ材料により構成したが、これに限らず、金属配線膜19を封止する上では、スロープ17と封止層21とを異なる材料により構成してもよい。   In the above embodiment, the slope 17 and the sealing layer 21 are made of the same material. However, the present invention is not limited to this, and the slope 17 and the sealing layer 21 are made of different materials when sealing the metal wiring film 19. It may be configured.

・上記実施形態では、第2電極パッド15の全部を覆うように封止層21を形成したが、金属配線膜19を封止する上では、第2電極パッド15の一部が露出するように封止層21を形成してもよい。   In the above embodiment, the sealing layer 21 is formed so as to cover the entire second electrode pad 15. However, when sealing the metal wiring film 19, a part of the second electrode pad 15 is exposed. The sealing layer 21 may be formed.

(a)本発明にかかる電子装置を上側から見た平面図、(b)1b−1b線に沿った部分断面図。(A) The top view which looked at the electronic device concerning this invention from the upper side, (b) The fragmentary sectional view along line 1b-1b. (a)〜(d)各工程における1b−1b線に沿った部分断面図。(A)-(d) The fragmentary sectional view along the 1b-1b line | wire in each process.

符号の説明Explanation of symbols

10…電子装置、11…実装基板、11a…実装面、12…半導体チップ、12a…パッド形成面、13…第1電極パッド、15…第2電極パッド、17…スロープ、19…金属配線膜、21…封止層。   DESCRIPTION OF SYMBOLS 10 ... Electronic device, 11 ... Mounting board, 11a ... Mounting surface, 12 ... Semiconductor chip, 12a ... Pad formation surface, 13 ... 1st electrode pad, 15 ... 2nd electrode pad, 17 ... Slope, 19 ... Metal wiring film, 21 ... Sealing layer.

Claims (5)

第1電極パッドが形成された実装面を有する実装基板と、
第2電極パッドが形成されたパッド形成面を有する電子部品とを備え、
前記電子部品がそのパッド形成面の反対側面を前記実装面に向ける態様で前記実装基板に実装されて、前記実装面と前記パッド形成面との間に段差を有して構成される電子装置であって、
前記実装面と前記パッド形成面とをつなぐ連続面を有して該連続面が前記段差を緩和するかたちをなす絶縁性の傾斜部と、
前記連続面に積層されて前記第1電極パッドと前記第2電極パッドとに接続された金属配線膜と、
前記連続面から前記金属配線膜を覆うかたちで前記金属配線膜に積層された絶縁性の配線被膜と
を備えたことを特徴とする電子装置。
A mounting substrate having a mounting surface on which first electrode pads are formed;
An electronic component having a pad forming surface on which a second electrode pad is formed,
An electronic device in which the electronic component is mounted on the mounting substrate in a mode in which the side opposite to the pad forming surface faces the mounting surface, and has a step between the mounting surface and the pad forming surface. There,
An insulating inclined portion having a continuous surface that connects the mounting surface and the pad forming surface, and the continuous surface forms a form that relaxes the step;
A metal wiring film stacked on the continuous surface and connected to the first electrode pad and the second electrode pad;
An electronic device comprising: an insulating wiring film laminated on the metal wiring film so as to cover the metal wiring film from the continuous surface.
前記配線被膜が前記第2電極パッドを覆うかたちで前記パッド形成面に積層されてなる請求項1に記載の電子装置。   The electronic device according to claim 1, wherein the wiring film is laminated on the pad forming surface so as to cover the second electrode pad. 前記配線被膜が前記第1電極パッドを覆うかたちで前記実装面に積層されてなる
請求項1又は2に記載の電子装置。
The electronic device according to claim 1, wherein the wiring film is laminated on the mounting surface so as to cover the first electrode pad.
前記配線被膜と前記傾斜部とが同じ樹脂材料からなる
請求項1〜3のいずれか一項に記載の電子装置。
The electronic device according to claim 1, wherein the wiring coating and the inclined portion are made of the same resin material.
第1電極パッドが形成された実装面を有する実装基板に対して、第2電極パッドが形成されたパッド形成面を有する電子部品が、そのパッド形成面の反対側面を前記実装面に向けて実装されることにより、前記実装面と前記パッド形成面との間に段差を有して構成される電子装置の製造方法であって、
前記実装面に接合された前記電子部品の外周に向けて絶縁材料を含む液状体を吐出し、該液状体を硬化することによって、前記段差を緩和するかたちをなして前記実装面と前記パッド形成面とをつなぐ絶縁性の連続面を形成する工程と、
前記連続面を介して前記第1電極パッドと前記第2電極パッドとを結ぶように導電性微粒子を含む液状体を吐出し、該液状体を硬化することによって、前記第1電極パッドと前記第2電極パッドとを接続する金属配線膜を前記連続面に積層する工程と、
前記金属配線膜に向けて絶縁材料を含む液状体を吐出し、該液状体を硬化することによって、前記連続面から前記金属配線膜を覆うかたちで絶縁性の配線被膜を前記金属配線膜に積層する工程と
を備えたことを特徴とする電子装置の製造方法。
An electronic component having a pad forming surface on which a second electrode pad is formed is mounted on a mounting substrate having a mounting surface on which the first electrode pad is formed with the opposite side of the pad forming surface facing the mounting surface. Thus, there is provided a method for manufacturing an electronic device having a step between the mounting surface and the pad forming surface,
Forming the mounting surface and the pad in such a manner that the liquid level containing the insulating material is discharged toward the outer periphery of the electronic component bonded to the mounting surface, and the liquid material is cured to relax the step. Forming an insulating continuous surface connecting the surfaces;
By discharging a liquid material containing conductive fine particles so as to connect the first electrode pad and the second electrode pad through the continuous surface and curing the liquid material, the first electrode pad and the first electrode pad are cured. Laminating a metal wiring film connecting two electrode pads on the continuous surface;
An insulating wiring film is laminated on the metal wiring film so as to cover the metal wiring film from the continuous surface by discharging a liquid containing an insulating material toward the metal wiring film and curing the liquid. The manufacturing method of the electronic device characterized by the above-mentioned.
JP2008284751A 2008-11-05 2008-11-05 Electronic apparatus, and method of manufacturing the same Withdrawn JP2010114221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284751A JP2010114221A (en) 2008-11-05 2008-11-05 Electronic apparatus, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284751A JP2010114221A (en) 2008-11-05 2008-11-05 Electronic apparatus, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010114221A true JP2010114221A (en) 2010-05-20

