JP2010112903A - Vehicle behavior test device - Google Patents

Vehicle behavior test device Download PDF

Info

Publication number
JP2010112903A
JP2010112903A JP2008287274A JP2008287274A JP2010112903A JP 2010112903 A JP2010112903 A JP 2010112903A JP 2008287274 A JP2008287274 A JP 2008287274A JP 2008287274 A JP2008287274 A JP 2008287274A JP 2010112903 A JP2010112903 A JP 2010112903A
Authority
JP
Japan
Prior art keywords
vehicle
signal
under test
dynamometer
inertia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008287274A
Other languages
Japanese (ja)
Other versions
JP5239757B2 (en
Inventor
Toshimichi Takahashi
利道 高橋
Masakatsu Nomura
昌克 野村
Gakuo Akiyama
岳夫 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008287274A priority Critical patent/JP5239757B2/en
Publication of JP2010112903A publication Critical patent/JP2010112903A/en
Application granted granted Critical
Publication of JP5239757B2 publication Critical patent/JP5239757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that a repetition test of such a behavior that a vehicle vibrates during the test cannot be conducted due to rigidity of a restraint system in a chassis dynamometer system. <P>SOLUTION: A controller for calculating a torque current instruction of a dynamometer is provided in a measurement control unit. The controller is structured to input a detected angular speed signal, and conduct a three-stage differential operation using damping of rigidity of the restraint system and a tested vehicle, spring rigidity, inertia of the tested vehicle, and inertia of a roller to calculate the torque current instruction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両挙動試験装置に係り、特にシャシーダイナモメータシステムにおいて、拘束装置と車両剛性の特性を考慮した過渡的な車両挙動試験装置に関するものである。   The present invention relates to a vehicle behavior test apparatus, and more particularly to a transient vehicle behavior test apparatus that takes into account the characteristics of a restraint device and vehicle rigidity in a chassis dynamometer system.

動力計計測システムの負荷側または駆動側で、動力計測対象の機械慣性成分を電気的に補償するために電気慣性制御方式が採られている。この電気慣性制御方式としては、特許文献1が公知となっている。この特許文献1には、設置された軸トルクメータにより車両の動力伝達軸に発生する軸トルクを検出する。動力計は、軸トルクの検出値と、機械慣性分を除いた走行抵抗分のトルク設定値と、動力計の機械慣性及び設定慣性から電気慣性トルク設定値を求め、この電気慣性トルク設定値と走行抵抗分のトルク設定値との和で吸収トルクを制御する。そして、電気慣性制御のための加速度検出を不要としたことにより、電気慣性制御の応答性を高め、かつ安定化した制御を可能とすることが記載されている。
特開2004−361255
An electric inertia control method is employed to electrically compensate a mechanical inertia component of a power measurement target on the load side or drive side of the dynamometer measurement system. As this electric inertia control system, Patent Document 1 is known. In Patent Document 1, an axial torque generated in a power transmission shaft of a vehicle is detected by an installed shaft torque meter. The dynamometer obtains the electric inertia torque set value from the detected value of the shaft torque, the torque set value for the running resistance excluding the mechanical inertia, and the mechanical inertia and the set inertia of the dynamometer. The absorption torque is controlled by the sum of the torque setting value for the running resistance. In addition, it is described that acceleration detection for electric inertia control is not required, thereby improving the response of electric inertia control and enabling stable control.
JP 2004-361255 A

シャシーダイナモメータシステムは、図5で示すように動力計DyとローラRとを軸トルクメータTMを介して直結されており、軸トルクメータTM、第1及び第2のエンコーダEC1,EC2によって検出された軸トルク、動力計回転数及びローラ回転数を計測制御ユニットMUに導入してトルク電流指令を生成し、インバータIVを介して動力計を制御するよう構成されている。また、計測制御ユニットMUには電気慣性制御回路EIが設けられている。
図6はシャシーダイナモメータシステム図であり、図7はシャシーダイナモメータシステムをモデル化したものである。すなわち、ローラR上に被試験車両Vcを載置し、拘束装置Reを用いて固定側に拘束する。この拘束した状態で、走行抵抗制御などの運転を行って耐久試験や性能試験を実施している。
In the chassis dynamometer system, as shown in FIG. 5, a dynamometer Dy and a roller R are directly connected via a shaft torque meter TM and detected by the shaft torque meter TM and the first and second encoders EC1 and EC2. The shaft torque, the dynamometer rotation speed, and the roller rotation speed are introduced into the measurement control unit MU to generate a torque current command, and the dynamometer is controlled via the inverter IV. The measurement control unit MU is provided with an electric inertia control circuit EI.
FIG. 6 is a chassis dynamometer system diagram, and FIG. 7 is a model of the chassis dynamometer system. That is, the vehicle under test Vc is placed on the roller R and restrained to the fixed side using the restraining device Re. In this constrained state, driving such as running resistance control is performed to perform durability tests and performance tests.

図7において、1はエンジンのトルク信号と駆動力信号等を元にタイヤ速度を算出する駆動系モデル、2はシャシーダイナモメータモデル部で、このモデル部2で推定された推定値Vrollerと車速Vcarの偏差分Vが減算部6において求められる。この差分Vは、さらに減算部7に出力されて駆動系モデル1からのタイヤ速度との差演算が実行され、その偏差分によるタイヤ速度はタイヤモデル3に入力される。タイヤモデル3では入力された信号に基づいて駆動力Fxを演算し、その駆動力信号Fxを駆動系モデル1とシャシーダイナモメータモデル部2に出力すると共に、減算部8を介して車両速度演算部4に出力され車速Vcarが演算される。5は拘束力演算部で、車両速度演算部4で求めた車速Vcarに応じた拘束力Fbindを算出して拘束装置Reの拘束力とすると共に、減算部8において駆動力Fxとの偏差が求められ、その差分が車両速度演算部4に入力される。
なお、拘束力算出部54のパラメータCcはダビング、Kcはバネ剛性、sはラプラス演算子である。
In FIG. 7, 1 is a drive system model for calculating tire speed based on the torque signal and driving force signal of the engine, and 2 is a chassis dynamometer model part. The estimated value Vroller and vehicle speed Vcar estimated by this model part 2 are shown. Is obtained by the subtraction unit 6. The difference V is further output to the subtracting unit 7 to calculate a difference from the tire speed from the drive system model 1, and the tire speed corresponding to the deviation is input to the tire model 3. In the tire model 3, the driving force Fx is calculated based on the input signal, and the driving force signal Fx is output to the driving system model 1 and the chassis dynamometer model unit 2, and the vehicle speed calculating unit via the subtracting unit 8. The vehicle speed Vcar is calculated. Reference numeral 5 denotes a restraint force calculation unit, which calculates a restraint force Fbind corresponding to the vehicle speed Vcar obtained by the vehicle speed computation unit 4 to obtain the restraint force of the restraint device Re, and obtains a deviation from the drive force Fx in the subtraction unit 8. The difference is input to the vehicle speed calculation unit 4.
The parameter Cc of the restraining force calculation unit 54 is dubbing, Kc is spring stiffness, and s is a Laplace operator.

図7で示す走行モデルでは、ダイナモメータ分部をシミュレートしているのがシャシーダイナモメータモデル部2であり、図6で示すタイヤから上部の車体部分をシミュレートしているのがシャシーダイナモメータモデル部2を除いた他の各要素である。   In the travel model shown in FIG. 7, the chassis dynamometer model part 2 simulates the dynamometer part, and the chassis dynamometer simulates the upper body part from the tire shown in FIG. 6. These are other elements excluding the model unit 2.

上述のようにシャシーダイナモメータシステムでは、実際に路上を走行した走行データに基づいてシャシーダイナモメータ上で耐久試験や性能試験を実行するが、その際、実路上では図8(a)で示すようなモデルとなり、シャシーダイナモメータ上では(b)図のすようなモデルとなる。○で囲んだ部分が両者の相違箇所であり、シャシーダイナモメータでは拘束装置の剛性が存在することにより、
拘束装置と車両剛性の特性を把握することが困難となっている。このため、過渡的な挙動試験を正確に実験することができず、例えば、車両が振動する挙動を再現させる試験を正確に実行できない問題を有している。
すなわち、図9(a)で示すようにアクセル開度を全開としたとき、(b)図実線で示す実路と、点線で示すシャシーダイナモ上で駆動力の差異が生じる。
As described above, in the chassis dynamometer system, the durability test and the performance test are executed on the chassis dynamometer based on the traveling data actually traveled on the road. At that time, as shown in FIG. (B) on the chassis dynamometer. The part surrounded by ○ is the difference between the two, and the chassis dynamometer has the rigidity of the restraint device,
It is difficult to grasp the characteristics of the restraint device and the vehicle rigidity. For this reason, a transient behavior test cannot be accurately performed, and for example, there is a problem that a test for reproducing a behavior in which a vehicle vibrates cannot be accurately performed.
That is, when the accelerator opening is fully opened as shown in FIG. 9A, a difference in driving force occurs between the real road shown by the solid line in FIG. 9B and the chassis dynamo shown by the dotted line.