Family

ID=42302565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284751A Withdrawn JP2010114221A (en) 2008-11-05 2008-11-05 Electronic apparatus, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010114221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168223A1 (en) * 2012-05-08 2013-11-14 富士機械製造株式会社 Semiconductor package and method for manufacturing same
WO2018061436A1 (en) * 2016-09-27 2018-04-05 株式会社村田製作所 Elastic wave device, high frequency front-end circuit, and communication device
TWI657723B (en) * 2017-02-27 2019-04-21 日商歐姆龍股份有限公司 Electronic device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135216A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp Method for packaging semiconductor chip
JP2008235926A (en) * 2004-11-11 2008-10-02 Seiko Epson Corp Mounting board and electronic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135216A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp Method for packaging semiconductor chip
JP2008235926A (en) * 2004-11-11 2008-10-02 Seiko Epson Corp Mounting board and electronic equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168223A1 (en) * 2012-05-08 2013-11-14 富士機械製造株式会社 Semiconductor package and method for manufacturing same
JPWO2013168223A1 (en) * 2012-05-08 2015-12-24 富士機械製造株式会社 Semiconductor package and manufacturing method thereof
WO2018061436A1 (en) * 2016-09-27 2018-04-05 株式会社村田製作所 Elastic wave device, high frequency front-end circuit, and communication device
US11387807B2 (en) 2016-09-27 2022-07-12 Murata Manufacturing Co., Ltd. Elastic wave device, high-frequency front end circuit, and communication device
TWI657723B (en) * 2017-02-27 2019-04-21 日商歐姆龍股份有限公司 Electronic device and manufacturing method thereof
US10618206B2 (en) 2017-02-27 2020-04-14 Omron Corporation Resin-molded electronic device with disconnect prevention

Similar Documents

Publication Publication Date Title
US7640655B2 (en) Electronic component embedded board and its manufacturing method
JP4950693B2 (en) Electronic component built-in wiring board and its mounting parts
JP5018024B2 (en) Electronic component mounting method, electronic substrate, and electronic device
WO2007043639A9 (en) Printed wiring board and method for manufacturing printed wiring board
JP2005302765A (en) Semiconductor device, manufacturing method thereof, and electronic apparatus
WO2001026155A1 (en) Semiconductor device, method and device for producing the same, circuit board, and electronic equipment
JP4228677B2 (en) Circuit board
US10477704B2 (en) Multilayer board and electronic device
JP2008159973A (en) Electronic component module and circuit board with built-in components incorporating the module
US20110100549A1 (en) Method for manufacturing component-embedded module
JP3835556B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP2010114221A (en) Electronic apparatus, and method of manufacturing the same
WO2013061500A1 (en) Flexible wiring board and method for manufacturing same
US8062927B2 (en) Wiring board and method of manufacturing the same, and electronic component device using the wiring board and method of manufacturing the same
JP4299601B2 (en) Multilayer wiring board
JP3693060B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP2010034119A (en) Semiconductor device
JP2009004813A (en) Wiring substrate for mounting semiconductor
JP5075424B2 (en) Manufacturing method of wiring board with built-in electronic components
JP4692719B2 (en) Wiring substrate, semiconductor device and manufacturing method thereof
JP2002076166A (en) Resin sealing type semiconductor device and its manufacturing method
JP4692720B2 (en) Wiring substrate, semiconductor device and manufacturing method thereof
JP2010232383A (en) Electronic device and manufacturing method therefor
US20190172775A1 (en) Flexible substrate and electronic device
JP4364181B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121029