そこで本発明が目的とするとこは、拘束装置と車両剛性を正確に把握することのできる車両挙動試験装置を提供することにある。   Therefore, an object of the present invention is to provide a vehicle behavior test apparatus capable of accurately grasping a restraint device and vehicle rigidity.

本発明は、ローラに載置した被試験車両を拘束装置で拘束し、動力計回転信号、軸トルク信号、及びローラ回転信号を計測制御ユニットに入力してトルク電流指令を演算し、求めたトルク電流指令によりインバータを介して動力計の制御を行うシャシーダイナモメータシステムにおいて、
前記拘束装置と被試験車両剛性のパラメータであるダンピング及びバネ剛性と、前記被試験車両の慣性と、前記ローラの慣性、及び検出されたローラ回転信号による角速度信号を用い、3階微分演算を実行してトルク電流指令を算出する制御コントローラを、前記計測制御ユニットに設けたことを特徴としたものである。
The present invention restrains a vehicle under test placed on a roller with a restraint device, inputs a dynamometer rotation signal, a shaft torque signal, and a roller rotation signal to a measurement control unit, calculates a torque current command, and obtains the obtained torque In a chassis dynamometer system that controls a dynamometer via an inverter according to a current command,
The third-order differential operation is performed using the damping device and the stiffness of the vehicle under test and the stiffness of the vehicle under test, the inertia of the vehicle under test, the inertia of the roller, and the angular velocity signal based on the detected roller rotation signal. Thus, a control controller for calculating a torque current command is provided in the measurement control unit.

また、本発明は、請求項2において、拘束装置と被試験車両剛性のパラメータは、被試験車両重量を設定し、複数回のアクセル操作時の駆動信号と拘束装置の拘束力信号をそれぞれ検出し、各検出信号をアクセル操作毎に分割して各回の各検出信号を抽出し、抽出データから駆動力信号と拘束力信号に基づいて各回毎の伝達関数を演算し、同定された特性パラメータであることを特徴としたものである。   In the present invention, the restraint device and the vehicle under test stiffness parameter set the vehicle under test weight, and detect the drive signal and the restraint force signal of the restraint device for a plurality of accelerator operations. , Each detected signal is divided for each accelerator operation, each detected signal is extracted, and each transfer function is calculated from the extracted data based on the driving force signal and the binding force signal, and the characteristic parameters are identified. It is characterized by that.

以上のとおり、本発明によれば、拘束装置と被試験車両剛性のパラメータと、車両とローラの各慣性、及び角速度信号を用い、3階微分演算を実行してトルク電流指令を算出する制御コントローラとしたことにより所望のトルク電流指令を生成することが可能となり、過渡的な車両の挙動試験が実施できる。   As described above, according to the present invention, the controller that calculates the torque current command by executing the third-order differential operation using the parameters of the restraint device and the vehicle under test rigidity, the inertia of the vehicle and the roller, and the angular velocity signal. As a result, a desired torque current command can be generated, and a transient vehicle behavior test can be performed.

図1は、本発明の実施例を示す制御コントローラの構成図で、この制御コントローラは、図5で示す計測制御ユニットMU内に設けられてエンコーダEC2により検出されたローラ回転数である角速度信号が入力される。10は1階微分手段で、拘束装置と車両剛性のダンピングCc、拘束装置と車両剛性のバネ剛性Kcとラプラス演算子sによる1階微分演算を実行し、演算結果と入力された角速度信号はこの1階微分手段において乗算される。11は1階微分パラメータ部で、車両慣性Mcarとローラ慣性Mrollerの差分と、1階微分手段10の出力値とが乗算される。   FIG. 1 is a block diagram of a control controller showing an embodiment of the present invention. This control controller is provided in the measurement control unit MU shown in FIG. 5 and receives an angular velocity signal which is a roller rotation number detected by an encoder EC2. Entered. Reference numeral 10 denotes a first-order differential means, which executes a first-order differential operation using the restraining device and the vehicle stiffness damping Cc, the restraining device and the vehicle stiffness spring stiffness Kc, and the Laplace operator s. Multiplication is performed in the first-order differentiation means. Reference numeral 11 denotes a first-order differential parameter unit that multiplies the difference between the vehicle inertia Mcar and the roller inertia Mroller by the output value of the first-order differential means 10.

12は2階微分手段で、1次のローパスフィルターの時定数Taを考慮した演算を実行する。この2階微分手段12には1階微分手段10の出力値が入力されて乗算が実行される。13は2階微分パラメータ部で、McarとMrollerの偏差と、
CcとKcの比の乗算値に2階微分手段12の出力値が乗算される。14は3階微分手段で、この3階微分手段13の演算値と2階微分手段12の出力値が乗算され、その演算値は3階微分パラメータ部15に入力される。3階微分パラメータ部15では、Mcarの二乗値とKcの除算値に3階微分手段14の出力値とが乗算される。各パラメータ部による演算結果は、加算部16に入力されて加算され、動力計のトルク電流指令としてインバータの制御部に出力される。
Reference numeral 12 denotes a second-order differentiating means that executes a calculation in consideration of the time constant Ta of the first-order low-pass filter. The second-order differentiating means 12 receives the output value of the first-order differentiating means 10 and executes multiplication. 13 is a second-order differential parameter section, and the deviation between Mcar and Mroller,
The multiplication value of the ratio of Cc and Kc is multiplied by the output value of the second order differentiation means 12. Reference numeral 14 denotes third-order differentiation means, which multiplies the operation value of the third-order differentiation means 13 and the output value of the second-order differentiation means 12 and inputs the operation value to the third-order differentiation parameter section 15. The third-order differentiation parameter unit 15 multiplies the square value of Mcar and the division value of Kc by the output value of the third-order differentiation means 14. The calculation results by the respective parameter units are input to the adding unit 16 and added, and output to the inverter control unit as a torque current command of the dynamometer.

車両挙動試験を実施するための本発明の制御コントローラは、拘束装置と車両剛性の特性を考慮し、検出された角速度信号のみを使用して構成したものであるが、以下に過渡的な車両の挙動試験が可能のなる理由について説明する。   The controller of the present invention for carrying out the vehicle behavior test is configured using only the detected angular velocity signal in consideration of the restraint device and the characteristics of the vehicle rigidity. The reason why the behavior test is possible will be described.

被試験車両をシャシーダイナモメータ上で試験するとき、実路上での特性を目標として実行するが、その際、路上速度をVcaronroadとし、駆動力をFxとしたときの走行演算部の伝達関数Gcarは(1)式となる。   When the vehicle under test is tested on the chassis dynamometer, it is executed with the characteristic on the actual road as the target. At this time, the transfer function Gcar of the traveling calculation unit when the road speed is Vcaronroad and the driving force is Fx is (1)

Figure 2010112903
Figure 2010112903

また、拘束装置により拘束されている車体特性は、シャシーダイナモメータ上で拘束されている車体の検出速度をVcarondynamoとしたとき(2)式となる。 The vehicle body characteristics restrained by the restraining device are expressed by equation (2) when the detected speed of the car body restrained on the chassis dynamometer is Vcarondynamo.

Figure 2010112903
Figure 2010112903

ただし、Gbindは拘束力演算部の伝達関数
ここで、ダイナモメータが発生するトルクFdynamoを
Fdynamo=Gdynamocontroller×Vdynamoとすると、(3)式となり、シャシーダイナモメータの特性Vdynamoは(4)式となる。
However, Gbind is a transfer function of the restraint force calculation unit. Here, when the torque Fdynamo generated by the dynamometer is Fdynamo = Gdynamocontroller × Vdynamo, the equation (3) is obtained and the characteristic Vdynamo of the chassis dynamometer is given by the equation (4).

Figure 2010112903
Figure 2010112903

Figure 2010112903
Figure 2010112903

ここで、Gdynamocontrollerは、図1で示す制御コントローラの伝達関数、Gdynamoはシャシーダイナモメータの伝達関数
等価的な車両速度の特性は、(5)式で示す拘束された車体特性とシャシーダイナモメータ特性の和となる。
Here, Gdynamocontroller is the transfer function of the controller shown in FIG. 1, and Gdynamo is the transfer function of the chassis dynamometer. The equivalent vehicle speed characteristics are the constrained vehicle body characteristics and chassis dynamometer characteristics shown in equation (5). Become sum.

Figure 2010112903
Figure 2010112903

被試験車両を、目標とする実路上での特性と一致させるためには、(6)式から(7)式となる。 In order to match the vehicle under test with the target characteristic on the actual road, the equations (6) to (7) are used.

Figure 2010112903
Figure 2010112903

Figure 2010112903
Figure 2010112903

制御コントローラの伝達関数であるGdynamocontrollerを計算すると(8)式となる。 When Gdynamocontroller, which is a transfer function of the controller, is calculated, equation (8) is obtained.

Figure 2010112903
Figure 2010112903

ここで、Gcar=1/Mcar・s、Gdynamo=1/Mroller・s、Gbind=Cc・s+Kc/sとしてGdynamocontrollerは(9)式となる。 In this case, Gdynamocontroller is expressed by equation (9) where Gcar = 1 / Mcar · s, Gdynamo = 1 / Mroller · s, and Gbind = Cc · s + Kc / s.

Figure 2010112903
Figure 2010112903

Mrollerを等価的なダイナモ慣性(ダイナモ慣性+ローラ慣性)とし、ローパスフィルター1/Ta・s+1を付加すると、Gdynamocontrollerは(10)式となる。 When Mroller is set to an equivalent dynamo inertia (dynamo inertia + roller inertia) and a low-pass filter 1 / Ta · s + 1 is added, Gdynamocontroller is expressed by equation (10).

Figure 2010112903
Figure 2010112903

すなわち、図1で示す制御コントローラを(10)式のような伝達関数を有する構成とすることにより、実路上とシャシーダイナモメータ上での一致した特性を得ることができる。
図2は、本発明によるシミュレーション結果を示したもので、図2(b)で示すように実路上とシャシーダイナモメータ上で一致していることが分かる。
なお、(10)式に用いられる拘束装置と車両剛性の特性パラメータCcとKcは予め設定されたものでもよく、その都度同定して求めても良い。同定方法を次に説明する。
That is, by making the control controller shown in FIG. 1 have a transfer function as shown in equation (10), it is possible to obtain the same characteristics on the actual road and the chassis dynamometer.
FIG. 2 shows a simulation result according to the present invention. As shown in FIG. 2B, it can be seen that the actual road and the chassis dynamometer coincide with each other.
Note that the restraint device and the vehicle stiffness characteristic parameters Cc and Kc used in the equation (10) may be set in advance or may be determined and identified each time. Next, the identification method will be described.

図3は同定するための運転手順を示したもので、この運転手順は、シャシーダイナモメータ上での試験に先立って演算装置(パソコン)にて拘束装置と車両剛性の特性パラメータを把握するものである。ステップS1で供試体である被試験車両に変更があった場合にはステップS3に進み、変更がない場合にはステップS2に進む。S2では被試験車両に変更がなくても、車両に搭載される積荷が満載か空かなどのように重量変更がある場合にはステップS3進み、車両重量Mcarが設定される。ステップS4では、設定された車両重量時におけるスロットル、若しくはアクセル開度全開(WOT)時のデータを複数回(ここでは3〜5回)収集し、ステップS5で拘束装置と車両剛性の特性パラメータCc、Kcを把握する。   FIG. 3 shows an operation procedure for identification. This operation procedure is for grasping the characteristic parameters of the restraint device and the vehicle rigidity by a computing device (personal computer) prior to the test on the chassis dynamometer. is there. If there is a change in the vehicle under test that is the specimen in step S1, the process proceeds to step S3, and if there is no change, the process proceeds to step S2. In S2, even if there is no change in the vehicle under test, if there is a weight change such as whether the load mounted on the vehicle is full or empty, the process proceeds to step S3, and the vehicle weight Mcar is set. In step S4, data for throttle or accelerator opening fully open (WOT) at the set vehicle weight is collected a plurality of times (here, 3 to 5 times), and in step S5, the restraint device and the vehicle stiffness characteristic parameter Cc are collected. , Kc.

図4は、パラメータ導出手段による拘束装置と車両剛性の特性パラメータ導出のためのフローチャートである。先ずS10で、図3の手順によって求められた特性パラメータを含む各種収録データの読み込みが実行される。S11では、S4で行った複数回のアクセル全開時毎の組みに分けられ、各回毎のアクセル全開時の駆動力信号、拘束力信号、アクセル開度信号、その時の軸トルク信号、回転数信号など評価に必要なデータの抽出をS12で行う。この評価データは、S13でローパスフィルター処理が実行された後、S14で(11)式を用いて伝達関数[G]の演算が行われる。
[G]=(Cc・s+Kc)/(Mcar・s2+Cc・s+Kc)…… (11)
求められた伝達関数[G]は、駆動力信号から拘束力信号の伝達関数であり、S13でローパスフィルター処理を実行後に伝達関数[G]を用いてS15で、例えば最小二乗法により同定し、S16では同定パラメータを微調整し、この微調整した特性パラメータCc、Kcを用いて伝達関数[Gfit]を求める(S17)。S18では、先に抽出した拘束力[Fout]と今回算出した伝達関数[Gfit]による拘束力[Ffit-out]との差分を誤差評価値としてシミュレーションを実行する。この過程をS11で分割した数だけ繰返して誤差評価値を求め、確からしい評価となったときに駆動力から拘束力までの伝達関数の各パラメータが出力される。
FIG. 4 is a flowchart for deriving the characteristic parameter of the restraint device and the vehicle stiffness by the parameter deriving means. First, in S10, various recorded data including the characteristic parameters obtained by the procedure of FIG. 3 are read. In S11, it is divided into a set every time the accelerator is fully opened performed in S4, and each time the accelerator is fully opened, the driving force signal, the restraining force signal, the accelerator opening signal, the shaft torque signal at that time, the rotational speed signal, etc. Data necessary for evaluation is extracted in S12. The evaluation data is subjected to a low-pass filter process in S13, and then a transfer function [G] is calculated using the equation (11) in S14.
[G] = (Cc · s + Kc) / (Mcar · s 2 + Cc · s + Kc) (11)
The obtained transfer function [G] is a transfer function from the driving force signal to the binding force signal, and after performing the low-pass filter processing in S13, the transfer function [G] is used to identify the transfer function [G], for example, by the least square method. In S16, the identification parameter is finely adjusted, and the transfer function [Gfit] is obtained using the finely adjusted characteristic parameters Cc and Kc (S17). In S18, the simulation is executed with the difference between the previously extracted constraint force [Fout] and the constraint force [Ffit-out] calculated by the transfer function [Gfit] calculated this time as an error evaluation value. This process is repeated as many times as the number divided in S11 to obtain an error evaluation value, and when the evaluation becomes probable, each parameter of the transfer function from the driving force to the binding force is output.

したがって、拘束装置と車両剛性の特性を同定するために、車両重量Mcarを設定(ステップS3)し、車両側よりアクセル開度を操作(ステップS4)することにより、その時の駆動力検出と拘束力検出を使用して伝達関数[G]のパラメータCc、Kcの算出が可能となる。これにより、拘束装置と車両剛性の特性を伝達関数[G]に近似させることが可能となり、拘束装置と車両剛性の特性を把握することができる。   Therefore, in order to identify the characteristics of the restraining device and the vehicle rigidity, the vehicle weight Mcar is set (step S3), and the accelerator opening is operated from the vehicle side (step S4), thereby detecting the driving force and restraining force at that time. Using detection, the parameters Cc and Kc of the transfer function [G] can be calculated. This makes it possible to approximate the characteristics of the restraining device and the vehicle rigidity to the transfer function [G], and can grasp the characteristics of the restraining device and the vehicle rigidity.

本発明の実施形態を示す制御コントローラの構成図。The block diagram of the control controller which shows embodiment of this invention. 本発明によるアクセルー駆動力波形図で、(a)はアクセル開度、(b)は駆動力。FIG. 4 is a waveform diagram of the accelerator driving force according to the present invention, where (a) is the accelerator opening, and (b) is the driving force. 道程のための運転手順図。Driving procedure diagram for the journey. パラメータ導出のフローチャート。The flowchart of parameter derivation. 動力計システムの構成図。The block diagram of a dynamometer system. シャシーダイナモメータシステム図。Chassis dynamometer system diagram. シャシーダイナモメータシステムの走行モデル図。The driving | running | working model figure of a chassis dynamometer system. 振動伝達モデル図。Vibration transmission model diagram. 従来のアクセルー駆動力波形図で、(a)はアクセル開度、(b)は駆動力。In the conventional Axel driving force waveform diagram, (a) is the accelerator opening, and (b) is the driving force.

符号の説明Explanation of symbols

10… 1階微分手段
11… 1階微分パラメータ部
12… 2階微分手段
13… 2階微分パラメータ部
14… 3階微分手段
15… 2階微分パラメータ部
16… 加算部
DESCRIPTION OF SYMBOLS 10 ... First order differentiation means 11 ... First order differentiation parameter part 12 ... Second order differentiation means 13 ... Second order differentiation parameter part 14 ... Third order differentiation means 15 ... Second order differentiation parameter part 16 ... Addition part

Claims (2)

ローラに載置した被試験車両を拘束装置で拘束し、動力計回転信号、軸トルク信号、及びローラ回転信号を計測制御ユニットに入力してトルク電流指令を演算し、求めたトルク電流指令によりインバータを介して動力計の制御を行うシャシーダイナモメータシステムにおいて、
前記拘束装置と被試験車両剛性のパラメータであるダンピング及びバネ剛性と、前記被試験車両の慣性と、前記ローラの慣性、及び検出されたローラ回転信号による角速度信号を用い、3階微分演算を実行してトルク電流指令を算出する制御コントローラを、前記計測制御ユニットに設けたことを特徴とする車両挙動試験装置。
A vehicle to be tested placed on a roller is restrained by a restraining device, a dynamometer rotation signal, a shaft torque signal, and a roller rotation signal are input to a measurement control unit to calculate a torque current command, and an inverter is obtained by the obtained torque current command. In the chassis dynamometer system that controls the dynamometer via
The third-order differential operation is performed using the damping device and the stiffness of the vehicle under test and the stiffness of the vehicle under test, the inertia of the vehicle under test, the inertia of the roller, and the angular velocity signal based on the detected roller rotation signal. A vehicle behavior test apparatus characterized in that a control controller for calculating a torque current command is provided in the measurement control unit.
前記拘束装置と被試験車両剛性のパラメータは、被試験車両重量を設定し、複数回のアクセル操作時の駆動信号と拘束装置の拘束力信号をそれぞれ検出し、各検出信号をアクセル操作毎に分割して各回の各検出信号を抽出し、抽出データから駆動力信号と拘束力信号に基づいて各回毎の伝達関数を演算し、同定された特性パラメータであることを特徴とする請求項1記載の車両挙動試験装置。


The restraint device and vehicle under test stiffness parameters set the vehicle under test weight, detect the drive signal and restraint force signal of the restraint device during multiple accelerator operations, and divide each detection signal for each accelerator operation The detection signal of each time is extracted, the transfer function for each time is calculated based on the driving force signal and the binding force signal from the extracted data, and the characteristic parameter is identified. Vehicle behavior test device.


JP2008287274A 2008-11-10 2008-11-10 Vehicle behavior test equipment Active JP5239757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008287274A JP5239757B2 (en) 2008-11-10 2008-11-10 Vehicle behavior test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008287274A JP5239757B2 (en) 2008-11-10 2008-11-10 Vehicle behavior test equipment

Publications (2)

Publication Number Publication Date
JP2010112903A true JP2010112903A (en) 2010-05-20
JP5239757B2 JP5239757B2 (en) 2013-07-17

Family

ID=42301558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008287274A Active JP5239757B2 (en) 2008-11-10 2008-11-10 Vehicle behavior test equipment

Country Status (1)

Country Link
JP (1) JP5239757B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112902A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for testing vehicle behavior
JP2010112900A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Restraint system of chassis dynamometer and method of determining characteristics of vehicle rigidity
JP2010112901A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for controlling chassis dynamometer

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055676A (en) * 1991-06-24 1993-01-14 Meidensha Corp Chasis dynamometer control device for four-wheel drive car
JPH05240739A (en) * 1992-02-28 1993-09-17 Meidensha Corp Chassis dynamometer
JPH08278231A (en) * 1995-04-10 1996-10-22 Meidensha Corp Mechanical loss setting method in chassis dynamometer
JPH11352022A (en) * 1998-06-09 1999-12-24 Toyota Motor Corp Vibration testing device for vehicle
JP2004101507A (en) * 2002-07-18 2004-04-02 Nissan Motor Co Ltd Vehicle vibration inspecting method
JP2004361255A (en) * 2003-06-05 2004-12-24 Meidensha Corp Electric inertia control system of power measuring system
JP2007093223A (en) * 2005-09-27 2007-04-12 Meidensha Corp Chassis dynamometer
JP2008195270A (en) * 2007-02-14 2008-08-28 Toyota Motor Corp Vehicle suspension system
JP2008304233A (en) * 2007-06-06 2008-12-18 Meidensha Corp Electric inertia control method
JP2009276304A (en) * 2008-05-19 2009-11-26 Meidensha Corp Vehicle behavior testing apparatus
JP2010112902A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for testing vehicle behavior
JP2010112900A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Restraint system of chassis dynamometer and method of determining characteristics of vehicle rigidity
JP2010112901A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for controlling chassis dynamometer

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055676A (en) * 1991-06-24 1993-01-14 Meidensha Corp Chasis dynamometer control device for four-wheel drive car
JPH05240739A (en) * 1992-02-28 1993-09-17 Meidensha Corp Chassis dynamometer
JPH08278231A (en) * 1995-04-10 1996-10-22 Meidensha Corp Mechanical loss setting method in chassis dynamometer
JPH11352022A (en) * 1998-06-09 1999-12-24 Toyota Motor Corp Vibration testing device for vehicle
JP2004101507A (en) * 2002-07-18 2004-04-02 Nissan Motor Co Ltd Vehicle vibration inspecting method
JP2004361255A (en) * 2003-06-05 2004-12-24 Meidensha Corp Electric inertia control system of power measuring system
JP2007093223A (en) * 2005-09-27 2007-04-12 Meidensha Corp Chassis dynamometer
JP2008195270A (en) * 2007-02-14 2008-08-28 Toyota Motor Corp Vehicle suspension system
JP2008304233A (en) * 2007-06-06 2008-12-18 Meidensha Corp Electric inertia control method
JP2009276304A (en) * 2008-05-19 2009-11-26 Meidensha Corp Vehicle behavior testing apparatus
WO2009142130A1 (en) * 2008-05-19 2009-11-26 株式会社明電舎 Vehicle behavior testing apparatus
JP2010112902A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for testing vehicle behavior
JP2010112900A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Restraint system of chassis dynamometer and method of determining characteristics of vehicle rigidity
JP2010112901A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for controlling chassis dynamometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112902A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for testing vehicle behavior
JP2010112900A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Restraint system of chassis dynamometer and method of determining characteristics of vehicle rigidity
JP2010112901A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for controlling chassis dynamometer

Also Published As

Publication number Publication date
JP5239757B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP6505414B2 (en) Test apparatus and method for electric vehicle
JP5146102B2 (en) Vehicle behavior test equipment
US10540456B2 (en) Method for assessing the controllability of a vehicle
JP5316151B2 (en) Power system test apparatus and control method thereof
JP5234775B2 (en) Vehicle behavior test equipment
JP2008048464A (en) Electrical inertia controller, and its control method
JP4645231B2 (en) Power transmission system test apparatus and control method thereof
JP5239757B2 (en) Vehicle behavior test equipment
JP4655677B2 (en) Power transmission system test apparatus and control method thereof
JP5294314B2 (en) Chassis dynamometer restraint device and vehicle stiffness characteristic identification method
JP5790339B2 (en) Power transmission system test equipment
JP5493927B2 (en) Power system test apparatus and control method thereof
US6516287B1 (en) Method and device for simulating the mass of motor vehicles placed on stationary test stands
JP4893387B2 (en) Running resistance control device for chassis dynamometer
JP4045860B2 (en) Power transmission system test apparatus and control method thereof
JP5494047B2 (en) Chassis dynamometer system for evaluating body vibration and method for evaluating body vibration
Sundström Vehicle level diagnosis for hybrid powertrains
JP2004309290A (en) System for verifying inertial load of chassis dynamometer
JP3776756B2 (en) Motor testing equipment
JP5414662B2 (en) Method for creating characteristic map of dynamometer and dynamometer
JP4946495B2 (en) Electric inertia control device for power measurement system
JP2003285761A (en) Device and method of analyzing steering force of vehicle, and program for analyzing steering force
JP2006090795A (en) Performance evaluation method and system for chassis dynamometer
Oswald et al. Automatic Generation of Validated Virtual Complete Vehicle Prototypes
Popa A launch control system for cars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150